|  | /* | 
|  | * Driver for Cirrus Logic EP93xx SPI controller. | 
|  | * | 
|  | * Copyright (C) 2010-2011 Mika Westerberg | 
|  | * | 
|  | * Explicit FIFO handling code was inspired by amba-pl022 driver. | 
|  | * | 
|  | * Chip select support using other than built-in GPIOs by H. Hartley Sweeten. | 
|  | * | 
|  | * For more information about the SPI controller see documentation on Cirrus | 
|  | * Logic web site: | 
|  | *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/io.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/spi/spi.h> | 
|  |  | 
|  | #include <mach/dma.h> | 
|  | #include <mach/ep93xx_spi.h> | 
|  |  | 
|  | #define SSPCR0			0x0000 | 
|  | #define SSPCR0_MODE_SHIFT	6 | 
|  | #define SSPCR0_SCR_SHIFT	8 | 
|  |  | 
|  | #define SSPCR1			0x0004 | 
|  | #define SSPCR1_RIE		BIT(0) | 
|  | #define SSPCR1_TIE		BIT(1) | 
|  | #define SSPCR1_RORIE		BIT(2) | 
|  | #define SSPCR1_LBM		BIT(3) | 
|  | #define SSPCR1_SSE		BIT(4) | 
|  | #define SSPCR1_MS		BIT(5) | 
|  | #define SSPCR1_SOD		BIT(6) | 
|  |  | 
|  | #define SSPDR			0x0008 | 
|  |  | 
|  | #define SSPSR			0x000c | 
|  | #define SSPSR_TFE		BIT(0) | 
|  | #define SSPSR_TNF		BIT(1) | 
|  | #define SSPSR_RNE		BIT(2) | 
|  | #define SSPSR_RFF		BIT(3) | 
|  | #define SSPSR_BSY		BIT(4) | 
|  | #define SSPCPSR			0x0010 | 
|  |  | 
|  | #define SSPIIR			0x0014 | 
|  | #define SSPIIR_RIS		BIT(0) | 
|  | #define SSPIIR_TIS		BIT(1) | 
|  | #define SSPIIR_RORIS		BIT(2) | 
|  | #define SSPICR			SSPIIR | 
|  |  | 
|  | /* timeout in milliseconds */ | 
|  | #define SPI_TIMEOUT		5 | 
|  | /* maximum depth of RX/TX FIFO */ | 
|  | #define SPI_FIFO_SIZE		8 | 
|  |  | 
|  | /** | 
|  | * struct ep93xx_spi - EP93xx SPI controller structure | 
|  | * @lock: spinlock that protects concurrent accesses to fields @running, | 
|  | *        @current_msg and @msg_queue | 
|  | * @pdev: pointer to platform device | 
|  | * @clk: clock for the controller | 
|  | * @regs_base: pointer to ioremap()'d registers | 
|  | * @sspdr_phys: physical address of the SSPDR register | 
|  | * @irq: IRQ number used by the driver | 
|  | * @min_rate: minimum clock rate (in Hz) supported by the controller | 
|  | * @max_rate: maximum clock rate (in Hz) supported by the controller | 
|  | * @running: is the queue running | 
|  | * @wq: workqueue used by the driver | 
|  | * @msg_work: work that is queued for the driver | 
|  | * @wait: wait here until given transfer is completed | 
|  | * @msg_queue: queue for the messages | 
|  | * @current_msg: message that is currently processed (or %NULL if none) | 
|  | * @tx: current byte in transfer to transmit | 
|  | * @rx: current byte in transfer to receive | 
|  | * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one | 
|  | *              frame decreases this level and sending one frame increases it. | 
|  | * @dma_rx: RX DMA channel | 
|  | * @dma_tx: TX DMA channel | 
|  | * @dma_rx_data: RX parameters passed to the DMA engine | 
|  | * @dma_tx_data: TX parameters passed to the DMA engine | 
|  | * @rx_sgt: sg table for RX transfers | 
|  | * @tx_sgt: sg table for TX transfers | 
|  | * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by | 
|  | *            the client | 
|  | * | 
|  | * This structure holds EP93xx SPI controller specific information. When | 
|  | * @running is %true, driver accepts transfer requests from protocol drivers. | 
|  | * @current_msg is used to hold pointer to the message that is currently | 
|  | * processed. If @current_msg is %NULL, it means that no processing is going | 
|  | * on. | 
|  | * | 
|  | * Most of the fields are only written once and they can be accessed without | 
|  | * taking the @lock. Fields that are accessed concurrently are: @current_msg, | 
|  | * @running, and @msg_queue. | 
|  | */ | 
|  | struct ep93xx_spi { | 
|  | spinlock_t			lock; | 
|  | const struct platform_device	*pdev; | 
|  | struct clk			*clk; | 
|  | void __iomem			*regs_base; | 
|  | unsigned long			sspdr_phys; | 
|  | int				irq; | 
|  | unsigned long			min_rate; | 
|  | unsigned long			max_rate; | 
|  | bool				running; | 
|  | struct workqueue_struct		*wq; | 
|  | struct work_struct		msg_work; | 
|  | struct completion		wait; | 
|  | struct list_head		msg_queue; | 
|  | struct spi_message		*current_msg; | 
|  | size_t				tx; | 
|  | size_t				rx; | 
|  | size_t				fifo_level; | 
|  | struct dma_chan			*dma_rx; | 
|  | struct dma_chan			*dma_tx; | 
|  | struct ep93xx_dma_data		dma_rx_data; | 
|  | struct ep93xx_dma_data		dma_tx_data; | 
|  | struct sg_table			rx_sgt; | 
|  | struct sg_table			tx_sgt; | 
|  | void				*zeropage; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct ep93xx_spi_chip - SPI device hardware settings | 
|  | * @spi: back pointer to the SPI device | 
|  | * @rate: max rate in hz this chip supports | 
