| /* | 
 |  * raid10.c : Multiple Devices driver for Linux | 
 |  * | 
 |  * Copyright (C) 2000-2004 Neil Brown | 
 |  * | 
 |  * RAID-10 support for md. | 
 |  * | 
 |  * Base on code in raid1.c.  See raid1.c for further copyright information. | 
 |  * | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * (for example /usr/src/linux/COPYING); if not, write to the Free | 
 |  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/module.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/ratelimit.h> | 
 | #include "md.h" | 
 | #include "raid10.h" | 
 | #include "raid0.h" | 
 | #include "bitmap.h" | 
 |  | 
 | /* | 
 |  * RAID10 provides a combination of RAID0 and RAID1 functionality. | 
 |  * The layout of data is defined by | 
 |  *    chunk_size | 
 |  *    raid_disks | 
 |  *    near_copies (stored in low byte of layout) | 
 |  *    far_copies (stored in second byte of layout) | 
 |  *    far_offset (stored in bit 16 of layout ) | 
 |  * | 
 |  * The data to be stored is divided into chunks using chunksize. | 
 |  * Each device is divided into far_copies sections. | 
 |  * In each section, chunks are laid out in a style similar to raid0, but | 
 |  * near_copies copies of each chunk is stored (each on a different drive). | 
 |  * The starting device for each section is offset near_copies from the starting | 
 |  * device of the previous section. | 
 |  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different | 
 |  * drive. | 
 |  * near_copies and far_copies must be at least one, and their product is at most | 
 |  * raid_disks. | 
 |  * | 
 |  * If far_offset is true, then the far_copies are handled a bit differently. | 
 |  * The copies are still in different stripes, but instead of be very far apart | 
 |  * on disk, there are adjacent stripes. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Number of guaranteed r10bios in case of extreme VM load: | 
 |  */ | 
 | #define	NR_RAID10_BIOS 256 | 
 |  | 
 | /* When there are this many requests queue to be written by | 
 |  * the raid10 thread, we become 'congested' to provide back-pressure | 
 |  * for writeback. | 
 |  */ | 
 | static int max_queued_requests = 1024; | 
 |  | 
 | static void allow_barrier(struct r10conf *conf); | 
 | static void lower_barrier(struct r10conf *conf); | 
 | static int enough(struct r10conf *conf, int ignore); | 
 |  | 
 | static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) | 
 | { | 
 | 	struct r10conf *conf = data; | 
 | 	int size = offsetof(struct r10bio, devs[conf->copies]); | 
 |  | 
 | 	/* allocate a r10bio with room for raid_disks entries in the | 
 | 	 * bios array */ | 
 | 	return kzalloc(size, gfp_flags); | 
 | } | 
 |  | 
 | static void r10bio_pool_free(void *r10_bio, void *data) | 
 | { | 
 | 	kfree(r10_bio); | 
 | } | 
 |  | 
 | /* Maximum size of each resync request */ | 
 | #define RESYNC_BLOCK_SIZE (64*1024) | 
 | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) | 
 | /* amount of memory to reserve for resync requests */ | 
 | #define RESYNC_WINDOW (1024*1024) | 
 | /* maximum number of concurrent requests, memory permitting */ | 
 | #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) | 
 |  | 
 | /* | 
 |  * When performing a resync, we need to read and compare, so | 
 |  * we need as many pages are there are copies. | 
 |  * When performing a recovery, we need 2 bios, one for read, | 
 |  * one for write (we recover only one drive per r10buf) | 
 |  * | 
 |  */ | 
 | static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) | 
 | { | 
 | 	struct r10conf *conf = data; | 
 | 	struct page *page; | 
 | 	struct r10bio *r10_bio; | 
 | 	struct bio *bio; | 
 | 	int i, j; | 
 | 	int nalloc; | 
 |  | 
 | 	r10_bio = r10bio_pool_alloc(gfp_flags, conf); | 
 | 	if (!r10_bio) | 
 | 		return NULL; | 
 |  | 
 | 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) | 
 | 		nalloc = conf->copies; /* resync */ | 
 | 	else | 
 | 		nalloc = 2; /* recovery */ | 
