| /* | 
 |  * Copyright (C) 2012 Red Hat, Inc. | 
 |  * | 
 |  * Author: Mikulas Patocka <mpatocka@redhat.com> | 
 |  * | 
 |  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors | 
 |  * | 
 |  * This file is released under the GPLv2. | 
 |  * | 
 |  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set | 
 |  * default prefetch value. Data are read in "prefetch_cluster" chunks from the | 
 |  * hash device. Setting this greatly improves performance when data and hash | 
 |  * are on the same disk on different partitions on devices with poor random | 
 |  * access behavior. | 
 |  */ | 
 |  | 
 | #include "dm-bufio.h" | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/device-mapper.h> | 
 | #include <crypto/hash.h> | 
 |  | 
 | #define DM_MSG_PREFIX			"verity" | 
 |  | 
 | #define DM_VERITY_IO_VEC_INLINE		16 | 
 | #define DM_VERITY_MEMPOOL_SIZE		4 | 
 | #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144 | 
 |  | 
 | #define DM_VERITY_MAX_LEVELS		63 | 
 |  | 
 | static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; | 
 |  | 
 | module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR); | 
 |  | 
 | struct dm_verity { | 
 | 	struct dm_dev *data_dev; | 
 | 	struct dm_dev *hash_dev; | 
 | 	struct dm_target *ti; | 
 | 	struct dm_bufio_client *bufio; | 
 | 	char *alg_name; | 
 | 	struct crypto_shash *tfm; | 
 | 	u8 *root_digest;	/* digest of the root block */ | 
 | 	u8 *salt;		/* salt: its size is salt_size */ | 
 | 	unsigned salt_size; | 
 | 	sector_t data_start;	/* data offset in 512-byte sectors */ | 
 | 	sector_t hash_start;	/* hash start in blocks */ | 
 | 	sector_t data_blocks;	/* the number of data blocks */ | 
 | 	sector_t hash_blocks;	/* the number of hash blocks */ | 
 | 	unsigned char data_dev_block_bits;	/* log2(data blocksize) */ | 
 | 	unsigned char hash_dev_block_bits;	/* log2(hash blocksize) */ | 
 | 	unsigned char hash_per_block_bits;	/* log2(hashes in hash block) */ | 
 | 	unsigned char levels;	/* the number of tree levels */ | 
 | 	unsigned char version; | 
 | 	unsigned digest_size;	/* digest size for the current hash algorithm */ | 
 | 	unsigned shash_descsize;/* the size of temporary space for crypto */ | 
 | 	int hash_failed;	/* set to 1 if hash of any block failed */ | 
 |  | 
 | 	mempool_t *io_mempool;	/* mempool of struct dm_verity_io */ | 
 | 	mempool_t *vec_mempool;	/* mempool of bio vector */ | 
 |  | 
 | 	struct workqueue_struct *verify_wq; | 
 |  | 
 | 	/* starting blocks for each tree level. 0 is the lowest level. */ | 
 | 	sector_t hash_level_block[DM_VERITY_MAX_LEVELS]; | 
 | }; | 
 |  | 
 | struct dm_verity_io { | 
 | 	struct dm_verity *v; | 
 | 	struct bio *bio; | 
 |  | 
 | 	/* original values of bio->bi_end_io and bio->bi_private */ | 
 | 	bio_end_io_t *orig_bi_end_io; | 
 | 	void *orig_bi_private; | 
 |  | 
 | 	sector_t block; | 
 | 	unsigned n_blocks; | 
 |  | 
 | 	/* saved bio vector */ | 
 | 	struct bio_vec *io_vec; | 
 | 	unsigned io_vec_size; | 
 |  | 
 | 	struct work_struct work; | 
 |  | 
 | 	/* A space for short vectors; longer vectors are allocated separately. */ | 
 | 	struct bio_vec io_vec_inline[DM_VERITY_IO_VEC_INLINE]; | 
 |  | 
 | 	/* | 
 | 	 * Three variably-size fields follow this struct: | 
 | 	 * | 
 | 	 * u8 hash_desc[v->shash_descsize]; | 
 | 	 * u8 real_digest[v->digest_size]; | 
 | 	 * u8 want_digest[v->digest_size]; | 
 | 	 * | 
 | 	 * To access them use: io_hash_desc(), io_real_digest() and io_want_digest(). | 
 | 	 */ | 
 | }; | 
 |  | 