|  | * @div_cpsr: cpsr (pre-scaler) divider | 
|  | * @div_scr: scr divider | 
|  | * @dss: bits per word (4 - 16 bits) | 
|  | * @ops: private chip operations | 
|  | * | 
|  | * This structure is used to store hardware register specific settings for each | 
|  | * SPI device. Settings are written to hardware by function | 
|  | * ep93xx_spi_chip_setup(). | 
|  | */ | 
|  | struct ep93xx_spi_chip { | 
|  | const struct spi_device		*spi; | 
|  | unsigned long			rate; | 
|  | u8				div_cpsr; | 
|  | u8				div_scr; | 
|  | u8				dss; | 
|  | struct ep93xx_spi_chip_ops	*ops; | 
|  | }; | 
|  |  | 
|  | /* converts bits per word to CR0.DSS value */ | 
|  | #define bits_per_word_to_dss(bpw)	((bpw) - 1) | 
|  |  | 
|  | static inline void | 
|  | ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value) | 
|  | { | 
|  | __raw_writeb(value, espi->regs_base + reg); | 
|  | } | 
|  |  | 
|  | static inline u8 | 
|  | ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg) | 
|  | { | 
|  | return __raw_readb(spi->regs_base + reg); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value) | 
|  | { | 
|  | __raw_writew(value, espi->regs_base + reg); | 
|  | } | 
|  |  | 
|  | static inline u16 | 
|  | ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg) | 
|  | { | 
|  | return __raw_readw(spi->regs_base + reg); | 
|  | } | 
|  |  | 
|  | static int ep93xx_spi_enable(const struct ep93xx_spi *espi) | 
|  | { | 
|  | u8 regval; | 
|  | int err; | 
|  |  | 
|  | err = clk_enable(espi->clk); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | regval = ep93xx_spi_read_u8(espi, SSPCR1); | 
|  | regval |= SSPCR1_SSE; | 
|  | ep93xx_spi_write_u8(espi, SSPCR1, regval); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void ep93xx_spi_disable(const struct ep93xx_spi *espi) | 
|  | { | 
|  | u8 regval; | 
|  |  | 
|  | regval = ep93xx_spi_read_u8(espi, SSPCR1); | 
|  | regval &= ~SSPCR1_SSE; | 
|  | ep93xx_spi_write_u8(espi, SSPCR1, regval); | 
|  |  | 
|  | clk_disable(espi->clk); | 
|  | } | 
|  |  | 
|  | static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi) | 
|  | { | 
|  | u8 regval; | 
|  |  | 
|  | regval = ep93xx_spi_read_u8(espi, SSPCR1); | 
|  | regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); | 
|  | ep93xx_spi_write_u8(espi, SSPCR1, regval); | 
|  | } | 
|  |  | 
|  | static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi) | 
|  | { | 
|  | u8 regval; | 
|  |  | 
|  | regval = ep93xx_spi_read_u8(espi, SSPCR1); | 
|  | regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE); | 
|  | ep93xx_spi_write_u8(espi, SSPCR1, regval); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_calc_divisors() - calculates SPI clock divisors | 
|  | * @espi: ep93xx SPI controller struct | 
|  | * @chip: divisors are calculated for this chip | 
|  | * @rate: desired SPI output clock rate | 
|  | * | 
|  | * Function calculates cpsr (clock pre-scaler) and scr divisors based on | 
|  | * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If, | 
|  | * for some reason, divisors cannot be calculated nothing is stored and | 
|  | * %-EINVAL is returned. | 
|  | */ | 
|  | static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi, | 
|  | struct ep93xx_spi_chip *chip, | 
|  | unsigned long rate) | 
|  | { | 
|  | unsigned long spi_clk_rate = clk_get_rate(espi->clk); | 
|  | int cpsr, scr; | 
|  |  | 
|  | /* | 
|  | * Make sure that max value is between values supported by the | 
|  | * controller. Note that minimum value is already checked in | 
|  | * ep93xx_spi_transfer(). | 
|  | */ | 
|  | rate = clamp(rate, espi->min_rate, espi->max_rate); | 
|  |  | 
|  | /* | 
|  | * Calculate divisors so that we can get speed according the | 
|  | * following formula: | 
|  | *	rate = spi_clock_rate / (cpsr * (1 + scr)) | 
|  | * | 
|  | * cpsr must be even number and starts from 2, scr can be any number | 
|  | * between 0 and 255. | 
|  | */ | 
|  | for (cpsr = 2; cpsr <= 254; cpsr += 2) { | 
|  | for (scr = 0; scr <= 255; scr++) { | 
|  | if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) { | 
|  | chip->div_scr = (u8)scr; | 
|  | chip->div_cpsr = (u8)cpsr; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void ep93xx_spi_cs_control(struct spi_device *spi, bool control) | 
|  | { | 
|  | struct ep93xx_spi_chip *chip = spi_get_ctldata(spi); | 
|  | int value = (spi->mode & SPI_CS_HIGH) ? control : !control; | 
|  |  | 
|  | if (chip->ops && chip->ops->cs_control) | 
|  | chip->ops->cs_control(spi, value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_setup() - setup an SPI device | 
|  | * @spi: SPI device to setup | 
|  | * | 
|  | * This function sets up SPI device mode, speed etc. Can be called multiple | 
|  | * times for a single device. Returns %0 in case of success, negative error in | 
