|  | /* | 
|  | * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring | 
|  | * Copyright (c) 2007, 2010 George Joseph  <george.joseph@fairview5.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/hwmon.h> | 
|  | #include <linux/hwmon-sysfs.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/mutex.h> | 
|  |  | 
|  | /* Addresses to scan */ | 
|  | static const unsigned short normal_i2c[] = { | 
|  | 0x2c, 0x2d, 0x2e, I2C_CLIENT_END | 
|  | }; | 
|  |  | 
|  | enum asc7621_type { | 
|  | asc7621, | 
|  | asc7621a | 
|  | }; | 
|  |  | 
|  | #define INTERVAL_HIGH   (HZ + HZ / 2) | 
|  | #define INTERVAL_LOW    (1 * 60 * HZ) | 
|  | #define PRI_NONE        0 | 
|  | #define PRI_LOW         1 | 
|  | #define PRI_HIGH        2 | 
|  | #define FIRST_CHIP      asc7621 | 
|  | #define LAST_CHIP       asc7621a | 
|  |  | 
|  | struct asc7621_chip { | 
|  | char *name; | 
|  | enum asc7621_type chip_type; | 
|  | u8 company_reg; | 
|  | u8 company_id; | 
|  | u8 verstep_reg; | 
|  | u8 verstep_id; | 
|  | const unsigned short *addresses; | 
|  | }; | 
|  |  | 
|  | static struct asc7621_chip asc7621_chips[] = { | 
|  | { | 
|  | .name = "asc7621", | 
|  | .chip_type = asc7621, | 
|  | .company_reg = 0x3e, | 
|  | .company_id = 0x61, | 
|  | .verstep_reg = 0x3f, | 
|  | .verstep_id = 0x6c, | 
|  | .addresses = normal_i2c, | 
|  | }, | 
|  | { | 
|  | .name = "asc7621a", | 
|  | .chip_type = asc7621a, | 
|  | .company_reg = 0x3e, | 
|  | .company_id = 0x61, | 
|  | .verstep_reg = 0x3f, | 
|  | .verstep_id = 0x6d, | 
|  | .addresses = normal_i2c, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Defines the highest register to be used, not the count. | 
|  | * The actual count will probably be smaller because of gaps | 
|  | * in the implementation (unused register locations). | 
|  | * This define will safely set the array size of both the parameter | 
|  | * and data arrays. | 
|  | * This comes from the data sheet register description table. | 
|  | */ | 
|  | #define LAST_REGISTER 0xff | 
|  |  | 
|  | struct asc7621_data { | 
|  | struct i2c_client client; | 
|  | struct device *class_dev; | 
|  | struct mutex update_lock; | 
|  | int valid;		/* !=0 if following fields are valid */ | 
|  | unsigned long last_high_reading;	/* In jiffies */ | 
|  | unsigned long last_low_reading;		/* In jiffies */ | 
|  | /* | 
|  | * Registers we care about occupy the corresponding index | 
|  | * in the array.  Registers we don't care about are left | 
|  | * at 0. | 
|  | */ | 
|  | u8 reg[LAST_REGISTER + 1]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Macro to get the parent asc7621_param structure | 
|  | * from a sensor_device_attribute passed into the | 
|  | * show/store functions. | 
|  | */ | 
|  | #define to_asc7621_param(_sda) \ | 
|  | container_of(_sda, struct asc7621_param, sda) | 
|  |  | 
|  | /* | 
|  | * Each parameter to be retrieved needs an asc7621_param structure | 
|  | * allocated.  It contains the sensor_device_attribute structure | 
|  | * and the control info needed to retrieve the value from the register map. | 
|  | */ | 
|  | struct asc7621_param { | 
|  | struct sensor_device_attribute sda; | 
|  | u8 priority; | 
|  | u8 msb[3]; | 
|  | u8 lsb[3]; | 
|  | u8 mask[3]; | 
|  | u8 shift[3]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is the map that ultimately indicates whether we'll be | 
|  | * retrieving a register value or not, and at what frequency. | 
|  | */ | 
|  | static u8 asc7621_register_priorities[255]; | 
|  |  | 
|  | static struct asc7621_data *asc7621_update_device(struct device *dev); | 
|  |  | 
|  | static inline u8 read_byte(struct i2c_client *client, u8 reg) | 
|  | { | 
|  | int res = i2c_smbus_read_byte_data(client, reg); | 
|  | if (res < 0) { | 
|  | dev_err(&client->dev, | 
|  | "Unable to read from register 0x%02x.\n", reg); | 
|  | return 0; | 
|  | }; | 
|  | return res & 0xff; | 
|  | } | 
|  |  | 
|  | static inline int write_byte(struct i2c_client *client, u8 reg, u8 data) | 
|  | { | 
|  | int res = i2c_smbus_write_byte_data(client, reg, data); | 
|  | if (res < 0) { | 
|  | dev_err(&client->dev, | 
|  | "Unable to write value 0x%02x to register 0x%02x.\n", | 
|  | data, reg); | 
|  | }; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Data Handlers | 
|  | * Each function handles the formatting, storage | 
|  | * and retrieval of like parameters. | 
|  | */ | 
|  |  | 
|  | #define SETUP_SHOW_data_param(d, a) \ | 
|  | struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ | 
|  | struct asc7621_data *data = asc7621_update_device(d); \ | 
|  | struct asc7621_param *param = to_asc7621_param(sda) | 
|  |  | 
|  | #define SETUP_STORE_data_param(d, a) \ | 
|  | struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \ | 
|  | struct i2c_client *client = to_i2c_client(d); \ | 
