| /* | 
 |  * ==================================================== | 
 |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 |  * | 
 |  * Developed at SunPro, a Sun Microsystems, Inc. business. | 
 |  * Permission to use, copy, modify, and distribute this | 
 |  * software is freely granted, provided that this notice | 
 |  * is preserved. | 
 |  * ==================================================== | 
 |  */ | 
 |  | 
 | /* | 
 |  * __ieee754_jn(n, x), __ieee754_yn(n, x) | 
 |  * floating point Bessel's function of the 1st and 2nd kind | 
 |  * of order n | 
 |  * | 
 |  * Special cases: | 
 |  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; | 
 |  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. | 
 |  * Note 2. About jn(n,x), yn(n,x) | 
 |  *	For n=0, j0(x) is called, | 
 |  *	for n=1, j1(x) is called, | 
 |  *	for n<x, forward recursion us used starting | 
 |  *	from values of j0(x) and j1(x). | 
 |  *	for n>x, a continued fraction approximation to | 
 |  *	j(n,x)/j(n-1,x) is evaluated and then backward | 
 |  *	recursion is used starting from a supposed value | 
 |  *	for j(n,x). The resulting value of j(0,x) is | 
 |  *	compared with the actual value to correct the | 
 |  *	supposed value of j(n,x). | 
 |  * | 
 |  *	yn(n,x) is similar in all respects, except | 
 |  *	that forward recursion is used for all | 
 |  *	values of n>1. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "math.h" | 
 | #include "math_private.h" | 
 |  | 
 | static const double | 
 | invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ | 
 | two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ | 
 | one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ | 
 |  | 
 | static const double zero  =  0.00000000000000000000e+00; | 
 |  | 
 | double attribute_hidden __ieee754_jn(int n, double x) | 
 | { | 
 | 	int32_t i,hx,ix,lx, sgn; | 
 | 	double a, b, temp=0, di; | 
 | 	double z, w; | 
 |  | 
 |     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) | 
 |      * Thus, J(-n,x) = J(n,-x) | 
 |      */ | 
 | 	EXTRACT_WORDS(hx,lx,x); | 
 | 	ix = 0x7fffffff&hx; | 
 |     /* if J(n,NaN) is NaN */ | 
 | 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; | 
 | 	if(n<0){ | 
 | 		n = -n; | 
 | 		x = -x; | 
 | 		hx ^= 0x80000000; | 
 | 	} | 
 | 	if(n==0) return(__ieee754_j0(x)); | 
 | 	if(n==1) return(__ieee754_j1(x)); | 
 | 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */ | 
 | 	x = fabs(x); | 
 | 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */ | 
 | 	    b = zero; | 
 | 	else if((double)n<=x) { | 
 | 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ | 
 | 	    if(ix>=0x52D00000) { /* x > 2**302 */ | 
 |     /* (x >> n**2) | 
 |      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 |      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 |      *	    Let s=sin(x), c=cos(x), | 
 |      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then | 
 |      * | 
 |      *		   n	sin(xn)*sqt2	cos(xn)*sqt2 | 
 |      *		---------------------------------- | 
 |      *		   0	 s-c		 c+s | 
 |      *		   1	-s-c 		-c+s | 
 |      *		   2	-s+c		-c-s | 
 |      *		   3	 s+c		 c-s | 
 |      */ | 
 | 		switch(n&3) { | 
 | 		    case 0: temp =  cos(x)+sin(x); break; | 
