| /* | 
 |  * FreeSec: libcrypt for NetBSD | 
 |  * | 
 |  * Copyright (c) 1994 David Burren | 
 |  * All rights reserved. | 
 |  * | 
 |  * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet | 
 |  *	this file should now *only* export crypt(), in order to make | 
 |  *	binaries of libcrypt exportable from the USA | 
 |  * | 
 |  * Adapted for FreeBSD-4.0 by Mark R V Murray | 
 |  *	this file should now *only* export crypt_des(), in order to make | 
 |  *	a module that can be optionally included in libcrypt. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. Neither the name of the author nor the names of other contributors | 
 |  *    may be used to endorse or promote products derived from this software | 
 |  *    without specific prior written permission. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * This is an original implementation of the DES and the crypt(3) interfaces | 
 |  * by David Burren <davidb@werj.com.au>. | 
 |  * | 
 |  * An excellent reference on the underlying algorithm (and related | 
 |  * algorithms) is: | 
 |  * | 
 |  *	B. Schneier, Applied Cryptography: protocols, algorithms, | 
 |  *	and source code in C, John Wiley & Sons, 1994. | 
 |  * | 
 |  * Note that in that book's description of DES the lookups for the initial, | 
 |  * pbox, and final permutations are inverted (this has been brought to the | 
 |  * attention of the author).  A list of errata for this book has been | 
 |  * posted to the sci.crypt newsgroup by the author and is available for FTP. | 
 |  * | 
 |  * ARCHITECTURE ASSUMPTIONS: | 
 |  *	It is assumed that the 8-byte arrays passed by reference can be | 
 |  *	addressed as arrays of u_int32_t's (ie. the CPU is not picky about | 
 |  *	alignment). | 
 |  */ | 
 |  | 
 | #define __FORCE_GLIBC | 
 | #include <sys/cdefs.h> | 
 | #include <sys/types.h> | 
 | #include <sys/param.h> | 
 | #include <netinet/in.h> | 
 | #include <pwd.h> | 
 | #include <string.h> | 
 | #include <crypt.h> | 
 | #include "libcrypt.h" | 
 |  | 
 | /* Re-entrantify me -- all this junk needs to be in | 
 |  * struct crypt_data to make this really reentrant... */ | 
 | static u_char	inv_key_perm[64]; | 
 | static u_char	inv_comp_perm[56]; | 
 | static u_char	un_pbox[32]; | 
 | static u_int32_t en_keysl[16], en_keysr[16]; | 
 | static u_int32_t de_keysl[16], de_keysr[16]; | 
 | static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; | 
 | static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; | 
 | static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; | 
 | static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; | 
 | static u_int32_t saltbits; | 
 | static u_int32_t old_salt; | 
 | static u_int32_t old_rawkey0, old_rawkey1; | 
 |  | 
 |  | 
 | /* Static stuff that stays resident and doesn't change after | 
 |  * being initialized, and therefore doesn't need to be made | 
 |  * reentrant. */ | 
 | static u_char	init_perm[64], final_perm[64]; | 
 | static u_char	m_sbox[4][4096]; | 
 | static u_int32_t psbox[4][256]; | 
 |  | 
 |  | 
 |  | 
 |  | 
 | /* A pile of data */ | 
 | static const u_char	ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; | 
 |  | 
 | static const u_char	IP[64] = { | 
 | 	58, 50, 42, 34, 26, 18, 10,  2, 60, 52, 44, 36, 28, 20, 12,  4, | 