|  | * case of failure. When this function returns success, the device is | 
|  | * deselected. | 
|  | */ | 
|  | static int ep93xx_spi_setup(struct spi_device *spi) | 
|  | { | 
|  | struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); | 
|  | struct ep93xx_spi_chip *chip; | 
|  |  | 
|  | if (spi->bits_per_word < 4 || spi->bits_per_word > 16) { | 
|  | dev_err(&espi->pdev->dev, "invalid bits per word %d\n", | 
|  | spi->bits_per_word); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | chip = spi_get_ctldata(spi); | 
|  | if (!chip) { | 
|  | dev_dbg(&espi->pdev->dev, "initial setup for %s\n", | 
|  | spi->modalias); | 
|  |  | 
|  | chip = kzalloc(sizeof(*chip), GFP_KERNEL); | 
|  | if (!chip) | 
|  | return -ENOMEM; | 
|  |  | 
|  | chip->spi = spi; | 
|  | chip->ops = spi->controller_data; | 
|  |  | 
|  | if (chip->ops && chip->ops->setup) { | 
|  | int ret = chip->ops->setup(spi); | 
|  | if (ret) { | 
|  | kfree(chip); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | spi_set_ctldata(spi, chip); | 
|  | } | 
|  |  | 
|  | if (spi->max_speed_hz != chip->rate) { | 
|  | int err; | 
|  |  | 
|  | err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz); | 
|  | if (err != 0) { | 
|  | spi_set_ctldata(spi, NULL); | 
|  | kfree(chip); | 
|  | return err; | 
|  | } | 
|  | chip->rate = spi->max_speed_hz; | 
|  | } | 
|  |  | 
|  | chip->dss = bits_per_word_to_dss(spi->bits_per_word); | 
|  |  | 
|  | ep93xx_spi_cs_control(spi, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_transfer() - queue message to be transferred | 
|  | * @spi: target SPI device | 
|  | * @msg: message to be transferred | 
|  | * | 
|  | * This function is called by SPI device drivers when they are going to transfer | 
|  | * a new message. It simply puts the message in the queue and schedules | 
|  | * workqueue to perform the actual transfer later on. | 
|  | * | 
|  | * Returns %0 on success and negative error in case of failure. | 
|  | */ | 
|  | static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg) | 
|  | { | 
|  | struct ep93xx_spi *espi = spi_master_get_devdata(spi->master); | 
|  | struct spi_transfer *t; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!msg || !msg->complete) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* first validate each transfer */ | 
|  | list_for_each_entry(t, &msg->transfers, transfer_list) { | 
|  | if (t->bits_per_word) { | 
|  | if (t->bits_per_word < 4 || t->bits_per_word > 16) | 
|  | return -EINVAL; | 
|  | } | 
|  | if (t->speed_hz && t->speed_hz < espi->min_rate) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that we own the message, let's initialize it so that it is | 
|  | * suitable for us. We use @msg->status to signal whether there was | 
|  | * error in transfer and @msg->state is used to hold pointer to the | 
|  | * current transfer (or %NULL if no active current transfer). | 
|  | */ | 
|  | msg->state = NULL; | 
|  | msg->status = 0; | 
|  | msg->actual_length = 0; | 
|  |  | 
|  | spin_lock_irqsave(&espi->lock, flags); | 
|  | if (!espi->running) { | 
|  | spin_unlock_irqrestore(&espi->lock, flags); | 
|  | return -ESHUTDOWN; | 
|  | } | 
|  | list_add_tail(&msg->queue, &espi->msg_queue); | 
|  | queue_work(espi->wq, &espi->msg_work); | 
|  | spin_unlock_irqrestore(&espi->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_cleanup() - cleans up master controller specific state | 
|  | * @spi: SPI device to cleanup | 
|  | * | 
|  | * This function releases master controller specific state for given @spi | 
|  | * device. | 
|  | */ | 
|  | static void ep93xx_spi_cleanup(struct spi_device *spi) | 
|  | { | 
|  | struct ep93xx_spi_chip *chip; | 
|  |  | 
|  | chip = spi_get_ctldata(spi); | 
|  | if (chip) { | 
|  | if (chip->ops && chip->ops->cleanup) | 
|  | chip->ops->cleanup(spi); | 
|  | spi_set_ctldata(spi, NULL); | 
|  | kfree(chip); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_chip_setup() - configures hardware according to given @chip | 
|  | * @espi: ep93xx SPI controller struct | 
|  | * @chip: chip specific settings | 
|  | * | 
|  | * This function sets up the actual hardware registers with settings given in | 
|  | * @chip. Note that no validation is done so make sure that callers validate | 
|  | * settings before calling this. | 
|  | */ | 
|  | static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi, | 
|  | const struct ep93xx_spi_chip *chip) | 
|  | { | 
|  | u16 cr0; | 
|  |  | 
|  | cr0 = chip->div_scr << SSPCR0_SCR_SHIFT; | 
|  | cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT; | 
|  | cr0 |= chip->dss; | 
|  |  | 
|  | dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", | 
|  | chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss); | 
|  | dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0); | 
|  |  | 