|  | struct asc7621_data *data = i2c_get_clientdata(client); \ | 
|  | struct asc7621_param *param = to_asc7621_param(sda) | 
|  |  | 
|  | /* | 
|  | * u8 is just what it sounds like...an unsigned byte with no | 
|  | * special formatting. | 
|  | */ | 
|  | static ssize_t show_u8(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  |  | 
|  | return sprintf(buf, "%u\n", data->reg[param->msb[0]]); | 
|  | } | 
|  |  | 
|  | static ssize_t store_u8(struct device *dev, struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | reqval = SENSORS_LIMIT(reqval, 0, 255); | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | data->reg[param->msb[0]] = reqval; | 
|  | write_byte(client, param->msb[0], reqval); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Many of the config values occupy only a few bits of a register. | 
|  | */ | 
|  | static ssize_t show_bitmask(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  |  | 
|  | return sprintf(buf, "%u\n", | 
|  | (data->reg[param->msb[0]] >> param-> | 
|  | shift[0]) & param->mask[0]); | 
|  | } | 
|  |  | 
|  | static ssize_t store_bitmask(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval; | 
|  | u8 currval; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]); | 
|  |  | 
|  | reqval = (reqval & param->mask[0]) << param->shift[0]; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | currval = read_byte(client, param->msb[0]); | 
|  | reqval |= (currval & ~(param->mask[0] << param->shift[0])); | 
|  | data->reg[param->msb[0]] = reqval; | 
|  | write_byte(client, param->msb[0], reqval); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 16 bit fan rpm values | 
|  | * reported by the device as the number of 11.111us periods (90khz) | 
|  | * between full fan rotations.  Therefore... | 
|  | * RPM = (90000 * 60) / register value | 
|  | */ | 
|  | static ssize_t show_fan16(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u16 regval; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]]; | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | return sprintf(buf, "%u\n", | 
|  | (regval == 0 ? -1 : (regval) == | 
|  | 0xffff ? 0 : 5400000 / regval)); | 
|  | } | 
|  |  | 
|  | static ssize_t store_fan16(struct device *dev, | 
|  | struct device_attribute *attr, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * If a minimum RPM of zero is requested, then we set the register to | 
|  | * 0xffff. This value allows the fan to be stopped completely without | 
|  | * generating an alarm. | 
|  | */ | 
|  | reqval = | 
|  | (reqval <= 0 ? 0xffff : SENSORS_LIMIT(5400000 / reqval, 0, 0xfffe)); | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | data->reg[param->msb[0]] = (reqval >> 8) & 0xff; | 
|  | data->reg[param->lsb[0]] = reqval & 0xff; | 
|  | write_byte(client, param->msb[0], data->reg[param->msb[0]]); | 
|  | write_byte(client, param->lsb[0], data->reg[param->lsb[0]]); | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Voltages are scaled in the device so that the nominal voltage | 
|  | * is 3/4ths of the 0-255 range (i.e. 192). | 
|  | * If all voltages are 'normal' then all voltage registers will | 
|  | * read 0xC0. | 
|  | * | 
|  | * The data sheet provides us with the 3/4 scale value for each voltage | 
|  | * which is stored in in_scaling.  The sda->index parameter value provides | 
|  | * the index into in_scaling. | 
|  | * | 
|  | * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts | 
|  | * respectively. That doesn't mean that's what the motherboard provides. :) | 
|  | */ | 
|  |  | 
|  | static int asc7621_in_scaling[] = { | 
|  | 2500, 2250, 3300, 5000, 12000 | 
|  | }; | 
|  |  | 
|  | static ssize_t show_in10(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u16 regval; | 
|  | u8 nr = sda->index; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]); | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */ | 
|  | regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2); | 
|  |  | 
|  | return sprintf(buf, "%u\n", regval); | 
|  | } | 
|  |  | 
|  | /* 8 bit voltage values (the mins and maxs) */ | 
|  | static ssize_t show_in8(struct device *dev, struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u8 nr = sda->index; | 
|  |  | 
|  | return sprintf(buf, "%u\n", | 
|  | ((data->reg[param->msb[0]] * | 
|  | asc7621_in_scaling[nr]) / 0xc0)); | 
|  | } | 
|  |  | 
|  | static ssize_t store_in8(struct device *dev, struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval; | 
|  | u8 nr = sda->index; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | reqval = SENSORS_LIMIT(reqval, 0, 0xffff); | 
|  |  | 
|  | reqval = reqval * 0xc0 / asc7621_in_scaling[nr]; | 
|  |  | 
|  | reqval = SENSORS_LIMIT(reqval, 0, 0xff); | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | data->reg[param->msb[0]] = reqval; | 
