| /* | 
 |  * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved | 
 |  * | 
 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #ifndef HEADER_BN_H | 
 | # define HEADER_BN_H | 
 |  | 
 | # include <openssl/e_os2.h> | 
 | # ifndef OPENSSL_NO_STDIO | 
 | #  include <stdio.h> | 
 | # endif | 
 | # include <openssl/opensslconf.h> | 
 | # include <openssl/ossl_typ.h> | 
 | # include <openssl/crypto.h> | 
 | # include <openssl/bnerr.h> | 
 |  | 
 | #ifdef  __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | /* | 
 |  * 64-bit processor with LP64 ABI | 
 |  */ | 
 | # ifdef SIXTY_FOUR_BIT_LONG | 
 | #  define BN_ULONG        unsigned long | 
 | #  define BN_BYTES        8 | 
 | # endif | 
 |  | 
 | /* | 
 |  * 64-bit processor other than LP64 ABI | 
 |  */ | 
 | # ifdef SIXTY_FOUR_BIT | 
 | #  define BN_ULONG        unsigned long long | 
 | #  define BN_BYTES        8 | 
 | # endif | 
 |  | 
 | # ifdef THIRTY_TWO_BIT | 
 | #  define BN_ULONG        unsigned int | 
 | #  define BN_BYTES        4 | 
 | # endif | 
 |  | 
 | # define BN_BITS2       (BN_BYTES * 8) | 
 | # define BN_BITS        (BN_BITS2 * 2) | 
 | # define BN_TBIT        ((BN_ULONG)1 << (BN_BITS2 - 1)) | 
 |  | 
 | # define BN_FLG_MALLOCED         0x01 | 
 | # define BN_FLG_STATIC_DATA      0x02 | 
 |  | 
 | /* | 
 |  * avoid leaking exponent information through timing, | 
 |  * BN_mod_exp_mont() will call BN_mod_exp_mont_consttime, | 
 |  * BN_div() will call BN_div_no_branch, | 
 |  * BN_mod_inverse() will call bn_mod_inverse_no_branch. | 
 |  */ | 
 | # define BN_FLG_CONSTTIME        0x04 | 
 | # define BN_FLG_SECURE           0x08 | 
 |  | 
 | # if OPENSSL_API_COMPAT < 0x00908000L | 
 | /* deprecated name for the flag */ | 
 | #  define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME | 
 | #  define BN_FLG_FREE            0x8000 /* used for debugging */ | 
 | # endif | 
 |  | 
 | void BN_set_flags(BIGNUM *b, int n); | 
 | int BN_get_flags(const BIGNUM *b, int n); | 
 |  | 
 | /* Values for |top| in BN_rand() */ | 
 | #define BN_RAND_TOP_ANY    -1 | 
 | #define BN_RAND_TOP_ONE     0 | 
 | #define BN_RAND_TOP_TWO     1 | 
 |  | 
 | /* Values for |bottom| in BN_rand() */ | 
 | #define BN_RAND_BOTTOM_ANY  0 | 
 | #define BN_RAND_BOTTOM_ODD  1 | 
 |  | 
 | /* | 
 |  * get a clone of a BIGNUM with changed flags, for *temporary* use only (the | 
 |  * two BIGNUMs cannot be used in parallel!). Also only for *read only* use. The | 
 |  * value |dest| should be a newly allocated BIGNUM obtained via BN_new() that | 
 |  * has not been otherwise initialised or used. | 
 |  */ | 
 | void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags); | 
 |  | 
 | /* Wrapper function to make using BN_GENCB easier */ | 
 | int BN_GENCB_call(BN_GENCB *cb, int a, int b); | 
 |  | 
 | BN_GENCB *BN_GENCB_new(void); | 
 | void BN_GENCB_free(BN_GENCB *cb); | 
 |  | 
 | /* Populate a BN_GENCB structure with an "old"-style callback */ | 
 | void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *), | 
 |                       void *cb_arg); | 
 |  | 
 | /* Populate a BN_GENCB structure with a "new"-style callback */ | 
 | void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *), | 
 |                   void *cb_arg); | 
 |  | 
 | void *BN_GENCB_get_arg(BN_GENCB *cb); | 
 |  | 
 | # define BN_prime_checks 0      /* default: select number of iterations based | 
 |                                  * on the size of the number */ | 
 |  | 
 | /* | 
 |  * BN_prime_checks_for_size() returns the number of Miller-Rabin iterations | 
 |  * that will be done for checking that a random number is probably prime. The | 
 |  * error rate for accepting a composite number as prime depends on the size of | 
 |  * the prime |b|. The error rates used are for calculating an RSA key with 2 primes, | 
 |  * and so the level is what you would expect for a key of double the size of the | 
 |  * prime. | 
 |  * | 
 |  * This table is generated using the algorithm of FIPS PUB 186-4 | 