 |  | 
 | 	/* | 
 | 	 * Allocate bios. | 
 | 	 */ | 
 | 	for (j = nalloc ; j-- ; ) { | 
 | 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); | 
 | 		if (!bio) | 
 | 			goto out_free_bio; | 
 | 		r10_bio->devs[j].bio = bio; | 
 | 		if (!conf->have_replacement) | 
 | 			continue; | 
 | 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); | 
 | 		if (!bio) | 
 | 			goto out_free_bio; | 
 | 		r10_bio->devs[j].repl_bio = bio; | 
 | 	} | 
 | 	/* | 
 | 	 * Allocate RESYNC_PAGES data pages and attach them | 
 | 	 * where needed. | 
 | 	 */ | 
 | 	for (j = 0 ; j < nalloc; j++) { | 
 | 		struct bio *rbio = r10_bio->devs[j].repl_bio; | 
 | 		bio = r10_bio->devs[j].bio; | 
 | 		for (i = 0; i < RESYNC_PAGES; i++) { | 
 | 			if (j == 1 && !test_bit(MD_RECOVERY_SYNC, | 
 | 						&conf->mddev->recovery)) { | 
 | 				/* we can share bv_page's during recovery */ | 
 | 				struct bio *rbio = r10_bio->devs[0].bio; | 
 | 				page = rbio->bi_io_vec[i].bv_page; | 
 | 				get_page(page); | 
 | 			} else | 
 | 				page = alloc_page(gfp_flags); | 
 | 			if (unlikely(!page)) | 
 | 				goto out_free_pages; | 
 |  | 
 | 			bio->bi_io_vec[i].bv_page = page; | 
 | 			if (rbio) | 
 | 				rbio->bi_io_vec[i].bv_page = page; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return r10_bio; | 
 |  | 
 | out_free_pages: | 
 | 	for ( ; i > 0 ; i--) | 
 | 		safe_put_page(bio->bi_io_vec[i-1].bv_page); | 
 | 	while (j--) | 
 | 		for (i = 0; i < RESYNC_PAGES ; i++) | 
 | 			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); | 
 | 	j = -1; | 
 | out_free_bio: | 
 | 	while (++j < nalloc) { | 
 | 		bio_put(r10_bio->devs[j].bio); | 
 | 		if (r10_bio->devs[j].repl_bio) | 
 | 			bio_put(r10_bio->devs[j].repl_bio); | 
 | 	} | 
 | 	r10bio_pool_free(r10_bio, conf); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void r10buf_pool_free(void *__r10_bio, void *data) | 
 | { | 
 | 	int i; | 
 | 	struct r10conf *conf = data; | 
 | 	struct r10bio *r10bio = __r10_bio; | 
 | 	int j; | 
 |  | 
 | 	for (j=0; j < conf->copies; j++) { | 
 | 		struct bio *bio = r10bio->devs[j].bio; | 
 | 		if (bio) { | 
 | 			for (i = 0; i < RESYNC_PAGES; i++) { | 
 | 				safe_put_page(bio->bi_io_vec[i].bv_page); | 
 | 				bio->bi_io_vec[i].bv_page = NULL; | 
 | 			} | 
 | 			bio_put(bio); | 
 | 		} | 
 | 		bio = r10bio->devs[j].repl_bio; | 
 | 		if (bio) | 
 | 			bio_put(bio); | 
 | 	} | 
 | 	r10bio_pool_free(r10bio, conf); | 
 | } | 
 |  | 
 | static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < conf->copies; i++) { | 
 | 		struct bio **bio = & r10_bio->devs[i].bio; | 
 | 		if (!BIO_SPECIAL(*bio)) | 
 | 			bio_put(*bio); | 
 | 		*bio = NULL; | 
 | 		bio = &r10_bio->devs[i].repl_bio; | 
 | 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) | 
 | 			bio_put(*bio); | 
 | 		*bio = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void free_r10bio(struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	put_all_bios(conf, r10_bio); | 
 | 	mempool_free(r10_bio, conf->r10bio_pool); | 
 | } | 
 |  | 
 | static void put_buf(struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	mempool_free(r10_bio, conf->r10buf_pool); | 
 |  | 
 | 	lower_barrier(conf); | 
 | } | 
 |  | 
 | static void reschedule_retry(struct r10bio *r10_bio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	list_add(&r10_bio->retry_list, &conf->retry_list); | 
 | 	conf->nr_queued ++; | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	/* wake up frozen array... */ | 
 | 	wake_up(&conf->wait_barrier); | 
 |  | 
 | 	md_wakeup_thread(mddev->thread); | 
 | } | 
 |  | 
 | /* | 
 |  * raid_end_bio_io() is called when we have finished servicing a mirrored | 
 |  * operation and are ready to return a success/failure code to the buffer | 
 |  * cache layer. | 
 |  */ | 
 | static void raid_end_bio_io(struct r10bio *r10_bio) | 
 | { | 
 | 	struct bio *bio = r10_bio->master_bio; | 
