| /* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. | 
 |    This file is part of the GNU C Library. | 
 |  | 
 |    The GNU C Library is free software; you can redistribute it and/or | 
 |    modify it under the terms of the GNU Lesser General Public | 
 |    License as published by the Free Software Foundation; either | 
 |    version 2.1 of the License, or (at your option) any later version. | 
 |  | 
 |    The GNU C Library is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |    Lesser General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU Lesser General Public | 
 |    License along with the GNU C Library; if not, write to the Free | 
 |    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA | 
 |    02111-1307 USA.  */ | 
 |  | 
 | /* | 
 |  *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h> | 
 |  */ | 
 |  | 
 | #ifndef _TGMATH_H | 
 | #define _TGMATH_H	1 | 
 |  | 
 | /* Include the needed headers.  */ | 
 | #include <math.h> | 
 | #include <complex.h> | 
 |  | 
 |  | 
 | /* Since `complex' is currently not really implemented in most C compilers | 
 |    and if it is implemented, the implementations differ.  This makes it | 
 |    quite difficult to write a generic implementation of this header.  We | 
 |    do not try this for now and instead concentrate only on GNU CC.  Once | 
 |    we have more information support for other compilers might follow.  */ | 
 |  | 
 | #if __GNUC_PREREQ (2, 7) | 
 |  | 
 | # ifdef __NO_LONG_DOUBLE_MATH | 
 | #  define __tgml(fct) fct | 
 | # else | 
 | #  define __tgml(fct) fct ## l | 
 | # endif | 
 |  | 
 | /* This is ugly but unless gcc gets appropriate builtins we have to do | 
 |    something like this.  Don't ask how it works.  */ | 
 |  | 
 | /* 1 if 'type' is a floating type, 0 if 'type' is an integer type. | 
 |    Allows for _Bool.  Expands to an integer constant expression.  */ | 
 | # define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1)) | 
 |  | 
 | /* The tgmath real type for T, where E is 0 if T is an integer type and | 
 |    1 for a floating type.  */ | 
 | # define __tgmath_real_type_sub(T, E) \ | 
 |   __typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \ | 
 | 		 : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0)) | 
 |  | 
 | /* The tgmath real type of EXPR.  */ | 
 | # define __tgmath_real_type(expr) \ | 
 |   __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr))) | 
 |  | 
 |  | 
 | /* We have two kinds of generic macros: to support functions which are | 
 |    only defined on real valued parameters and those which are defined | 
 |    for complex functions as well.  */ | 
 | # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \ | 
 |      (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \ | 
 | 		       if (sizeof (Val) == sizeof (double)		      \ | 
 | 			   || __builtin_classify_type (Val) != 8)	      \ | 
 | 			 __tgmres = Fct (Val);				      \ | 
 | 		       else if (sizeof (Val) == sizeof (float))		      \ | 
 | 			 __tgmres = Fct##f (Val);			      \ | 
 | 		       else						      \ | 
 | 			 __tgmres = __tgml(Fct) (Val);			      \ | 
 | 		       __tgmres; })) | 
 |  | 
 | # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ | 
 |      (__extension__ ({ __tgmath_real_type (Val1) __tgmres;		      \ | 
 | 		       if (sizeof (Val1) == sizeof (double)		      \ | 
 | 			   || __builtin_classify_type (Val1) != 8)	      \ | 
 | 			 __tgmres = Fct (Val1, Val2);			      \ | 
 | 		       else if (sizeof (Val1) == sizeof (float))	      \ | 
 | 			 __tgmres = Fct##f (Val1, Val2);		      \ | 
 | 		       else						      \ | 
 | 			 __tgmres = __tgml(Fct) (Val1, Val2);		      \ | 
 | 		       __tgmres; })) | 
 |  | 
 | # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ | 
 |      (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \ | 
 | 		       if ((sizeof (Val1) > sizeof (double)		      \ | 
 | 			    || sizeof (Val2) > sizeof (double))		      \ | 
 | 			   && __builtin_classify_type ((Val1) + (Val2)) == 8) \ | 
 | 			 __tgmres = __tgml(Fct) (Val1, Val2);		      \ | 
 | 		       else if (sizeof (Val1) == sizeof (double)	      \ | 
 | 				|| sizeof (Val2) == sizeof (double)	      \ | 
 | 				|| __builtin_classify_type (Val1) != 8	      \ | 
 | 				|| __builtin_classify_type (Val2) != 8)	      \ | 
 | 			 __tgmres = Fct (Val1, Val2);			      \ | 
 | 		       else						      \ | 
 | 			 __tgmres = Fct##f (Val1, Val2);		      \ | 
 | 		       __tgmres; })) | 
 |  | 
 | # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ | 
 |      (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \ | 