 |  * Digital Signature Standard (DSS), section F.1, page 117. | 
 |  * (https://dx.doi.org/10.6028/NIST.FIPS.186-4) | 
 |  * | 
 |  * The following magma script was used to generate the output: | 
 |  * securitybits:=125; | 
 |  * k:=1024; | 
 |  * for t:=1 to 65 do | 
 |  *   for M:=3 to Floor(2*Sqrt(k-1)-1) do | 
 |  *     S:=0; | 
 |  *     // Sum over m | 
 |  *     for m:=3 to M do | 
 |  *       s:=0; | 
 |  *       // Sum over j | 
 |  *       for j:=2 to m do | 
 |  *         s+:=(RealField(32)!2)^-(j+(k-1)/j); | 
 |  *       end for; | 
 |  *       S+:=2^(m-(m-1)*t)*s; | 
 |  *     end for; | 
 |  *     A:=2^(k-2-M*t); | 
 |  *     B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S; | 
 |  *     pkt:=2.00743*Log(2)*k*2^-k*(A+B); | 
 |  *     seclevel:=Floor(-Log(2,pkt)); | 
 |  *     if seclevel ge securitybits then | 
 |  *       printf "k: %5o, security: %o bits  (t: %o, M: %o)\n",k,seclevel,t,M; | 
 |  *       break; | 
 |  *     end if; | 
 |  *   end for; | 
 |  *   if seclevel ge securitybits then break; end if; | 
 |  * end for; | 
 |  * | 
 |  * It can be run online at: | 
 |  * http://magma.maths.usyd.edu.au/calc | 
 |  * | 
 |  * And will output: | 
 |  * k:  1024, security: 129 bits  (t: 6, M: 23) | 
 |  * | 
 |  * k is the number of bits of the prime, securitybits is the level we want to | 
 |  * reach. | 
 |  * | 
 |  * prime length | RSA key size | # MR tests | security level | 
 |  * -------------+--------------|------------+--------------- | 
 |  *  (b) >= 6394 |     >= 12788 |          3 |        256 bit | 
 |  *  (b) >= 3747 |     >=  7494 |          3 |        192 bit | 
 |  *  (b) >= 1345 |     >=  2690 |          4 |        128 bit | 
 |  *  (b) >= 1080 |     >=  2160 |          5 |        128 bit | 
 |  *  (b) >=  852 |     >=  1704 |          5 |        112 bit | 
 |  *  (b) >=  476 |     >=   952 |          5 |         80 bit | 
 |  *  (b) >=  400 |     >=   800 |          6 |         80 bit | 
 |  *  (b) >=  347 |     >=   694 |          7 |         80 bit | 
 |  *  (b) >=  308 |     >=   616 |          8 |         80 bit | 
 |  *  (b) >=   55 |     >=   110 |         27 |         64 bit | 
 |  *  (b) >=    6 |     >=    12 |         34 |         64 bit | 
 |  */ | 
 |  | 
 | # define BN_prime_checks_for_size(b) ((b) >= 3747 ?  3 : \ | 
 |                                 (b) >=  1345 ?  4 : \ | 
 |                                 (b) >=  476 ?  5 : \ | 
 |                                 (b) >=  400 ?  6 : \ | 
 |                                 (b) >=  347 ?  7 : \ | 
 |                                 (b) >=  308 ?  8 : \ | 
 |                                 (b) >=  55  ? 27 : \ | 
 |                                 /* b >= 6 */ 34) | 
 |  | 
 | # define BN_num_bytes(a) ((BN_num_bits(a)+7)/8) | 
 |  | 
 | int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w); | 
 | int BN_is_zero(const BIGNUM *a); | 
 | int BN_is_one(const BIGNUM *a); | 
 | int BN_is_word(const BIGNUM *a, const BN_ULONG w); | 
 | int BN_is_odd(const BIGNUM *a); | 
 |  | 
 | # define BN_one(a)       (BN_set_word((a),1)) | 
 |  | 
 | void BN_zero_ex(BIGNUM *a); | 
 |  | 
 | # if OPENSSL_API_COMPAT >= 0x00908000L | 
 | #  define BN_zero(a)      BN_zero_ex(a) | 
 | # else | 
 | #  define BN_zero(a)      (BN_set_word((a),0)) | 
 | # endif | 
 |  | 
 | const BIGNUM *BN_value_one(void); | 
 | char *BN_options(void); | 
 | BN_CTX *BN_CTX_new(void); | 
 | BN_CTX *BN_CTX_secure_new(void); | 
 | void BN_CTX_free(BN_CTX *c); | 
 | void BN_CTX_start(BN_CTX *ctx); | 
 | BIGNUM *BN_CTX_get(BN_CTX *ctx); | 
 | void BN_CTX_end(BN_CTX *ctx); | 
 | int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); | 
 | int BN_priv_rand(BIGNUM *rnd, int bits, int top, int bottom); | 
 | int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); | 
 | int BN_priv_rand_range(BIGNUM *rnd, const BIGNUM *range); | 
 | int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); | 
 | int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); | 
 | int BN_num_bits(const BIGNUM *a); | 