|  | write_byte(client, param->msb[0], reqval); | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_temp8(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  |  | 
|  | return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000); | 
|  | } | 
|  |  | 
|  | static ssize_t store_temp8(struct device *dev, | 
|  | struct device_attribute *attr, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval; | 
|  | s8 temp; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | reqval = SENSORS_LIMIT(reqval, -127000, 127000); | 
|  |  | 
|  | temp = reqval / 1000; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | data->reg[param->msb[0]] = temp; | 
|  | write_byte(client, param->msb[0], temp); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Temperatures that occupy 2 bytes always have the whole | 
|  | * number of degrees in the MSB with some part of the LSB | 
|  | * indicating fractional degrees. | 
|  | */ | 
|  |  | 
|  | /*   mmmmmmmm.llxxxxxx */ | 
|  | static ssize_t show_temp10(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u8 msb, lsb; | 
|  | int temp; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | msb = data->reg[param->msb[0]]; | 
|  | lsb = (data->reg[param->lsb[0]] >> 6) & 0x03; | 
|  | temp = (((s8) msb) * 1000) + (lsb * 250); | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | return sprintf(buf, "%d\n", temp); | 
|  | } | 
|  |  | 
|  | /*   mmmmmm.ll */ | 
|  | static ssize_t show_temp62(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u8 regval = data->reg[param->msb[0]]; | 
|  | int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250); | 
|  |  | 
|  | return sprintf(buf, "%d\n", temp); | 
|  | } | 
|  |  | 
|  | static ssize_t store_temp62(struct device *dev, | 
|  | struct device_attribute *attr, const char *buf, | 
|  | size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval, i, f; | 
|  | s8 temp; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | reqval = SENSORS_LIMIT(reqval, -32000, 31750); | 
|  | i = reqval / 1000; | 
|  | f = reqval - (i * 1000); | 
|  | temp = i << 2; | 
|  | temp |= f / 250; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | data->reg[param->msb[0]] = temp; | 
|  | write_byte(client, param->msb[0], temp); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The aSC7621 doesn't provide an "auto_point2".  Instead, you | 
|  | * specify the auto_point1 and a range.  To keep with the sysfs | 
|  | * hwmon specs, we synthesize the auto_point_2 from them. | 
|  | */ | 
|  |  | 
|  | static u32 asc7621_range_map[] = { | 
|  | 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000, | 
|  | 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000, | 
|  | }; | 
|  |  | 
|  | static ssize_t show_ap2_temp(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | long auto_point1; | 
|  | u8 regval; | 
|  | int temp; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000; | 
|  | regval = | 
|  | ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]); | 
|  | temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)]; | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | return sprintf(buf, "%d\n", temp); | 
|  |  | 
|  | } | 
|  |  | 
|  | static ssize_t store_ap2_temp(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval, auto_point1; | 
|  | int i; | 
|  | u8 currval, newval = 0; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | auto_point1 = data->reg[param->msb[1]] * 1000; | 
|  | reqval = SENSORS_LIMIT(reqval, auto_point1 + 2000, auto_point1 + 80000); | 
|  |  | 
|  | for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) { | 
|  | if (reqval >= auto_point1 + asc7621_range_map[i]) { | 
|  | newval = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | newval = (newval & param->mask[0]) << param->shift[0]; | 
|  | currval = read_byte(client, param->msb[0]); | 
|  | newval |= (currval & ~(param->mask[0] << param->shift[0])); | 
|  | data->reg[param->msb[0]] = newval; | 
|  | write_byte(client, param->msb[0], newval); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_pwm_ac(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u8 config, altbit, regval; | 
|  | u8 map[] = { | 
|  | 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10, | 
|  | 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f | 
|  | }; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | 
|  | altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; | 
|  | regval = config | (altbit << 3); | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]); | 
|  | } | 
|  |  | 
|  | static ssize_t store_pwm_ac(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | unsigned long reqval; | 
|  | u8 currval, config, altbit, newval; | 
|  | u16 map[] = { | 
|  | 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06, | 
|  | 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f, | 
|  | 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03, | 
|  | }; | 
|  |  | 