 | static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io) | 
 | { | 
 | 	return (struct shash_desc *)(io + 1); | 
 | } | 
 |  | 
 | static u8 *io_real_digest(struct dm_verity *v, struct dm_verity_io *io) | 
 | { | 
 | 	return (u8 *)(io + 1) + v->shash_descsize; | 
 | } | 
 |  | 
 | static u8 *io_want_digest(struct dm_verity *v, struct dm_verity_io *io) | 
 | { | 
 | 	return (u8 *)(io + 1) + v->shash_descsize + v->digest_size; | 
 | } | 
 |  | 
 | /* | 
 |  * Auxiliary structure appended to each dm-bufio buffer. If the value | 
 |  * hash_verified is nonzero, hash of the block has been verified. | 
 |  * | 
 |  * The variable hash_verified is set to 0 when allocating the buffer, then | 
 |  * it can be changed to 1 and it is never reset to 0 again. | 
 |  * | 
 |  * There is no lock around this value, a race condition can at worst cause | 
 |  * that multiple processes verify the hash of the same buffer simultaneously | 
 |  * and write 1 to hash_verified simultaneously. | 
 |  * This condition is harmless, so we don't need locking. | 
 |  */ | 
 | struct buffer_aux { | 
 | 	int hash_verified; | 
 | }; | 
 |  | 
 | /* | 
 |  * Initialize struct buffer_aux for a freshly created buffer. | 
 |  */ | 
 | static void dm_bufio_alloc_callback(struct dm_buffer *buf) | 
 | { | 
 | 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf); | 
 |  | 
 | 	aux->hash_verified = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Translate input sector number to the sector number on the target device. | 
 |  */ | 
 | static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) | 
 | { | 
 | 	return v->data_start + dm_target_offset(v->ti, bi_sector); | 
 | } | 
 |  | 
 | /* | 
 |  * Return hash position of a specified block at a specified tree level | 
 |  * (0 is the lowest level). | 
 |  * The lowest "hash_per_block_bits"-bits of the result denote hash position | 
 |  * inside a hash block. The remaining bits denote location of the hash block. | 
 |  */ | 
 | static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, | 
 | 					 int level) | 
 | { | 
 | 	return block >> (level * v->hash_per_block_bits); | 
 | } | 
 |  | 
 | static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, | 
 | 				 sector_t *hash_block, unsigned *offset) | 
 | { | 
 | 	sector_t position = verity_position_at_level(v, block, level); | 
 | 	unsigned idx; | 
 |  | 
 | 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); | 
 |  | 
 | 	if (!offset) | 
 | 		return; | 
 |  | 
 | 	idx = position & ((1 << v->hash_per_block_bits) - 1); | 
 | 	if (!v->version) | 
 | 		*offset = idx * v->digest_size; | 
 | 	else | 
 | 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); | 
 | } | 
 |  | 
 | /* | 
 |  * Verify hash of a metadata block pertaining to the specified data block | 
 |  * ("block" argument) at a specified level ("level" argument). | 
 |  * | 
 |  * On successful return, io_want_digest(v, io) contains the hash value for | 
 |  * a lower tree level or for the data block (if we're at the lowest leve). | 
 |  * | 
 |  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. | 
 |  * If "skip_unverified" is false, unverified buffer is hashed and verified | 
 |  * against current value of io_want_digest(v, io). | 
 |  */ | 
 | static int verity_verify_level(struct dm_verity_io *io, sector_t block, | 
 | 			       int level, bool skip_unverified) | 
 | { | 
 | 	struct dm_verity *v = io->v; | 
 | 	struct dm_buffer *buf; | 
 | 	struct buffer_aux *aux; | 
 | 	u8 *data; | 
 | 	int r; | 
 | 	sector_t hash_block; | 
