blob: d3ed5fa16aebd343a4aeb63a7a21fd0df5a84f50 [file] [log] [blame]
/*
* zx297510 spi controller driver
* Author: ZTER
* from original zx297510 driver
*
* Copyright (C) 2005, 2006 ZTE Corporation
* Author: ZTER
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <mach/clock.h>
#include <mach/spi.h>
#include <mach/gpio.h>
/*
* This macro is used to define some register default values.
* reg is masked with mask, the OR:ed with an (again masked)
* val shifted sb steps to the left.
*/
#define SPI_WRITE_BITS(reg, val, mask, sb) \
((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
/*
* This macro is also used to define some default values.
* It will just shift val by sb steps to the left and mask
* the result with mask.
*/
#define GEN_MASK_BITS(val, mask, sb) \
(((val)<<(sb)) & (mask))
#define DRIVE_TX 0
#define DO_NOT_DRIVE_TX 1
#define DO_NOT_QUEUE_DMA 0
#define QUEUE_DMA 1
#define RX_TRANSFER 1
#define TX_TRANSFER 2
/* registers */
#define SPI_VER_REG(r) (r + 0x00)
#define SPI_COM_CTRL(r) (r + 0x04)
#define SPI_FMT_CTRL(r) (r + 0x08)
#define SPI_DR(r) (r + 0x0C)
#define SPI_FIFO_CTRL(r) (r + 0x10)
#define SPI_FIFO_SR(r) (r + 0x14)
#define SPI_INTR_EN(r) (r + 0x18)
#define SPI_INTR_SR_SCLR(r) (r + 0x1C)
/*
* SPI Version Register - SPI_VER_REG
*/
#define SPI_VER_REG_MASK_Y (0xFFUL << 16)
#define SPI_VER_REG_MASK_X (0xFFUL << 24)
/*
* SPI Common Control Register - SPI_COM_CTRL
*/
#define SPI_COM_CTRL_MASK_LBM (0x1UL << 0)
#define SPI_COM_CTRL_MASK_SSPE (0x1UL << 1)
#define SPI_COM_CTRL_MASK_MS (0x1UL << 2)
#define SPI_COM_CTRL_MASK_SOD (0x1UL << 3)
/*
* SPI Format Control Register - SPI_FMT_CTRL
*/
#define SPI_FMT_CTRL_MASK_FRF (0x3UL << 0)
#define SPI_FMT_CTRL_MASK_POL (0x1UL << 2)
#define SPI_FMT_CTRL_MASK_PHA (0x1UL << 3)
#define SPI_FMT_CTRL_MASK_DSS (0x1FUL << 4)
/*
* SPI FIFO Control Register - SPI_FIFO_CTRL
*/
#define SPI_FIFO_CTRL_MASK_RX_DMA_EN (0x1UL << 2)
#define SPI_FIFO_CTRL_MASK_TX_DMA_EN (0x1UL << 3)
#define SPI_FIFO_CTRL_MASK_RX_FIFO_THRES (0xFUL << 4)
#define SPI_FIFO_CTRL_MASK_TX_FIFO_THRES (0xFUL << 8)
/*
* SPI FIFO Status Register - SPI_FIFO_SR
*/
#define SPI_FIFO_SR_MASK_RX_BEYOND_THRES (0x1UL << 0)
#define SPI_FIFO_SR_MASK_TX_BEYOND_THRES (0x1UL << 1)
#define SPI_FIFO_SR_MASK_RX_FIFO_FULL (0x1UL << 2)
#define SPI_FIFO_SR_MASK_TX_FIFO_EMPTY (0x1UL << 3)
#define SPI_FIFO_SR_MASK_BUSY (0x1UL << 4)
#define SPI_FIFO_SR_MASK_RX_FIFO_CNTR (0x1FUL << 5)
#define SPI_FIFO_SR_MASK_TX_FIFO_CNTR (0x1FUL << 10)
/*
* SPI Interrupt Enable Register - SPI_INTR_EN
*/
#define SPI_INTR_EN_MASK_RX_OVERRUN_IE (0x1UL << 0)
#define SPI_INTR_EN_MASK_TX_UNDERRUN_IE (0x1UL << 1)
#define SPI_INTR_EN_MASK_RX_FULL_IE (0x1UL << 2)
#define SPI_INTR_EN_MASK_TX_EMPTY_IE (0x1UL << 3)
#define SPI_INTR_EN_MASK_RX_THRES_IE (0x1UL << 4)
#define SPI_INTR_EN_MASK_TX_THRES_IE (0x1UL << 5)
/*
* SPI Interrupt Status Register OR Interrupt Clear Register - SPI_INTR_SR_SCLR
*/
#define SPI_INTR_SR_SCLR_MASK_RX_OVERRUN_INTR (0x1UL << 0)
#define SPI_INTR_SR_SCLR_MASK_TX_UNDERRUN_INTR (0x1UL << 1)
#define SPI_INTR_SR_SCLR_MASK_RX_FULL_INTR (0x1UL << 2)
#define SPI_INTR_SR_SCLR_MASK_TX_EMPTY_INTR (0x1UL << 3)
#define SPI_INTR_SR_SCLR_MASK_RX_THRES_INTR (0x1UL << 4)
#define SPI_INTR_SR_SCLR_MASK_TX_THRES_INTR (0x1UL << 5)
/* SPI State */
#define SPI_RUNNING 0
#define SPI_SHUTDOWN 1
/* SPI WCLK Freqency */
#define SPI_SPICLK_FREQ_104M 104000000
#define CLEAR_ALL_INTERRUPTS 0x3FUL
#define ENABLE_ALL_INTERRUPTS 0x3FUL
#define DISABLE_ALL_INTERRUPTS 0x0UL
/*
* Message State
* we use the spi_message.state (void *) pointer to
* hold a single state value, that's why all this
* (void *) casting is done here.
*/
#define STATE_START ((void *) 0)
#define STATE_RUNNING ((void *) 1)
#define STATE_DONE ((void *) 2)
#define STATE_ERROR ((void *) -1)
/*
* SPI State - Whether Enabled or Disabled
*/
#define SPI_DISABLED (0)
#define SPI_ENABLED (1)
/*
* SPI DMA State - Whether DMA Enabled or Disabled
*/
#define SPI_DMA_DISABLED (0)
#define SPI_DMA_ENABLED (1)
/*
* SPI SOD State - Whether SOD Enabled or Disabled
*/
#define SPI_SOD_DISABLED (1)
#define SPI_SOD_ENABLED (0)
enum spi_fifo_threshold_level {
SPI_FIFO_THRES_1,
SPI_FIFO_THRES_2,
SPI_FIFO_THRES_3,
SPI_FIFO_THRES_4,
SPI_FIFO_THRES_5,
SPI_FIFO_THRES_6,
SPI_FIFO_THRES_7,
SPI_FIFO_THRES_8,
SPI_FIFO_THRES_9,
SPI_FIFO_THRES_10,
SPI_FIFO_THRES_11,
SPI_FIFO_THRES_12,
SPI_FIFO_THRES_13,
SPI_FIFO_THRES_14,
SPI_FIFO_THRES_15,
SPI_FIFO_THRES_16
};
/*
* SPI Clock Parameter ranges
*/
#define DIV_MIN 0x00
#define DIV_MAX 0x0F
#define SPI_POLLING_TIMEOUT 1000
/*
* The type of reading going on on this chip
*/
enum spi_reading {
READING_NULL,
READING_U8,
READING_U16,
READING_U32
};
/**
* The type of writing going on on this chip
*/
enum spi_writing {
WRITING_NULL,
WRITING_U8,
WRITING_U16,
WRITING_U32
};
/**
* struct vendor_data - vendor-specific config parameters
* for PL022 derivates
* @fifodepth: depth of FIFOs (both)
* @max_bpw: maximum number of bits per word
* @unidir: supports unidirection transfers
* @extended_cr: 32 bit wide control register 0 with extra
* features and extra features in CR1 as found in the ST variants
* @pl023: supports a subset of the ST extensions called "PL023"
*/
struct vendor_data {
int fifodepth;
int max_bpw;
bool loopback;
};
/**
* struct pl022 - This is the private SSP driver data structure
* @adev: AMBA device model hookup
* @vendor: vendor data for the IP block
* @phybase: the physical memory where the SSP device resides
* @virtbase: the virtual memory where the SSP is mapped
* @clk: outgoing clock "SPICLK" for the SPI bus
* @master: SPI framework hookup
* @master_info: controller-specific data from machine setup
* @kworker: thread struct for message pump
* @kworker_task: pointer to task for message pump kworker thread
* @pump_messages: work struct for scheduling work to the message pump
* @queue_lock: spinlock to syncronise access to message queue
* @queue: message queue
* @busy: message pump is busy
* @running: message pump is running
* @pump_transfers: Tasklet used in Interrupt Transfer mode
* @cur_msg: Pointer to current spi_message being processed
* @cur_transfer: Pointer to current spi_transfer
* @cur_chip: pointer to current clients chip(assigned from controller_state)
* @next_msg_cs_active: the next message in the queue has been examined
* and it was found that it uses the same chip select as the previous
* message, so we left it active after the previous transfer, and it's
* active already.