|  | if (kstrtoul(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (reqval > 31) | 
|  | return -EINVAL; | 
|  |  | 
|  | reqval = map[reqval]; | 
|  | if (reqval == 0xff) | 
|  | return -EINVAL; | 
|  |  | 
|  | config = reqval & 0x07; | 
|  | altbit = (reqval >> 3) & 0x01; | 
|  |  | 
|  | config = (config & param->mask[0]) << param->shift[0]; | 
|  | altbit = (altbit & param->mask[1]) << param->shift[1]; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | currval = read_byte(client, param->msb[0]); | 
|  | newval = config | (currval & ~(param->mask[0] << param->shift[0])); | 
|  | newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); | 
|  | data->reg[param->msb[0]] = newval; | 
|  | write_byte(client, param->msb[0], newval); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_pwm_enable(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u8 config, altbit, minoff, val, newval; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | 
|  | altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1]; | 
|  | minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2]; | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | val = config | (altbit << 3); | 
|  | newval = 0; | 
|  |  | 
|  | if (val == 3 || val >= 10) | 
|  | newval = 255; | 
|  | else if (val == 4) | 
|  | newval = 0; | 
|  | else if (val == 7) | 
|  | newval = 1; | 
|  | else if (minoff == 1) | 
|  | newval = 2; | 
|  | else | 
|  | newval = 3; | 
|  |  | 
|  | return sprintf(buf, "%u\n", newval); | 
|  | } | 
|  |  | 
|  | static ssize_t store_pwm_enable(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval; | 
|  | u8 currval, config, altbit, newval, minoff = 255; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (reqval) { | 
|  | case 0: | 
|  | newval = 0x04; | 
|  | break; | 
|  | case 1: | 
|  | newval = 0x07; | 
|  | break; | 
|  | case 2: | 
|  | newval = 0x00; | 
|  | minoff = 1; | 
|  | break; | 
|  | case 3: | 
|  | newval = 0x00; | 
|  | minoff = 0; | 
|  | break; | 
|  | case 255: | 
|  | newval = 0x03; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | config = newval & 0x07; | 
|  | altbit = (newval >> 3) & 0x01; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | config = (config & param->mask[0]) << param->shift[0]; | 
|  | altbit = (altbit & param->mask[1]) << param->shift[1]; | 
|  | currval = read_byte(client, param->msb[0]); | 
|  | newval = config | (currval & ~(param->mask[0] << param->shift[0])); | 
|  | newval = altbit | (newval & ~(param->mask[1] << param->shift[1])); | 
|  | data->reg[param->msb[0]] = newval; | 
|  | write_byte(client, param->msb[0], newval); | 
|  | if (minoff < 255) { | 
|  | minoff = (minoff & param->mask[2]) << param->shift[2]; | 
|  | currval = read_byte(client, param->msb[2]); | 
|  | newval = | 
|  | minoff | (currval & ~(param->mask[2] << param->shift[2])); | 
|  | data->reg[param->msb[2]] = newval; | 
|  | write_byte(client, param->msb[2], newval); | 
|  | } | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static u32 asc7621_pwm_freq_map[] = { | 
|  | 10, 15, 23, 30, 38, 47, 62, 94, | 
|  | 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000 | 
|  | }; | 
|  |  | 
|  | static ssize_t show_pwm_freq(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u8 regval = | 
|  | (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | 
|  |  | 
|  | regval = SENSORS_LIMIT(regval, 0, 15); | 
|  |  | 
|  | return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]); | 
|  | } | 
|  |  | 
|  | static ssize_t store_pwm_freq(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | unsigned long reqval; | 
|  | u8 currval, newval = 255; | 
|  | int i; | 
|  |  | 
|  | if (kstrtoul(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) { | 
|  | if (reqval == asc7621_pwm_freq_map[i]) { | 
|  | newval = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (newval == 255) | 
|  | return -EINVAL; | 
|  |  | 
|  | newval = (newval & param->mask[0]) << param->shift[0]; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | currval = read_byte(client, param->msb[0]); | 
|  | newval |= (currval & ~(param->mask[0] << param->shift[0])); | 
|  | data->reg[param->msb[0]] = newval; | 
|  | write_byte(client, param->msb[0], newval); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static u32 asc7621_pwm_auto_spinup_map[] =  { | 
|  | 0, 100, 250, 400, 700, 1000, 2000, 4000 | 
|  | }; | 
|  |  | 
|  | static ssize_t show_pwm_ast(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u8 regval = | 
|  | (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | 
|  |  | 
|  | regval = SENSORS_LIMIT(regval, 0, 7); | 
|  |  | 
|  | return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]); | 
|  |  | 
|  | } | 
|  |  | 
|  | static ssize_t store_pwm_ast(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval; | 
|  | u8 currval, newval = 255; | 