 | 	int done; | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	if (bio->bi_phys_segments) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		bio->bi_phys_segments--; | 
 | 		done = (bio->bi_phys_segments == 0); | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 	} else | 
 | 		done = 1; | 
 | 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) | 
 | 		clear_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	if (done) { | 
 | 		bio_endio(bio, 0); | 
 | 		/* | 
 | 		 * Wake up any possible resync thread that waits for the device | 
 | 		 * to go idle. | 
 | 		 */ | 
 | 		allow_barrier(conf); | 
 | 	} | 
 | 	free_r10bio(r10_bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Update disk head position estimator based on IRQ completion info. | 
 |  */ | 
 | static inline void update_head_pos(int slot, struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 | 	conf->mirrors[r10_bio->devs[slot].devnum].head_position = | 
 | 		r10_bio->devs[slot].addr + (r10_bio->sectors); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the disk number which triggered given bio | 
 |  */ | 
 | static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, | 
 | 			 struct bio *bio, int *slotp, int *replp) | 
 | { | 
 | 	int slot; | 
 | 	int repl = 0; | 
 |  | 
 | 	for (slot = 0; slot < conf->copies; slot++) { | 
 | 		if (r10_bio->devs[slot].bio == bio) | 
 | 			break; | 
 | 		if (r10_bio->devs[slot].repl_bio == bio) { | 
 | 			repl = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BUG_ON(slot == conf->copies); | 
 | 	update_head_pos(slot, r10_bio); | 
 |  | 
 | 	if (slotp) | 
 | 		*slotp = slot; | 
 | 	if (replp) | 
 | 		*replp = repl; | 
 | 	return r10_bio->devs[slot].devnum; | 
 | } | 
 |  | 
 | static void raid10_end_read_request(struct bio *bio, int error) | 
 | { | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	struct r10bio *r10_bio = bio->bi_private; | 
 | 	int slot, dev; | 
 | 	struct md_rdev *rdev; | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 |  | 
 |  | 
 | 	slot = r10_bio->read_slot; | 
 | 	dev = r10_bio->devs[slot].devnum; | 
 | 	rdev = r10_bio->devs[slot].rdev; | 
 | 	/* | 
 | 	 * this branch is our 'one mirror IO has finished' event handler: | 
 | 	 */ | 
 | 	update_head_pos(slot, r10_bio); | 
 |  | 
 | 	if (uptodate) { | 
 | 		/* | 
 | 		 * Set R10BIO_Uptodate in our master bio, so that | 
 | 		 * we will return a good error code to the higher | 
 | 		 * levels even if IO on some other mirrored buffer fails. | 
 | 		 * | 
 | 		 * The 'master' represents the composite IO operation to | 
 | 		 * user-side. So if something waits for IO, then it will | 
 | 		 * wait for the 'master' bio. | 
 | 		 */ | 
 | 		set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 | 	} else { | 
 | 		/* If all other devices that store this block have | 
 | 		 * failed, we want to return the error upwards rather | 
 | 		 * than fail the last device.  Here we redefine | 
 | 		 * "uptodate" to mean "Don't want to retry" | 
 | 		 */ | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		if (!enough(conf, rdev->raid_disk)) | 
 | 			uptodate = 1; | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 	} | 
 | 	if (uptodate) { | 
 | 		raid_end_bio_io(r10_bio); | 
 | 		rdev_dec_pending(rdev, conf->mddev); | 
 | 	} else { | 
 | 		/* | 
 | 		 * oops, read error - keep the refcount on the rdev | 
 | 		 */ | 
 | 		char b[BDEVNAME_SIZE]; | 
 | 		printk_ratelimited(KERN_ERR | 
 | 				   "md/raid10:%s: %s: rescheduling sector %llu\n", | 
 | 				   mdname(conf->mddev), | 
 | 				   bdevname(rdev->bdev, b), | 
 | 				   (unsigned long long)r10_bio->sector); | 
 | 		set_bit(R10BIO_ReadError, &r10_bio->state); | 
 | 		reschedule_retry(r10_bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void close_write(struct r10bio *r10_bio) | 
 | { | 
 | 	/* clear the bitmap if all writes complete successfully */ | 
 | 	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, | 
 | 			r10_bio->sectors, | 
 | 			!test_bit(R10BIO_Degraded, &r10_bio->state), | 