 | 	unsigned offset; | 
 |  | 
 | 	verity_hash_at_level(v, block, level, &hash_block, &offset); | 
 |  | 
 | 	data = dm_bufio_read(v->bufio, hash_block, &buf); | 
 | 	if (unlikely(IS_ERR(data))) | 
 | 		return PTR_ERR(data); | 
 |  | 
 | 	aux = dm_bufio_get_aux_data(buf); | 
 |  | 
 | 	if (!aux->hash_verified) { | 
 | 		struct shash_desc *desc; | 
 | 		u8 *result; | 
 |  | 
 | 		if (skip_unverified) { | 
 | 			r = 1; | 
 | 			goto release_ret_r; | 
 | 		} | 
 |  | 
 | 		desc = io_hash_desc(v, io); | 
 | 		desc->tfm = v->tfm; | 
 | 		desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 		r = crypto_shash_init(desc); | 
 | 		if (r < 0) { | 
 | 			DMERR("crypto_shash_init failed: %d", r); | 
 | 			goto release_ret_r; | 
 | 		} | 
 |  | 
 | 		if (likely(v->version >= 1)) { | 
 | 			r = crypto_shash_update(desc, v->salt, v->salt_size); | 
 | 			if (r < 0) { | 
 | 				DMERR("crypto_shash_update failed: %d", r); | 
 | 				goto release_ret_r; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		r = crypto_shash_update(desc, data, 1 << v->hash_dev_block_bits); | 
 | 		if (r < 0) { | 
 | 			DMERR("crypto_shash_update failed: %d", r); | 
 | 			goto release_ret_r; | 
 | 		} | 
 |  | 
 | 		if (!v->version) { | 
 | 			r = crypto_shash_update(desc, v->salt, v->salt_size); | 
 | 			if (r < 0) { | 
 | 				DMERR("crypto_shash_update failed: %d", r); | 
 | 				goto release_ret_r; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		result = io_real_digest(v, io); | 
 | 		r = crypto_shash_final(desc, result); | 
 | 		if (r < 0) { | 
 | 			DMERR("crypto_shash_final failed: %d", r); | 
 | 			goto release_ret_r; | 
 | 		} | 
 | 		if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) { | 
 | 			DMERR_LIMIT("metadata block %llu is corrupted", | 
 | 				(unsigned long long)hash_block); | 
 | 			v->hash_failed = 1; | 
 | 			r = -EIO; | 
 | 			goto release_ret_r; | 
 | 		} else | 
 | 			aux->hash_verified = 1; | 
 | 	} | 
 |  | 
 | 	data += offset; | 
 |  | 
 | 	memcpy(io_want_digest(v, io), data, v->digest_size); | 
 |  | 
 | 	dm_bufio_release(buf); | 
 | 	return 0; | 
 |  | 
 | release_ret_r: | 
 | 	dm_bufio_release(buf); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Verify one "dm_verity_io" structure. | 
 |  */ | 
 | static int verity_verify_io(struct dm_verity_io *io) | 
 | { | 
 | 	struct dm_verity *v = io->v; | 
 | 	unsigned b; | 
 | 	int i; | 
 | 	unsigned vector = 0, offset = 0; | 
 |  | 
 | 	for (b = 0; b < io->n_blocks; b++) { | 
 | 		struct shash_desc *desc; | 
 | 		u8 *result; | 
 | 		int r; | 
 | 		unsigned todo; | 
 |  | 
 | 		if (likely(v->levels)) { | 
 | 			/* | 
 | 			 * First, we try to get the requested hash for | 
 | 			 * the current block. If the hash block itself is | 
 | 			 * verified, zero is returned. If it isn't, this | 
 | 			 * function returns 0 and we fall back to whole | 
 | 			 * chain verification. | 
 | 			 */ | 
 | 			int r = verity_verify_level(io, io->block + b, 0, true); | 
 | 			if (likely(!r)) | 
 | 				goto test_block_hash; | 
 | 			if (r < 0) | 
 | 				return r; | 
 | 		} | 
 |  | 
 | 		memcpy(io_want_digest(v, io), v->root_digest, v->digest_size); | 
 |  | 
 | 		for (i = v->levels - 1; i >= 0; i--) { | 
 | 			int r = verity_verify_level(io, io->block + b, i, false); | 
 | 			if (unlikely(r)) | 
 | 				return r; | 
 | 		} | 
 |  | 
 | test_block_hash: | 
 | 		desc = io_hash_desc(v, io); | 
 | 		desc->tfm = v->tfm; | 
 | 		desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 		r = crypto_shash_init(desc); | 
 | 		if (r < 0) { | 