|  | u32 i; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) { | 
|  | if (reqval == asc7621_pwm_auto_spinup_map[i]) { | 
|  | newval = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (newval == 255) | 
|  | return -EINVAL; | 
|  |  | 
|  | newval = (newval & param->mask[0]) << param->shift[0]; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | currval = read_byte(client, param->msb[0]); | 
|  | newval |= (currval & ~(param->mask[0] << param->shift[0])); | 
|  | data->reg[param->msb[0]] = newval; | 
|  | write_byte(client, param->msb[0], newval); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static u32 asc7621_temp_smoothing_time_map[] = { | 
|  | 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800 | 
|  | }; | 
|  |  | 
|  | static ssize_t show_temp_st(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | SETUP_SHOW_data_param(dev, attr); | 
|  | u8 regval = | 
|  | (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]; | 
|  | regval = SENSORS_LIMIT(regval, 0, 7); | 
|  |  | 
|  | return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]); | 
|  | } | 
|  |  | 
|  | static ssize_t store_temp_st(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | SETUP_STORE_data_param(dev, attr); | 
|  | long reqval; | 
|  | u8 currval, newval = 255; | 
|  | u32 i; | 
|  |  | 
|  | if (kstrtol(buf, 10, &reqval)) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) { | 
|  | if (reqval == asc7621_temp_smoothing_time_map[i]) { | 
|  | newval = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (newval == 255) | 
|  | return -EINVAL; | 
|  |  | 
|  | newval = (newval & param->mask[0]) << param->shift[0]; | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  | currval = read_byte(client, param->msb[0]); | 
|  | newval |= (currval & ~(param->mask[0] << param->shift[0])); | 
|  | data->reg[param->msb[0]] = newval; | 
|  | write_byte(client, param->msb[0], newval); | 
|  | mutex_unlock(&data->update_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * End of data handlers | 
|  | * | 
|  | * These defines do nothing more than make the table easier | 
|  | * to read when wrapped at column 80. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Creates a variable length array inititalizer. | 
|  | * VAA(1,3,5,7) would produce {1,3,5,7} | 
|  | */ | 
|  | #define VAA(args...) {args} | 
|  |  | 
|  | #define PREAD(name, n, pri, rm, rl, m, s, r) \ | 
|  | {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \ | 
|  | .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ | 
|  | .shift[0] = s,} | 
|  |  | 
|  | #define PWRITE(name, n, pri, rm, rl, m, s, r) \ | 
|  | {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ | 
|  | .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \ | 
|  | .shift[0] = s,} | 
|  |  | 
|  | /* | 
|  | * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift | 
|  | * were created using the VAA macro. | 
|  | */ | 
|  | #define PWRITEM(name, n, pri, rm, rl, m, s, r) \ | 
|  | {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \ | 
|  | .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,} | 
|  |  | 
|  | static struct asc7621_param asc7621_params[] = { | 
|  | PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10), | 
|  | PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10), | 
|  | PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10), | 
|  | PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10), | 
|  | PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10), | 
|  |  | 
|  | PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8), | 
|  | PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8), | 
|  | PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8), | 
|  | PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8), | 
|  | PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8), | 
|  |  | 
|  | PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8), | 
|  | PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8), | 
|  | PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8), | 
|  | PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8), | 
|  | PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8), | 
|  |  | 
|  | PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask), | 
|  | PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask), | 
|  | PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask), | 
|  | PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask), | 
|  | PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask), | 
|  |  | 
|  | PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16), | 
|  | PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16), | 
|  | PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16), | 
|  | PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16), | 
|  |  | 
|  | PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16), | 