 | 			0); | 
 | 	md_write_end(r10_bio->mddev); | 
 | } | 
 |  | 
 | static void one_write_done(struct r10bio *r10_bio) | 
 | { | 
 | 	if (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		if (test_bit(R10BIO_WriteError, &r10_bio->state)) | 
 | 			reschedule_retry(r10_bio); | 
 | 		else { | 
 | 			close_write(r10_bio); | 
 | 			if (test_bit(R10BIO_MadeGood, &r10_bio->state)) | 
 | 				reschedule_retry(r10_bio); | 
 | 			else | 
 | 				raid_end_bio_io(r10_bio); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void raid10_end_write_request(struct bio *bio, int error) | 
 | { | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	struct r10bio *r10_bio = bio->bi_private; | 
 | 	int dev; | 
 | 	int dec_rdev = 1; | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 | 	int slot, repl; | 
 | 	struct md_rdev *rdev = NULL; | 
 |  | 
 | 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
 |  | 
 | 	if (repl) | 
 | 		rdev = conf->mirrors[dev].replacement; | 
 | 	if (!rdev) { | 
 | 		smp_rmb(); | 
 | 		repl = 0; | 
 | 		rdev = conf->mirrors[dev].rdev; | 
 | 	} | 
 | 	/* | 
 | 	 * this branch is our 'one mirror IO has finished' event handler: | 
 | 	 */ | 
 | 	if (!uptodate) { | 
 | 		if (repl) | 
 | 			/* Never record new bad blocks to replacement, | 
 | 			 * just fail it. | 
 | 			 */ | 
 | 			md_error(rdev->mddev, rdev); | 
 | 		else { | 
 | 			set_bit(WriteErrorSeen,	&rdev->flags); | 
 | 			if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
 | 				set_bit(MD_RECOVERY_NEEDED, | 
 | 					&rdev->mddev->recovery); | 
 | 			set_bit(R10BIO_WriteError, &r10_bio->state); | 
 | 			dec_rdev = 0; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * Set R10BIO_Uptodate in our master bio, so that | 
 | 		 * we will return a good error code for to the higher | 
 | 		 * levels even if IO on some other mirrored buffer fails. | 
 | 		 * | 
 | 		 * The 'master' represents the composite IO operation to | 
 | 		 * user-side. So if something waits for IO, then it will | 
 | 		 * wait for the 'master' bio. | 
 | 		 */ | 
 | 		sector_t first_bad; | 
 | 		int bad_sectors; | 
 |  | 
 | 		/* | 
 | 		 * Do not set R10BIO_Uptodate if the current device is | 
 | 		 * rebuilding or Faulty. This is because we cannot use | 
 | 		 * such device for properly reading the data back (we could | 
 | 		 * potentially use it, if the current write would have felt | 
 | 		 * before rdev->recovery_offset, but for simplicity we don't | 
 | 		 * check this here. | 
 | 		 */ | 
 | 		if (test_bit(In_sync, &rdev->flags) && | 
 | 		    !test_bit(Faulty, &rdev->flags)) | 
 | 			set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 |  | 
 | 		/* Maybe we can clear some bad blocks. */ | 
 | 		if (is_badblock(rdev, | 
 | 				r10_bio->devs[slot].addr, | 
 | 				r10_bio->sectors, | 
 | 				&first_bad, &bad_sectors)) { | 
 | 			bio_put(bio); | 
 | 			if (repl) | 
 | 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; | 
 | 			else | 
 | 				r10_bio->devs[slot].bio = IO_MADE_GOOD; | 
 | 			dec_rdev = 0; | 
 | 			set_bit(R10BIO_MadeGood, &r10_bio->state); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * | 
 | 	 * Let's see if all mirrored write operations have finished | 
 | 	 * already. | 
 | 	 */ | 
 | 	one_write_done(r10_bio); | 
 | 	if (dec_rdev) | 
 | 		rdev_dec_pending(rdev, conf->mddev); | 
 | } | 
 |  | 
 | /* | 
 |  * RAID10 layout manager | 
 |  * As well as the chunksize and raid_disks count, there are two | 
 |  * parameters: near_copies and far_copies. | 
 |  * near_copies * far_copies must be <= raid_disks. | 
 |  * Normally one of these will be 1. | 
 |  * If both are 1, we get raid0. | 
 |  * If near_copies == raid_disks, we get raid1. | 
 |  * | 
 |  * Chunks are laid out in raid0 style with near_copies copies of the | 
 |  * first chunk, followed by near_copies copies of the next chunk and | 
 |  * so on. | 
 |  * If far_copies > 1, then after 1/far_copies of the array has been assigned | 
