|  | /* | 
|  | *  linux/kernel/profile.c | 
|  | *  Simple profiling. Manages a direct-mapped profile hit count buffer, | 
|  | *  with configurable resolution, support for restricting the cpus on | 
|  | *  which profiling is done, and switching between cpu time and | 
|  | *  schedule() calls via kernel command line parameters passed at boot. | 
|  | * | 
|  | *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | 
|  | *	Red Hat, July 2004 | 
|  | *  Consolidation of architecture support code for profiling, | 
|  | *	William Irwin, Oracle, July 2004 | 
|  | *  Amortized hit count accounting via per-cpu open-addressed hashtables | 
|  | *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 | 
|  | */ | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/irq_regs.h> | 
|  | #include <asm/ptrace.h> | 
|  |  | 
|  | struct profile_hit { | 
|  | u32 pc, hits; | 
|  | }; | 
|  | #define PROFILE_GRPSHIFT	3 | 
|  | #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT) | 
|  | #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit)) | 
|  | #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ) | 
|  |  | 
|  | /* Oprofile timer tick hook */ | 
|  | static int (*timer_hook)(struct pt_regs *) __read_mostly; | 
|  |  | 
|  | static atomic_t *prof_buffer; | 
|  | static unsigned long prof_len, prof_shift; | 
|  |  | 
|  | int prof_on __read_mostly; | 
|  | EXPORT_SYMBOL_GPL(prof_on); | 
|  |  | 
|  | static cpumask_var_t prof_cpu_mask; | 
|  | #ifdef CONFIG_SMP | 
|  | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); | 
|  | static DEFINE_PER_CPU(int, cpu_profile_flip); | 
|  | static DEFINE_MUTEX(profile_flip_mutex); | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | int profile_setup(char *str) | 
|  | { | 
|  | static char schedstr[] = "schedule"; | 
|  | static char sleepstr[] = "sleep"; | 
|  | static char kvmstr[] = "kvm"; | 
|  | int par; | 
|  |  | 
|  | if (!strncmp(str, sleepstr, strlen(sleepstr))) { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | prof_on = SLEEP_PROFILING; | 
|  | if (str[strlen(sleepstr)] == ',') | 
|  | str += strlen(sleepstr) + 1; | 
|  | if (get_option(&str, &par)) | 
|  | prof_shift = par; | 
|  | printk(KERN_INFO | 
|  | "kernel sleep profiling enabled (shift: %ld)\n", | 
|  | prof_shift); | 
|  | #else | 
|  | printk(KERN_WARNING | 
|  | "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); | 
|  | #endif /* CONFIG_SCHEDSTATS */ | 
|  | } else if (!strncmp(str, schedstr, strlen(schedstr))) { | 
|  | prof_on = SCHED_PROFILING; | 
|  | if (str[strlen(schedstr)] == ',') | 
|  | str += strlen(schedstr) + 1; | 
|  | if (get_option(&str, &par)) | 
|  | prof_shift = par; | 
|  | printk(KERN_INFO | 
|  | "kernel schedule profiling enabled (shift: %ld)\n", | 
|  | prof_shift); | 
|  | } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { | 
|  | prof_on = KVM_PROFILING; | 
|  | if (str[strlen(kvmstr)] == ',') | 
|  | str += strlen(kvmstr) + 1; | 
|  | if (get_option(&str, &par)) | 
|  | prof_shift = par; | 
|  | printk(KERN_INFO | 
|  | "kernel KVM profiling enabled (shift: %ld)\n", | 
|  | prof_shift); | 
|  | } else if (get_option(&str, &par)) { | 
|  | prof_shift = par; | 
|  | prof_on = CPU_PROFILING; | 
|  | printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", | 
|  | prof_shift); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | __setup("profile=", profile_setup); | 
|  |  | 
|  |  | 
|  | int __ref profile_init(void) | 
|  | { | 
|  | int buffer_bytes; | 
|  | if (!prof_on) | 
|  | return 0; | 
|  |  | 
|  | /* only text is profiled */ | 
|  | prof_len = (_etext - _stext) >> prof_shift; | 
|  | buffer_bytes = prof_len*sizeof(atomic_t); | 
|  |  | 
|  | if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cpumask_copy(prof_cpu_mask, cpu_possible_mask); | 
|  |  | 
|  | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); | 
|  | if (prof_buffer) | 
|  | return 0; | 
|  |  | 
|  | prof_buffer = alloc_pages_exact(buffer_bytes, | 