 | 	62, 54, 46, 38, 30, 22, 14,  6, 64, 56, 48, 40, 32, 24, 16,  8, | 
 | 	57, 49, 41, 33, 25, 17,  9,  1, 59, 51, 43, 35, 27, 19, 11,  3, | 
 | 	61, 53, 45, 37, 29, 21, 13,  5, 63, 55, 47, 39, 31, 23, 15,  7 | 
 | }; | 
 |  | 
 | static const u_char	key_perm[56] = { | 
 | 	57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18, | 
 | 	10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36, | 
 | 	63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22, | 
 | 	14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4 | 
 | }; | 
 |  | 
 | static const u_char	key_shifts[16] = { | 
 | 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 | 
 | }; | 
 |  | 
 | static const u_char	comp_perm[48] = { | 
 | 	14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10, | 
 | 	23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2, | 
 | 	41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, | 
 | 	44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 | 
 | }; | 
 |  | 
 | /* | 
 |  *	No E box is used, as it's replaced by some ANDs, shifts, and ORs. | 
 |  */ | 
 |  | 
 | static const u_char	sbox[8][64] = { | 
 | 	{ | 
 | 		14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7, | 
 | 		 0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8, | 
 | 		 4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0, | 
 | 		15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 | 
 | 	}, | 
 | 	{ | 
 | 		15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10, | 
 | 		 3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5, | 
 | 		 0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15, | 
 | 		13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 | 
 | 	}, | 
 | 	{ | 
 | 		10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8, | 
 | 		13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1, | 
 | 		13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7, | 
 | 		 1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 | 
 | 	}, | 
 | 	{ | 
 | 		 7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15, | 
 | 		13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9, | 
 | 		10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4, | 
 | 		 3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 | 
 | 	}, | 
 | 	{ | 
 | 		 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9, | 
 | 		14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6, | 
 | 		 4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14, | 
 | 		11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 | 
 | 	}, | 
 | 	{ | 
 | 		12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11, | 
 | 		10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8, | 
 | 		 9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6, | 
 | 		 4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 | 
 | 	}, | 
 | 	{ | 
 | 		 4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1, | 
 | 		13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6, | 
 | 		 1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2, | 
 | 		 6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 | 
 | 	}, | 
 | 	{ | 
 | 		13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7, | 
 | 		 1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2, | 
 | 		 7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8, | 