|  | ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr); | 
|  | ep93xx_spi_write_u16(espi, SSPCR0, cr0); | 
|  | } | 
|  |  | 
|  | static inline int bits_per_word(const struct ep93xx_spi *espi) | 
|  | { | 
|  | struct spi_message *msg = espi->current_msg; | 
|  | struct spi_transfer *t = msg->state; | 
|  |  | 
|  | return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word; | 
|  | } | 
|  |  | 
|  | static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t) | 
|  | { | 
|  | if (bits_per_word(espi) > 8) { | 
|  | u16 tx_val = 0; | 
|  |  | 
|  | if (t->tx_buf) | 
|  | tx_val = ((u16 *)t->tx_buf)[espi->tx]; | 
|  | ep93xx_spi_write_u16(espi, SSPDR, tx_val); | 
|  | espi->tx += sizeof(tx_val); | 
|  | } else { | 
|  | u8 tx_val = 0; | 
|  |  | 
|  | if (t->tx_buf) | 
|  | tx_val = ((u8 *)t->tx_buf)[espi->tx]; | 
|  | ep93xx_spi_write_u8(espi, SSPDR, tx_val); | 
|  | espi->tx += sizeof(tx_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t) | 
|  | { | 
|  | if (bits_per_word(espi) > 8) { | 
|  | u16 rx_val; | 
|  |  | 
|  | rx_val = ep93xx_spi_read_u16(espi, SSPDR); | 
|  | if (t->rx_buf) | 
|  | ((u16 *)t->rx_buf)[espi->rx] = rx_val; | 
|  | espi->rx += sizeof(rx_val); | 
|  | } else { | 
|  | u8 rx_val; | 
|  |  | 
|  | rx_val = ep93xx_spi_read_u8(espi, SSPDR); | 
|  | if (t->rx_buf) | 
|  | ((u8 *)t->rx_buf)[espi->rx] = rx_val; | 
|  | espi->rx += sizeof(rx_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_read_write() - perform next RX/TX transfer | 
|  | * @espi: ep93xx SPI controller struct | 
|  | * | 
|  | * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If | 
|  | * called several times, the whole transfer will be completed. Returns | 
|  | * %-EINPROGRESS when current transfer was not yet completed otherwise %0. | 
|  | * | 
|  | * When this function is finished, RX FIFO should be empty and TX FIFO should be | 
|  | * full. | 
|  | */ | 
|  | static int ep93xx_spi_read_write(struct ep93xx_spi *espi) | 
|  | { | 
|  | struct spi_message *msg = espi->current_msg; | 
|  | struct spi_transfer *t = msg->state; | 
|  |  | 
|  | /* read as long as RX FIFO has frames in it */ | 
|  | while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) { | 
|  | ep93xx_do_read(espi, t); | 
|  | espi->fifo_level--; | 
|  | } | 
|  |  | 
|  | /* write as long as TX FIFO has room */ | 
|  | while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) { | 
|  | ep93xx_do_write(espi, t); | 
|  | espi->fifo_level++; | 
|  | } | 
|  |  | 
|  | if (espi->rx == t->len) | 
|  | return 0; | 
|  |  | 
|  | return -EINPROGRESS; | 
|  | } | 
|  |  | 
|  | static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi) | 
|  | { | 
|  | /* | 
|  | * Now everything is set up for the current transfer. We prime the TX | 
|  | * FIFO, enable interrupts, and wait for the transfer to complete. | 
|  | */ | 
|  | if (ep93xx_spi_read_write(espi)) { | 
|  | ep93xx_spi_enable_interrupts(espi); | 
|  | wait_for_completion(&espi->wait); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_dma_prepare() - prepares a DMA transfer | 
|  | * @espi: ep93xx SPI controller struct | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Function configures the DMA, maps the buffer and prepares the DMA | 
|  | * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR | 
|  | * in case of failure. | 
|  | */ | 
|  | static struct dma_async_tx_descriptor * | 
|  | ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir) | 
|  | { | 
|  | struct spi_transfer *t = espi->current_msg->state; | 
|  | struct dma_async_tx_descriptor *txd; | 
|  | enum dma_slave_buswidth buswidth; | 
|  | struct dma_slave_config conf; | 
|  | struct scatterlist *sg; | 
|  | struct sg_table *sgt; | 
|  | struct dma_chan *chan; | 
|  | const void *buf, *pbuf; | 
|  | size_t len = t->len; | 
|  | int i, ret, nents; | 
|  |  | 
|  | if (bits_per_word(espi) > 8) | 
|  | buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
|  | else | 
|  | buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
|  |  | 
|  | memset(&conf, 0, sizeof(conf)); | 
|  | conf.direction = dir; | 
|  |  | 
|  | if (dir == DMA_DEV_TO_MEM) { | 
|  | chan = espi->dma_rx; | 
|  | buf = t->rx_buf; | 
|  | sgt = &espi->rx_sgt; | 
|  |  | 
|  | conf.src_addr = espi->sspdr_phys; | 
|  | conf.src_addr_width = buswidth; | 
|  | } else { | 
|  | chan = espi->dma_tx; | 
|  | buf = t->tx_buf; | 
|  | sgt = &espi->tx_sgt; | 
|  |  | 
|  | conf.dst_addr = espi->sspdr_phys; | 
|  | conf.dst_addr_width = buswidth; | 
|  | } | 
|  |  | 
|  | ret = dmaengine_slave_config(chan, &conf); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | /* | 
|  | * We need to split the transfer into PAGE_SIZE'd chunks. This is | 
|  | * because we are using @espi->zeropage to provide a zero RX buffer | 
|  | * for the TX transfers and we have only allocated one page for that. | 