|  | GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); | 
|  | if (prof_buffer) | 
|  | return 0; | 
|  |  | 
|  | prof_buffer = vzalloc(buffer_bytes); | 
|  | if (prof_buffer) | 
|  | return 0; | 
|  |  | 
|  | free_cpumask_var(prof_cpu_mask); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Profile event notifications */ | 
|  |  | 
|  | static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); | 
|  | static ATOMIC_NOTIFIER_HEAD(task_free_notifier); | 
|  | static BLOCKING_NOTIFIER_HEAD(munmap_notifier); | 
|  |  | 
|  | void profile_task_exit(struct task_struct *task) | 
|  | { | 
|  | blocking_notifier_call_chain(&task_exit_notifier, 0, task); | 
|  | } | 
|  |  | 
|  | int profile_handoff_task(struct task_struct *task) | 
|  | { | 
|  | int ret; | 
|  | ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); | 
|  | return (ret == NOTIFY_OK) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | void profile_munmap(unsigned long addr) | 
|  | { | 
|  | blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); | 
|  | } | 
|  |  | 
|  | int task_handoff_register(struct notifier_block *n) | 
|  | { | 
|  | return atomic_notifier_chain_register(&task_free_notifier, n); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(task_handoff_register); | 
|  |  | 
|  | int task_handoff_unregister(struct notifier_block *n) | 
|  | { | 
|  | return atomic_notifier_chain_unregister(&task_free_notifier, n); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(task_handoff_unregister); | 
|  |  | 
|  | int profile_event_register(enum profile_type type, struct notifier_block *n) | 
|  | { | 
|  | int err = -EINVAL; | 
|  |  | 
|  | switch (type) { | 
|  | case PROFILE_TASK_EXIT: | 
|  | err = blocking_notifier_chain_register( | 
|  | &task_exit_notifier, n); | 
|  | break; | 
|  | case PROFILE_MUNMAP: | 
|  | err = blocking_notifier_chain_register( | 
|  | &munmap_notifier, n); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(profile_event_register); | 
|  |  | 
|  | int profile_event_unregister(enum profile_type type, struct notifier_block *n) | 
|  | { | 
|  | int err = -EINVAL; | 
|  |  | 
|  | switch (type) { | 
|  | case PROFILE_TASK_EXIT: | 
|  | err = blocking_notifier_chain_unregister( | 
|  | &task_exit_notifier, n); | 
|  | break; | 
|  | case PROFILE_MUNMAP: | 
|  | err = blocking_notifier_chain_unregister( | 
|  | &munmap_notifier, n); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(profile_event_unregister); | 
|  |  | 
|  | int register_timer_hook(int (*hook)(struct pt_regs *)) | 
|  | { | 
|  | if (timer_hook) | 
|  | return -EBUSY; | 
|  | timer_hook = hook; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_timer_hook); | 
|  |  | 
|  | void unregister_timer_hook(int (*hook)(struct pt_regs *)) | 
|  | { | 
|  | WARN_ON(hook != timer_hook); | 
|  | timer_hook = NULL; | 
|  | /* make sure all CPUs see the NULL hook */ | 
|  | synchronize_sched();  /* Allow ongoing interrupts to complete. */ | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_timer_hook); | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Each cpu has a pair of open-addressed hashtables for pending | 
|  | * profile hits. read_profile() IPI's all cpus to request them | 
|  | * to flip buffers and flushes their contents to prof_buffer itself. | 
|  | * Flip requests are serialized by the profile_flip_mutex. The sole | 
|  | * use of having a second hashtable is for avoiding cacheline | 
|  | * contention that would otherwise happen during flushes of pending | 
|  | * profile hits required for the accuracy of reported profile hits | 
|  | * and so resurrect the interrupt livelock issue. | 
|  | * | 
|  | * The open-addressed hashtables are indexed by profile buffer slot | 
|  | * and hold the number of pending hits to that profile buffer slot on | 
|  | * a cpu in an entry. When the hashtable overflows, all pending hits | 
|  | * are accounted to their corresponding profile buffer slots with | 
|  | * atomic_add() and the hashtable emptied. As numerous pending hits | 