 | 		 2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 | 
 | 	} | 
 | }; | 
 |  | 
 | static const u_char	pbox[32] = { | 
 | 	16,  7, 20, 21, 29, 12, 28, 17,  1, 15, 23, 26,  5, 18, 31, 10, | 
 | 	 2,  8, 24, 14, 32, 27,  3,  9, 19, 13, 30,  6, 22, 11,  4, 25 | 
 | }; | 
 |  | 
 | static const u_int32_t bits32[32] = | 
 | { | 
 | 	0x80000000, 0x40000000, 0x20000000, 0x10000000, | 
 | 	0x08000000, 0x04000000, 0x02000000, 0x01000000, | 
 | 	0x00800000, 0x00400000, 0x00200000, 0x00100000, | 
 | 	0x00080000, 0x00040000, 0x00020000, 0x00010000, | 
 | 	0x00008000, 0x00004000, 0x00002000, 0x00001000, | 
 | 	0x00000800, 0x00000400, 0x00000200, 0x00000100, | 
 | 	0x00000080, 0x00000040, 0x00000020, 0x00000010, | 
 | 	0x00000008, 0x00000004, 0x00000002, 0x00000001 | 
 | }; | 
 |  | 
 | static const u_char	bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; | 
 |  | 
 |  | 
 | static int | 
 | ascii_to_bin(char ch) | 
 | { | 
 | 	if (ch > 'z') | 
 | 		return(0); | 
 | 	if (ch >= 'a') | 
 | 		return(ch - 'a' + 38); | 
 | 	if (ch > 'Z') | 
 | 		return(0); | 
 | 	if (ch >= 'A') | 
 | 		return(ch - 'A' + 12); | 
 | 	if (ch > '9') | 
 | 		return(0); | 
 | 	if (ch >= '.') | 
 | 		return(ch - '.'); | 
 | 	return(0); | 
 | } | 
 |  | 
 | static void | 
 | des_init(void) | 
 | { | 
 | 	static int des_initialised = 0; | 
 |  | 
 | 	int	i, j, b, k, inbit, obit; | 
 | 	u_int32_t	*p, *il, *ir, *fl, *fr; | 
 | 	const u_int32_t *bits28, *bits24; | 
 | 	u_char	u_sbox[8][64]; | 
 |  | 
 | 	if (des_initialised==1) | 
 | 		return; | 
 |  | 
 | 	old_rawkey0 = old_rawkey1 = 0L; | 
 | 	saltbits = 0L; | 
 | 	old_salt = 0L; | 
 | 	bits24 = (bits28 = bits32 + 4) + 4; | 
 |  | 
 | 	/* | 
 | 	 * Invert the S-boxes, reordering the input bits. | 
 | 	 */ | 
 | 	for (i = 0; i < 8; i++) | 
 | 		for (j = 0; j < 64; j++) { | 
 | 			b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); | 
 | 			u_sbox[i][j] = sbox[i][b]; | 
 | 		} | 
 |  | 
 | 	/* | 
 | 	 * Convert the inverted S-boxes into 4 arrays of 8 bits. | 
 | 	 * Each will handle 12 bits of the S-box input. | 
 | 	 */ | 
 | 	for (b = 0; b < 4; b++) | 
 | 		for (i = 0; i < 64; i++) | 
 | 			for (j = 0; j < 64; j++) | 
 | 				m_sbox[b][(i << 6) | j] = | 
 | 					(u_char)((u_sbox[(b << 1)][i] << 4) | | 
 | 					u_sbox[(b << 1) + 1][j]); | 
 |  | 
 | 	/* | 
 | 	 * Set up the initial & final permutations into a useful form, and | 
 | 	 * initialise the inverted key permutation. | 
 | 	 */ | 
 | 	for (i = 0; i < 64; i++) { | 
 | 		init_perm[final_perm[i] = IP[i] - 1] = (u_char)i; | 
 | 		inv_key_perm[i] = 255; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Invert the key permutation and initialise the inverted key | 
 | 	 * compression permutation. | 
 | 	 */ | 
 | 	for (i = 0; i < 56; i++) { | 
 | 		inv_key_perm[key_perm[i] - 1] = (u_char)i; | 
 | 		inv_comp_perm[i] = 255; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Invert the key compression permutation. | 
 | 	 */ | 
 | 	for (i = 0; i < 48; i++) { | 
 | 		inv_comp_perm[comp_perm[i] - 1] = (u_char)i; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set up the OR-mask arrays for the initial and final permutations, | 
 | 	 * and for the key initial and compression permutations. | 
 | 	 */ | 
 | 	for (k = 0; k < 8; k++) { | 
 | 		for (i = 0; i < 256; i++) { | 
 | 			*(il = &ip_maskl[k][i]) = 0L; | 