 | 		    case 1: temp = -cos(x)+sin(x); break; | 
 | 		    case 2: temp = -cos(x)-sin(x); break; | 
 | 		    case 3: temp =  cos(x)-sin(x); break; | 
 | 		} | 
 | 		b = invsqrtpi*temp/sqrt(x); | 
 | 	    } else { | 
 | 	        a = __ieee754_j0(x); | 
 | 	        b = __ieee754_j1(x); | 
 | 	        for(i=1;i<n;i++){ | 
 | 		    temp = b; | 
 | 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */ | 
 | 		    a = temp; | 
 | 	        } | 
 | 	    } | 
 | 	} else { | 
 | 	    if(ix<0x3e100000) {	/* x < 2**-29 */ | 
 |     /* x is tiny, return the first Taylor expansion of J(n,x) | 
 |      * J(n,x) = 1/n!*(x/2)^n  - ... | 
 |      */ | 
 | 		if(n>33)	/* underflow */ | 
 | 		    b = zero; | 
 | 		else { | 
 | 		    temp = x*0.5; b = temp; | 
 | 		    for (a=one,i=2;i<=n;i++) { | 
 | 			a *= (double)i;		/* a = n! */ | 
 | 			b *= temp;		/* b = (x/2)^n */ | 
 | 		    } | 
 | 		    b = b/a; | 
 | 		} | 
 | 	    } else { | 
 | 		/* use backward recurrence */ | 
 | 		/* 			x      x^2      x^2 | 
 | 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   ..... | 
 | 		 *			2n  - 2(n+1) - 2(n+2) | 
 | 		 * | 
 | 		 * 			1      1        1 | 
 | 		 *  (for large x)   =  ----  ------   ------   ..... | 
 | 		 *			2n   2(n+1)   2(n+2) | 
 | 		 *			-- - ------ - ------ - | 
 | 		 *			 x     x         x | 
 | 		 * | 
 | 		 * Let w = 2n/x and h=2/x, then the above quotient | 
 | 		 * is equal to the continued fraction: | 
 | 		 *		    1 | 
 | 		 *	= ----------------------- | 
 | 		 *		       1 | 
 | 		 *	   w - ----------------- | 
 | 		 *			  1 | 
 | 		 * 	        w+h - --------- | 
 | 		 *		       w+2h - ... | 
 | 		 * | 
 | 		 * To determine how many terms needed, let | 
 | 		 * Q(0) = w, Q(1) = w(w+h) - 1, | 
 | 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), | 
 | 		 * When Q(k) > 1e4	good for single | 
 | 		 * When Q(k) > 1e9	good for double | 
 | 		 * When Q(k) > 1e17	good for quadruple | 
 | 		 */ | 
 | 	    /* determine k */ | 
 | 		double t,v; | 
 | 		double q0,q1,h,tmp; int32_t k,m; | 
 | 		w  = (n+n)/(double)x; h = 2.0/(double)x; | 
 | 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1; | 
 | 		while(q1<1.0e9) { | 
 | 			k += 1; z += h; | 
 | 			tmp = z*q1 - q0; | 
 | 			q0 = q1; | 
 | 			q1 = tmp; | 
 | 		} | 
 | 		m = n+n; | 
 | 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); | 
 | 		a = t; | 
 | 		b = one; | 
 | 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) | 
 | 		 *  Hence, if n*(log(2n/x)) > ... | 
 | 		 *  single 8.8722839355e+01 | 
 | 		 *  double 7.09782712893383973096e+02 | 
 | 		 *  long double 1.1356523406294143949491931077970765006170e+04 | 
 | 		 *  then recurrent value may overflow and the result is | 
 | 		 *  likely underflow to zero | 
 | 		 */ | 
 | 		tmp = n; | 
 | 		v = two/x; | 
 | 		tmp = tmp*__ieee754_log(fabs(v*tmp)); | 
 | 		if(tmp<7.09782712893383973096e+02) { | 
 | 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){ | 
 | 		        temp = b; | 
 | 			b *= di; | 
 | 			b  = b/x - a; | 
 | 		        a = temp; | 
 | 			di -= two; | 
 | 	     	    } | 
 | 		} else { | 
 | 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){ | 
 | 		        temp = b; | 
 | 			b *= di; | 
 | 			b  = b/x - a; | 