 | 			DMERR("crypto_shash_init failed: %d", r); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		if (likely(v->version >= 1)) { | 
 | 			r = crypto_shash_update(desc, v->salt, v->salt_size); | 
 | 			if (r < 0) { | 
 | 				DMERR("crypto_shash_update failed: %d", r); | 
 | 				return r; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		todo = 1 << v->data_dev_block_bits; | 
 | 		do { | 
 | 			struct bio_vec *bv; | 
 | 			u8 *page; | 
 | 			unsigned len; | 
 |  | 
 | 			BUG_ON(vector >= io->io_vec_size); | 
 | 			bv = &io->io_vec[vector]; | 
 | 			page = kmap_atomic(bv->bv_page); | 
 | 			len = bv->bv_len - offset; | 
 | 			if (likely(len >= todo)) | 
 | 				len = todo; | 
 | 			r = crypto_shash_update(desc, | 
 | 					page + bv->bv_offset + offset, len); | 
 | 			kunmap_atomic(page); | 
 | 			if (r < 0) { | 
 | 				DMERR("crypto_shash_update failed: %d", r); | 
 | 				return r; | 
 | 			} | 
 | 			offset += len; | 
 | 			if (likely(offset == bv->bv_len)) { | 
 | 				offset = 0; | 
 | 				vector++; | 
 | 			} | 
 | 			todo -= len; | 
 | 		} while (todo); | 
 |  | 
 | 		if (!v->version) { | 
 | 			r = crypto_shash_update(desc, v->salt, v->salt_size); | 
 | 			if (r < 0) { | 
 | 				DMERR("crypto_shash_update failed: %d", r); | 
 | 				return r; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		result = io_real_digest(v, io); | 
 | 		r = crypto_shash_final(desc, result); | 
 | 		if (r < 0) { | 
 | 			DMERR("crypto_shash_final failed: %d", r); | 
 | 			return r; | 
 | 		} | 
 | 		if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) { | 
 | 			DMERR_LIMIT("data block %llu is corrupted", | 
 | 				(unsigned long long)(io->block + b)); | 
 | 			v->hash_failed = 1; | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(vector != io->io_vec_size); | 
 | 	BUG_ON(offset); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * End one "io" structure with a given error. | 
 |  */ | 
 | static void verity_finish_io(struct dm_verity_io *io, int error) | 
 | { | 
 | 	struct bio *bio = io->bio; | 
 | 	struct dm_verity *v = io->v; | 
 |  | 
 | 	bio->bi_end_io = io->orig_bi_end_io; | 
 | 	bio->bi_private = io->orig_bi_private; | 
 |  | 
 | 	if (io->io_vec != io->io_vec_inline) | 
 | 		mempool_free(io->io_vec, v->vec_mempool); | 
 |  | 
 | 	mempool_free(io, v->io_mempool); | 
 |  | 
 | 	bio_endio(bio, error); | 
 | } | 
 |  | 
 | static void verity_work(struct work_struct *w) | 
 | { | 
 | 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); | 
 |  | 
 | 	verity_finish_io(io, verity_verify_io(io)); | 
 | } | 
 |  | 
 | static void verity_end_io(struct bio *bio, int error) | 
 | { | 
 | 	struct dm_verity_io *io = bio->bi_private; | 
 |  | 
 | 	if (error) { | 
 | 		verity_finish_io(io, error); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	INIT_WORK(&io->work, verity_work); | 
 | 	queue_work(io->v->verify_wq, &io->work); | 
 | } | 
 |  | 
 | /* | 
 |  * Prefetch buffers for the specified io. | 
 |  * The root buffer is not prefetched, it is assumed that it will be cached | 
 |  * all the time. | 
 |  */ | 
 | static void verity_prefetch_io(struct dm_verity *v, struct dm_verity_io *io) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = v->levels - 2; i >= 0; i--) { | 
 | 		sector_t hash_block_start; | 
 | 		sector_t hash_block_end; | 
 | 		verity_hash_at_level(v, io->block, i, &hash_block_start, NULL); | 
 | 		verity_hash_at_level(v, io->block + io->n_blocks - 1, i, &hash_block_end, NULL); | 
 | 		if (!i) { | 