 | int BN_num_bits_word(BN_ULONG l); | 
 | int BN_security_bits(int L, int N); | 
 | BIGNUM *BN_new(void); | 
 | BIGNUM *BN_secure_new(void); | 
 | void BN_clear_free(BIGNUM *a); | 
 | BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b); | 
 | void BN_swap(BIGNUM *a, BIGNUM *b); | 
 | BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret); | 
 | int BN_bn2bin(const BIGNUM *a, unsigned char *to); | 
 | int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen); | 
 | BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret); | 
 | int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen); | 
 | BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret); | 
 | int BN_bn2mpi(const BIGNUM *a, unsigned char *to); | 
 | int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
 | int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
 | int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
 | int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
 | int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | 
 | int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); | 
 | /** BN_set_negative sets sign of a BIGNUM | 
 |  * \param  b  pointer to the BIGNUM object | 
 |  * \param  n  0 if the BIGNUM b should be positive and a value != 0 otherwise | 
 |  */ | 
 | void BN_set_negative(BIGNUM *b, int n); | 
 | /** BN_is_negative returns 1 if the BIGNUM is negative | 
 |  * \param  b  pointer to the BIGNUM object | 
 |  * \return 1 if a < 0 and 0 otherwise | 
 |  */ | 
 | int BN_is_negative(const BIGNUM *b); | 
 |  | 
 | int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d, | 
 |            BN_CTX *ctx); | 
 | # define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx)) | 
 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx); | 
 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx); | 
 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                      const BIGNUM *m); | 
 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx); | 
 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                      const BIGNUM *m); | 
 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, | 
 |                BN_CTX *ctx); | 
 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | 
 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); | 
 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m); | 
 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, | 
 |                   BN_CTX *ctx); | 
 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m); | 
 |  | 
 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); | 
 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w); | 
 | int BN_mul_word(BIGNUM *a, BN_ULONG w); | 
 | int BN_add_word(BIGNUM *a, BN_ULONG w); | 
 | int BN_sub_word(BIGNUM *a, BN_ULONG w); | 
 | int BN_set_word(BIGNUM *a, BN_ULONG w); | 
 | BN_ULONG BN_get_word(const BIGNUM *a); | 
 |  | 
 | int BN_cmp(const BIGNUM *a, const BIGNUM *b); | 
 | void BN_free(BIGNUM *a); | 
 | int BN_is_bit_set(const BIGNUM *a, int n); | 
 | int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); | 
 | int BN_lshift1(BIGNUM *r, const BIGNUM *a); | 
 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | 
 |  | 
 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 |                const BIGNUM *m, BN_CTX *ctx); | 
 | int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 |                     const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | 
 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | 
 |                               const BIGNUM *m, BN_CTX *ctx, | 
 |                               BN_MONT_CTX *in_mont); | 
 | int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, | 
 |                          const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx); | 
 | int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1, | 
 |                      const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, | 
 |                      BN_CTX *ctx, BN_MONT_CTX *m_ctx); | 