 |  * as described above, we start again with a device offset of near_copies. | 
 |  * So we effectively have another copy of the whole array further down all | 
 |  * the drives, but with blocks on different drives. | 
 |  * With this layout, and block is never stored twice on the one device. | 
 |  * | 
 |  * raid10_find_phys finds the sector offset of a given virtual sector | 
 |  * on each device that it is on. | 
 |  * | 
 |  * raid10_find_virt does the reverse mapping, from a device and a | 
 |  * sector offset to a virtual address | 
 |  */ | 
 |  | 
 | static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) | 
 | { | 
 | 	int n,f; | 
 | 	sector_t sector; | 
 | 	sector_t chunk; | 
 | 	sector_t stripe; | 
 | 	int dev; | 
 |  | 
 | 	int slot = 0; | 
 |  | 
 | 	/* now calculate first sector/dev */ | 
 | 	chunk = r10bio->sector >> conf->chunk_shift; | 
 | 	sector = r10bio->sector & conf->chunk_mask; | 
 |  | 
 | 	chunk *= conf->near_copies; | 
 | 	stripe = chunk; | 
 | 	dev = sector_div(stripe, conf->raid_disks); | 
 | 	if (conf->far_offset) | 
 | 		stripe *= conf->far_copies; | 
 |  | 
 | 	sector += stripe << conf->chunk_shift; | 
 |  | 
 | 	/* and calculate all the others */ | 
 | 	for (n=0; n < conf->near_copies; n++) { | 
 | 		int d = dev; | 
 | 		sector_t s = sector; | 
 | 		r10bio->devs[slot].addr = sector; | 
 | 		r10bio->devs[slot].devnum = d; | 
 | 		slot++; | 
 |  | 
 | 		for (f = 1; f < conf->far_copies; f++) { | 
 | 			d += conf->near_copies; | 
 | 			if (d >= conf->raid_disks) | 
 | 				d -= conf->raid_disks; | 
 | 			s += conf->stride; | 
 | 			r10bio->devs[slot].devnum = d; | 
 | 			r10bio->devs[slot].addr = s; | 
 | 			slot++; | 
 | 		} | 
 | 		dev++; | 
 | 		if (dev >= conf->raid_disks) { | 
 | 			dev = 0; | 
 | 			sector += (conf->chunk_mask + 1); | 
 | 		} | 
 | 	} | 
 | 	BUG_ON(slot != conf->copies); | 
 | } | 
 |  | 
 | static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) | 
 | { | 
 | 	sector_t offset, chunk, vchunk; | 
 |  | 
 | 	offset = sector & conf->chunk_mask; | 
 | 	if (conf->far_offset) { | 
 | 		int fc; | 
 | 		chunk = sector >> conf->chunk_shift; | 
 | 		fc = sector_div(chunk, conf->far_copies); | 
 | 		dev -= fc * conf->near_copies; | 
 | 		if (dev < 0) | 
 | 			dev += conf->raid_disks; | 
 | 	} else { | 
 | 		while (sector >= conf->stride) { | 
 | 			sector -= conf->stride; | 
 | 			if (dev < conf->near_copies) | 
 | 				dev += conf->raid_disks - conf->near_copies; | 
 | 			else | 
 | 				dev -= conf->near_copies; | 
 | 		} | 
 | 		chunk = sector >> conf->chunk_shift; | 
 | 	} | 
 | 	vchunk = chunk * conf->raid_disks + dev; | 
 | 	sector_div(vchunk, conf->near_copies); | 
 | 	return (vchunk << conf->chunk_shift) + offset; | 
 | } | 
 |  | 
 | /** | 
 |  *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged | 
 |  *	@q: request queue | 
 |  *	@bvm: properties of new bio | 
 |  *	@biovec: the request that could be merged to it. | 
 |  * | 
 |  *	Return amount of bytes we can accept at this offset | 
 |  *	This requires checking for end-of-chunk if near_copies != raid_disks, | 
 |  *	and for subordinate merge_bvec_fns if merge_check_needed. | 
 |  */ | 
 | static int raid10_mergeable_bvec(struct request_queue *q, | 
 | 				 struct bvec_merge_data *bvm, | 
 | 				 struct bio_vec *biovec) | 
 | { | 
 | 	struct mddev *mddev = q->queuedata; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); | 
 | 	int max; | 
 | 	unsigned int chunk_sectors = mddev->chunk_sectors; | 
 | 	unsigned int bio_sectors = bvm->bi_size >> 9; | 
 |  | 
 | 	if (conf->near_copies < conf->raid_disks) { | 
 | 		max = (chunk_sectors - ((sector & (chunk_sectors - 1)) | 
 | 					+ bio_sectors)) << 9; | 
 | 		if (max < 0) | 
 | 			/* bio_add cannot handle a negative return */ | 
 | 			max = 0; | 
 | 		if (max <= biovec->bv_len && bio_sectors == 0) | 
 | 			return biovec->bv_len; | 
 | 	} else | 
 | 		max = biovec->bv_len; | 
 |  | 