 | 			unsigned cluster = *(volatile unsigned *)&dm_verity_prefetch_cluster; | 
 |  | 
 | 			cluster >>= v->data_dev_block_bits; | 
 | 			if (unlikely(!cluster)) | 
 | 				goto no_prefetch_cluster; | 
 |  | 
 | 			if (unlikely(cluster & (cluster - 1))) | 
 | 				cluster = 1 << (fls(cluster) - 1); | 
 |  | 
 | 			hash_block_start &= ~(sector_t)(cluster - 1); | 
 | 			hash_block_end |= cluster - 1; | 
 | 			if (unlikely(hash_block_end >= v->hash_blocks)) | 
 | 				hash_block_end = v->hash_blocks - 1; | 
 | 		} | 
 | no_prefetch_cluster: | 
 | 		dm_bufio_prefetch(v->bufio, hash_block_start, | 
 | 				  hash_block_end - hash_block_start + 1); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Bio map function. It allocates dm_verity_io structure and bio vector and | 
 |  * fills them. Then it issues prefetches and the I/O. | 
 |  */ | 
 | static int verity_map(struct dm_target *ti, struct bio *bio, | 
 | 		      union map_info *map_context) | 
 | { | 
 | 	struct dm_verity *v = ti->private; | 
 | 	struct dm_verity_io *io; | 
 |  | 
 | 	bio->bi_bdev = v->data_dev->bdev; | 
 | 	bio->bi_sector = verity_map_sector(v, bio->bi_sector); | 
 |  | 
 | 	if (((unsigned)bio->bi_sector | bio_sectors(bio)) & | 
 | 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { | 
 | 		DMERR_LIMIT("unaligned io"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if ((bio->bi_sector + bio_sectors(bio)) >> | 
 | 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { | 
 | 		DMERR_LIMIT("io out of range"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (bio_data_dir(bio) == WRITE) | 
 | 		return -EIO; | 
 |  | 
 | 	io = mempool_alloc(v->io_mempool, GFP_NOIO); | 
 | 	io->v = v; | 
 | 	io->bio = bio; | 
 | 	io->orig_bi_end_io = bio->bi_end_io; | 
 | 	io->orig_bi_private = bio->bi_private; | 
 | 	io->block = bio->bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); | 
 | 	io->n_blocks = bio->bi_size >> v->data_dev_block_bits; | 
 |  | 
 | 	bio->bi_end_io = verity_end_io; | 
 | 	bio->bi_private = io; | 
 | 	io->io_vec_size = bio->bi_vcnt - bio->bi_idx; | 
 | 	if (io->io_vec_size < DM_VERITY_IO_VEC_INLINE) | 
 | 		io->io_vec = io->io_vec_inline; | 
 | 	else | 
 | 		io->io_vec = mempool_alloc(v->vec_mempool, GFP_NOIO); | 
 | 	memcpy(io->io_vec, bio_iovec(bio), | 
 | 	       io->io_vec_size * sizeof(struct bio_vec)); | 
 |  | 
 | 	verity_prefetch_io(v, io); | 
 |  | 
 | 	generic_make_request(bio); | 
 |  | 
 | 	return DM_MAPIO_SUBMITTED; | 
 | } | 
 |  | 
 | /* | 
 |  * Status: V (valid) or C (corruption found) | 
 |  */ | 
 | static void verity_status(struct dm_target *ti, status_type_t type, | 
 | 			  char *result, unsigned maxlen) | 
 | { | 
 | 	struct dm_verity *v = ti->private; | 
 | 	unsigned sz = 0; | 
 | 	unsigned x; | 
 |  | 
 | 	switch (type) { | 
 | 	case STATUSTYPE_INFO: | 
 | 		DMEMIT("%c", v->hash_failed ? 'C' : 'V'); | 
 | 		break; | 
 | 	case STATUSTYPE_TABLE: | 
 | 		DMEMIT("%u %s %s %u %u %llu %llu %s ", | 
 | 			v->version, | 
 | 			v->data_dev->name, | 
 | 			v->hash_dev->name, | 
 | 			1 << v->data_dev_block_bits, | 
 | 			1 << v->hash_dev_block_bits, | 
 | 			(unsigned long long)v->data_blocks, | 
 | 			(unsigned long long)v->hash_start, | 
 | 			v->alg_name | 
 | 			); | 
 | 		for (x = 0; x < v->digest_size; x++) | 
 | 			DMEMIT("%02x", v->root_digest[x]); | 
 | 		DMEMIT(" "); | 
 | 		if (!v->salt_size) | 
 | 			DMEMIT("-"); | 
 | 		else | 
 | 			for (x = 0; x < v->salt_size; x++) | 
 | 				DMEMIT("%02x", v->salt[x]); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int verity_ioctl(struct dm_target *ti, unsigned cmd, | 