|  | * may be accounted to a profile buffer slot in a hashtable entry, | 
|  | * this amortizes a number of atomic profile buffer increments likely | 
|  | * to be far larger than the number of entries in the hashtable, | 
|  | * particularly given that the number of distinct profile buffer | 
|  | * positions to which hits are accounted during short intervals (e.g. | 
|  | * several seconds) is usually very small. Exclusion from buffer | 
|  | * flipping is provided by interrupt disablement (note that for | 
|  | * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from | 
|  | * process context). | 
|  | * The hash function is meant to be lightweight as opposed to strong, | 
|  | * and was vaguely inspired by ppc64 firmware-supported inverted | 
|  | * pagetable hash functions, but uses a full hashtable full of finite | 
|  | * collision chains, not just pairs of them. | 
|  | * | 
|  | * -- wli | 
|  | */ | 
|  | static void __profile_flip_buffers(void *unused) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | 
|  | } | 
|  |  | 
|  | static void profile_flip_buffers(void) | 
|  | { | 
|  | int i, j, cpu; | 
|  |  | 
|  | mutex_lock(&profile_flip_mutex); | 
|  | j = per_cpu(cpu_profile_flip, get_cpu()); | 
|  | put_cpu(); | 
|  | on_each_cpu(__profile_flip_buffers, NULL, 1); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | 
|  | for (i = 0; i < NR_PROFILE_HIT; ++i) { | 
|  | if (!hits[i].hits) { | 
|  | if (hits[i].pc) | 
|  | hits[i].pc = 0; | 
|  | continue; | 
|  | } | 
|  | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | 
|  | hits[i].hits = hits[i].pc = 0; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&profile_flip_mutex); | 
|  | } | 
|  |  | 
|  | static void profile_discard_flip_buffers(void) | 
|  | { | 
|  | int i, cpu; | 
|  |  | 
|  | mutex_lock(&profile_flip_mutex); | 
|  | i = per_cpu(cpu_profile_flip, get_cpu()); | 
|  | put_cpu(); | 
|  | on_each_cpu(__profile_flip_buffers, NULL, 1); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | 
|  | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | 
|  | } | 
|  | mutex_unlock(&profile_flip_mutex); | 
|  | } | 
|  |  | 
|  | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) | 
|  | { | 
|  | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | 
|  | int i, j, cpu; | 
|  | struct profile_hit *hits; | 
|  |  | 
|  | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); | 
|  | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | 
|  | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | 
|  | cpu = get_cpu(); | 
|  | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | 
|  | if (!hits) { | 
|  | put_cpu(); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * We buffer the global profiler buffer into a per-CPU | 
|  | * queue and thus reduce the number of global (and possibly | 
|  | * NUMA-alien) accesses. The write-queue is self-coalescing: | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | do { | 
|  | for (j = 0; j < PROFILE_GRPSZ; ++j) { | 
|  | if (hits[i + j].pc == pc) { | 
|  | hits[i + j].hits += nr_hits; | 
|  | goto out; | 
|  | } else if (!hits[i + j].hits) { | 
|  | hits[i + j].pc = pc; | 
|  | hits[i + j].hits = nr_hits; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | i = (i + secondary) & (NR_PROFILE_HIT - 1); | 
|  | } while (i != primary); | 
|  |  | 
|  | /* | 
|  | * Add the current hit(s) and flush the write-queue out | 
|  | * to the global buffer: | 
|  | */ | 
|  | atomic_add(nr_hits, &prof_buffer[pc]); | 
|  | for (i = 0; i < NR_PROFILE_HIT; ++i) { | 
|  | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | 
|  | hits[i].pc = hits[i].hits = 0; | 
|  | } | 
|  | out: | 
|  | local_irq_restore(flags); | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static int __cpuinit profile_cpu_callback(struct notifier_block *info, | 
|  | unsigned long action, void *__cpu) | 
|  | { | 
|  | int node, cpu = (unsigned long)__cpu; | 