|  | * | 
|  | * For performance reasons we allocate a new sg_table only when | 
|  | * needed. Otherwise we will re-use the current one. Eventually the | 
|  | * last sg_table is released in ep93xx_spi_release_dma(). | 
|  | */ | 
|  |  | 
|  | nents = DIV_ROUND_UP(len, PAGE_SIZE); | 
|  | if (nents != sgt->nents) { | 
|  | sg_free_table(sgt); | 
|  |  | 
|  | ret = sg_alloc_table(sgt, nents, GFP_KERNEL); | 
|  | if (ret) | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | pbuf = buf; | 
|  | for_each_sg(sgt->sgl, sg, sgt->nents, i) { | 
|  | size_t bytes = min_t(size_t, len, PAGE_SIZE); | 
|  |  | 
|  | if (buf) { | 
|  | sg_set_page(sg, virt_to_page(pbuf), bytes, | 
|  | offset_in_page(pbuf)); | 
|  | } else { | 
|  | sg_set_page(sg, virt_to_page(espi->zeropage), | 
|  | bytes, 0); | 
|  | } | 
|  |  | 
|  | pbuf += bytes; | 
|  | len -= bytes; | 
|  | } | 
|  |  | 
|  | if (WARN_ON(len)) { | 
|  | dev_warn(&espi->pdev->dev, "len = %d expected 0!", len); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | 
|  | if (!nents) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK); | 
|  | if (!txd) { | 
|  | dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | return txd; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_dma_finish() - finishes with a DMA transfer | 
|  | * @espi: ep93xx SPI controller struct | 
|  | * @dir: DMA transfer direction | 
|  | * | 
|  | * Function finishes with the DMA transfer. After this, the DMA buffer is | 
|  | * unmapped. | 
|  | */ | 
|  | static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi, | 
|  | enum dma_transfer_direction dir) | 
|  | { | 
|  | struct dma_chan *chan; | 
|  | struct sg_table *sgt; | 
|  |  | 
|  | if (dir == DMA_DEV_TO_MEM) { | 
|  | chan = espi->dma_rx; | 
|  | sgt = &espi->rx_sgt; | 
|  | } else { | 
|  | chan = espi->dma_tx; | 
|  | sgt = &espi->tx_sgt; | 
|  | } | 
|  |  | 
|  | dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir); | 
|  | } | 
|  |  | 
|  | static void ep93xx_spi_dma_callback(void *callback_param) | 
|  | { | 
|  | complete(callback_param); | 
|  | } | 
|  |  | 
|  | static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi) | 
|  | { | 
|  | struct spi_message *msg = espi->current_msg; | 
|  | struct dma_async_tx_descriptor *rxd, *txd; | 
|  |  | 
|  | rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM); | 
|  | if (IS_ERR(rxd)) { | 
|  | dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd)); | 
|  | msg->status = PTR_ERR(rxd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV); | 
|  | if (IS_ERR(txd)) { | 
|  | ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM); | 
|  | dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd)); | 
|  | msg->status = PTR_ERR(txd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We are ready when RX is done */ | 
|  | rxd->callback = ep93xx_spi_dma_callback; | 
|  | rxd->callback_param = &espi->wait; | 
|  |  | 
|  | /* Now submit both descriptors and wait while they finish */ | 
|  | dmaengine_submit(rxd); | 
|  | dmaengine_submit(txd); | 
|  |  | 
|  | dma_async_issue_pending(espi->dma_rx); | 
|  | dma_async_issue_pending(espi->dma_tx); | 
|  |  | 
|  | wait_for_completion(&espi->wait); | 
|  |  | 
|  | ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV); | 
|  | ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_process_transfer() - processes one SPI transfer | 
|  | * @espi: ep93xx SPI controller struct | 
|  | * @msg: current message | 
|  | * @t: transfer to process | 
|  | * | 
|  | * This function processes one SPI transfer given in @t. Function waits until | 
|  | * transfer is complete (may sleep) and updates @msg->status based on whether | 
|  | * transfer was successfully processed or not. | 
|  | */ | 
|  | static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi, | 
|  | struct spi_message *msg, | 
|  | struct spi_transfer *t) | 
|  | { | 
|  | struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi); | 
|  |  | 
|  | msg->state = t; | 
|  |  | 
|  | /* | 
|  | * Handle any transfer specific settings if needed. We use | 
|  | * temporary chip settings here and restore original later when | 
|  | * the transfer is finished. | 
|  | */ | 
|  | if (t->speed_hz || t->bits_per_word) { | 
|  | struct ep93xx_spi_chip tmp_chip = *chip; | 
|  |  | 
|  | if (t->speed_hz) { | 
|  | int err; | 
|  |  | 
|  | err = ep93xx_spi_calc_divisors(espi, &tmp_chip, | 
|  | t->speed_hz); | 
|  | if (err) { | 
|  | dev_err(&espi->pdev->dev, | 
|  | "failed to adjust speed\n"); | 
|  | msg->status = err; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (t->bits_per_word) | 
|  | tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word); | 
|  |  | 
|  | /* | 
|  | * Set up temporary new hw settings for this transfer. | 
|  | */ | 