 | 			*(ir = &ip_maskr[k][i]) = 0L; | 
 | 			*(fl = &fp_maskl[k][i]) = 0L; | 
 | 			*(fr = &fp_maskr[k][i]) = 0L; | 
 | 			for (j = 0; j < 8; j++) { | 
 | 				inbit = 8 * k + j; | 
 | 				if (i & bits8[j]) { | 
 | 					if ((obit = init_perm[inbit]) < 32) | 
 | 						*il |= bits32[obit]; | 
 | 					else | 
 | 						*ir |= bits32[obit-32]; | 
 | 					if ((obit = final_perm[inbit]) < 32) | 
 | 						*fl |= bits32[obit]; | 
 | 					else | 
 | 						*fr |= bits32[obit - 32]; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		for (i = 0; i < 128; i++) { | 
 | 			*(il = &key_perm_maskl[k][i]) = 0L; | 
 | 			*(ir = &key_perm_maskr[k][i]) = 0L; | 
 | 			for (j = 0; j < 7; j++) { | 
 | 				inbit = 8 * k + j; | 
 | 				if (i & bits8[j + 1]) { | 
 | 					if ((obit = inv_key_perm[inbit]) == 255) | 
 | 						continue; | 
 | 					if (obit < 28) | 
 | 						*il |= bits28[obit]; | 
 | 					else | 
 | 						*ir |= bits28[obit - 28]; | 
 | 				} | 
 | 			} | 
 | 			*(il = &comp_maskl[k][i]) = 0L; | 
 | 			*(ir = &comp_maskr[k][i]) = 0L; | 
 | 			for (j = 0; j < 7; j++) { | 
 | 				inbit = 7 * k + j; | 
 | 				if (i & bits8[j + 1]) { | 
 | 					if ((obit=inv_comp_perm[inbit]) == 255) | 
 | 						continue; | 
 | 					if (obit < 24) | 
 | 						*il |= bits24[obit]; | 
 | 					else | 
 | 						*ir |= bits24[obit - 24]; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Invert the P-box permutation, and convert into OR-masks for | 
 | 	 * handling the output of the S-box arrays setup above. | 
 | 	 */ | 
 | 	for (i = 0; i < 32; i++) | 
 | 		un_pbox[pbox[i] - 1] = (u_char)i; | 
 |  | 
 | 	for (b = 0; b < 4; b++) | 
 | 		for (i = 0; i < 256; i++) { | 
 | 			*(p = &psbox[b][i]) = 0L; | 
 | 			for (j = 0; j < 8; j++) { | 
 | 				if (i & bits8[j]) | 
 | 					*p |= bits32[un_pbox[8 * b + j]]; | 
 | 			} | 
 | 		} | 
 |  | 
 | 	des_initialised = 1; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | setup_salt(u_int32_t salt) | 
 | { | 
 | 	u_int32_t	obit, saltbit; | 
 | 	int	i; | 
 |  | 
 | 	if (salt == old_salt) | 
 | 		return; | 
 | 	old_salt = salt; | 
 |  | 
 | 	saltbits = 0L; | 
 | 	saltbit = 1; | 
 | 	obit = 0x800000; | 
 | 	for (i = 0; i < 24; i++) { | 
 | 		if (salt & saltbit) | 
 | 			saltbits |= obit; | 
 | 		saltbit <<= 1; | 
 | 		obit >>= 1; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | des_setkey(const char *key) | 
 | { | 
 | 	u_int32_t	k0, k1, rawkey0, rawkey1; | 
 | 	int		shifts, round; | 
 |  | 
 | 	des_init(); | 
 |  | 
 | 	rawkey0 = ntohl(*(const u_int32_t *) key); | 
 | 	rawkey1 = ntohl(*(const u_int32_t *) (key + 4)); | 
 |  | 
 | 	if ((rawkey0 | rawkey1) | 
 | 	    && rawkey0 == old_rawkey0 | 
 | 	    && rawkey1 == old_rawkey1) { | 
 | 		/* | 
 | 		 * Already setup for this key. | 
 | 		 * This optimisation fails on a zero key (which is weak and | 
 | 		 * has bad parity anyway) in order to simplify the starting | 
 | 		 * conditions. | 
 | 		 */ | 
 | 		return; | 
 | 	} | 
 | 	old_rawkey0 = rawkey0; | 
 | 	old_rawkey1 = rawkey1; | 
 |  | 
 | 	/* | 
 | 	 *	Do key permutation and split into two 28-bit subkeys. | 
 | 	 */ | 
 | 	k0 = key_perm_maskl[0][rawkey0 >> 25] | 
 | 	   | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] | 
 | 	   | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | 
 | 	   | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] | 