 | 		        a = temp; | 
 | 			di -= two; | 
 | 		    /* scale b to avoid spurious overflow */ | 
 | 			if(b>1e100) { | 
 | 			    a /= b; | 
 | 			    t /= b; | 
 | 			    b  = one; | 
 | 			} | 
 | 	     	    } | 
 | 		} | 
 | 	    	b = (t*__ieee754_j0(x)/b); | 
 | 	    } | 
 | 	} | 
 | 	if(sgn==1) return -b; else return b; | 
 | } | 
 |  | 
 | /* | 
 |  * wrapper jn(int n, double x) | 
 |  */ | 
 | #ifndef _IEEE_LIBM | 
 | double jn(int n, double x) | 
 | { | 
 | 	double z = __ieee754_jn(n, x); | 
 | 	if (_LIB_VERSION == _IEEE_ || isnan(x)) | 
 | 		return z; | 
 | 	if (fabs(x) > X_TLOSS) | 
 | 		return __kernel_standard((double)n, x, 38); /* jn(|x|>X_TLOSS,n) */ | 
 | 	return z; | 
 | } | 
 | #else | 
 | strong_alias(__ieee754_jn, jn) | 
 | #endif | 
 |  | 
 | double attribute_hidden __ieee754_yn(int n, double x) | 
 | { | 
 | 	int32_t i,hx,ix,lx; | 
 | 	int32_t sign; | 
 | 	double a, b, temp=0; | 
 |  | 
 | 	EXTRACT_WORDS(hx,lx,x); | 
 | 	ix = 0x7fffffff&hx; | 
 |     /* if Y(n,NaN) is NaN */ | 
 | 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; | 
 | 	if((ix|lx)==0) return -one/zero; | 
 | 	if(hx<0) return zero/zero; | 
 | 	sign = 1; | 
 | 	if(n<0){ | 
 | 		n = -n; | 
 | 		sign = 1 - ((n&1)<<1); | 
 | 	} | 
 | 	if(n==0) return(__ieee754_y0(x)); | 
 | 	if(n==1) return(sign*__ieee754_y1(x)); | 
 | 	if(ix==0x7ff00000) return zero; | 
 | 	if(ix>=0x52D00000) { /* x > 2**302 */ | 
 |     /* (x >> n**2) | 
 |      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 |      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 |      *	    Let s=sin(x), c=cos(x), | 
 |      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then | 
 |      * | 
 |      *		   n	sin(xn)*sqt2	cos(xn)*sqt2 | 
 |      *		---------------------------------- | 
 |      *		   0	 s-c		 c+s | 
 |      *		   1	-s-c 		-c+s | 
 |      *		   2	-s+c		-c-s | 
 |      *		   3	 s+c		 c-s | 
 |      */ | 
 | 		switch(n&3) { | 
 | 		    case 0: temp =  sin(x)-cos(x); break; | 
 | 		    case 1: temp = -sin(x)-cos(x); break; | 
 | 		    case 2: temp = -sin(x)+cos(x); break; | 
 | 		    case 3: temp =  sin(x)+cos(x); break; | 
 | 		} | 
 | 		b = invsqrtpi*temp/sqrt(x); | 
 | 	} else { | 
 | 	    u_int32_t high; | 
 | 	    a = __ieee754_y0(x); | 
 | 	    b = __ieee754_y1(x); | 
 | 	/* quit if b is -inf */ | 
 | 	    GET_HIGH_WORD(high,b); | 
 | 	    for(i=1;i<n&&high!=0xfff00000;i++){ | 
 | 		temp = b; | 
 | 		b = ((double)(i+i)/x)*b - a; | 
 | 		GET_HIGH_WORD(high,b); | 
 | 		a = temp; | 
 | 	    } | 
 | 	} | 
 | 	if(sign>0) return b; else return -b; | 
 | } | 
 |  | 
 | /* | 
 |  * wrapper yn(int n, double x) | 
 |  */ | 
 | #ifndef _IEEE_LIBM | 
 | double yn(int n, double x)	/* wrapper yn */ | 
 | { | 
 | 	double z = __ieee754_yn(n, x); | 
 | 	if (_LIB_VERSION == _IEEE_ || isnan(x)) | 
 | 		return z; | 
 | 	if (x <= 0.0) { | 
 | 		if(x == 0.0) /* d= -one/(x-x); */ | 
 | 			return __kernel_standard((double)n, x, 12); | 
 | 		/* d = zero/(x-x); */ | 
 | 		return __kernel_standard((double)n, x, 13); | 
 | 	} | 
 | 	if (x > X_TLOSS) | 
 | 		return __kernel_standard((double)n, x, 39); /* yn(x>X_TLOSS,n) */ | 
 | 	return z; | 
 | } | 
 | #else | 
 | strong_alias(__ieee754_yn, yn) | 
 | #endif |