* @tx: current position in TX buffer to be read
* @tx_end: end position in TX buffer to be read
* @rx: current position in RX buffer to be written
* @rx_end: end position in RX buffer to be written
* @read: the type of read currently going on
* @write: the type of write currently going on
* @exp_fifo_level: expected FIFO level
* @dma_rx_channel: optional channel for RX DMA
* @dma_tx_channel: optional channel for TX DMA
* @sgt_rx: scattertable for the RX transfer
* @sgt_tx: scattertable for the TX transfer
* @dummypage: a dummy page used for driving data on the bus with DMA
*/
struct zx297510_spi {
struct platform_device *pdev;
struct vendor_data *vendor;
resource_size_t phybase;
void __iomem *virtbase;
struct clk *pclk;/* spi controller work clock */
struct clk *spi_clk;/* spi clk line clock */
u32 clkfreq;
struct spi_master *master;
struct zx297510_spi_controller *master_info;
/* Message per-transfer pump */
struct tasklet_struct pump_transfers;
struct spi_message *cur_msg;
struct spi_transfer *cur_transfer;
struct chip_data *cur_chip;
bool next_msg_cs_active;
void *tx;
void *tx_end;
void *rx;
void *rx_end;
enum spi_reading read;
enum spi_writing write;
u32 exp_fifo_level;
enum spi_rx_level_trig rx_lev_trig;
enum spi_tx_level_trig tx_lev_trig;
/* DMA settings */
#ifdef CONFIG_DMA_ENGINE
struct dma_chan *dma_rx_channel;
struct dma_chan *dma_tx_channel;
struct sg_table sgt_rx;
struct sg_table sgt_tx;
char *dummypage;
bool dma_running;
#endif
};
/**
* struct chip_data - To maintain runtime state of SSP for each client chip
* @cr0: Value of control register CR0 of SSP - on later ST variants this
* register is 32 bits wide rather than just 16
* @cr1: Value of control register CR1 of SSP
* @dmacr: Value of DMA control Register of SSP
* @cpsr: Value of Clock prescale register
* @cs: Value of cs register
* @n_bytes: how many bytes(power of 2) reqd for a given data width of client
* @enable_dma: Whether to enable DMA or not
* @read: function ptr to be used to read when doing xfer for this chip
* @write: function ptr to be used to write when doing xfer for this chip
* @cs_control: chip select callback provided by chip
* @xfer_type: polling/interrupt/DMA
*
* Runtime state of the SSP controller, maintained per chip,
* This would be set according to the current message that would be served
*/
struct chip_data {
u32 ver_reg;
u32 com_ctrl;
u32 fmt_ctrl;
u32 fifo_ctrl;
// u32 intr_en;
u8 n_bytes;
u8 clk_div;/* spi clk divider */
bool enable_dma;
enum spi_reading read;
enum spi_writing write;
//void (*cs_control) (u32 command);
int xfer_type;
};
/**
* null_cs_control - Dummy chip select function
* @command: select/delect the chip
*
* If no chip select function is provided by client this is used as dummy
* chip select
*/
static void null_cs_control(u32 command)
{
pr_debug("zx297510 spi: dummy chip select control, CS=0x%x\n", command);
}
/**
* giveback - current spi_message is over, schedule next message and call
* callback of this message. Assumes that caller already
* set message->status; dma and pio irqs are blocked
* @pl022: SSP driver private data structure
*/
static void giveback(struct zx297510_spi *zx297510spi)
{
struct spi_transfer *last_transfer;
zx297510spi->next_msg_cs_active = false;
last_transfer = list_entry(zx297510spi->cur_msg->transfers.prev,
struct spi_transfer,
transfer_list);
/* Delay if requested before any change in chip select */
if (last_transfer->delay_usecs)
/*
* FIXME: This runs in interrupt context.
* Is this really smart?
*/
udelay(last_transfer->delay_usecs);
if (!last_transfer->cs_change) {
struct spi_message *next_msg;
/*
* cs_change was not set. We can keep the chip select
* enabled if there is message in the queue and it is
* for the same spi device.
*
* We cannot postpone this until pump_messages, because
* after calling msg->complete (below) the driver that
* sent the current message could be unloaded, which
* could invalidate the cs_control() callback...
*/
/* get a pointer to the next message, if any */
next_msg = spi_get_next_queued_message(zx297510spi->master);
/*
* see if the next and current messages point
* to the same spi device.
*/
if (next_msg && next_msg->spi != zx297510spi->cur_msg->spi)
next_msg = NULL;
//if (!next_msg || zx297510spi->cur_msg->state == STATE_ERROR)
// zx297510spi->cur_chip->cs_control(SSP_CHIP_DESELECT);
//else
// zx297510spi->next_msg_cs_active = true;
}
zx297510spi->cur_msg = NULL;
zx297510spi->cur_transfer = NULL;
zx297510spi->cur_chip = NULL;
spi_finalize_current_message(zx297510spi->master);
}
/**
* flush - flush the FIFO to reach a clean state
* @pl022: SSP driver private data structure
*/
static int flush(struct zx297510_spi *zx297510spi)
{
unsigned long limit = loops_per_jiffy << 1;
dev_dbg(&zx297510spi->pdev->dev, "flush\n");
do {
while (readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_RX_FIFO_CNTR)
readl(SPI_DR(zx297510spi->virtbase));
} while ((readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_BUSY) && limit--);
zx297510spi->exp_fifo_level = 0;
return limit;
}
/**
* restore_state - Load configuration of current chip
* @pl022: SSP driver private data structure
*/
static void restore_state(struct zx297510_spi *zx297510spi)
{
struct chip_data *chip = zx297510spi->cur_chip;
writel(chip->com_ctrl, SPI_COM_CTRL(zx297510spi->virtbase));
writel(chip->fmt_ctrl, SPI_FMT_CTRL(zx297510spi->virtbase));
writel(chip->fifo_ctrl, SPI_FIFO_CTRL(zx297510spi->virtbase));
// writel(chip->intr_en, SPI_INTR_EN(zx297510spi->virtbase));
/* disable all interrupts */
writel(DISABLE_ALL_INTERRUPTS, SPI_INTR_EN(zx297510spi->virtbase));
writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
}
/*
* Default spi Register Values
*/
#define DEFAULT_SPI_COM_CTRL ( \
GEN_MASK_BITS(LOOPBACK_DISABLED, SPI_COM_CTRL_MASK_LBM, 0) | \
GEN_MASK_BITS(SPI_DISABLED, SPI_COM_CTRL_MASK_SSPE, 1) | \
GEN_MASK_BITS(SPI_MASTER, SPI_COM_CTRL_MASK_MS, 2) | \
GEN_MASK_BITS(SPI_SOD_DISABLED, SPI_COM_CTRL_MASK_SOD, 3) \
)
#define DEFAULT_SPI_FMT_CTRL ( \
GEN_MASK_BITS(SPI_INTERFACE_MOTOROLA_SPI, SPI_FMT_CTRL_MASK_FRF, 0) | \
GEN_MASK_BITS(SPI_CLK_POL_IDLE_LOW, SPI_FMT_CTRL_MASK_POL, 2) | \
GEN_MASK_BITS(SPI_CLK_FIRST_EDGE, SPI_FMT_CTRL_MASK_PHA, 3) | \
GEN_MASK_BITS(SPI_DATA_BITS_8, SPI_FMT_CTRL_MASK_DSS, 4) \
)
#define DEFAULT_SPI_FIFO_CTRL ( \
GEN_MASK_BITS(SPI_DMA_DISABLED, SPI_FIFO_CTRL_MASK_RX_DMA_EN, 2) | \
GEN_MASK_BITS(SPI_DMA_DISABLED, SPI_FIFO_CTRL_MASK_TX_DMA_EN, 3) | \
GEN_MASK_BITS(SPI_FIFO_THRES_8, SPI_FIFO_CTRL_MASK_RX_FIFO_THRES, 4) | \
GEN_MASK_BITS(SPI_FIFO_THRES_8, SPI_FIFO_CTRL_MASK_TX_FIFO_THRES, 8) \
)
/**
* load_ssp_default_config - Load default configuration for SSP
* @pl022: SSP driver private data structure
*/
static void load_spi_default_config(struct zx297510_spi *zx297510spi)
{
writel(DEFAULT_SPI_COM_CTRL, SPI_COM_CTRL(zx297510spi->virtbase));
writel(DEFAULT_SPI_FMT_CTRL, SPI_FMT_CTRL(zx297510spi->virtbase));
writel(DEFAULT_SPI_FIFO_CTRL, SPI_FIFO_CTRL(zx297510spi->virtbase));
writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
writel(DISABLE_ALL_INTERRUPTS, SPI_INTR_EN(zx297510spi->virtbase));
}
/**
* This will write to TX according to the parameters
* set in pl022.
*/
static void write(struct zx297510_spi *zx297510spi)
{
/*
* The FIFO depth is different between primecell variants.
* I believe filling in too much in the FIFO might cause
* errons in 8bit wide transfers on ARM variants (just 8 words
* FIFO, means only 8x8 = 64 bits in FIFO) at least.
*
* To prevent this issue, the TX FIFO is only filled to the
* unused RX FIFO fill length, regardless of what the TX
* FIFO status flag indicates.
*/
dev_dbg(&zx297510spi->pdev->dev,
"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
__func__, zx297510spi->rx, zx297510spi->rx_end, zx297510spi->tx, zx297510spi->tx_end);
while ((readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_TX_FIFO_EMPTY)
&& (zx297510spi->tx < zx297510spi->tx_end)) {
switch (zx297510spi->write) {
case WRITING_NULL:
writew(0x0, SPI_DR(zx297510spi->virtbase));
break;
case WRITING_U8:
writew(*(u8 *) (zx297510spi->tx), SPI_DR(zx297510spi->virtbase));
break;
case WRITING_U16:
writew((*(u16 *) (zx297510spi->tx)), SPI_DR(zx297510spi->virtbase));
break;
case WRITING_U32:
writel(*(u32 *) (zx297510spi->tx), SPI_DR(zx297510spi->virtbase));
break;
}
while(readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_BUSY) ;
zx297510spi->tx += (zx297510spi->cur_chip->n_bytes);
}
}
/**
* This will write to TX and read from RX according to the parameters
* set in pl022.
*/
static void readwriter(struct zx297510_spi *zx297510spi)
{
/*
* The FIFO depth is different between primecell variants.
* I believe filling in too much in the FIFO might cause
* errons in 8bit wide transfers on ARM variants (just 8 words
* FIFO, means only 8x8 = 64 bits in FIFO) at least.