 | 	   | key_perm_maskl[4][rawkey1 >> 25] | 
 | 	   | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] | 
 | 	   | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | 
 | 	   | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; | 
 | 	k1 = key_perm_maskr[0][rawkey0 >> 25] | 
 | 	   | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] | 
 | 	   | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | 
 | 	   | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] | 
 | 	   | key_perm_maskr[4][rawkey1 >> 25] | 
 | 	   | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] | 
 | 	   | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | 
 | 	   | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; | 
 | 	/* | 
 | 	 *	Rotate subkeys and do compression permutation. | 
 | 	 */ | 
 | 	shifts = 0; | 
 | 	for (round = 0; round < 16; round++) { | 
 | 		u_int32_t	t0, t1; | 
 |  | 
 | 		shifts += key_shifts[round]; | 
 |  | 
 | 		t0 = (k0 << shifts) | (k0 >> (28 - shifts)); | 
 | 		t1 = (k1 << shifts) | (k1 >> (28 - shifts)); | 
 |  | 
 | 		de_keysl[15 - round] = | 
 | 		en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | 
 | 				| comp_maskl[1][(t0 >> 14) & 0x7f] | 
 | 				| comp_maskl[2][(t0 >> 7) & 0x7f] | 
 | 				| comp_maskl[3][t0 & 0x7f] | 
 | 				| comp_maskl[4][(t1 >> 21) & 0x7f] | 
 | 				| comp_maskl[5][(t1 >> 14) & 0x7f] | 
 | 				| comp_maskl[6][(t1 >> 7) & 0x7f] | 
 | 				| comp_maskl[7][t1 & 0x7f]; | 
 |  | 
 | 		de_keysr[15 - round] = | 
 | 		en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | 
 | 				| comp_maskr[1][(t0 >> 14) & 0x7f] | 
 | 				| comp_maskr[2][(t0 >> 7) & 0x7f] | 
 | 				| comp_maskr[3][t0 & 0x7f] | 
 | 				| comp_maskr[4][(t1 >> 21) & 0x7f] | 
 | 				| comp_maskr[5][(t1 >> 14) & 0x7f] | 
 | 				| comp_maskr[6][(t1 >> 7) & 0x7f] | 
 | 				| comp_maskr[7][t1 & 0x7f]; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | do_des(	u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count) | 
 | { | 
 | 	/* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ | 
 | 	u_int32_t	l, r, *kl, *kr, *kl1, *kr1; | 
 | 	u_int32_t	f, r48l, r48r; | 
 | 	int		round; | 
 |  | 
 | 	if (count == 0) { | 
 | 		return 1; | 
 | 	} | 
 | 	if (count > 0) { | 
 | 		/* Encrypting */ | 
 | 		kl1 = en_keysl; | 
 | 		kr1 = en_keysr; | 
 | 	} else { | 
 | 		/* Decrypting */ | 
 | 		count = -count; | 
 | 		kl1 = de_keysl; | 
 | 		kr1 = de_keysr; | 
 | 	} | 
 |  | 
 | 	/* Do initial permutation (IP). */ | 
 | 	l = ip_maskl[0][l_in >> 24] | 
 | 	  | ip_maskl[1][(l_in >> 16) & 0xff] | 
 | 	  | ip_maskl[2][(l_in >> 8) & 0xff] | 
 | 	  | ip_maskl[3][l_in & 0xff] | 
 | 	  | ip_maskl[4][r_in >> 24] | 
 | 	  | ip_maskl[5][(r_in >> 16) & 0xff] | 
 | 	  | ip_maskl[6][(r_in >> 8) & 0xff] | 
 | 	  | ip_maskl[7][r_in & 0xff]; | 
 | 	r = ip_maskr[0][l_in >> 24] | 
 | 	  | ip_maskr[1][(l_in >> 16) & 0xff] | 
 | 	  | ip_maskr[2][(l_in >> 8) & 0xff] | 
 | 	  | ip_maskr[3][l_in & 0xff] | 
 | 	  | ip_maskr[4][r_in >> 24] | 
 | 	  | ip_maskr[5][(r_in >> 16) & 0xff] | 
 | 	  | ip_maskr[6][(r_in >> 8) & 0xff] | 
 | 	  | ip_maskr[7][r_in & 0xff]; | 
 |  | 
 | 	while (count--) { | 
 | 		/* Do each round. */ | 
 | 		kl = kl1; | 
 | 		kr = kr1; | 
 | 		round = 16; | 
 | 		do { | 
 | 			/* Expand R to 48 bits (simulate the E-box). */ | 