|  | ep93xx_spi_chip_setup(espi, &tmp_chip); | 
|  | } | 
|  |  | 
|  | espi->rx = 0; | 
|  | espi->tx = 0; | 
|  |  | 
|  | /* | 
|  | * There is no point of setting up DMA for the transfers which will | 
|  | * fit into the FIFO and can be transferred with a single interrupt. | 
|  | * So in these cases we will be using PIO and don't bother for DMA. | 
|  | */ | 
|  | if (espi->dma_rx && t->len > SPI_FIFO_SIZE) | 
|  | ep93xx_spi_dma_transfer(espi); | 
|  | else | 
|  | ep93xx_spi_pio_transfer(espi); | 
|  |  | 
|  | /* | 
|  | * In case of error during transmit, we bail out from processing | 
|  | * the message. | 
|  | */ | 
|  | if (msg->status) | 
|  | return; | 
|  |  | 
|  | msg->actual_length += t->len; | 
|  |  | 
|  | /* | 
|  | * After this transfer is finished, perform any possible | 
|  | * post-transfer actions requested by the protocol driver. | 
|  | */ | 
|  | if (t->delay_usecs) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule_timeout(usecs_to_jiffies(t->delay_usecs)); | 
|  | } | 
|  | if (t->cs_change) { | 
|  | if (!list_is_last(&t->transfer_list, &msg->transfers)) { | 
|  | /* | 
|  | * In case protocol driver is asking us to drop the | 
|  | * chipselect briefly, we let the scheduler to handle | 
|  | * any "delay" here. | 
|  | */ | 
|  | ep93xx_spi_cs_control(msg->spi, false); | 
|  | cond_resched(); | 
|  | ep93xx_spi_cs_control(msg->spi, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (t->speed_hz || t->bits_per_word) | 
|  | ep93xx_spi_chip_setup(espi, chip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ep93xx_spi_process_message() - process one SPI message | 
|  | * @espi: ep93xx SPI controller struct | 
|  | * @msg: message to process | 
|  | * | 
|  | * This function processes a single SPI message. We go through all transfers in | 
|  | * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is | 
|  | * asserted during the whole message (unless per transfer cs_change is set). | 
|  | * | 
|  | * @msg->status contains %0 in case of success or negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | static void ep93xx_spi_process_message(struct ep93xx_spi *espi, | 
|  | struct spi_message *msg) | 
|  | { | 
|  | unsigned long timeout; | 
|  | struct spi_transfer *t; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * Enable the SPI controller and its clock. | 
|  | */ | 
|  | err = ep93xx_spi_enable(espi); | 
|  | if (err) { | 
|  | dev_err(&espi->pdev->dev, "failed to enable SPI controller\n"); | 
|  | msg->status = err; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Just to be sure: flush any data from RX FIFO. | 
|  | */ | 
|  | timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT); | 
|  | while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) { | 
|  | if (time_after(jiffies, timeout)) { | 
|  | dev_warn(&espi->pdev->dev, | 
|  | "timeout while flushing RX FIFO\n"); | 
|  | msg->status = -ETIMEDOUT; | 
|  | return; | 
|  | } | 
|  | ep93xx_spi_read_u16(espi, SSPDR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We explicitly handle FIFO level. This way we don't have to check TX | 
|  | * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns. | 
|  | */ | 
|  | espi->fifo_level = 0; | 
|  |  | 
|  | /* | 
|  | * Update SPI controller registers according to spi device and assert | 
|  | * the chipselect. | 
|  | */ | 
|  | ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi)); | 
|  | ep93xx_spi_cs_control(msg->spi, true); | 
|  |  | 
|  | list_for_each_entry(t, &msg->transfers, transfer_list) { | 
|  | ep93xx_spi_process_transfer(espi, msg, t); | 
|  | if (msg->status) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now the whole message is transferred (or failed for some reason). We | 
|  | * deselect the device and disable the SPI controller. | 
|  | */ | 
|  | ep93xx_spi_cs_control(msg->spi, false); | 
|  | ep93xx_spi_disable(espi); | 
|  | } | 
|  |  | 
|  | #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work)) | 
|  |  | 
|  | /** | 
|  | * ep93xx_spi_work() - EP93xx SPI workqueue worker function | 
|  | * @work: work struct | 
|  | * | 
|  | * Workqueue worker function. This function is called when there are new | 
|  | * SPI messages to be processed. Message is taken out from the queue and then | 
|  | * passed to ep93xx_spi_process_message(). | 
|  | * | 
|  | * After message is transferred, protocol driver is notified by calling | 
|  | * @msg->complete(). In case of error, @msg->status is set to negative error | 
|  | * number, otherwise it contains zero (and @msg->actual_length is updated). | 
|  | */ | 
|  | static void ep93xx_spi_work(struct work_struct *work) | 
|  | { | 
|  | struct ep93xx_spi *espi = work_to_espi(work); | 
|  | struct spi_message *msg; | 
|  |  | 
|  | spin_lock_irq(&espi->lock); | 
|  | if (!espi->running || espi->current_msg || | 