 | 			unsigned long arg) | 
 | { | 
 | 	struct dm_verity *v = ti->private; | 
 | 	int r = 0; | 
 |  | 
 | 	if (v->data_start || | 
 | 	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT) | 
 | 		r = scsi_verify_blk_ioctl(NULL, cmd); | 
 |  | 
 | 	return r ? : __blkdev_driver_ioctl(v->data_dev->bdev, v->data_dev->mode, | 
 | 				     cmd, arg); | 
 | } | 
 |  | 
 | static int verity_merge(struct dm_target *ti, struct bvec_merge_data *bvm, | 
 | 			struct bio_vec *biovec, int max_size) | 
 | { | 
 | 	struct dm_verity *v = ti->private; | 
 | 	struct request_queue *q = bdev_get_queue(v->data_dev->bdev); | 
 |  | 
 | 	if (!q->merge_bvec_fn) | 
 | 		return max_size; | 
 |  | 
 | 	bvm->bi_bdev = v->data_dev->bdev; | 
 | 	bvm->bi_sector = verity_map_sector(v, bvm->bi_sector); | 
 |  | 
 | 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); | 
 | } | 
 |  | 
 | static int verity_iterate_devices(struct dm_target *ti, | 
 | 				  iterate_devices_callout_fn fn, void *data) | 
 | { | 
 | 	struct dm_verity *v = ti->private; | 
 |  | 
 | 	return fn(ti, v->data_dev, v->data_start, ti->len, data); | 
 | } | 
 |  | 
 | static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
 | { | 
 | 	struct dm_verity *v = ti->private; | 
 |  | 
 | 	if (limits->logical_block_size < 1 << v->data_dev_block_bits) | 
 | 		limits->logical_block_size = 1 << v->data_dev_block_bits; | 
 |  | 
 | 	if (limits->physical_block_size < 1 << v->data_dev_block_bits) | 
 | 		limits->physical_block_size = 1 << v->data_dev_block_bits; | 
 |  | 
 | 	blk_limits_io_min(limits, limits->logical_block_size); | 
 | } | 
 |  | 
 | static void verity_dtr(struct dm_target *ti) | 
 | { | 
 | 	struct dm_verity *v = ti->private; | 
 |  | 
 | 	if (v->verify_wq) | 
 | 		destroy_workqueue(v->verify_wq); | 
 |  | 
 | 	if (v->vec_mempool) | 
 | 		mempool_destroy(v->vec_mempool); | 
 |  | 
 | 	if (v->io_mempool) | 
 | 		mempool_destroy(v->io_mempool); | 
 |  | 
 | 	if (v->bufio) | 
 | 		dm_bufio_client_destroy(v->bufio); | 
 |  | 
 | 	kfree(v->salt); | 
 | 	kfree(v->root_digest); | 
 |  | 
 | 	if (v->tfm) | 
 | 		crypto_free_shash(v->tfm); | 
 |  | 
 | 	kfree(v->alg_name); | 
 |  | 
 | 	if (v->hash_dev) | 
 | 		dm_put_device(ti, v->hash_dev); | 
 |  | 
 | 	if (v->data_dev) | 
 | 		dm_put_device(ti, v->data_dev); | 
 |  | 
 | 	kfree(v); | 
 | } | 
 |  | 
 | /* | 
 |  * Target parameters: | 
 |  *	<version>	The current format is version 1. | 
 |  *			Vsn 0 is compatible with original Chromium OS releases. | 
 |  *	<data device> | 
 |  *	<hash device> | 
 |  *	<data block size> | 
 |  *	<hash block size> | 
 |  *	<the number of data blocks> | 
 |  *	<hash start block> | 
 |  *	<algorithm> | 
 |  *	<digest> | 
 |  *	<salt>		Hex string or "-" if no salt. | 
 |  */ | 
 | static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
 | { | 
 | 	struct dm_verity *v; | 
 | 	unsigned num; | 
 | 	unsigned long long num_ll; | 
 | 	int r; | 
 | 	int i; | 
 | 	sector_t hash_position; | 
 | 	char dummy; | 
 |  | 
 | 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); | 
 | 	if (!v) { | 
 | 		ti->error = "Cannot allocate verity structure"; | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	ti->private = v; | 
 | 	v->ti = ti; | 
 |  | 
 | 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) { | 
 | 		ti->error = "Device must be readonly"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (argc != 10) { | 