*
* To prevent this issue, the TX FIFO is only filled to the
* unused RX FIFO fill length, regardless of what the TX
* FIFO status flag indicates.
*/
dev_dbg(&zx297510spi->pdev->dev,
"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
__func__, zx297510spi->rx, zx297510spi->rx_end, zx297510spi->tx, zx297510spi->tx_end);
/* Read as much as you can */
while ((readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_RX_FIFO_CNTR)
&& (zx297510spi->rx < zx297510spi->rx_end)) {
switch (zx297510spi->read) {
case READING_NULL:
readl(SPI_DR(zx297510spi->virtbase));
break;
case READING_U8:
*(u8 *) (zx297510spi->rx) =
readw(SPI_DR(zx297510spi->virtbase)) & 0xFFU;
break;
case READING_U16:
*(u16 *) (zx297510spi->rx) =
(u16) readw(SPI_DR(zx297510spi->virtbase));
break;
case READING_U32:
*(u32 *) (zx297510spi->rx) =
readl(SPI_DR(zx297510spi->virtbase));
break;
}
zx297510spi->rx += (zx297510spi->cur_chip->n_bytes);
zx297510spi->exp_fifo_level--;
}
/*
* Write as much as possible up to the TX FIFO size
*/
while ((zx297510spi->exp_fifo_level < zx297510spi->vendor->fifodepth)
&& (zx297510spi->tx < zx297510spi->tx_end)) {
switch (zx297510spi->write) {
case WRITING_NULL:
writew(0x0, SPI_DR(zx297510spi->virtbase));
break;
case WRITING_U8:
writew(*(u8 *) (zx297510spi->tx), SPI_DR(zx297510spi->virtbase));
break;
case WRITING_U16:
writew((*(u16 *) (zx297510spi->tx)), SPI_DR(zx297510spi->virtbase));
break;
case WRITING_U32:
writel(*(u32 *) (zx297510spi->tx), SPI_DR(zx297510spi->virtbase));
break;
}
zx297510spi->tx += (zx297510spi->cur_chip->n_bytes);
zx297510spi->exp_fifo_level++;
/*
* This inner reader takes care of things appearing in the RX
* FIFO as we're transmitting. This will happen a lot since the
* clock starts running when you put things into the TX FIFO,
* and then things are continuously clocked into the RX FIFO.
*/
while ((readl(SPI_FIFO_SR(zx297510spi->virtbase)) & SPI_FIFO_SR_MASK_RX_FIFO_CNTR)
&& (zx297510spi->rx < zx297510spi->rx_end)) {
switch (zx297510spi->read) {
case READING_NULL:
readw(SPI_DR(zx297510spi->virtbase));
break;
case READING_U8:
*(u8 *) (zx297510spi->rx) =
readw(SPI_DR(zx297510spi->virtbase)) & 0xFFU;
break;
case READING_U16:
*(u16 *) (zx297510spi->rx) =
(u16) readw(SPI_DR(zx297510spi->virtbase));
break;
case READING_U32:
*(u32 *) (zx297510spi->rx) =
readl(SPI_DR(zx297510spi->virtbase));
break;
}
zx297510spi->rx += (zx297510spi->cur_chip->n_bytes);
zx297510spi->exp_fifo_level--;
}
}
/*
* When we exit here the TX FIFO should be full and the RX FIFO
* should be empty
*/
}
/**
* next_transfer - Move to the Next transfer in the current spi message
* @pl022: SSP driver private data structure
*
* This function moves though the linked list of spi transfers in the
* current spi message and returns with the state of current spi
* message i.e whether its last transfer is done(STATE_DONE) or
* Next transfer is ready(STATE_RUNNING)
*/
static void *next_transfer(struct zx297510_spi *zx297510spi)
{
struct spi_message *msg = zx297510spi->cur_msg;
struct spi_transfer *trans = zx297510spi->cur_transfer;
/* Move to next transfer */
if (trans->transfer_list.next != &msg->transfers) {
zx297510spi->cur_transfer =
list_entry(trans->transfer_list.next,
struct spi_transfer, transfer_list);
return STATE_RUNNING;
}
return STATE_DONE;
}
/*
* This DMA functionality is only compiled in if we have
* access to the generic DMA devices/DMA engine.
*/
#ifdef CONFIG_DMA_ENGINE
static void unmap_free_dma_scatter(struct zx297510_spi *zx297510spi)
{
/* Unmap and free the SG tables */
dma_unmap_sg(zx297510spi->dma_tx_channel->device->dev, zx297510spi->sgt_tx.sgl,
zx297510spi->sgt_tx.nents, DMA_TO_DEVICE);
dma_unmap_sg(zx297510spi->dma_rx_channel->device->dev, zx297510spi->sgt_rx.sgl,
zx297510spi->sgt_rx.nents, DMA_FROM_DEVICE);
sg_free_table(&zx297510spi->sgt_rx);
sg_free_table(&zx297510spi->sgt_tx);
}
static void dma_callback(void *data)
{
struct zx297510_spi *zx297510spi = data;
struct spi_message *msg = zx297510spi->cur_msg;
BUG_ON(!zx297510spi->sgt_rx.sgl);
#ifdef VERBOSE_DEBUG
/*
* Optionally dump out buffers to inspect contents, this is
* good if you want to convince yourself that the loopback
* read/write contents are the same, when adopting to a new
* DMA engine.
*/
{
struct scatterlist *sg;
unsigned int i;
dma_sync_sg_for_cpu(&zx297510spi->adev->dev,
zx297510spi->sgt_rx.sgl,
zx297510spi->sgt_rx.nents,
DMA_FROM_DEVICE);
for_each_sg(zx297510spi->sgt_rx.sgl, sg, zx297510spi->sgt_rx.nents, i) {
dev_dbg(&zx297510spi->adev->dev, "SPI RX SG ENTRY: %d", i);
print_hex_dump(KERN_ERR, "SPI RX: ",
DUMP_PREFIX_OFFSET,
16,
1,
sg_virt(sg),
sg_dma_len(sg),
1);
}
for_each_sg(zx297510spi->sgt_tx.sgl, sg, zx297510spi->sgt_tx.nents, i) {
dev_dbg(&zx297510spi->adev->dev, "SPI TX SG ENTRY: %d", i);
print_hex_dump(KERN_ERR, "SPI TX: ",
DUMP_PREFIX_OFFSET,
16,
1,
sg_virt(sg),
sg_dma_len(sg),
1);
}
}
#endif
unmap_free_dma_scatter(zx297510spi);
/* Update total bytes transferred */
msg->actual_length += zx297510spi->cur_transfer->len;
/*if (zx297510spi->cur_transfer->cs_change)
zx297510spi->cur_chip->
cs_control(SSP_CHIP_DESELECT);*/
/* Move to next transfer */
msg->state = next_transfer(zx297510spi);
tasklet_schedule(&zx297510spi->pump_transfers);
}
static void setup_dma_scatter(struct zx297510_spi *zx297510spi,
void *buffer,
unsigned int length,
struct sg_table *sgtab)
{
struct scatterlist *sg;
int bytesleft = length;
void *bufp = buffer;
int mapbytes;
int i;
if (buffer) {
for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
/*
* If there are less bytes left than what fits
* in the current page (plus page alignment offset)
* we just feed in this, else we stuff in as much
* as we can.
*/
if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
mapbytes = bytesleft;
else
mapbytes = PAGE_SIZE - offset_in_page(bufp);
sg_set_page(sg, virt_to_page(bufp),
mapbytes, offset_in_page(bufp));
bufp += mapbytes;
bytesleft -= mapbytes;
dev_dbg(&zx297510spi->pdev->dev,
"set RX/TX target page @ %p, %d bytes, %d left\n",
bufp, mapbytes, bytesleft);
}
} else {
/* Map the dummy buffer on every page */
for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
if (bytesleft < PAGE_SIZE)
mapbytes = bytesleft;
else
mapbytes = PAGE_SIZE;
sg_set_page(sg, virt_to_page(zx297510spi->dummypage),
mapbytes, 0);
bytesleft -= mapbytes;
dev_dbg(&zx297510spi->pdev->dev,
"set RX/TX to dummy page %d bytes, %d left\n",
mapbytes, bytesleft);
}
}
BUG_ON(bytesleft);
}
/**
* configure_dma - configures the channels for the next transfer
* @pl022: SSP driver's private data structure
*/
static int configure_dma(struct zx297510_spi *zx297510spi)
{
struct dma_slave_config rx_conf = {
.src_addr = SPI_DR(zx297510spi->phybase),
.direction = DMA_DEV_TO_MEM,
.device_fc = false,
};
struct dma_slave_config tx_conf = {
.dst_addr = SPI_DR(zx297510spi->phybase),
.direction = DMA_MEM_TO_DEV,
.device_fc = false,
};
unsigned int pages;
int ret;
int rx_sglen, tx_sglen;
struct dma_chan *rxchan = zx297510spi->dma_rx_channel;
struct dma_chan *txchan = zx297510spi->dma_tx_channel;
struct dma_async_tx_descriptor *rxdesc;
struct dma_async_tx_descriptor *txdesc;
/* Check that the channels are available */
if (!rxchan || !txchan)
return -ENODEV;
/*
* If supplied, the DMA burstsize should equal the FIFO trigger level.
* Notice that the DMA engine uses one-to-one mapping. Since we can
* not trigger on 2 elements this needs explicit mapping rather than
* calculation.