 | 	if (mddev->merge_check_needed) { | 
 | 		struct { | 
 | 			struct r10bio r10_bio; | 
 | 			struct r10dev devs[conf->copies]; | 
 | 		} on_stack; | 
 | 		struct r10bio *r10_bio = &on_stack.r10_bio; | 
 | 		int s; | 
 | 		r10_bio->sector = sector; | 
 | 		raid10_find_phys(conf, r10_bio); | 
 | 		rcu_read_lock(); | 
 | 		for (s = 0; s < conf->copies; s++) { | 
 | 			int disk = r10_bio->devs[s].devnum; | 
 | 			struct md_rdev *rdev = rcu_dereference( | 
 | 				conf->mirrors[disk].rdev); | 
 | 			if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
 | 				struct request_queue *q = | 
 | 					bdev_get_queue(rdev->bdev); | 
 | 				if (q->merge_bvec_fn) { | 
 | 					bvm->bi_sector = r10_bio->devs[s].addr | 
 | 						+ rdev->data_offset; | 
 | 					bvm->bi_bdev = rdev->bdev; | 
 | 					max = min(max, q->merge_bvec_fn( | 
 | 							  q, bvm, biovec)); | 
 | 				} | 
 | 			} | 
 | 			rdev = rcu_dereference(conf->mirrors[disk].replacement); | 
 | 			if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
 | 				struct request_queue *q = | 
 | 					bdev_get_queue(rdev->bdev); | 
 | 				if (q->merge_bvec_fn) { | 
 | 					bvm->bi_sector = r10_bio->devs[s].addr | 
 | 						+ rdev->data_offset; | 
 | 					bvm->bi_bdev = rdev->bdev; | 
 | 					max = min(max, q->merge_bvec_fn( | 
 | 							  q, bvm, biovec)); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | 	return max; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine returns the disk from which the requested read should | 
 |  * be done. There is a per-array 'next expected sequential IO' sector | 
 |  * number - if this matches on the next IO then we use the last disk. | 
 |  * There is also a per-disk 'last know head position' sector that is | 
 |  * maintained from IRQ contexts, both the normal and the resync IO | 
 |  * completion handlers update this position correctly. If there is no | 
 |  * perfect sequential match then we pick the disk whose head is closest. | 
 |  * | 
 |  * If there are 2 mirrors in the same 2 devices, performance degrades | 
 |  * because position is mirror, not device based. | 
 |  * | 
 |  * The rdev for the device selected will have nr_pending incremented. | 
 |  */ | 
 |  | 
 | /* | 
 |  * FIXME: possibly should rethink readbalancing and do it differently | 
 |  * depending on near_copies / far_copies geometry. | 
 |  */ | 
 | static struct md_rdev *read_balance(struct r10conf *conf, | 
 | 				    struct r10bio *r10_bio, | 
 | 				    int *max_sectors) | 
 | { | 
 | 	const sector_t this_sector = r10_bio->sector; | 
 | 	int disk, slot; | 
 | 	int sectors = r10_bio->sectors; | 
 | 	int best_good_sectors; | 
 | 	sector_t new_distance, best_dist; | 
 | 	struct md_rdev *rdev, *best_rdev; | 
 | 	int do_balance; | 
 | 	int best_slot; | 
 |  | 
 | 	raid10_find_phys(conf, r10_bio); | 
 | 	rcu_read_lock(); | 
 | retry: | 
 | 	sectors = r10_bio->sectors; | 
 | 	best_slot = -1; | 
 | 	best_rdev = NULL; | 
 | 	best_dist = MaxSector; | 
 | 	best_good_sectors = 0; | 
 | 	do_balance = 1; | 
 | 	/* | 
 | 	 * Check if we can balance. We can balance on the whole | 
 | 	 * device if no resync is going on (recovery is ok), or below | 
 | 	 * the resync window. We take the first readable disk when | 
 | 	 * above the resync window. | 
 | 	 */ | 
 | 	if (conf->mddev->recovery_cp < MaxSector | 
 | 	    && (this_sector + sectors >= conf->next_resync)) | 
 | 		do_balance = 0; | 
 |  | 
 | 	for (slot = 0; slot < conf->copies ; slot++) { | 
 | 		sector_t first_bad; | 
 | 		int bad_sectors; | 
 | 		sector_t dev_sector; | 
 |  | 
 | 		if (r10_bio->devs[slot].bio == IO_BLOCKED) | 
 | 			continue; | 
 | 		disk = r10_bio->devs[slot].devnum; | 
 | 		rdev = rcu_dereference(conf->mirrors[disk].replacement); | 
 | 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) || | 
 | 		    test_bit(Unmerged, &rdev->flags) || | 
 | 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) | 
 | 			rdev = rcu_dereference(conf->mirrors[disk].rdev); | 