 | 		ti->error = "Invalid argument count: exactly 10 arguments required"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (sscanf(argv[0], "%d%c", &num, &dummy) != 1 || | 
 | 	    num < 0 || num > 1) { | 
 | 		ti->error = "Invalid version"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 | 	v->version = num; | 
 |  | 
 | 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev); | 
 | 	if (r) { | 
 | 		ti->error = "Data device lookup failed"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev); | 
 | 	if (r) { | 
 | 		ti->error = "Data device lookup failed"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || | 
 | 	    !num || (num & (num - 1)) || | 
 | 	    num < bdev_logical_block_size(v->data_dev->bdev) || | 
 | 	    num > PAGE_SIZE) { | 
 | 		ti->error = "Invalid data device block size"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 | 	v->data_dev_block_bits = ffs(num) - 1; | 
 |  | 
 | 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || | 
 | 	    !num || (num & (num - 1)) || | 
 | 	    num < bdev_logical_block_size(v->hash_dev->bdev) || | 
 | 	    num > INT_MAX) { | 
 | 		ti->error = "Invalid hash device block size"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 | 	v->hash_dev_block_bits = ffs(num) - 1; | 
 |  | 
 | 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || | 
 | 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) | 
 | 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { | 
 | 		ti->error = "Invalid data blocks"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 | 	v->data_blocks = num_ll; | 
 |  | 
 | 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { | 
 | 		ti->error = "Data device is too small"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || | 
 | 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) | 
 | 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { | 
 | 		ti->error = "Invalid hash start"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 | 	v->hash_start = num_ll; | 
 |  | 
 | 	v->alg_name = kstrdup(argv[7], GFP_KERNEL); | 
 | 	if (!v->alg_name) { | 
 | 		ti->error = "Cannot allocate algorithm name"; | 
 | 		r = -ENOMEM; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	v->tfm = crypto_alloc_shash(v->alg_name, 0, 0); | 
 | 	if (IS_ERR(v->tfm)) { | 
 | 		ti->error = "Cannot initialize hash function"; | 
 | 		r = PTR_ERR(v->tfm); | 
 | 		v->tfm = NULL; | 
 | 		goto bad; | 
 | 	} | 
 | 	v->digest_size = crypto_shash_digestsize(v->tfm); | 
 | 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { | 
 | 		ti->error = "Digest size too big"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 | 	v->shash_descsize = | 
 | 		sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm); | 
 |  | 
 | 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); | 
 | 	if (!v->root_digest) { | 
 | 		ti->error = "Cannot allocate root digest"; | 
 | 		r = -ENOMEM; | 
 | 		goto bad; | 
 | 	} | 
 | 	if (strlen(argv[8]) != v->digest_size * 2 || | 
 | 	    hex2bin(v->root_digest, argv[8], v->digest_size)) { | 
 | 		ti->error = "Invalid root digest"; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (strcmp(argv[9], "-")) { | 
 | 		v->salt_size = strlen(argv[9]) / 2; | 
 | 		v->salt = kmalloc(v->salt_size, GFP_KERNEL); | 
 | 		if (!v->salt) { | 
 | 			ti->error = "Cannot allocate salt"; | 
 | 			r = -ENOMEM; | 
 | 			goto bad; | 
 | 		} | 
 | 		if (strlen(argv[9]) != v->salt_size * 2 || | 
 | 		    hex2bin(v->salt, argv[9], v->salt_size)) { | 
 | 			ti->error = "Invalid salt"; | 
 | 			r = -EINVAL; | 
 | 			goto bad; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	v->hash_per_block_bits = | 