*/
switch (zx297510spi->rx_lev_trig) {
case SPI_RX_1_OR_MORE_ELEM:
rx_conf.src_maxburst = 1;
break;
case SPI_RX_4_OR_MORE_ELEM:
rx_conf.src_maxburst = 4;
break;
case SPI_RX_8_OR_MORE_ELEM:
rx_conf.src_maxburst = 8;
break;
case SPI_RX_16_OR_MORE_ELEM:
rx_conf.src_maxburst = 16;
break;
case SPI_RX_32_OR_MORE_ELEM:
rx_conf.src_maxburst = 32;
break;
default:
rx_conf.src_maxburst = zx297510spi->vendor->fifodepth >> 1;
break;
}
switch (zx297510spi->tx_lev_trig) {
case SPI_TX_1_OR_MORE_EMPTY_LOC:
tx_conf.dst_maxburst = 1;
break;
case SPI_TX_4_OR_MORE_EMPTY_LOC:
tx_conf.dst_maxburst = 4;
break;
case SPI_TX_8_OR_MORE_EMPTY_LOC:
tx_conf.dst_maxburst = 8;
break;
case SPI_TX_16_OR_MORE_EMPTY_LOC:
tx_conf.dst_maxburst = 16;
break;
case SPI_TX_32_OR_MORE_EMPTY_LOC:
tx_conf.dst_maxburst = 32;
break;
default:
tx_conf.dst_maxburst = zx297510spi->vendor->fifodepth >> 1;
break;
}
switch (zx297510spi->read) {
case READING_NULL:
/* Use the same as for writing */
rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
break;
case READING_U8:
rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
case READING_U16:
rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case READING_U32:
rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
}
switch (zx297510spi->write) {
case WRITING_NULL:
/* Use the same as for reading */
tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
break;
case WRITING_U8:
tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
break;
case WRITING_U16:
tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
case WRITING_U32:
tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
break;
}
/* SPI pecularity: we need to read and write the same width */
if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
rx_conf.src_addr_width = tx_conf.dst_addr_width;
if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
tx_conf.dst_addr_width = rx_conf.src_addr_width;
BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
dmaengine_slave_config(rxchan, &rx_conf);
dmaengine_slave_config(txchan, &tx_conf);
/* Create sglists for the transfers */
pages = DIV_ROUND_UP(zx297510spi->cur_transfer->len, PAGE_SIZE);
dev_dbg(&zx297510spi->pdev->dev, "using %d pages for transfer\n", pages);
ret = sg_alloc_table(&zx297510spi->sgt_rx, pages, GFP_ATOMIC);
if (ret)
goto err_alloc_rx_sg;
ret = sg_alloc_table(&zx297510spi->sgt_tx, pages, GFP_ATOMIC);
if (ret)
goto err_alloc_tx_sg;
/* Fill in the scatterlists for the RX+TX buffers */
setup_dma_scatter(zx297510spi, zx297510spi->rx,
zx297510spi->cur_transfer->len, &zx297510spi->sgt_rx);
setup_dma_scatter(zx297510spi, zx297510spi->tx,
zx297510spi->cur_transfer->len, &zx297510spi->sgt_tx);
/* Map DMA buffers */
rx_sglen = dma_map_sg(rxchan->device->dev, zx297510spi->sgt_rx.sgl,
zx297510spi->sgt_rx.nents, DMA_FROM_DEVICE);
if (!rx_sglen)
goto err_rx_sgmap;
tx_sglen = dma_map_sg(txchan->device->dev, zx297510spi->sgt_tx.sgl,
zx297510spi->sgt_tx.nents, DMA_TO_DEVICE);
if (!tx_sglen)
goto err_tx_sgmap;
/* Send both scatterlists */
rxdesc = dmaengine_prep_slave_sg(rxchan,
zx297510spi->sgt_rx.sgl,
rx_sglen,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
goto err_rxdesc;
txdesc = dmaengine_prep_slave_sg(txchan,
zx297510spi->sgt_tx.sgl,
tx_sglen,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
goto err_txdesc;
/* Put the callback on the RX transfer only, that should finish last */
rxdesc->callback = dma_callback;
rxdesc->callback_param = zx297510spi;
/* Submit and fire RX and TX with TX last so we're ready to read! */
dmaengine_submit(rxdesc);
dmaengine_submit(txdesc);
dma_async_issue_pending(rxchan);
dma_async_issue_pending(txchan);
zx297510spi->dma_running = true;
return 0;
err_txdesc:
dmaengine_terminate_all(txchan);
err_rxdesc:
dmaengine_terminate_all(rxchan);
dma_unmap_sg(txchan->device->dev, zx297510spi->sgt_tx.sgl,
zx297510spi->sgt_tx.nents, DMA_TO_DEVICE);
err_tx_sgmap:
dma_unmap_sg(rxchan->device->dev, zx297510spi->sgt_rx.sgl,
zx297510spi->sgt_tx.nents, DMA_FROM_DEVICE);
err_rx_sgmap:
sg_free_table(&zx297510spi->sgt_tx);
err_alloc_tx_sg:
sg_free_table(&zx297510spi->sgt_rx);
err_alloc_rx_sg:
return -ENOMEM;
}
static int __devinit zx297510_dma_probe(struct zx297510_spi *zx297510spi)
{
dma_cap_mask_t mask;
/* Try to acquire a generic DMA engine slave channel */
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/*
* We need both RX and TX channels to do DMA, else do none
* of them.
*/
zx297510spi->dma_rx_channel = dma_request_channel(mask,
zx297510spi->master_info->dma_filter,
zx297510spi->master_info->dma_rx_param);
if (!zx297510spi->dma_rx_channel) {
dev_dbg(&zx297510spi->pdev->dev, "no RX DMA channel!\n");
goto err_no_rxchan;
}
zx297510spi->dma_tx_channel = dma_request_channel(mask,
zx297510spi->master_info->dma_filter,
zx297510spi->master_info->dma_tx_param);
if (!zx297510spi->dma_tx_channel) {
dev_dbg(&zx297510spi->pdev->dev, "no TX DMA channel!\n");
goto err_no_txchan;
}
zx297510spi->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!zx297510spi->dummypage) {
dev_dbg(&zx297510spi->pdev->dev, "no DMA dummypage!\n");
goto err_no_dummypage;
}
dev_info(&zx297510spi->pdev->dev, "setup for DMA on RX %s, TX %s\n",
dma_chan_name(zx297510spi->dma_rx_channel),
dma_chan_name(zx297510spi->dma_tx_channel));
return 0;
err_no_dummypage:
dma_release_channel(zx297510spi->dma_tx_channel);
err_no_txchan:
dma_release_channel(zx297510spi->dma_rx_channel);
zx297510spi->dma_rx_channel = NULL;
err_no_rxchan:
dev_err(&zx297510spi->pdev->dev,
"Failed to work in dma mode, work without dma!\n");
return -ENODEV;
}
static void terminate_dma(struct zx297510_spi *zx297510spi)
{
struct dma_chan *rxchan = zx297510spi->dma_rx_channel;
struct dma_chan *txchan = zx297510spi->dma_tx_channel;
dmaengine_terminate_all(rxchan);
dmaengine_terminate_all(txchan);
unmap_free_dma_scatter(zx297510spi);
zx297510spi->dma_running = false;
}
static void zx297510_dma_remove(struct zx297510_spi *zx297510spi)
{
if (zx297510spi->dma_running)
terminate_dma(zx297510spi);
if (zx297510spi->dma_tx_channel)
dma_release_channel(zx297510spi->dma_tx_channel);
if (zx297510spi->dma_rx_channel)
dma_release_channel(zx297510spi->dma_rx_channel);
kfree(zx297510spi->dummypage);
}
#else
static inline int configure_dma(struct zx297510_spi *zx297510spi)
{
return -ENODEV;
}
static inline int zx297510_dma_probe(struct zx297510_spi *zx297510spi)
{
return 0;
}
static inline void zx297510_dma_remove(struct zx297510_spi *zx297510spi)
{
}
#endif
/**
* pl022_interrupt_handler - Interrupt handler for SSP controller
*
* This function handles interrupts generated for an interrupt based transfer.
* If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
* current message's state as STATE_ERROR and schedule the tasklet
* pump_transfers which will do the postprocessing of the current message by
* calling giveback(). Otherwise it reads data from RX FIFO till there is no
* more data, and writes data in TX FIFO till it is not full. If we complete
* the transfer we move to the next transfer and schedule the tasklet.
*/
static irqreturn_t zx297510_interrupt_handler(int irq, void *dev_id)
{
struct zx297510_spi *zx297510spi = dev_id;
struct spi_message *msg = zx297510spi->cur_msg;
u32 irq_status = 0;
u16 flag = 0;
dev_dbg(&zx297510spi->pdev->dev,"in function %s \n", __FUNCTION__);
if (unlikely(!msg)) {
dev_err(&zx297510spi->pdev->dev,
"bad message state in interrupt handler");
/* Never fail */
return IRQ_HANDLED;
}
/* Read the Interrupt Status Register */
irq_status = readl(SPI_INTR_SR_SCLR(zx297510spi->virtbase));
/* clear all Interrupt */
writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
dev_dbg(&zx297510spi->pdev->dev, "irq status 0x%X", irq_status);
if (unlikely(!irq_status))
return IRQ_NONE;
/*
* This handles the FIFO interrupts, the timeout
* interrupts are flatly ignored, they cannot be
* trusted.
*/
if ( unlikely(irq_status & SPI_INTR_SR_SCLR_MASK_RX_OVERRUN_INTR)
|| unlikely(irq_status & SPI_INTR_SR_SCLR_MASK_TX_UNDERRUN_INTR) ) {
/*
* Overrun interrupt - bail out since our Data has been
* corrupted
*/
if ( unlikely(irq_status & SPI_INTR_SR_SCLR_MASK_RX_OVERRUN_INTR) )
dev_err(&zx297510spi->pdev->dev, "RXFIFO is OVERRUN \n");
if ( unlikely(irq_status & SPI_INTR_SR_SCLR_MASK_TX_UNDERRUN_INTR))
dev_err(&zx297510spi->pdev->dev, "TXFIFO is UNDERRUN \n");
/*
* Disable and clear interrupts, disable SSP,
* mark message with bad status so it can be
* retried.