|  | PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16), | 
|  | PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16), | 
|  | PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16), | 
|  |  | 
|  | PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask), | 
|  | PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask), | 
|  | PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask), | 
|  | PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask), | 
|  |  | 
|  | PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10), | 
|  | PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10), | 
|  | PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10), | 
|  | PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10), | 
|  | PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10), | 
|  | PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10), | 
|  | PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10), | 
|  | PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10), | 
|  |  | 
|  | PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8), | 
|  | PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8), | 
|  | PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8), | 
|  | PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8), | 
|  |  | 
|  | PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8), | 
|  | PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8), | 
|  | PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8), | 
|  | PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8), | 
|  |  | 
|  | PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask), | 
|  | PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask), | 
|  | PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask), | 
|  | PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask), | 
|  |  | 
|  | PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask), | 
|  | PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask), | 
|  | PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask), | 
|  | PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask), | 
|  |  | 
|  | PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask), | 
|  | PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask), | 
|  | PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask), | 
|  | PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask), | 
|  |  | 
|  | PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st), | 
|  | PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st), | 
|  | PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st), | 
|  | PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st), | 
|  |  | 
|  | PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, | 
|  | bitmask), | 
|  | PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, | 
|  | bitmask), | 
|  | PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, | 
|  | bitmask), | 
|  | PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, | 
|  | bitmask), | 
|  |  | 
|  | PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4, | 
|  | bitmask), | 
|  | PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0, | 
|  | bitmask), | 
|  | PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4, | 
|  | bitmask), | 
|  | PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0, | 
|  | bitmask), | 
|  |  | 
|  | PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8), | 
|  | PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8), | 
|  | PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8), | 
|  | PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8), | 
|  |  | 
|  | PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0), | 
|  | VAA(0x0f), VAA(4), ap2_temp), | 
|  | PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0), | 
|  | VAA(0x0f), VAA(4), ap2_temp), | 
|  | PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0), | 
|  | VAA(0x0f), VAA(4), ap2_temp), | 
|  | PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0), | 
|  | VAA(0x0f), VAA(4), ap2_temp), | 
|  |  | 
|  | PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8), | 
|  | PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8), | 
|  | PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8), | 
|  | PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8), | 
|  |  | 
|  | PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask), | 
|  | PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask), | 
|  | PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask), | 
|  | PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask), | 
|  |  | 
|  | PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62), | 
|  | PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62), | 
|  |  | 
|  | PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8), | 