 | 		if (rdev == NULL || | 
 | 		    test_bit(Faulty, &rdev->flags) || | 
 | 		    test_bit(Unmerged, &rdev->flags)) | 
 | 			continue; | 
 | 		if (!test_bit(In_sync, &rdev->flags) && | 
 | 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) | 
 | 			continue; | 
 |  | 
 | 		dev_sector = r10_bio->devs[slot].addr; | 
 | 		if (is_badblock(rdev, dev_sector, sectors, | 
 | 				&first_bad, &bad_sectors)) { | 
 | 			if (best_dist < MaxSector) | 
 | 				/* Already have a better slot */ | 
 | 				continue; | 
 | 			if (first_bad <= dev_sector) { | 
 | 				/* Cannot read here.  If this is the | 
 | 				 * 'primary' device, then we must not read | 
 | 				 * beyond 'bad_sectors' from another device. | 
 | 				 */ | 
 | 				bad_sectors -= (dev_sector - first_bad); | 
 | 				if (!do_balance && sectors > bad_sectors) | 
 | 					sectors = bad_sectors; | 
 | 				if (best_good_sectors > sectors) | 
 | 					best_good_sectors = sectors; | 
 | 			} else { | 
 | 				sector_t good_sectors = | 
 | 					first_bad - dev_sector; | 
 | 				if (good_sectors > best_good_sectors) { | 
 | 					best_good_sectors = good_sectors; | 
 | 					best_slot = slot; | 
 | 					best_rdev = rdev; | 
 | 				} | 
 | 				if (!do_balance) | 
 | 					/* Must read from here */ | 
 | 					break; | 
 | 			} | 
 | 			continue; | 
 | 		} else | 
 | 			best_good_sectors = sectors; | 
 |  | 
 | 		if (!do_balance) | 
 | 			break; | 
 |  | 
 | 		/* This optimisation is debatable, and completely destroys | 
 | 		 * sequential read speed for 'far copies' arrays.  So only | 
 | 		 * keep it for 'near' arrays, and review those later. | 
 | 		 */ | 
 | 		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) | 
 | 			break; | 
 |  | 
 | 		/* for far > 1 always use the lowest address */ | 
 | 		if (conf->far_copies > 1) | 
 | 			new_distance = r10_bio->devs[slot].addr; | 
 | 		else | 
 | 			new_distance = abs(r10_bio->devs[slot].addr - | 
 | 					   conf->mirrors[disk].head_position); | 
 | 		if (new_distance < best_dist) { | 
 | 			best_dist = new_distance; | 
 | 			best_slot = slot; | 
 | 			best_rdev = rdev; | 
 | 		} | 
 | 	} | 
 | 	if (slot >= conf->copies) { | 
 | 		slot = best_slot; | 
 | 		rdev = best_rdev; | 
 | 	} | 
 |  | 
 | 	if (slot >= 0) { | 
 | 		atomic_inc(&rdev->nr_pending); | 
 | 		if (test_bit(Faulty, &rdev->flags)) { | 
 | 			/* Cannot risk returning a device that failed | 
 | 			 * before we inc'ed nr_pending | 
 | 			 */ | 
 | 			rdev_dec_pending(rdev, conf->mddev); | 
 | 			goto retry; | 
 | 		} | 
 | 		r10_bio->read_slot = slot; | 
 | 	} else | 
 | 		rdev = NULL; | 
 | 	rcu_read_unlock(); | 
 | 	*max_sectors = best_good_sectors; | 
 |  | 
 | 	return rdev; | 
 | } | 
 |  | 
 | static int raid10_congested(void *data, int bits) | 
 | { | 
 | 	struct mddev *mddev = data; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int i, ret = 0; | 
 |  | 
 | 	if ((bits & (1 << BDI_async_congested)) && | 
 | 	    conf->pending_count >= max_queued_requests) | 
 | 		return 1; | 
 |  | 
 | 	if (mddev_congested(mddev, bits)) | 
 | 		return 1; | 
 | 	rcu_read_lock(); | 
 | 	for (i = 0; i < conf->raid_disks && ret == 0; i++) { | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
 | 		if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
 | 			struct request_queue *q = bdev_get_queue(rdev->bdev); | 
 |  | 
 | 			ret |= bdi_congested(&q->backing_dev_info, bits); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void flush_pending_writes(struct r10conf *conf) | 
 | { | 
 | 	/* Any writes that have been queued but are awaiting | 
 | 	 * bitmap updates get flushed here. | 
 | 	 */ | 
 | 	spin_lock_irq(&conf->device_lock); | 
 |  | 
 | 	if (conf->pending_bio_list.head) { | 
 | 		struct bio *bio; | 
 | 		bio = bio_list_get(&conf->pending_bio_list); | 
 | 		conf->pending_count = 0; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		/* flush any pending bitmap writes to disk | 
 | 		 * before proceeding w/ I/O */ | 