 | 		       if ((sizeof (Val1) > sizeof (double)		      \ | 
 | 			    || sizeof (Val2) > sizeof (double))		      \ | 
 | 			   && __builtin_classify_type ((Val1) + (Val2)) == 8) \ | 
 | 			 __tgmres = __tgml(Fct) (Val1, Val2, Val3);	      \ | 
 | 		       else if (sizeof (Val1) == sizeof (double)	      \ | 
 | 				|| sizeof (Val2) == sizeof (double)	      \ | 
 | 				|| __builtin_classify_type (Val1) != 8	      \ | 
 | 				|| __builtin_classify_type (Val2) != 8)	      \ | 
 | 			 __tgmres = Fct (Val1, Val2, Val3);		      \ | 
 | 		       else						      \ | 
 | 			 __tgmres = Fct##f (Val1, Val2, Val3);		      \ | 
 | 		       __tgmres; })) | 
 |  | 
 | # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ | 
 |      (__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\ | 
 | 		       if ((sizeof (Val1) > sizeof (double)		      \ | 
 | 			    || sizeof (Val2) > sizeof (double)		      \ | 
 | 			    || sizeof (Val3) > sizeof (double))		      \ | 
 | 			   && __builtin_classify_type ((Val1) + (Val2)	      \ | 
 | 						       + (Val3)) == 8)	      \ | 
 | 			 __tgmres = __tgml(Fct) (Val1, Val2, Val3);	      \ | 
 | 		       else if (sizeof (Val1) == sizeof (double)	      \ | 
 | 				|| sizeof (Val2) == sizeof (double)	      \ | 
 | 				|| sizeof (Val3) == sizeof (double)	      \ | 
 | 				|| __builtin_classify_type (Val1) != 8	      \ | 
 | 				|| __builtin_classify_type (Val2) != 8	      \ | 
 | 				|| __builtin_classify_type (Val3) != 8)	      \ | 
 | 			 __tgmres = Fct (Val1, Val2, Val3);		      \ | 
 | 		       else						      \ | 
 | 			 __tgmres = Fct##f (Val1, Val2, Val3);		      \ | 
 | 		       __tgmres; })) | 
 |  | 
 | /* XXX This definition has to be changed as soon as the compiler understands | 
 |    the imaginary keyword.  */ | 
 | # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ | 
 |      (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \ | 
 | 		       if (sizeof (__real__ (Val)) > sizeof (double)	      \ | 
 | 			   && __builtin_classify_type (__real__ (Val)) == 8)  \ | 
 | 			 {						      \ | 
 | 			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
 | 			     __tgmres = __tgml(Fct) (Val);		      \ | 
 | 			   else						      \ | 
 | 			     __tgmres = __tgml(Cfct) (Val);		      \ | 
 | 			 }						      \ | 
 | 		       else if (sizeof (__real__ (Val)) == sizeof (double)    \ | 
 | 				|| __builtin_classify_type (__real__ (Val))   \ | 
 | 				   != 8)				      \ | 
 | 			 {						      \ | 
 | 			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
 | 			     __tgmres = Fct (Val);			      \ | 
 | 			   else						      \ | 
 | 			     __tgmres = Cfct (Val);			      \ | 
 | 			 }						      \ | 
 | 		       else						      \ | 
 | 			 {						      \ | 
 | 			   if (sizeof (__real__ (Val)) == sizeof (Val))	      \ | 
 | 			     __tgmres = Fct##f (Val);			      \ | 
 | 			   else						      \ | 
 | 			     __tgmres = Cfct##f (Val);			      \ | 
 | 			 }						      \ | 
 | 		       __tgmres; })) | 
 |  | 
 | /* XXX This definition has to be changed as soon as the compiler understands | 
 |    the imaginary keyword.  */ | 
 | # define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \ | 
 |      (__extension__ ({ __tgmath_real_type (Val) __tgmres;		      \ | 
 | 		       if (sizeof (Val) == sizeof (__complex__ double)	      \ | 
 | 			   || __builtin_classify_type (__real__ (Val)) != 8)  \ | 
 | 			 __tgmres = Fct (Val);				      \ | 
 | 		       else if (sizeof (Val) == sizeof (__complex__ float))   \ | 
 | 			 __tgmres = Fct##f (Val);			      \ | 
 | 		       else						      \ | 
 | 			 __tgmres = __tgml(Fct) (Val);			      \ | 
 | 		       __tgmres; })) | 
 |  | 
 | /* XXX This definition has to be changed as soon as the compiler understands | 
 |    the imaginary keyword.  */ | 
 | # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ | 
 |      (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres;	      \ | 
 | 		       if ((sizeof (__real__ (Val1)) > sizeof (double)	      \ | 
 | 			    || sizeof (__real__ (Val2)) > sizeof (double))    \ | 
 | 			   && __builtin_classify_type (__real__ (Val1)	      \ | 
 | 						       + __real__ (Val2))     \ | 
 | 			      == 8)					      \ | 
 | 			 {						      \ | 
 | 			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \ | 
 | 			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \ | 
 | 			     __tgmres = __tgml(Fct) (Val1, Val2);	      \ | 
 | 			   else						      \ | 
 | 			     __tgmres = __tgml(Cfct) (Val1, Val2);	      \ | 
 | 			 }						      \ | 
 | 		       else if (sizeof (__real__ (Val1)) == sizeof (double)   \ | 