 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 |                       const BIGNUM *m, BN_CTX *ctx); | 
 |  | 
 | int BN_mask_bits(BIGNUM *a, int n); | 
 | # ifndef OPENSSL_NO_STDIO | 
 | int BN_print_fp(FILE *fp, const BIGNUM *a); | 
 | # endif | 
 | int BN_print(BIO *bio, const BIGNUM *a); | 
 | int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx); | 
 | int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); | 
 | int BN_rshift1(BIGNUM *r, const BIGNUM *a); | 
 | void BN_clear(BIGNUM *a); | 
 | BIGNUM *BN_dup(const BIGNUM *a); | 
 | int BN_ucmp(const BIGNUM *a, const BIGNUM *b); | 
 | int BN_set_bit(BIGNUM *a, int n); | 
 | int BN_clear_bit(BIGNUM *a, int n); | 
 | char *BN_bn2hex(const BIGNUM *a); | 
 | char *BN_bn2dec(const BIGNUM *a); | 
 | int BN_hex2bn(BIGNUM **a, const char *str); | 
 | int BN_dec2bn(BIGNUM **a, const char *str); | 
 | int BN_asc2bn(BIGNUM **a, const char *str); | 
 | int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); | 
 | int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx); /* returns | 
 |                                                                   * -2 for | 
 |                                                                   * error */ | 
 | BIGNUM *BN_mod_inverse(BIGNUM *ret, | 
 |                        const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | 
 | BIGNUM *BN_mod_sqrt(BIGNUM *ret, | 
 |                     const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | 
 |  | 
 | void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords); | 
 |  | 
 | /* Deprecated versions */ | 
 | DEPRECATEDIN_0_9_8(BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, | 
 |                                              const BIGNUM *add, | 
 |                                              const BIGNUM *rem, | 
 |                                              void (*callback) (int, int, | 
 |                                                                void *), | 
 |                                              void *cb_arg)) | 
 | DEPRECATEDIN_0_9_8(int | 
 |                    BN_is_prime(const BIGNUM *p, int nchecks, | 
 |                                void (*callback) (int, int, void *), | 
 |                                BN_CTX *ctx, void *cb_arg)) | 
 | DEPRECATEDIN_0_9_8(int | 
 |                    BN_is_prime_fasttest(const BIGNUM *p, int nchecks, | 
 |                                         void (*callback) (int, int, void *), | 
 |                                         BN_CTX *ctx, void *cb_arg, | 
 |                                         int do_trial_division)) | 
 |  | 
 | /* Newer versions */ | 
 | int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add, | 
 |                          const BIGNUM *rem, BN_GENCB *cb); | 
 | int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb); | 
 | int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, | 
 |                             int do_trial_division, BN_GENCB *cb); | 
 |  | 
 | int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx); | 
 |  | 
 | int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, | 
 |                             const BIGNUM *Xp, const BIGNUM *Xp1, | 
 |                             const BIGNUM *Xp2, const BIGNUM *e, BN_CTX *ctx, | 
 |                             BN_GENCB *cb); | 
 | int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2, BIGNUM *Xp1, | 
 |                               BIGNUM *Xp2, const BIGNUM *Xp, const BIGNUM *e, | 
 |                               BN_CTX *ctx, BN_GENCB *cb); | 
 |  | 
 | BN_MONT_CTX *BN_MONT_CTX_new(void); | 
 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                           BN_MONT_CTX *mont, BN_CTX *ctx); | 
 | int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, | 
 |                      BN_CTX *ctx); | 
 | int BN_from_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, | 
 |                        BN_CTX *ctx); | 
 | void BN_MONT_CTX_free(BN_MONT_CTX *mont); | 
 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx); | 