 | 			r48l	= ((r & 0x00000001) << 23) | 
 | 				| ((r & 0xf8000000) >> 9) | 
 | 				| ((r & 0x1f800000) >> 11) | 
 | 				| ((r & 0x01f80000) >> 13) | 
 | 				| ((r & 0x001f8000) >> 15); | 
 | 			r48r	= ((r & 0x0001f800) << 7) | 
 | 				| ((r & 0x00001f80) << 5) | 
 | 				| ((r & 0x000001f8) << 3) | 
 | 				| ((r & 0x0000001f) << 1) | 
 | 				| ((r & 0x80000000) >> 31); | 
 | 			/* | 
 | 			 * Do salting for crypt() and friends, and | 
 | 			 * XOR with the permuted key. | 
 | 			 */ | 
 | 			f = (r48l ^ r48r) & saltbits; | 
 | 			r48l ^= f ^ *kl++; | 
 | 			r48r ^= f ^ *kr++; | 
 | 			/* | 
 | 			 * Do sbox lookups (which shrink it back to 32 bits) | 
 | 			 * and do the pbox permutation at the same time. | 
 | 			 */ | 
 | 			f = psbox[0][m_sbox[0][r48l >> 12]] | 
 | 			  | psbox[1][m_sbox[1][r48l & 0xfff]] | 
 | 			  | psbox[2][m_sbox[2][r48r >> 12]] | 
 | 			  | psbox[3][m_sbox[3][r48r & 0xfff]]; | 
 | 			/* Now that we've permuted things, complete f(). */ | 
 | 			f ^= l; | 
 | 			l = r; | 
 | 			r = f; | 
 | 		} while (--round); | 
 | 		r = l; | 
 | 		l = f; | 
 | 	} | 
 | 	/* Do final permutation (inverse of IP). */ | 
 | 	*l_out	= fp_maskl[0][l >> 24] | 
 | 		| fp_maskl[1][(l >> 16) & 0xff] | 
 | 		| fp_maskl[2][(l >> 8) & 0xff] | 
 | 		| fp_maskl[3][l & 0xff] | 
 | 		| fp_maskl[4][r >> 24] | 
 | 		| fp_maskl[5][(r >> 16) & 0xff] | 
 | 		| fp_maskl[6][(r >> 8) & 0xff] | 
 | 		| fp_maskl[7][r & 0xff]; | 
 | 	*r_out	= fp_maskr[0][l >> 24] | 
 | 		| fp_maskr[1][(l >> 16) & 0xff] | 
 | 		| fp_maskr[2][(l >> 8) & 0xff] | 
 | 		| fp_maskr[3][l & 0xff] | 
 | 		| fp_maskr[4][r >> 24] | 
 | 		| fp_maskr[5][(r >> 16) & 0xff] | 
 | 		| fp_maskr[6][(r >> 8) & 0xff] | 
 | 		| fp_maskr[7][r & 0xff]; | 
 | 	return(0); | 
 | } | 
 |  | 
 |  | 
 | #if 0 | 
 | static int | 
 | des_cipher(const char *in, char *out, u_int32_t salt, int count) | 
 | { | 
 | 	u_int32_t	l_out, r_out, rawl, rawr; | 
 | 	int		retval; | 
 | 	union { | 
 | 		u_int32_t	*ui32; | 
 | 		const char	*c; | 
 | 	} trans; | 
 |  | 
 | 	des_init(); | 
 |  | 
 | 	setup_salt(salt); | 
 |  | 
 | 	trans.c = in; | 
 | 	rawl = ntohl(*trans.ui32++); | 
 | 	rawr = ntohl(*trans.ui32); | 
 |  | 
 | 	retval = do_des(rawl, rawr, &l_out, &r_out, count); | 
 |  | 
 | 	trans.c = out; | 
 | 	*trans.ui32++ = htonl(l_out); | 
 | 	*trans.ui32 = htonl(r_out); | 
 | 	return(retval); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | void | 
 | setkey(const char *key) | 
 | { | 
 | 	int	i, j; | 
 | 	u_int32_t	packed_keys[2]; | 
 | 	u_char	*p; | 
 |  | 
 | 	p = (u_char *) packed_keys; | 
 |  | 
 | 	for (i = 0; i < 8; i++) { | 
 | 		p[i] = 0; | 
 | 		for (j = 0; j < 8; j++) | 
 | 			if (*key++ & 1) | 
 | 				p[i] |= bits8[j]; | 
 | 	} | 
 | 	des_setkey((char *)p); | 
 | } | 
 |  | 
 |  | 
 | void | 
 | encrypt(char *block, int flag) | 
 | { | 
 | 	u_int32_t	io[2]; | 
 | 	u_char	*p; | 
 | 	int	i, j; | 
 |  | 
 | 	des_init(); | 
 |  | 
 | 	setup_salt(0L); | 
 | 	p = (u_char*)block; | 
 | 	for (i = 0; i < 2; i++) { | 
 | 		io[i] = 0L; | 
 | 		for (j = 0; j < 32; j++) | 
 | 			if (*p++ & 1) | 
 | 				io[i] |= bits32[j]; | 
 | 	} | 
 | 	do_des(io[0], io[1], io, io + 1, flag ? -1 : 1); | 
 | 	for (i = 0; i < 2; i++) | 
 | 		for (j = 0; j < 32; j++) | 
 | 			block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0; | 