|  | list_empty(&espi->msg_queue)) { | 
|  | spin_unlock_irq(&espi->lock); | 
|  | return; | 
|  | } | 
|  | msg = list_first_entry(&espi->msg_queue, struct spi_message, queue); | 
|  | list_del_init(&msg->queue); | 
|  | espi->current_msg = msg; | 
|  | spin_unlock_irq(&espi->lock); | 
|  |  | 
|  | ep93xx_spi_process_message(espi, msg); | 
|  |  | 
|  | /* | 
|  | * Update the current message and re-schedule ourselves if there are | 
|  | * more messages in the queue. | 
|  | */ | 
|  | spin_lock_irq(&espi->lock); | 
|  | espi->current_msg = NULL; | 
|  | if (espi->running && !list_empty(&espi->msg_queue)) | 
|  | queue_work(espi->wq, &espi->msg_work); | 
|  | spin_unlock_irq(&espi->lock); | 
|  |  | 
|  | /* notify the protocol driver that we are done with this message */ | 
|  | msg->complete(msg->context); | 
|  | } | 
|  |  | 
|  | static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct ep93xx_spi *espi = dev_id; | 
|  | u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR); | 
|  |  | 
|  | /* | 
|  | * If we got ROR (receive overrun) interrupt we know that something is | 
|  | * wrong. Just abort the message. | 
|  | */ | 
|  | if (unlikely(irq_status & SSPIIR_RORIS)) { | 
|  | /* clear the overrun interrupt */ | 
|  | ep93xx_spi_write_u8(espi, SSPICR, 0); | 
|  | dev_warn(&espi->pdev->dev, | 
|  | "receive overrun, aborting the message\n"); | 
|  | espi->current_msg->status = -EIO; | 
|  | } else { | 
|  | /* | 
|  | * Interrupt is either RX (RIS) or TX (TIS). For both cases we | 
|  | * simply execute next data transfer. | 
|  | */ | 
|  | if (ep93xx_spi_read_write(espi)) { | 
|  | /* | 
|  | * In normal case, there still is some processing left | 
|  | * for current transfer. Let's wait for the next | 
|  | * interrupt then. | 
|  | */ | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Current transfer is finished, either with error or with success. In | 
|  | * any case we disable interrupts and notify the worker to handle | 
|  | * any post-processing of the message. | 
|  | */ | 
|  | ep93xx_spi_disable_interrupts(espi); | 
|  | complete(&espi->wait); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param) | 
|  | { | 
|  | if (ep93xx_dma_chan_is_m2p(chan)) | 
|  | return false; | 
|  |  | 
|  | chan->private = filter_param; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi) | 
|  | { | 
|  | dma_cap_mask_t mask; | 
|  | int ret; | 
|  |  | 
|  | espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!espi->zeropage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  |  | 
|  | espi->dma_rx_data.port = EP93XX_DMA_SSP; | 
|  | espi->dma_rx_data.direction = DMA_DEV_TO_MEM; | 
|  | espi->dma_rx_data.name = "ep93xx-spi-rx"; | 
|  |  | 
|  | espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter, | 
|  | &espi->dma_rx_data); | 
|  | if (!espi->dma_rx) { | 
|  | ret = -ENODEV; | 
|  | goto fail_free_page; | 
|  | } | 
|  |  | 
|  | espi->dma_tx_data.port = EP93XX_DMA_SSP; | 
|  | espi->dma_tx_data.direction = DMA_MEM_TO_DEV; | 
|  | espi->dma_tx_data.name = "ep93xx-spi-tx"; | 
|  |  | 
|  | espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter, | 
|  | &espi->dma_tx_data); | 
|  | if (!espi->dma_tx) { | 
|  | ret = -ENODEV; | 
|  | goto fail_release_rx; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_release_rx: | 
|  | dma_release_channel(espi->dma_rx); | 
|  | espi->dma_rx = NULL; | 
|  | fail_free_page: | 
|  | free_page((unsigned long)espi->zeropage); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ep93xx_spi_release_dma(struct ep93xx_spi *espi) | 
|  | { | 
|  | if (espi->dma_rx) { | 
|  | dma_release_channel(espi->dma_rx); | 
|  | sg_free_table(&espi->rx_sgt); | 
|  | } | 
|  | if (espi->dma_tx) { | 
|  | dma_release_channel(espi->dma_tx); | 
|  | sg_free_table(&espi->tx_sgt); | 
|  | } | 
|  |  | 
|  | if (espi->zeropage) | 
|  | free_page((unsigned long)espi->zeropage); | 
|  | } | 
|  |  | 
|  | static int __devinit ep93xx_spi_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_master *master; | 
|  | struct ep93xx_spi_info *info; | 
|  | struct ep93xx_spi *espi; | 
|  | struct resource *res; | 
|  | int error; | 
|  |  | 
|  | info = pdev->dev.platform_data; | 
|  |  | 
|  | master = spi_alloc_master(&pdev->dev, sizeof(*espi)); | 
|  | if (!master) { | 
|  | dev_err(&pdev->dev, "failed to allocate spi master\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | master->setup = ep93xx_spi_setup; | 
|  | master->transfer = ep93xx_spi_transfer; | 
|  | master->cleanup = ep93xx_spi_cleanup; | 
|  | master->bus_num = pdev->id; | 
|  | master->num_chipselect = info->num_chipselect; | 
|  | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; | 
|  |  | 
|  | platform_set_drvdata(pdev, master); | 
|  |  | 
|  | espi = spi_master_get_devdata(master); | 
|  |  | 