|  | struct page *page; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | node = cpu_to_mem(cpu); | 
|  | per_cpu(cpu_profile_flip, cpu) = 0; | 
|  | if (!per_cpu(cpu_profile_hits, cpu)[1]) { | 
|  | page = alloc_pages_exact_node(node, | 
|  | GFP_KERNEL | __GFP_ZERO, | 
|  | 0); | 
|  | if (!page) | 
|  | return notifier_from_errno(-ENOMEM); | 
|  | per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); | 
|  | } | 
|  | if (!per_cpu(cpu_profile_hits, cpu)[0]) { | 
|  | page = alloc_pages_exact_node(node, | 
|  | GFP_KERNEL | __GFP_ZERO, | 
|  | 0); | 
|  | if (!page) | 
|  | goto out_free; | 
|  | per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); | 
|  | } | 
|  | break; | 
|  | out_free: | 
|  | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | 
|  | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | 
|  | __free_page(page); | 
|  | return notifier_from_errno(-ENOMEM); | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | if (prof_cpu_mask != NULL) | 
|  | cpumask_set_cpu(cpu, prof_cpu_mask); | 
|  | break; | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | if (prof_cpu_mask != NULL) | 
|  | cpumask_clear_cpu(cpu, prof_cpu_mask); | 
|  | if (per_cpu(cpu_profile_hits, cpu)[0]) { | 
|  | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | 
|  | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | 
|  | __free_page(page); | 
|  | } | 
|  | if (per_cpu(cpu_profile_hits, cpu)[1]) { | 
|  | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | 
|  | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | 
|  | __free_page(page); | 
|  | } | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  | #else /* !CONFIG_SMP */ | 
|  | #define profile_flip_buffers()		do { } while (0) | 
|  | #define profile_discard_flip_buffers()	do { } while (0) | 
|  | #define profile_cpu_callback		NULL | 
|  |  | 
|  | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) | 
|  | { | 
|  | unsigned long pc; | 
|  | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; | 
|  | atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); | 
|  | } | 
|  | #endif /* !CONFIG_SMP */ | 
|  |  | 
|  | void profile_hits(int type, void *__pc, unsigned int nr_hits) | 
|  | { | 
|  | if (prof_on != type || !prof_buffer) | 
|  | return; | 
|  | do_profile_hits(type, __pc, nr_hits); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(profile_hits); | 
|  |  | 
|  | void profile_tick(int type) | 
|  | { | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  |  | 
|  | if (type == CPU_PROFILING && timer_hook) | 
|  | timer_hook(regs); | 
|  | if (!user_mode(regs) && prof_cpu_mask != NULL && | 
|  | cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) | 
|  | profile_hit(type, (void *)profile_pc(regs)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) | 
|  | { | 
|  | seq_cpumask(m, prof_cpu_mask); | 
|  | seq_putc(m, '\n'); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, prof_cpu_mask_proc_show, NULL); | 
|  | } | 
|  |  | 
|  | static ssize_t prof_cpu_mask_proc_write(struct file *file, | 
|  | const char __user *buffer, size_t count, loff_t *pos) | 
|  | { | 
|  | cpumask_var_t new_value; | 
|  | int err; | 
|  |  | 
|  | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = cpumask_parse_user(buffer, count, new_value); | 
|  | if (!err) { | 
|  | cpumask_copy(prof_cpu_mask, new_value); | 
|  | err = count; | 
|  | } | 
|  | free_cpumask_var(new_value); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static const struct file_operations prof_cpu_mask_proc_fops = { | 
|  | .open		= prof_cpu_mask_proc_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | .write		= prof_cpu_mask_proc_write, | 
|  | }; | 
|  |  | 
|  | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | 
|  | { | 
|  | /* create /proc/irq/prof_cpu_mask */ | 
|  | proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function accesses profiling information. The returned data is | 
|  | * binary: the sampling step and the actual contents of the profile | 