 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from); | 
 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, | 
 |                                     const BIGNUM *mod, BN_CTX *ctx); | 
 |  | 
 | /* BN_BLINDING flags */ | 
 | # define BN_BLINDING_NO_UPDATE   0x00000001 | 
 | # define BN_BLINDING_NO_RECREATE 0x00000002 | 
 |  | 
 | BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod); | 
 | void BN_BLINDING_free(BN_BLINDING *b); | 
 | int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx); | 
 | int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); | 
 | int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx); | 
 | int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *); | 
 | int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, | 
 |                           BN_CTX *); | 
 |  | 
 | int BN_BLINDING_is_current_thread(BN_BLINDING *b); | 
 | void BN_BLINDING_set_current_thread(BN_BLINDING *b); | 
 | int BN_BLINDING_lock(BN_BLINDING *b); | 
 | int BN_BLINDING_unlock(BN_BLINDING *b); | 
 |  | 
 | unsigned long BN_BLINDING_get_flags(const BN_BLINDING *); | 
 | void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long); | 
 | BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b, | 
 |                                       const BIGNUM *e, BIGNUM *m, BN_CTX *ctx, | 
 |                                       int (*bn_mod_exp) (BIGNUM *r, | 
 |                                                          const BIGNUM *a, | 
 |                                                          const BIGNUM *p, | 
 |                                                          const BIGNUM *m, | 
 |                                                          BN_CTX *ctx, | 
 |                                                          BN_MONT_CTX *m_ctx), | 
 |                                       BN_MONT_CTX *m_ctx); | 
 |  | 
 | DEPRECATEDIN_0_9_8(void BN_set_params(int mul, int high, int low, int mont)) | 
 | DEPRECATEDIN_0_9_8(int BN_get_params(int which)) /* 0, mul, 1 high, 2 low, 3 | 
 |                                                   * mont */ | 
 |  | 
 | BN_RECP_CTX *BN_RECP_CTX_new(void); | 
 | void BN_RECP_CTX_free(BN_RECP_CTX *recp); | 
 | int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx); | 
 | int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, | 
 |                           BN_RECP_CTX *recp, BN_CTX *ctx); | 
 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 |                     const BIGNUM *m, BN_CTX *ctx); | 
 | int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, | 
 |                 BN_RECP_CTX *recp, BN_CTX *ctx); | 
 |  | 
 | # ifndef OPENSSL_NO_EC2M | 
 |  | 
 | /* | 
 |  * Functions for arithmetic over binary polynomials represented by BIGNUMs. | 
 |  * The BIGNUM::neg property of BIGNUMs representing binary polynomials is | 
 |  * ignored. Note that input arguments are not const so that their bit arrays | 
 |  * can be expanded to the appropriate size if needed. | 
 |  */ | 
 |  | 
 | /* | 
 |  * r = a + b | 
 |  */ | 
 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
 | #  define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b) | 
 | /* | 
 |  * r=a mod p | 
 |  */ | 
 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); | 
 | /* r = (a * b) mod p */ | 
 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                     const BIGNUM *p, BN_CTX *ctx); | 
 | /* r = (a * a) mod p */ | 
 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | 
 | /* r = (1 / b) mod p */ | 
 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx); | 
 | /* r = (a / b) mod p */ | 
 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                     const BIGNUM *p, BN_CTX *ctx); | 
 | /* r = (a ^ b) mod p */ | 
 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                     const BIGNUM *p, BN_CTX *ctx); | 
 | /* r = sqrt(a) mod p */ | 
 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 |                      BN_CTX *ctx); | 
 | /* r^2 + r = a mod p */ | 