|  | espi->clk = clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(espi->clk)) { | 
|  | dev_err(&pdev->dev, "unable to get spi clock\n"); | 
|  | error = PTR_ERR(espi->clk); | 
|  | goto fail_release_master; | 
|  | } | 
|  |  | 
|  | spin_lock_init(&espi->lock); | 
|  | init_completion(&espi->wait); | 
|  |  | 
|  | /* | 
|  | * Calculate maximum and minimum supported clock rates | 
|  | * for the controller. | 
|  | */ | 
|  | espi->max_rate = clk_get_rate(espi->clk) / 2; | 
|  | espi->min_rate = clk_get_rate(espi->clk) / (254 * 256); | 
|  | espi->pdev = pdev; | 
|  |  | 
|  | espi->irq = platform_get_irq(pdev, 0); | 
|  | if (espi->irq < 0) { | 
|  | error = -EBUSY; | 
|  | dev_err(&pdev->dev, "failed to get irq resources\n"); | 
|  | goto fail_put_clock; | 
|  | } | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!res) { | 
|  | dev_err(&pdev->dev, "unable to get iomem resource\n"); | 
|  | error = -ENODEV; | 
|  | goto fail_put_clock; | 
|  | } | 
|  |  | 
|  | res = request_mem_region(res->start, resource_size(res), pdev->name); | 
|  | if (!res) { | 
|  | dev_err(&pdev->dev, "unable to request iomem resources\n"); | 
|  | error = -EBUSY; | 
|  | goto fail_put_clock; | 
|  | } | 
|  |  | 
|  | espi->sspdr_phys = res->start + SSPDR; | 
|  | espi->regs_base = ioremap(res->start, resource_size(res)); | 
|  | if (!espi->regs_base) { | 
|  | dev_err(&pdev->dev, "failed to map resources\n"); | 
|  | error = -ENODEV; | 
|  | goto fail_free_mem; | 
|  | } | 
|  |  | 
|  | error = request_irq(espi->irq, ep93xx_spi_interrupt, 0, | 
|  | "ep93xx-spi", espi); | 
|  | if (error) { | 
|  | dev_err(&pdev->dev, "failed to request irq\n"); | 
|  | goto fail_unmap_regs; | 
|  | } | 
|  |  | 
|  | if (info->use_dma && ep93xx_spi_setup_dma(espi)) | 
|  | dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n"); | 
|  |  | 
|  | espi->wq = create_singlethread_workqueue("ep93xx_spid"); | 
|  | if (!espi->wq) { | 
|  | dev_err(&pdev->dev, "unable to create workqueue\n"); | 
|  | goto fail_free_dma; | 
|  | } | 
|  | INIT_WORK(&espi->msg_work, ep93xx_spi_work); | 
|  | INIT_LIST_HEAD(&espi->msg_queue); | 
|  | espi->running = true; | 
|  |  | 
|  | /* make sure that the hardware is disabled */ | 
|  | ep93xx_spi_write_u8(espi, SSPCR1, 0); | 
|  |  | 
|  | error = spi_register_master(master); | 
|  | if (error) { | 
|  | dev_err(&pdev->dev, "failed to register SPI master\n"); | 
|  | goto fail_free_queue; | 
|  | } | 
|  |  | 
|  | dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n", | 
|  | (unsigned long)res->start, espi->irq); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail_free_queue: | 
|  | destroy_workqueue(espi->wq); | 
|  | fail_free_dma: | 
|  | ep93xx_spi_release_dma(espi); | 
|  | free_irq(espi->irq, espi); | 
|  | fail_unmap_regs: | 
|  | iounmap(espi->regs_base); | 
|  | fail_free_mem: | 
|  | release_mem_region(res->start, resource_size(res)); | 
|  | fail_put_clock: | 
|  | clk_put(espi->clk); | 
|  | fail_release_master: | 
|  | spi_master_put(master); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int __devexit ep93xx_spi_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct spi_master *master = platform_get_drvdata(pdev); | 
|  | struct ep93xx_spi *espi = spi_master_get_devdata(master); | 
|  | struct resource *res; | 
|  |  | 
|  | spin_lock_irq(&espi->lock); | 
|  | espi->running = false; | 
|  | spin_unlock_irq(&espi->lock); | 
|  |  | 
|  | destroy_workqueue(espi->wq); | 
|  |  | 
|  | /* | 
|  | * Complete remaining messages with %-ESHUTDOWN status. | 
|  | */ | 
|  | spin_lock_irq(&espi->lock); | 
|  | while (!list_empty(&espi->msg_queue)) { | 
|  | struct spi_message *msg; | 
|  |  | 
|  | msg = list_first_entry(&espi->msg_queue, | 
|  | struct spi_message, queue); | 
|  | list_del_init(&msg->queue); | 
|  | msg->status = -ESHUTDOWN; | 
|  | spin_unlock_irq(&espi->lock); | 
|  | msg->complete(msg->context); | 
|  | spin_lock_irq(&espi->lock); | 
|  | } | 
|  | spin_unlock_irq(&espi->lock); | 
|  |  | 
|  | ep93xx_spi_release_dma(espi); | 
|  | free_irq(espi->irq, espi); | 
|  | iounmap(espi->regs_base); | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | release_mem_region(res->start, resource_size(res)); | 
|  | clk_put(espi->clk); | 
|  | platform_set_drvdata(pdev, NULL); | 
|  |  | 
|  | spi_unregister_master(master); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver ep93xx_spi_driver = { | 
|  | .driver		= { | 
|  | .name	= "ep93xx-spi", | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | .probe		= ep93xx_spi_probe, | 
|  | .remove		= __devexit_p(ep93xx_spi_remove), | 
|  | }; | 
|  | module_platform_driver(ep93xx_spi_driver); | 
|  |  | 
|  | MODULE_DESCRIPTION("EP93xx SPI Controller driver"); | 
|  | MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_ALIAS("platform:ep93xx-spi"); |