|  | * buffer. Use of the program readprofile is recommended in order to | 
|  | * get meaningful info out of these data. | 
|  | */ | 
|  | static ssize_t | 
|  | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | 
|  | { | 
|  | unsigned long p = *ppos; | 
|  | ssize_t read; | 
|  | char *pnt; | 
|  | unsigned int sample_step = 1 << prof_shift; | 
|  |  | 
|  | profile_flip_buffers(); | 
|  | if (p >= (prof_len+1)*sizeof(unsigned int)) | 
|  | return 0; | 
|  | if (count > (prof_len+1)*sizeof(unsigned int) - p) | 
|  | count = (prof_len+1)*sizeof(unsigned int) - p; | 
|  | read = 0; | 
|  |  | 
|  | while (p < sizeof(unsigned int) && count > 0) { | 
|  | if (put_user(*((char *)(&sample_step)+p), buf)) | 
|  | return -EFAULT; | 
|  | buf++; p++; count--; read++; | 
|  | } | 
|  | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | 
|  | if (copy_to_user(buf, (void *)pnt, count)) | 
|  | return -EFAULT; | 
|  | read += count; | 
|  | *ppos += read; | 
|  | return read; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writing to /proc/profile resets the counters | 
|  | * | 
|  | * Writing a 'profiling multiplier' value into it also re-sets the profiling | 
|  | * interrupt frequency, on architectures that support this. | 
|  | */ | 
|  | static ssize_t write_profile(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | extern int setup_profiling_timer(unsigned int multiplier); | 
|  |  | 
|  | if (count == sizeof(int)) { | 
|  | unsigned int multiplier; | 
|  |  | 
|  | if (copy_from_user(&multiplier, buf, sizeof(int))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (setup_profiling_timer(multiplier)) | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  | profile_discard_flip_buffers(); | 
|  | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_profile_operations = { | 
|  | .read		= read_profile, | 
|  | .write		= write_profile, | 
|  | .llseek		= default_llseek, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static void profile_nop(void *unused) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int create_hash_tables(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | int node = cpu_to_mem(cpu); | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_pages_exact_node(node, | 
|  | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | 
|  | 0); | 
|  | if (!page) | 
|  | goto out_cleanup; | 
|  | per_cpu(cpu_profile_hits, cpu)[1] | 
|  | = (struct profile_hit *)page_address(page); | 
|  | page = alloc_pages_exact_node(node, | 
|  | GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, | 
|  | 0); | 
|  | if (!page) | 
|  | goto out_cleanup; | 
|  | per_cpu(cpu_profile_hits, cpu)[0] | 
|  | = (struct profile_hit *)page_address(page); | 
|  | } | 
|  | return 0; | 
|  | out_cleanup: | 
|  | prof_on = 0; | 
|  | smp_mb(); | 
|  | on_each_cpu(profile_nop, NULL, 1); | 
|  | for_each_online_cpu(cpu) { | 
|  | struct page *page; | 
|  |  | 
|  | if (per_cpu(cpu_profile_hits, cpu)[0]) { | 
|  | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); | 
|  | per_cpu(cpu_profile_hits, cpu)[0] = NULL; | 
|  | __free_page(page); | 
|  | } | 
|  | if (per_cpu(cpu_profile_hits, cpu)[1]) { | 
|  | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); | 
|  | per_cpu(cpu_profile_hits, cpu)[1] = NULL; | 
|  | __free_page(page); | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | #else | 
|  | #define create_hash_tables()			({ 0; }) | 
|  | #endif | 
|  |  | 
|  | int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */ | 
|  | { | 
|  | struct proc_dir_entry *entry; | 
|  |  | 
|  | if (!prof_on) | 
|  | return 0; | 
|  | if (create_hash_tables()) | 
|  | return -ENOMEM; | 
|  | entry = proc_create("profile", S_IWUSR | S_IRUGO, | 
|  | NULL, &proc_profile_operations); | 
|  | if (!entry) | 
|  | return 0; | 
|  | entry->size = (1+prof_len) * sizeof(atomic_t); | 
|  | hotcpu_notifier(profile_cpu_callback, 0); | 
|  | return 0; | 
|  | } | 
|  | module_init(create_proc_profile); | 
|  | #endif /* CONFIG_PROC_FS */ |