 | 				|| sizeof (__real__ (Val2)) == sizeof(double) \ | 
 | 				|| (__builtin_classify_type (__real__ (Val1)) \ | 
 | 				    != 8)				      \ | 
 | 				|| (__builtin_classify_type (__real__ (Val2)) \ | 
 | 				    != 8))				      \ | 
 | 			 {						      \ | 
 | 			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \ | 
 | 			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \ | 
 | 			     __tgmres = Fct (Val1, Val2);		      \ | 
 | 			   else						      \ | 
 | 			     __tgmres = Cfct (Val1, Val2);		      \ | 
 | 			 }						      \ | 
 | 		       else						      \ | 
 | 			 {						      \ | 
 | 			   if (sizeof (__real__ (Val1)) == sizeof (Val1)      \ | 
 | 			       && sizeof (__real__ (Val2)) == sizeof (Val2))  \ | 
 | 			     __tgmres = Fct##f (Val1, Val2);		      \ | 
 | 			   else						      \ | 
 | 			     __tgmres = Cfct##f (Val1, Val2);		      \ | 
 | 			 }						      \ | 
 | 		       __tgmres; })) | 
 | #else | 
 | # error "Unsupported compiler; you cannot use <tgmath.h>" | 
 | #endif | 
 |  | 
 |  | 
 | /* Unary functions defined for real and complex values.  */ | 
 |  | 
 |  | 
 | /* Trigonometric functions.  */ | 
 |  | 
 | /* Arc cosine of X.  */ | 
 | #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) | 
 | /* Arc sine of X.  */ | 
 | #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) | 
 | /* Arc tangent of X.  */ | 
 | #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) | 
 | /* Arc tangent of Y/X.  */ | 
 | #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2) | 
 |  | 
 | /* Cosine of X.  */ | 
 | #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) | 
 | /* Sine of X.  */ | 
 | #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) | 
 | /* Tangent of X.  */ | 
 | #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan) | 
 |  | 
 |  | 
 | /* Hyperbolic functions.  */ | 
 |  | 
 | /* Hyperbolic arc cosine of X.  */ | 
 | #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) | 
 | /* Hyperbolic arc sine of X.  */ | 
 | #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) | 
 | /* Hyperbolic arc tangent of X.  */ | 
 | #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh) | 
 |  | 
 | /* Hyperbolic cosine of X.  */ | 
 | #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) | 
 | /* Hyperbolic sine of X.  */ | 
 | #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) | 
 | /* Hyperbolic tangent of X.  */ | 
 | #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh) | 
 |  | 
 |  | 
 | /* Exponential and logarithmic functions.  */ | 
 |  | 
 | /* Exponential function of X.  */ | 
 | #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp) | 
 |  | 
 | /* Break VALUE into a normalized fraction and an integral power of 2.  */ | 
 | #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp) | 
 |  | 
 | /* X times (two to the EXP power).  */ | 
 | #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp) | 
 |  | 
 | /* Natural logarithm of X.  */ | 
 | #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog) | 
 |  | 
 | /* Base-ten logarithm of X.  */ | 
 | #ifdef __USE_GNU | 
 | # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10) | 
 | #else | 
 | # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) | 
 | #endif | 
 |  | 
 | /* Return exp(X) - 1.  */ | 
 | #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1) | 
 |  | 
 | /* Return log(1 + X).  */ | 
 | #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p) | 
 |  | 
 | /* Return the base 2 signed integral exponent of X.  */ | 
 | #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb) | 
 |  | 
 | /* Compute base-2 exponential of X.  */ | 
 | #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2) | 
 |  | 
 | /* Compute base-2 logarithm of X.  */ | 
 | #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2) | 
 |  | 
 |  | 
 | /* Power functions.  */ | 
 |  | 
 | /* Return X to the Y power.  */ | 
 | #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow) | 
 |  | 
 | /* Return the square root of X.  */ | 
 | #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt) | 
 |  | 
 | /* Return `sqrt(X*X + Y*Y)'.  */ | 
 | #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot) | 
 |  | 
 | /* Return the cube root of X.  */ | 
 | #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt) | 
 |  | 
 |  | 
 | /* Nearest integer, absolute value, and remainder functions.  */ | 
 |  | 
 | /* Smallest integral value not less than X.  */ | 
 | #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil) | 
 |  | 
 | /* Absolute value of X.  */ | 
 | #define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs) | 
 |  | 