|  | PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8), | 
|  | PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8), | 
|  |  | 
|  | PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask), | 
|  | PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask), | 
|  | PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask), | 
|  |  | 
|  | PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0), | 
|  | VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable), | 
|  | PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0), | 
|  | VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable), | 
|  | PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0), | 
|  | VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable), | 
|  |  | 
|  | PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0), | 
|  | VAA(0x07, 0x01), VAA(5, 3), pwm_ac), | 
|  | PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0), | 
|  | VAA(0x07, 0x01), VAA(5, 3), pwm_ac), | 
|  | PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0), | 
|  | VAA(0x07, 0x01), VAA(5, 3), pwm_ac), | 
|  |  | 
|  | PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8), | 
|  | PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8), | 
|  | PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8), | 
|  |  | 
|  | PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8), | 
|  | PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8), | 
|  | PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8), | 
|  |  | 
|  | PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq), | 
|  | PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq), | 
|  | PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq), | 
|  |  | 
|  | PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask), | 
|  | PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask), | 
|  | PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask), | 
|  |  | 
|  | PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast), | 
|  | PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast), | 
|  | PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast), | 
|  |  | 
|  | PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask), | 
|  | PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask), | 
|  | PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask), | 
|  | PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask), | 
|  | PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask), | 
|  | PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask), | 
|  |  | 
|  | }; | 
|  |  | 
|  | static struct asc7621_data *asc7621_update_device(struct device *dev) | 
|  | { | 
|  | struct i2c_client *client = to_i2c_client(dev); | 
|  | struct asc7621_data *data = i2c_get_clientdata(client); | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * The asc7621 chips guarantee consistent reads of multi-byte values | 
|  | * regardless of the order of the reads.  No special logic is needed | 
|  | * so we can just read the registers in whatever  order they appear | 
|  | * in the asc7621_params array. | 
|  | */ | 
|  |  | 
|  | mutex_lock(&data->update_lock); | 
|  |  | 
|  | /* Read all the high priority registers */ | 
|  |  | 
|  | if (!data->valid || | 
|  | time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) { | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) { | 
|  | if (asc7621_register_priorities[i] == PRI_HIGH) { | 
|  | data->reg[i] = | 
|  | i2c_smbus_read_byte_data(client, i) & 0xff; | 
|  | } | 
|  | } | 
|  | data->last_high_reading = jiffies; | 
|  | };			/* last_reading */ | 
|  |  | 
|  | /* Read all the low priority registers. */ | 
|  |  | 
|  | if (!data->valid || | 
|  | time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) { | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | 
|  | if (asc7621_register_priorities[i] == PRI_LOW) { | 
|  | data->reg[i] = | 
|  | i2c_smbus_read_byte_data(client, i) & 0xff; | 
|  | } | 
|  | } | 
|  | data->last_low_reading = jiffies; | 
|  | };			/* last_reading */ | 
|  |  | 
|  | data->valid = 1; | 
|  |  | 
|  | mutex_unlock(&data->update_lock); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Standard detection and initialization below | 
|  | * | 
|  | * Helper function that checks if an address is valid | 
|  | * for a particular chip. | 
|  | */ | 
|  |  | 
|  | static inline int valid_address_for_chip(int chip_type, int address) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END; | 
|  | i++) { | 
|  | if (asc7621_chips[chip_type].addresses[i] == address) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void asc7621_init_client(struct i2c_client *client) | 
|  | { | 
|  | int value; | 
|  |  | 
|  | /* Warn if part was not "READY" */ | 
|  |  | 
|  | value = read_byte(client, 0x40); | 
|  |  | 
|  | if (value & 0x02) { | 
|  | dev_err(&client->dev, | 