*/
writel(DISABLE_ALL_INTERRUPTS, SPI_INTR_EN(zx297510spi->virtbase));
writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
writel((readl(SPI_COM_CTRL(zx297510spi->virtbase)) & (~SPI_COM_CTRL_MASK_SSPE)),
SPI_COM_CTRL(zx297510spi->virtbase));
msg->state = STATE_ERROR;
/* Schedule message queue handler */
tasklet_schedule(&zx297510spi->pump_transfers);
return IRQ_HANDLED;
}
if (zx297510spi->rx != NULL )
readwriter(zx297510spi);
else
write(zx297510spi);
dev_dbg( &zx297510spi->pdev->dev, "%s tx %p tx_end %p rx %p rx_end %p\n", __FUNCTION__,
zx297510spi->tx,
zx297510spi->tx_end,
zx297510spi->rx,
zx297510spi->rx_end);
if ((zx297510spi->tx == zx297510spi->tx_end) && (flag == 0)) {
u32 irq_flag = SPI_INTR_EN_MASK_RX_FULL_IE|SPI_INTR_EN_MASK_RX_OVERRUN_IE|SPI_INTR_EN_MASK_RX_THRES_IE;
flag = 1;
/* Disable Transmit interrupt, enable receive interrupt */
/*writel((readl(SPI_INTR_EN(zx297510spi->virtbase)) &
~SSP_CR1_MASK_TIE) | SSP_CR1_MASK_RIE,
SSP_CR1(zx297502ssp->virtbase));*/
writel(irq_flag, SPI_INTR_EN(zx297510spi ->virtbase));
}
/*
* Since all transactions must write as much as shall be read,
* we can conclude the entire transaction once RX is complete.
* At this point, all TX will always be finished.
*/
if (zx297510spi->rx >= zx297510spi->rx_end) {
/*writew(DISABLE_ALL_INTERRUPTS,
SSP_IMSC(pl022->virtbase));*/
writel(DISABLE_ALL_INTERRUPTS, SPI_INTR_EN(zx297510spi->virtbase));
writel(CLEAR_ALL_INTERRUPTS, SPI_INTR_SR_SCLR(zx297510spi->virtbase));
if (unlikely(zx297510spi->rx > zx297510spi->rx_end)) {
dev_warn(&zx297510spi->pdev->dev, "read %u surplus "
"bytes (did you request an odd "
"number of bytes on a 16bit bus?)\n",
(u32) (zx297510spi->rx - zx297510spi->rx_end));
}
/* Update total bytes transferred */
msg->actual_length += zx297510spi->cur_transfer->len;
// if (zx297502ssp->cur_transfer->cs_change)
// zx297502ssp->cur_chip->cs_control(SSP_CHIP_DESELECT);
/* Move to next transfer */
msg->state = next_transfer(zx297510spi);
tasklet_schedule(&zx297510spi->pump_transfers);
return IRQ_HANDLED;
}
return IRQ_HANDLED;
}
/**
* This sets up the pointers to memory for the next message to
* send out on the SPI bus.
*/
static int set_up_next_transfer(struct zx297510_spi *zx297510spi,
struct spi_transfer *transfer)
{
int residue;
/* Sanity check the message for this bus width */
residue = zx297510spi->cur_transfer->len % zx297510spi->cur_chip->n_bytes;
if (unlikely(residue != 0)) {
dev_err(&zx297510spi->pdev->dev,
"message of %u bytes to transmit but the current "
"chip bus has a data width of %u bytes!\n",
zx297510spi->cur_transfer->len,
zx297510spi->cur_chip->n_bytes);
dev_err(&zx297510spi->pdev->dev, "skipping this message\n");
return -EIO;
}
if((void *)transfer->tx_buf != NULL){
zx297510spi->tx = (void *)transfer->tx_buf;
zx297510spi->tx_end = zx297510spi->tx + zx297510spi->cur_transfer->len;
}
if((void *)transfer->rx_buf != NULL){
zx297510spi->rx = (void *)transfer->rx_buf;
zx297510spi->rx_end = zx297510spi->rx + zx297510spi->cur_transfer->len;
}
zx297510spi->write =
zx297510spi->tx ? zx297510spi->cur_chip->write : WRITING_NULL;
zx297510spi->read = zx297510spi->rx ? zx297510spi->cur_chip->read : READING_NULL;
return 0;
}
/**
* pump_transfers - Tasklet function which schedules next transfer
* when running in interrupt or DMA transfer mode.
* @data: SSP driver private data structure
*
*/
static void pump_transfers(unsigned long data)
{
struct zx297510_spi *zx297510spi = (struct zx297510_spi *) data;
struct spi_message *message = NULL;
struct spi_transfer *transfer = NULL;
struct spi_transfer *previous = NULL;
dev_dbg(&zx297510spi->pdev->dev,"in function %s\n", __FUNCTION__);
/* Get current state information */
message = zx297510spi->cur_msg;
transfer = zx297510spi->cur_transfer;
/* Handle for abort */
if (message->state == STATE_ERROR) {
message->status = -EIO;
giveback(zx297510spi);
return;
}
/* Handle end of message */
if (message->state == STATE_DONE) {
message->status = 0;
giveback(zx297510spi);
return;
}
/* Delay if requested at end of transfer before CS change */
if (message->state == STATE_RUNNING) {
previous = list_entry(transfer->transfer_list.prev,
struct spi_transfer,
transfer_list);
if (previous->delay_usecs)
/*
* FIXME: This runs in interrupt context.
* Is this really smart?
*/
udelay(previous->delay_usecs);
/* Reselect chip select only if cs_change was requested */
// if (previous->cs_change)
// zx297510spi->cur_chip->cs_control(SSP_CHIP_SELECT);
} else {
/* STATE_START */
message->state = STATE_RUNNING;
}
if (set_up_next_transfer(zx297510spi, transfer)) {
message->state = STATE_ERROR;
message->status = -EIO;
giveback(zx297510spi);
return;
}
/* Flush the FIFOs and let's go! */
flush(zx297510spi);
if (zx297510spi->cur_chip->enable_dma) {
if (configure_dma(zx297510spi)) {
dev_dbg(&zx297510spi->pdev->dev,
"configuration of DMA failed, fall back to interrupt mode\n");
goto err_config_dma;
}
return;
}
err_config_dma:
/* enable all interrupts except RX */
writel( (SPI_INTR_EN_MASK_TX_UNDERRUN_IE | SPI_INTR_EN_MASK_TX_THRES_IE | SPI_INTR_EN_MASK_TX_EMPTY_IE),
SPI_INTR_EN(zx297510spi->virtbase) );
// writew((readl(SSP_CR1(zx297502ssp->virtbase))|SSP_CR1_MASK_TIE|SSP_CR1_MASK_RORIE)&(~SSP_CR1_MASK_RIE),
// SSP_CR1(zx297502ssp->virtbase));
}
static void do_interrupt_dma_transfer(struct zx297510_spi *zx297510spi)
{
/*
* Default is to enable all interrupts except RX -
* this will be enabled once TX is complete
*/
u32 irqflags = ENABLE_ALL_INTERRUPTS;
dev_dbg(&zx297510spi->pdev->dev,"in function %s\n", __FUNCTION__);
/* Enable target chip, if not already active */
//if (!zx297502ssp->next_msg_cs_active)
// zx297502ssp->cur_chip->cs_control(SSP_CHIP_SELECT);
if (set_up_next_transfer(zx297510spi, zx297510spi->cur_transfer)) {
/* Error path */
zx297510spi->cur_msg->state = STATE_ERROR;
zx297510spi->cur_msg->status = -EIO;
giveback(zx297510spi);
return;
}
/* If we're using DMA, set up DMA here */
if (zx297510spi->cur_chip->enable_dma) {
/* Configure DMA transfer */
if (configure_dma(zx297510spi)) {
dev_dbg(&zx297510spi->pdev->dev,
"configuration of DMA failed, fall back to interrupt mode\n");
goto err_config_dma;
}
/* Disable interrupts in DMA mode, IRQ from DMA controller */
irqflags = DISABLE_ALL_INTERRUPTS;
}
if(zx297510spi ->tx != NULL && zx297510spi ->rx != NULL){
/* enable all interrupts */
irqflags = ENABLE_ALL_INTERRUPTS;
}else if(zx297510spi->tx != NULL){
/*enable tx interrupts*/
irqflags = SPI_INTR_EN_MASK_TX_EMPTY_IE
|SPI_INTR_EN_MASK_TX_THRES_IE
|SPI_INTR_EN_MASK_TX_UNDERRUN_IE;
}
err_config_dma:
/* Enable SSP, turn on interrupts */
writel(readl(SPI_COM_CTRL(zx297510spi->virtbase)) | SPI_COM_CTRL_MASK_SSPE,
SPI_COM_CTRL(zx297510spi->virtbase));
/* config interrupts */
writel(irqflags, SPI_INTR_EN(zx297510spi->virtbase));
/*writew(irqflags, SSP_IMSC(zx297502ssp->virtbase));*/
}
static void do_polling_transfer(struct zx297510_spi *zx297510spi)
{
struct spi_message *message = NULL;
struct spi_transfer *transfer = NULL;
struct spi_transfer *previous = NULL;
struct chip_data *chip;
unsigned long time, timeout;
chip = zx297510spi->cur_chip;
message = zx297510spi->cur_msg;