 | /* Largest integer not greater than X.  */ | 
 | #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor) | 
 |  | 
 | /* Floating-point modulo remainder of X/Y.  */ | 
 | #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod) | 
 |  | 
 | /* Round X to integral valuein floating-point format using current | 
 |    rounding direction, but do not raise inexact exception.  */ | 
 | #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint) | 
 |  | 
 | /* Round X to nearest integral value, rounding halfway cases away from | 
 |    zero.  */ | 
 | #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round) | 
 |  | 
 | /* Round X to the integral value in floating-point format nearest but | 
 |    not larger in magnitude.  */ | 
 | #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc) | 
 |  | 
 | /* Compute remainder of X and Y and put in *QUO a value with sign of x/y | 
 |    and magnitude congruent `mod 2^n' to the magnitude of the integral | 
 |    quotient x/y, with n >= 3.  */ | 
 | #define remquo(Val1, Val2, Val3) \ | 
 |      __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo) | 
 |  | 
 | /* Round X to nearest integral value according to current rounding | 
 |    direction.  */ | 
 | #define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint) | 
 | #define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint) | 
 |  | 
 | /* Round X to nearest integral value, rounding halfway cases away from | 
 |    zero.  */ | 
 | #define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround) | 
 | #define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround) | 
 |  | 
 |  | 
 | /* Return X with its signed changed to Y's.  */ | 
 | #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign) | 
 |  | 
 | /* Error and gamma functions.  */ | 
 | #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) | 
 | #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) | 
 | #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma) | 
 | #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma) | 
 |  | 
 |  | 
 | /* Return the integer nearest X in the direction of the | 
 |    prevailing rounding mode.  */ | 
 | #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint) | 
 |  | 
 | /* Return X + epsilon if X < Y, X - epsilon if X > Y.  */ | 
 | #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) | 
 | #define nexttoward(Val1, Val2) \ | 
 |      __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward) | 
 |  | 
 | /* Return the remainder of integer divison X / Y with infinite precision.  */ | 
 | #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder) | 
 |  | 
 | #if defined __UCLIBC_SUSV3_LEGACY__ | 
 | /* Return X times (2 to the Nth power).  */ | 
 | #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED | 
 | # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb) | 
 | #endif | 
 |  | 
 | /* Return X times (2 to the Nth power).  */ | 
 | #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn) | 
 |  | 
 | /* Return X times (2 to the Nth power).  */ | 
 | #define scalbln(Val1, Val2) \ | 
 |      __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln) | 
 | #endif /* UCLIBC_SUSV3_LEGACY */ | 
 |  | 
 | /* Return the binary exponent of X, which must be nonzero.  */ | 
 | #define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb) | 
 |  | 
 |  | 
 | /* Return positive difference between X and Y.  */ | 
 | #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim) | 
 |  | 
 | /* Return maximum numeric value from X and Y.  */ | 
 | #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax) | 
 |  | 
 | /* Return minimum numeric value from X and Y.  */ | 
 | #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin) | 
 |  | 
 |  | 
 | /* Multiply-add function computed as a ternary operation.  */ | 
 | #define fma(Val1, Val2, Val3) \ | 
 |      __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma) | 
 |  | 
 |  | 
 | /* Absolute value, conjugates, and projection.  */ | 
 |  | 
 | /* Argument value of Z.  */ | 
 | #define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg) | 
 |  | 
 | /* Complex conjugate of Z.  */ | 
 | #define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj) | 
 |  | 
 | /* Projection of Z onto the Riemann sphere.  */ | 
 | #define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj) | 
 |  | 
 |  | 
 | /* Decomposing complex values.  */ | 
 |  | 
 | /* Imaginary part of Z.  */ | 
 | #define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag) | 
 |  | 
 | /* Real part of Z.  */ | 
 | #define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal) | 
 |  | 
 | #endif /* tgmath.h */ |