 | } | 
 |  | 
 | char *__des_crypt(const unsigned char *key, const unsigned char *setting) | 
 | { | 
 | 	u_int32_t	count, salt, l, r0, r1, keybuf[2]; | 
 | 	u_char		*p, *q; | 
 | 	static char	output[21]; | 
 |  | 
 | 	des_init(); | 
 |  | 
 | 	/* | 
 | 	 * Copy the key, shifting each character up by one bit | 
 | 	 * and padding with zeros. | 
 | 	 */ | 
 | 	q = (u_char *)keybuf; | 
 | 	while (q - (u_char *)keybuf - 8) { | 
 | 		*q++ = *key << 1; | 
 | 		if (*(q - 1)) | 
 | 			key++; | 
 | 	} | 
 | 	des_setkey((char *)keybuf); | 
 |  | 
 | #if 0 | 
 | 	if (*setting == _PASSWORD_EFMT1) { | 
 | 		int		i; | 
 | 		/* | 
 | 		 * "new"-style: | 
 | 		 *	setting - underscore, 4 bytes of count, 4 bytes of salt | 
 | 		 *	key - unlimited characters | 
 | 		 */ | 
 | 		for (i = 1, count = 0L; i < 5; i++) | 
 | 			count |= ascii_to_bin(setting[i]) << ((i - 1) * 6); | 
 |  | 
 | 		for (i = 5, salt = 0L; i < 9; i++) | 
 | 			salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6); | 
 |  | 
 | 		while (*key) { | 
 | 			/* | 
 | 			 * Encrypt the key with itself. | 
 | 			 */ | 
 | 			if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) | 
 | 				return(NULL); | 
 | 			/* | 
 | 			 * And XOR with the next 8 characters of the key. | 
 | 			 */ | 
 | 			q = (u_char *)keybuf; | 
 | 			while (q - (u_char *)keybuf - 8 && *key) | 
 | 				*q++ ^= *key++ << 1; | 
 |  | 
 | 			des_setkey((char *)keybuf); | 
 | 		} | 
 | 		strncpy(output, setting, 9); | 
 |  | 
 | 		/* | 
 | 		 * Double check that we weren't given a short setting. | 
 | 		 * If we were, the above code will probably have created | 
 | 		 * wierd values for count and salt, but we don't really care. | 
 | 		 * Just make sure the output string doesn't have an extra | 
 | 		 * NUL in it. | 
 | 		 */ | 
 | 		output[9] = '\0'; | 
 | 		p = (u_char *)output + strlen(output); | 
 | 	} else | 
 | #endif | 
 | 	{ | 
 | 		/* | 
 | 		 * "old"-style: | 
 | 		 *	setting - 2 bytes of salt | 
 | 		 *	key - up to 8 characters | 
 | 		 */ | 
 | 		count = 25; | 
 |  | 
 | 		salt = (ascii_to_bin(setting[1]) << 6) | 
 | 		     |  ascii_to_bin(setting[0]); | 
 |  | 
 | 		output[0] = setting[0]; | 
 | 		/* | 
 | 		 * If the encrypted password that the salt was extracted from | 
 | 		 * is only 1 character long, the salt will be corrupted.  We | 
 | 		 * need to ensure that the output string doesn't have an extra | 
 | 		 * NUL in it! | 
 | 		 */ | 
 | 		output[1] = setting[1] ? setting[1] : output[0]; | 
 |  | 
 | 		p = (u_char *)output + 2; | 
 | 	} | 
 | 	setup_salt(salt); | 
 | 	/* | 
 | 	 * Do it. | 
 | 	 */ | 
 | 	if (do_des(0L, 0L, &r0, &r1, (int)count)) | 
 | 		return(NULL); | 
 | 	/* | 
 | 	 * Now encode the result... | 
 | 	 */ | 
 | 	l = (r0 >> 8); | 
 | 	*p++ = ascii64[(l >> 18) & 0x3f]; | 
 | 	*p++ = ascii64[(l >> 12) & 0x3f]; | 
 | 	*p++ = ascii64[(l >> 6) & 0x3f]; | 
 | 	*p++ = ascii64[l & 0x3f]; | 
 |  | 
 | 	l = (r0 << 16) | ((r1 >> 16) & 0xffff); | 
 | 	*p++ = ascii64[(l >> 18) & 0x3f]; | 
 | 	*p++ = ascii64[(l >> 12) & 0x3f]; | 
 | 	*p++ = ascii64[(l >> 6) & 0x3f]; | 
 | 	*p++ = ascii64[l & 0x3f]; | 
 |  | 
 | 	l = r1 << 2; | 
 | 	*p++ = ascii64[(l >> 12) & 0x3f]; | 
 | 	*p++ = ascii64[(l >> 6) & 0x3f]; | 
 | 	*p++ = ascii64[l & 0x3f]; | 
 | 	*p = 0; | 
 |  | 
 | 	return(output); | 
 | } | 
 |  |