while (message->state != STATE_DONE) {
/* Handle for abort */
if (message->state == STATE_ERROR)
break;
transfer = zx297510spi->cur_transfer;
/* Delay if requested at end of transfer */
if (message->state == STATE_RUNNING) {
previous =
list_entry(transfer->transfer_list.prev,
struct spi_transfer, transfer_list);
if (previous->delay_usecs)
udelay(previous->delay_usecs);
//if (previous->cs_change)
// zx297502ssp->cur_chip->cs_control(SSP_CHIP_SELECT);
} else {
/* STATE_START */
message->state = STATE_RUNNING;
//if (!zx297502ssp->next_msg_cs_active)
// zx297502ssp->cur_chip->cs_control(SSP_CHIP_SELECT);
}
/* Configuration Changing Per Transfer */
if (set_up_next_transfer(zx297510spi, transfer)) {
/* Error path */
message->state = STATE_ERROR;
break;
}
/* Flush FIFOs and enable SSP */
flush(zx297510spi);
//writel((readl(SSP_CR1(zx297502ssp->virtbase)) | SSP_CR1_MASK_SSE),
// SSP_CR1(zx297502ssp->virtbase));
writel(readl(SPI_COM_CTRL(zx297510spi->virtbase)) | SPI_COM_CTRL_MASK_SSPE,
SPI_COM_CTRL(zx297510spi->virtbase));
dev_dbg(&zx297510spi->pdev->dev, "polling transfer ongoing ...\n");
timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
if(zx297510spi->tx != NULL && zx297510spi->rx != NULL )
{ /*read and write*/
while (zx297510spi->tx < zx297510spi->tx_end || zx297510spi->rx < zx297510spi->rx_end) {
time = jiffies;
readwriter(zx297510spi);
if (time_after(time, timeout)) {
dev_warn(&zx297510spi->pdev->dev,
"%s: timeout!\n", __func__);
message->state = STATE_ERROR;
goto out;
}
cpu_relax();
}
}
else if (zx297510spi->tx != NULL )
{/* only write */
while (zx297510spi->tx < zx297510spi->tx_end ) {
time = jiffies;
write(zx297510spi);
if (time_after(time, timeout)) {
dev_warn(&zx297510spi->pdev->dev,
"%s: timeout!\n", __func__);
message->state = STATE_ERROR;
goto out;
}
cpu_relax();
}
}
/* Update total byte transferred */
message->actual_length += zx297510spi->cur_transfer->len;
// if (zx297510spi->cur_transfer->cs_change)
// zx297510spi->cur_chip->cs_control(SSP_CHIP_DESELECT);
/* Move to next transfer */
message->state = next_transfer(zx297510spi);
}
out:
/* Handle end of message */
if (message->state == STATE_DONE)
message->status = 0;
else
message->status = -EIO;
giveback(zx297510spi);
return;
}
static int zx297510_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct zx297510_spi *zx297510spi = spi_master_get_devdata(master);
//printk(KERN_INFO "ssp:in function %s \n", __FUNCTION__);
/* Initial message state */
zx297510spi->cur_msg = msg;
msg->state = STATE_START;
zx297510spi->cur_transfer = list_entry(msg->transfers.next,
struct spi_transfer, transfer_list);
/* Setup the SPI using the per chip configuration */
zx297510spi->cur_chip = spi_get_ctldata(msg->spi);
restore_state(zx297510spi);
flush(zx297510spi);
if (zx297510spi->cur_chip->xfer_type == POLLING_TRANSFER)
do_polling_transfer(zx297510spi);
else
do_interrupt_dma_transfer(zx297510spi);
return 0;
}
static int zx297510_prepare_transfer_hardware(struct spi_master *master)
{
// struct zx297510_spi *zx297510spi = spi_master_get_devdata(master);
//dev_warn(&zx297502ssp->pdev->dev,"in function %s\n", __FUNCTION__);
#if 0
/*
* Just make sure we have all we need to run the transfer by syncing
* with the runtime PM framework.
*/
pm_runtime_get_sync(&pl022->adev->dev);
#endif
return 0;
}
static int zx297510_unprepare_transfer_hardware(struct spi_master *master)
{
struct zx297510_spi *zx297510spi = spi_master_get_devdata(master);
//dev_warn(&zx297502ssp->pdev->dev,"in function %s\n", __FUNCTION__);
/* nothing more to do - disable spi/ssp and power off */
writel(readl(SPI_COM_CTRL(zx297510spi->virtbase)) & ~ SPI_COM_CTRL_MASK_SSPE,
SPI_COM_CTRL(zx297510spi->virtbase));
#if 0
if (pl022->master_info->autosuspend_delay > 0) {
pm_runtime_mark_last_busy(&pl022->adev->dev);
pm_runtime_put_autosuspend(&pl022->adev->dev);
} else {
pm_runtime_put(&pl022->adev->dev);
}
#endif
return 0;
}
static int verify_controller_parameters(struct zx297510_spi *zx297510spi,
struct spi_config_chip const *chip_info)
{
if ((chip_info->iface < SPI_INTERFACE_MOTOROLA_SPI)
|| (chip_info->iface > SPI_INTERFACE_TI_SYNC_SERIAL)) {
dev_err(&zx297510spi->pdev->dev,
"interface is configured incorrectly\n");
return -EINVAL;
}
if ((chip_info->hierarchy != SPI_MASTER)
&& (chip_info->hierarchy != SPI_SLAVE)) {
dev_err(&zx297510spi->pdev->dev,
"hierarchy is configured incorrectly\n");
return -EINVAL;
}
if ((chip_info->com_mode != INTERRUPT_TRANSFER)
&& (chip_info->com_mode != DMA_TRANSFER)
&& (chip_info->com_mode != POLLING_TRANSFER)) {
dev_err(&zx297510spi->pdev->dev,
"Communication mode is configured incorrectly\n");
return -EINVAL;
}
switch (chip_info->rx_lev_trig) {
case SPI_RX_1_OR_MORE_ELEM:
case SPI_RX_4_OR_MORE_ELEM:
case SPI_RX_8_OR_MORE_ELEM:
/* These are always OK, all variants can handle this */
break;
case SPI_RX_16_OR_MORE_ELEM:
if (zx297510spi->vendor->fifodepth < 16) {
dev_err(&zx297510spi->pdev->dev,
"RX FIFO Trigger Level is configured incorrectly\n");
return -EINVAL;
}
break;
case SPI_RX_32_OR_MORE_ELEM:
if (zx297510spi->vendor->fifodepth < 32) {
dev_err(&zx297510spi->pdev->dev,
"RX FIFO Trigger Level is configured incorrectly\n");
return -EINVAL;
}
break;
default:
dev_err(&zx297510spi->pdev->dev,
"RX FIFO Trigger Level is configured incorrectly\n");
return -EINVAL;
break;
}
switch (chip_info->tx_lev_trig) {
case SPI_TX_1_OR_MORE_EMPTY_LOC:
case SPI_TX_4_OR_MORE_EMPTY_LOC:
case SPI_TX_8_OR_MORE_EMPTY_LOC:
/* These are always OK, all variants can handle this */
break;
case SPI_TX_16_OR_MORE_EMPTY_LOC:
if (zx297510spi->vendor->fifodepth < 16) {
dev_err(&zx297510spi->pdev->dev,
"TX FIFO Trigger Level is configured incorrectly\n");
return -EINVAL;
}
break;
case SPI_TX_32_OR_MORE_EMPTY_LOC:
if (zx297510spi->vendor->fifodepth < 32) {
dev_err(&zx297510spi->pdev->dev,
"TX FIFO Trigger Level is configured incorrectly\n");
return -EINVAL;
}
break;
default:
dev_err(&zx297510spi->pdev->dev,
"TX FIFO Trigger Level is configured incorrectly\n");
return -EINVAL;
break;
}
return 0;
}
static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
{
return rate / (cpsdvsr * (1 + scr));
}
static int calculate_effective_freq(struct zx297510_spi *zx297510spi, u32 freq, u8* div)
{
u8 clk_div;
/*div from src clk 104M*/
/* f(ssp_clk) = 2*f(ssp_sclk_out) */
clk_div = zx297510spi->clkfreq /( freq *2);
if( clk_div < DIV_MIN+1 || clk_div > DIV_MAX+1 )
{
dev_err(&zx297510spi->pdev->dev, "error!!! speed is %d Hz out of rang",freq );
return -ENOTSUPP;
}
*div = clk_div;
return 0;
}
static struct vendor_data vendor_arm = {
.fifodepth = 16,
.max_bpw = 32,
.loopback = true,
};
static struct resource spi_gpio_resources[] ={
[0]={
.start = GPIO_AP_SPI_TXD,
.end = GPIO_AP_SPI_TXD,
.name = "txd",
.flags = IORESOURCE_IO,
},
[1]={
.start = GPIO_AP_SPI_CLK,
.end = GPIO_AP_SPI_CLK,
.name = "clk",
.flags = IORESOURCE_IO,
},
[2]={
.start = GPIO_AP_SPI_CS,
.end = GPIO_AP_SPI_CS,
.name = "cs",
.flags = IORESOURCE_IO,
},
#if 0
[3]={
.start = GPIO_AP_SPI_RXD,
.end = GPIO_AP_SPI_RXD,
.name = "rxd",
.flags = IORESOURCE_IO,
}
#endif
};
/*
* A piece of default chip info unless the platform
* supplies it.