|  | "Client (%d,0x%02x) config is locked.\n", | 
|  | i2c_adapter_id(client->adapter), client->addr); | 
|  | }; | 
|  | if (!(value & 0x04)) { | 
|  | dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n", | 
|  | i2c_adapter_id(client->adapter), client->addr); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Start monitoring | 
|  | * | 
|  | * Try to clear LOCK, Set START, save everything else | 
|  | */ | 
|  | value = (value & ~0x02) | 0x01; | 
|  | write_byte(client, 0x40, value & 0xff); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int | 
|  | asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id) | 
|  | { | 
|  | struct asc7621_data *data; | 
|  | int i, err; | 
|  |  | 
|  | if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) | 
|  | return -EIO; | 
|  |  | 
|  | data = kzalloc(sizeof(struct asc7621_data), GFP_KERNEL); | 
|  | if (data == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | i2c_set_clientdata(client, data); | 
|  | data->valid = 0; | 
|  | mutex_init(&data->update_lock); | 
|  |  | 
|  | /* Initialize the asc7621 chip */ | 
|  | asc7621_init_client(client); | 
|  |  | 
|  | /* Create the sysfs entries */ | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | 
|  | err = | 
|  | device_create_file(&client->dev, | 
|  | &(asc7621_params[i].sda.dev_attr)); | 
|  | if (err) | 
|  | goto exit_remove; | 
|  | } | 
|  |  | 
|  | data->class_dev = hwmon_device_register(&client->dev); | 
|  | if (IS_ERR(data->class_dev)) { | 
|  | err = PTR_ERR(data->class_dev); | 
|  | goto exit_remove; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit_remove: | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | 
|  | device_remove_file(&client->dev, | 
|  | &(asc7621_params[i].sda.dev_attr)); | 
|  | } | 
|  |  | 
|  | kfree(data); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int asc7621_detect(struct i2c_client *client, | 
|  | struct i2c_board_info *info) | 
|  | { | 
|  | struct i2c_adapter *adapter = client->adapter; | 
|  | int company, verstep, chip_index; | 
|  |  | 
|  | if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) | 
|  | return -ENODEV; | 
|  |  | 
|  | for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) { | 
|  |  | 
|  | if (!valid_address_for_chip(chip_index, client->addr)) | 
|  | continue; | 
|  |  | 
|  | company = read_byte(client, | 
|  | asc7621_chips[chip_index].company_reg); | 
|  | verstep = read_byte(client, | 
|  | asc7621_chips[chip_index].verstep_reg); | 
|  |  | 
|  | if (company == asc7621_chips[chip_index].company_id && | 
|  | verstep == asc7621_chips[chip_index].verstep_id) { | 
|  | strlcpy(info->type, asc7621_chips[chip_index].name, | 
|  | I2C_NAME_SIZE); | 
|  |  | 
|  | dev_info(&adapter->dev, "Matched %s at 0x%02x\n", | 
|  | asc7621_chips[chip_index].name, client->addr); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int asc7621_remove(struct i2c_client *client) | 
|  | { | 
|  | struct asc7621_data *data = i2c_get_clientdata(client); | 
|  | int i; | 
|  |  | 
|  | hwmon_device_unregister(data->class_dev); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | 
|  | device_remove_file(&client->dev, | 
|  | &(asc7621_params[i].sda.dev_attr)); | 
|  | } | 
|  |  | 
|  | kfree(data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct i2c_device_id asc7621_id[] = { | 
|  | {"asc7621", asc7621}, | 
|  | {"asc7621a", asc7621a}, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(i2c, asc7621_id); | 
|  |  | 
|  | static struct i2c_driver asc7621_driver = { | 
|  | .class = I2C_CLASS_HWMON, | 
|  | .driver = { | 
|  | .name = "asc7621", | 
|  | }, | 
|  | .probe = asc7621_probe, | 
|  | .remove = asc7621_remove, | 
|  | .id_table = asc7621_id, | 
|  | .detect = asc7621_detect, | 
|  | .address_list = normal_i2c, | 
|  | }; | 
|  |  | 
|  | static int __init sm_asc7621_init(void) | 
|  | { | 
|  | int i, j; | 
|  | /* | 
|  | * Collect all the registers needed into a single array. | 
|  | * This way, if a register isn't actually used for anything, | 
|  | * we don't retrieve it. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) { | 
|  | for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++) | 
|  | asc7621_register_priorities[asc7621_params[i].msb[j]] = | 
|  | asc7621_params[i].priority; | 
|  | for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++) | 
|  | asc7621_register_priorities[asc7621_params[i].lsb[j]] = | 
|  | asc7621_params[i].priority; | 
|  | } | 
|  | return i2c_add_driver(&asc7621_driver); | 
|  | } | 
|  |  | 
|  | static void __exit sm_asc7621_exit(void) | 
|  | { | 
|  | i2c_del_driver(&asc7621_driver); | 
|  | } | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("George Joseph"); | 
|  | MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver"); | 
|  |  | 
|  | module_init(sm_asc7621_init); | 
|  | module_exit(sm_asc7621_exit); |