 | 		fls((1 << v->hash_dev_block_bits) / v->digest_size) - 1; | 
 |  | 
 | 	v->levels = 0; | 
 | 	if (v->data_blocks) | 
 | 		while (v->hash_per_block_bits * v->levels < 64 && | 
 | 		       (unsigned long long)(v->data_blocks - 1) >> | 
 | 		       (v->hash_per_block_bits * v->levels)) | 
 | 			v->levels++; | 
 |  | 
 | 	if (v->levels > DM_VERITY_MAX_LEVELS) { | 
 | 		ti->error = "Too many tree levels"; | 
 | 		r = -E2BIG; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	hash_position = v->hash_start; | 
 | 	for (i = v->levels - 1; i >= 0; i--) { | 
 | 		sector_t s; | 
 | 		v->hash_level_block[i] = hash_position; | 
 | 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) | 
 | 					>> ((i + 1) * v->hash_per_block_bits); | 
 | 		if (hash_position + s < hash_position) { | 
 | 			ti->error = "Hash device offset overflow"; | 
 | 			r = -E2BIG; | 
 | 			goto bad; | 
 | 		} | 
 | 		hash_position += s; | 
 | 	} | 
 | 	v->hash_blocks = hash_position; | 
 |  | 
 | 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev, | 
 | 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), | 
 | 		dm_bufio_alloc_callback, NULL); | 
 | 	if (IS_ERR(v->bufio)) { | 
 | 		ti->error = "Cannot initialize dm-bufio"; | 
 | 		r = PTR_ERR(v->bufio); | 
 | 		v->bufio = NULL; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { | 
 | 		ti->error = "Hash device is too small"; | 
 | 		r = -E2BIG; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	v->io_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE, | 
 | 	  sizeof(struct dm_verity_io) + v->shash_descsize + v->digest_size * 2); | 
 | 	if (!v->io_mempool) { | 
 | 		ti->error = "Cannot allocate io mempool"; | 
 | 		r = -ENOMEM; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	v->vec_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE, | 
 | 					BIO_MAX_PAGES * sizeof(struct bio_vec)); | 
 | 	if (!v->vec_mempool) { | 
 | 		ti->error = "Cannot allocate vector mempool"; | 
 | 		r = -ENOMEM; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	/* WQ_UNBOUND greatly improves performance when running on ramdisk */ | 
 | 	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus()); | 
 | 	if (!v->verify_wq) { | 
 | 		ti->error = "Cannot allocate workqueue"; | 
 | 		r = -ENOMEM; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | bad: | 
 | 	verity_dtr(ti); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static struct target_type verity_target = { | 
 | 	.name		= "verity", | 
 | 	.version	= {1, 0, 0}, | 
 | 	.module		= THIS_MODULE, | 
 | 	.ctr		= verity_ctr, | 
 | 	.dtr		= verity_dtr, | 
 | 	.map		= verity_map, | 
 | 	.status		= verity_status, | 
 | 	.ioctl		= verity_ioctl, | 
 | 	.merge		= verity_merge, | 
 | 	.iterate_devices = verity_iterate_devices, | 
 | 	.io_hints	= verity_io_hints, | 
 | }; | 
 |  | 
 | static int __init dm_verity_init(void) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = dm_register_target(&verity_target); | 
 | 	if (r < 0) | 
 | 		DMERR("register failed %d", r); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void __exit dm_verity_exit(void) | 
 | { | 
 | 	dm_unregister_target(&verity_target); | 
 | } | 
 |  | 
 | module_init(dm_verity_init); | 
 | module_exit(dm_verity_exit); | 
 |  | 
 | MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); | 
 | MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); | 
 | MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); | 
 | MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); | 
 | MODULE_LICENSE("GPL"); |