*/
static const struct spi_config_chip spi_default_chip_info = {
.com_mode = POLLING_TRANSFER,
.iface = SPI_INTERFACE_MOTOROLA_SPI,
.hierarchy = SPI_MASTER,
.slave_tx_disable = DO_NOT_DRIVE_TX,
.rx_lev_trig = SPI_RX_8_OR_MORE_ELEM,
.tx_lev_trig = SPI_TX_8_OR_MORE_EMPTY_LOC,
// .ctrl_len = SSP_BITS_8,
// .wait_state = SSP_MWIRE_WAIT_ZERO,
// .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
.cs_control = null_cs_control,
};
/*
* spi ʹÓÃGPIOģʽ¶ÁÈ¡LCD µÄID Begin
*/
#define SPI_GPIO_FUNCTION 1
#define SPI_GPIO_GPIO 0
#define SPI_GPIO_HIGH 1
#define SPI_GPIO_LOW 0
static void spi_set_gpio_function(void)
{
//TODO:ÉèÖÃGPIOΪ¹¦ÄܽÅ
zx29_gpio1v8_function_sel(GPIO_AP_SPI_CS, SPI_GPIO_FUNCTION);
zx29_gpio1v8_function_sel(GPIO_AP_SPI_CLK,SPI_GPIO_FUNCTION);
// zx29_gpio1v8_function_sel(GPIO_AP_SPI_RXD,SPI_GPIO_FUNCTION);
zx29_gpio1v8_function_sel(GPIO_AP_SPI_TXD,SPI_GPIO_FUNCTION);
}
static void spi_set_gpio_gpio(void)
{
//TODO:ÉèÖÃGPIOΪGPIO½Å
zx29_gpio1v8_function_sel(GPIO_AP_SPI_CS, SPI_GPIO_GPIO);
zx29_gpio1v8_function_sel(GPIO_AP_SPI_CLK,SPI_GPIO_GPIO);
// zx29_gpio1v8_function_sel(GPIO_AP_SPI_RXD,SPI_GPIO_GPIO);
zx29_gpio1v8_function_sel(GPIO_AP_SPI_TXD,SPI_GPIO_GPIO);
}
static void spi_set_gpio_val(int gpio_num, int val)
{
gpio_direction_output(gpio_num, val);
}
static int spi_get_gpio_val(int gpio_num)
{
gpio_direction_input(gpio_num);
return gpio_get_value(gpio_num);
}
static void spi_time_delay(int delay/*us*/)
{
udelay(delay);
}
void spi_gpio_mode_start(void)
{
/* set clk tx rx cs to gpio */
spi_set_gpio_gpio();
spi_set_gpio_val(GPIO_AP_SPI_CS, SPI_GPIO_HIGH);/* CSµÍÓÐЧ */
spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);/* clk¿ÕÏÐʱΪµÍ */
spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);
spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);
}
EXPORT_SYMBOL(spi_gpio_mode_start);
void spi_gpio_mode_stop(void)
{
/* set clk tx rx cs to function */
spi_set_gpio_function();
}
EXPORT_SYMBOL(spi_gpio_mode_stop);
/*******************************************************************************
* Function:
* Description:
* Parameters:
* Input:
*
* Output:
*
* Returns:
*
*
* Others:
********************************************************************************/
void spi_gpio_write_single8(unsigned char data)
{
int i;
spi_set_gpio_val(GPIO_AP_SPI_CS, SPI_GPIO_LOW);/* CSµÍÓÐЧ */
for( i=7; i>=0; i-- )
{
spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);
if ((data >> i) & 0x1)
{
spi_set_gpio_val(GPIO_AP_SPI_TXD, SPI_GPIO_HIGH);
}
else
{
spi_set_gpio_val(GPIO_AP_SPI_TXD, SPI_GPIO_LOW);
}
spi_time_delay(50);
spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_HIGH);
spi_time_delay(50);
}
}
EXPORT_SYMBOL(spi_gpio_write_single8);
/*******************************************************************************
* Function:
* Description:
* Parameters:
* Input:
*
* Output:
*
* Returns:
*
*
* Others:
********************************************************************************/
unsigned char spi_gpio_read_single8(void)
{
int i;
unsigned char readData = 0;
spi_set_gpio_val(GPIO_AP_SPI_CS, SPI_GPIO_LOW);/* CSµÍÓÐЧ */
for( i=7; i>=0; i-- )
{
spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_LOW);
spi_time_delay(50);
spi_set_gpio_val(GPIO_AP_SPI_CLK, SPI_GPIO_HIGH);
if( spi_get_gpio_val(GPIO_AP_SPI_TXD) )/* lcd ¸´ÓÃtx rx */
{
readData |= (1 << i);
}
spi_time_delay(50);
}
return readData;
}
EXPORT_SYMBOL(spi_gpio_read_single8);
/*
* spi ʹÓÃGPIOģʽ¶ÁÈ¡LCD µÄID End
*/
/**
* pl022_setup - setup function registered to SPI master framework
* @spi: spi device which is requesting setup
*
* This function is registered to the SPI framework for this SPI master
* controller. If it is the first time when setup is called by this device,
* this function will initialize the runtime state for this chip and save
* the same in the device structure. Else it will update the runtime info
* with the updated chip info. Nothing is really being written to the
* controller hardware here, that is not done until the actual transfer
* commence.
*/
static int zx297510_setup(struct spi_device *spi)
{
struct spi_config_chip const *chip_info;
struct chip_data *chip;
u8 clk_div = 0;
int status = 0;
struct zx297510_spi *zx297510spi = spi_master_get_devdata(spi->master);
unsigned int bits = spi->bits_per_word;
u32 tmp;
if (!spi->max_speed_hz)
return -EINVAL;
/* Get controller_state if one is supplied */
chip = spi_get_ctldata(spi);
if (chip == NULL) {
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
if (!chip) {
dev_err(&spi->dev,
"cannot allocate controller state\n");
return -ENOMEM;
}
dev_dbg(&spi->dev,
"allocated memory for controller's runtime state\n");
}
/* Get controller data if one is supplied */
chip_info = spi->controller_data;
if (chip_info == NULL) {
chip_info = &spi_default_chip_info;
/* spi_board_info.controller_data not is supplied */
dev_dbg(&spi->dev,
"using default controller_data settings\n");
} else
dev_dbg(&spi->dev,
"using user supplied controller_data settings\n");
/*
* We can override with custom divisors, else we use the board
* frequency setting
*/
status = calculate_effective_freq(zx297510spi,
spi->max_speed_hz,
&clk_div);
if (status < 0)
goto err_config_params;
chip ->clk_div = clk_div;
dev_dbg(&spi->dev, "clk dividor is %d\n", clk_div);
/* enable ssp clock source */
clk_enable(zx297510spi->spi_clk);
/* set spi clock source at 104MHz/1 */
// zx297510spi->spi_clk->ops->set_division(zx297510spi->spi_clk,chip ->clk_div-1);
//writel(chip ->clk_div-1, M0_SSP_CLKDIV_REG_VA);
clk_set_rate(zx297510spi->spi_clk, spi->max_speed_hz*2); /* f(ssp_clk) = 2*f(ssp_sclk_out) */
status = verify_controller_parameters(zx297510spi, chip_info);
if (status) {
dev_err(&spi->dev, "controller data is incorrect");
goto err_config_params;
}
zx297510spi->rx_lev_trig = chip_info->rx_lev_trig;
zx297510spi->tx_lev_trig = chip_info->tx_lev_trig;
/* Now set controller state based on controller data */
chip->xfer_type = chip_info->com_mode;
/*
if (!chip_info->cs_control) {
chip->cs_control = null_cs_control;
dev_warn(&spi->dev,
"chip select function is NULL for this chip\n");
} else
chip->cs_control = chip_info->cs_control;*/
/* Check bits per word with vendor specific range */
if ((bits <= 3) || (bits > zx297510spi->vendor->max_bpw)) {
status = -ENOTSUPP;
dev_err(&spi->dev, "illegal data size for this controller!\n");
dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
zx297510spi->vendor->max_bpw);
goto err_config_params;
} else if (bits <= 8) {
dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
chip->n_bytes = 1;
chip->read = READING_U8;
chip->write = WRITING_U8;
} else if (bits <= 16) {
dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
chip->n_bytes = 2;
chip->read = READING_U16;
chip->write = WRITING_U16;
} else {
dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
chip->n_bytes = 4;
chip->read = READING_U32;
chip->write = WRITING_U32;
}
/* Now Initialize all register settings required for this chip */
chip->com_ctrl = 0;
chip->fmt_ctrl = 0;
chip->fifo_ctrl = 0;
if ((chip_info->com_mode == DMA_TRANSFER)
&& ((zx297510spi->master_info)->enable_dma)) {
chip->enable_dma = true;
dev_dbg(&spi->dev, "DMA mode set in controller state\n");
SPI_WRITE_BITS(chip->fifo_ctrl, SPI_DMA_ENABLED,
SPI_FIFO_CTRL_MASK_RX_DMA_EN, 2);
SPI_WRITE_BITS(chip->fifo_ctrl,
SPI_DMA_ENABLED, SPI_FIFO_CTRL_MASK_TX_DMA_EN, 3);
} else {
chip->enable_dma = false;
dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
SPI_WRITE_BITS(chip->fifo_ctrl,
SPI_DMA_DISABLED, SPI_FIFO_CTRL_MASK_RX_DMA_EN, 2);
SPI_WRITE_BITS(chip->fifo_ctrl,
SPI_DMA_DISABLED, SPI_FIFO_CTRL_MASK_TX_DMA_EN, 3);
}
SPI_WRITE_BITS(chip->fifo_ctrl,
SPI_FIFO_THRES_8, SPI_FIFO_CTRL_MASK_RX_FIFO_THRES, 4);
SPI_WRITE_BITS(chip->fifo_ctrl,
SPI_FIFO_THRES_8, SPI_FIFO_CTRL_MASK_TX_FIFO_THRES, 8);
SPI_WRITE_BITS(chip->fmt_ctrl, bits - 1,SPI_FMT_CTRL_MASK_DSS, 4);
SPI_WRITE_BITS(chip->fmt_ctrl, chip_info->iface, SPI_FMT_CTRL_MASK_FRF, 0);
/* Stuff that is common for all versions */
if (spi->mode & SPI_CPOL)
tmp = SPI_CLK_POL_IDLE_HIGH;
else
tmp = SPI_CLK_POL_IDLE_LOW;
SPI_WRITE_BITS(chip->fmt_ctrl, tmp, SPI_FMT_CTRL_MASK_POL,2);
if (spi->mode & SPI_CPHA)
tmp = SPI_CLK_SECOND_EDGE;
else
tmp = SPI_CLK_FIRST_EDGE;
SPI_WRITE_BITS(chip->fmt_ctrl, tmp, SPI_FMT_CTRL_MASK_PHA, 3);
/* Loopback is available on all versions except PL023 */
if (zx297510spi->vendor->loopback) {
if (spi->mode & SPI_LOOP)
tmp = LOOPBACK_ENABLED;
else
tmp = LOOPBACK_DISABLED;
SPI_WRITE_BITS(chip->com_ctrl, tmp, SPI_COM_CTRL_MASK_LBM, 0);
}
SPI_WRITE_BITS(chip->com_ctrl, SPI_ENABLED, SPI_COM_CTRL_MASK_SSPE, 1);
SPI_WRITE_BITS(chip->com_ctrl, chip_info->hierarchy, SPI_COM_CTRL_MASK_MS, 2);
SPI_WRITE_BITS(chip->com_ctrl, chip_info->slave_tx_disable, SPI_COM_CTRL_MASK_SOD, 3);
/* Save controller_state */
spi_set_ctldata(spi, chip);
return status;
err_config_params:
spi_set_ctldata(spi, NULL);
kfree(chip);
return status;
}
/**
* pl022_cleanup - cleanup function registered to SPI master framework
* @spi: spi device which is requesting cleanup
*
* This function is registered to the SPI framework for this SPI master
* controller. It will free the runtime state of chip.