 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
 |                            BN_CTX *ctx); | 
 | #  define BN_GF2m_cmp(a, b) BN_ucmp((a), (b)) | 
 | /*- | 
 |  * Some functions allow for representation of the irreducible polynomials | 
 |  * as an unsigned int[], say p.  The irreducible f(t) is then of the form: | 
 |  *     t^p[0] + t^p[1] + ... + t^p[k] | 
 |  * where m = p[0] > p[1] > ... > p[k] = 0. | 
 |  */ | 
 | /* r = a mod p */ | 
 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]); | 
 | /* r = (a * b) mod p */ | 
 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                         const int p[], BN_CTX *ctx); | 
 | /* r = (a * a) mod p */ | 
 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[], | 
 |                         BN_CTX *ctx); | 
 | /* r = (1 / b) mod p */ | 
 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[], | 
 |                         BN_CTX *ctx); | 
 | /* r = (a / b) mod p */ | 
 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                         const int p[], BN_CTX *ctx); | 
 | /* r = (a ^ b) mod p */ | 
 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
 |                         const int p[], BN_CTX *ctx); | 
 | /* r = sqrt(a) mod p */ | 
 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, | 
 |                          const int p[], BN_CTX *ctx); | 
 | /* r^2 + r = a mod p */ | 
 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a, | 
 |                                const int p[], BN_CTX *ctx); | 
 | int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max); | 
 | int BN_GF2m_arr2poly(const int p[], BIGNUM *a); | 
 |  | 
 | # endif | 
 |  | 
 | /* | 
 |  * faster mod functions for the 'NIST primes' 0 <= a < p^2 | 
 |  */ | 
 | int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | 
 | int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | 
 | int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | 
 | int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | 
 | int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx); | 
 |  | 
 | const BIGNUM *BN_get0_nist_prime_192(void); | 
 | const BIGNUM *BN_get0_nist_prime_224(void); | 
 | const BIGNUM *BN_get0_nist_prime_256(void); | 
 | const BIGNUM *BN_get0_nist_prime_384(void); | 
 | const BIGNUM *BN_get0_nist_prime_521(void); | 
 |  | 
 | int (*BN_nist_mod_func(const BIGNUM *p)) (BIGNUM *r, const BIGNUM *a, | 
 |                                           const BIGNUM *field, BN_CTX *ctx); | 
 |  | 
 | int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, | 
 |                           const BIGNUM *priv, const unsigned char *message, | 
 |                           size_t message_len, BN_CTX *ctx); | 
 |  | 
 | /* Primes from RFC 2409 */ | 
 | BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn); | 
 | BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn); | 
 |  | 
 | /* Primes from RFC 3526 */ | 
 | BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn); | 
 | BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn); | 
 | BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn); | 
 | BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn); | 
 | BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn); | 
 | BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn); | 
 |  | 
 | # if OPENSSL_API_COMPAT < 0x10100000L | 
 | #  define get_rfc2409_prime_768 BN_get_rfc2409_prime_768 | 
 | #  define get_rfc2409_prime_1024 BN_get_rfc2409_prime_1024 | 
 | #  define get_rfc3526_prime_1536 BN_get_rfc3526_prime_1536 | 
 | #  define get_rfc3526_prime_2048 BN_get_rfc3526_prime_2048 | 
 | #  define get_rfc3526_prime_3072 BN_get_rfc3526_prime_3072 | 
 | #  define get_rfc3526_prime_4096 BN_get_rfc3526_prime_4096 | 
 | #  define get_rfc3526_prime_6144 BN_get_rfc3526_prime_6144 | 
 | #  define get_rfc3526_prime_8192 BN_get_rfc3526_prime_8192 | 
 | # endif | 
 |  | 
 | int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom); | 
 |  | 
 |  | 
 | # ifdef  __cplusplus | 
 | } | 
 | # endif | 
 | #endif |