*/
static void zx297510_cleanup(struct spi_device *spi)
{
struct chip_data *chip = spi_get_ctldata(spi);
spi_set_ctldata(spi, NULL);
kfree(chip);
}
static int __devinit zx297510_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct zx297510_spi_controller *platform_info = pdev->dev.platform_data;
struct spi_master *master;
struct zx297510_spi *zx297510spi = NULL; /*Data for this driver */
struct resource * regs = NULL;
struct resource * gpio = NULL;
struct resource * irq = NULL;
int status = 0, i;
printk(KERN_INFO "spi:zx297510_spi_probe \n");
if (platform_info == NULL) {
dev_err(&pdev->dev, "probe - no platform data supplied\n");
status = -ENODEV;
goto err_no_pdata;
}
/* Allocate master with space for data */
master = spi_alloc_master(dev, sizeof(struct zx297510_spi));
if (master == NULL) {
dev_err(&pdev->dev, "probe - cannot alloc SPI master\n");
status = -ENOMEM;
goto err_no_master;
}
zx297510spi = spi_master_get_devdata(master);
zx297510spi->master = master;
zx297510spi->master_info = platform_info;
zx297510spi->pdev = pdev;
zx297510spi->vendor = &vendor_arm;
dev_set_drvdata(&pdev->dev, zx297510spi);
/*
* Bus Number Which has been Assigned to this SSP controller
* on this board
*/
master->bus_num = platform_info->bus_id;
master->num_chipselect = platform_info->num_chipselect;
master->cleanup = zx297510_cleanup;
master->setup = zx297510_setup;
master->prepare_transfer_hardware = zx297510_prepare_transfer_hardware;
master->transfer_one_message = zx297510_transfer_one_message;
master->unprepare_transfer_hardware = zx297510_unprepare_transfer_hardware;
master->rt = platform_info->rt;
/*
* Supports mode 0-3, loopback, and active low CS. Transfers are
* always MS bit first on the original pl022.
*/
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_NO_CS;
dev_dbg(&pdev->dev, "BUSNO: %d\n", master->bus_num);
/* registers */
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if ( regs == NULL ){
dev_err(&pdev->dev, "Cannot get IORESOURCE_MEM\n");
status = -ENOENT;
goto err_no_registers;
}
zx297510spi->phybase = regs->start;
zx297510spi->virtbase = ioremap(regs->start, resource_size(regs));
if (zx297510spi->virtbase == NULL) {
status = -ENOMEM;
goto err_no_ioremap;
}
dev_dbg( &pdev->dev," mapped registers from 0x%08x to 0x%p\n",
regs->start, zx297510spi->virtbase);
/* gpios txd rxd sclk cs */
for(i = 0; i < ARRAY_SIZE(spi_gpio_resources); i++){
//gpio = platform_get_resource(pdev, IORESOURCE_IO, i);
gpio = &spi_gpio_resources[i];
if( gpio == NULL )
{
dev_err(&pdev->dev, "Cannot get IORESOURCE_IO\n");
status = -ENOENT;
goto err_gpios;
}
dev_dbg(&pdev->dev, "used gpio num %d as %s \n", gpio->start, gpio ->name);
status = gpio_request(gpio->start,gpio->name);
if( status < 0 )
goto err_gpios;
//zte_gpio_config(gpio->start, SET_FUNCTION);
zx29_gpio1v8_function_sel(gpio->start,1);
}
/* work clock */
zx297510spi->spi_clk = clk_get(&pdev->dev, "work_clk");
if (IS_ERR(zx297510spi->spi_clk)) {
status = PTR_ERR(zx297510spi->spi_clk);
dev_err(&pdev->dev, "could not retrieve SPI work clock\n");
goto err_no_clk;
}
/* enable spiclk at function zx297510_setup */
zx297510spi->clkfreq = SPI_SPICLK_FREQ_104M;
/* apb clock */
zx297510spi->pclk = clk_get(&pdev->dev, "apb_clk");
if (IS_ERR(zx297510spi->pclk)) {
status = PTR_ERR(zx297510spi->pclk);
dev_err(&pdev->dev, "could not retrieve SPI work clock\n");
goto err_no_clk;
}
/* enable ssp clock source */
clk_enable(zx297510spi->pclk);
/* Initialize transfer pump */
tasklet_init(&zx297510spi->pump_transfers, pump_transfers,
(unsigned long)zx297510spi);
/* Disable SPI */
writel((readl(SPI_COM_CTRL(zx297510spi->virtbase)) & (~SPI_COM_CTRL_MASK_SSPE)),
SPI_COM_CTRL(zx297510spi->virtbase));
load_spi_default_config(zx297510spi);
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if( irq == NULL ){
dev_err(&pdev->dev, "Cannot get IORESOURCE_IRQ\n");
status = -ENOENT;
goto err_no_irq;
}
dev_dbg(&pdev->dev, "used interrupt num is %d\n", irq->start);
status = request_irq(irq->start, zx297510_interrupt_handler, 0, "zx297510_spi",
zx297510spi);
if (status < 0) {
dev_err(&pdev->dev, "probe - cannot get IRQ (%d)\n", status);
goto err_no_irq;
}
/* Get DMA channels */
if (platform_info->enable_dma) {
status = zx297510_dma_probe(zx297510spi);
if (status != 0)
platform_info->enable_dma = 0;
}
status = spi_register_master(master);
if (status != 0) {
dev_err(&pdev->dev,
"probe - problem registering spi master\n");
goto err_spi_register;
}
dev_dbg(&pdev->dev," probe succeeded\n");
/* let runtime pm put suspend */
if (platform_info->autosuspend_delay > 0) {
dev_info(&pdev->dev,
"will use autosuspend for runtime pm, delay %dms\n",
platform_info->autosuspend_delay);
pm_runtime_set_autosuspend_delay(dev,
platform_info->autosuspend_delay);
pm_runtime_use_autosuspend(dev);
pm_runtime_put_autosuspend(dev);
} else {
pm_runtime_put(dev);
}
return 0;
err_spi_register:
if (platform_info->enable_dma)
zx297510_dma_remove(zx297510spi);
free_irq(irq->start, zx297510spi);
err_no_irq:
clk_disable(zx297510spi->spi_clk);
// err_no_clk_en:
//clk_unprepare(pl022->clk);
//err_clk_prep:
clk_put(zx297510spi->spi_clk);
err_no_clk:
iounmap(zx297510spi->virtbase);
err_gpios:
/* add */
err_no_ioremap:
err_no_registers:
spi_master_put(master);
err_no_master:
err_no_pdata:
return status;
}
static int __exit zx297510_spi_remove(struct platform_device *pdev)
{
struct zx297510_spi *zx297510spi = dev_get_drvdata(&pdev->dev);
struct resource * gpio = NULL;
struct resource * irq = NULL;
int i;
if (!zx297510spi)
return 0;
/*
* undo pm_runtime_put() in probe. I assume that we're not
* accessing the primecell here.
*/
pm_runtime_get_noresume(&pdev->dev);
load_spi_default_config(zx297510spi);
if (zx297510spi->master_info->enable_dma)
zx297510_dma_remove(zx297510spi);
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if( irq != NULL )
{
free_irq(irq->start, zx297510spi);
}
clk_disable(zx297510spi->spi_clk);
clk_put(zx297510spi->spi_clk);
clk_disable(zx297510spi->pclk);
clk_put(zx297510spi->pclk);
/* gpios txd rxd sclk sfr */
for(i = 0; i < ARRAY_SIZE(spi_gpio_resources); i++){
//gpio = platform_get_resource(pdev, IORESOURCE_IO, i);
gpio = &spi_gpio_resources[i];
if( gpio != NULL )
{
gpio_free(gpio->start);
}
}
iounmap(zx297510spi->virtbase);
//amba_release_regions(adev);
tasklet_disable(&zx297510spi->pump_transfers);
spi_unregister_master(zx297510spi->master);
spi_master_put(zx297510spi->master);
//amba_set_drvdata(adev, NULL);
dev_set_drvdata(&pdev->dev, NULL);
return 0;
}
static struct platform_driver zx297510_spi_driver = {
.driver = {
.name = "zx297510_ssp",
.owner = THIS_MODULE,
},
.probe = zx297510_spi_probe,
.remove = __exit_p(zx297510_spi_remove),
};
static int __init zx297510_spi_init(void)
{
return platform_driver_register(&zx297510_spi_driver);
}
static void __exit zx297510_spi_exit(void)
{
platform_driver_unregister(&zx297510_spi_driver);
}
module_init(zx297510_spi_init);
module_exit(zx297510_spi_exit);
MODULE_DESCRIPTION("zx297510 spi controller driver");
MODULE_AUTHOR("ZTER");
MODULE_LICENSE("ZTE");