 | 		bitmap_unplug(conf->mddev->bitmap); | 
 | 		wake_up(&conf->wait_barrier); | 
 |  | 
 | 		while (bio) { /* submit pending writes */ | 
 | 			struct bio *next = bio->bi_next; | 
 | 			bio->bi_next = NULL; | 
 | 			generic_make_request(bio); | 
 | 			bio = next; | 
 | 		} | 
 | 	} else | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | } | 
 |  | 
 | /* Barriers.... | 
 |  * Sometimes we need to suspend IO while we do something else, | 
 |  * either some resync/recovery, or reconfigure the array. | 
 |  * To do this we raise a 'barrier'. | 
 |  * The 'barrier' is a counter that can be raised multiple times | 
 |  * to count how many activities are happening which preclude | 
 |  * normal IO. | 
 |  * We can only raise the barrier if there is no pending IO. | 
 |  * i.e. if nr_pending == 0. | 
 |  * We choose only to raise the barrier if no-one is waiting for the | 
 |  * barrier to go down.  This means that as soon as an IO request | 
 |  * is ready, no other operations which require a barrier will start | 
 |  * until the IO request has had a chance. | 
 |  * | 
 |  * So: regular IO calls 'wait_barrier'.  When that returns there | 
 |  *    is no backgroup IO happening,  It must arrange to call | 
 |  *    allow_barrier when it has finished its IO. | 
 |  * backgroup IO calls must call raise_barrier.  Once that returns | 
 |  *    there is no normal IO happeing.  It must arrange to call | 
 |  *    lower_barrier when the particular background IO completes. | 
 |  */ | 
 |  | 
 | static void raise_barrier(struct r10conf *conf, int force) | 
 | { | 
 | 	BUG_ON(force && !conf->barrier); | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 |  | 
 | 	/* Wait until no block IO is waiting (unless 'force') */ | 
 | 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, | 
 | 			    conf->resync_lock, ); | 
 |  | 
 | 	/* block any new IO from starting */ | 
 | 	conf->barrier++; | 
 |  | 
 | 	/* Now wait for all pending IO to complete */ | 
 | 	wait_event_lock_irq(conf->wait_barrier, | 
 | 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH, | 
 | 			    conf->resync_lock, ); | 
 |  | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void lower_barrier(struct r10conf *conf) | 
 | { | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&conf->resync_lock, flags); | 
 | 	conf->barrier--; | 
 | 	spin_unlock_irqrestore(&conf->resync_lock, flags); | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static void wait_barrier(struct r10conf *conf) | 
 | { | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	if (conf->barrier) { | 
 | 		conf->nr_waiting++; | 
 | 		/* Wait for the barrier to drop. | 
 | 		 * However if there are already pending | 
 | 		 * requests (preventing the barrier from | 
 | 		 * rising completely), and the | 
 | 		 * pre-process bio queue isn't empty, | 
 | 		 * then don't wait, as we need to empty | 
 | 		 * that queue to get the nr_pending | 
 | 		 * count down. | 
 | 		 */ | 
 | 		wait_event_lock_irq(conf->wait_barrier, | 
 | 				    !conf->barrier || | 
 | 				    (conf->nr_pending && | 
 | 				     current->bio_list && | 
 | 				     !bio_list_empty(current->bio_list)), | 
 | 				    conf->resync_lock, | 
 | 			); | 
 | 		conf->nr_waiting--; | 
 | 	} | 
 | 	conf->nr_pending++; | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void allow_barrier(struct r10conf *conf) | 
 | { | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&conf->resync_lock, flags); | 
 | 	conf->nr_pending--; | 
 | 	spin_unlock_irqrestore(&conf->resync_lock, flags); | 
 | 	wake_up(&conf->wait_barrier); | 
 | } | 
 |  | 
 | static void freeze_array(struct r10conf *conf, int extra) | 
 | { | 
 | 	/* stop syncio and normal IO and wait for everything to | 
 | 	 * go quiet. | 
 | 	 * We increment barrier and nr_waiting, and then | 
 | 	 * wait until nr_pending match nr_queued+extra | 
 | 	 * This is called in the context of one normal IO request | 
 | 	 * that has failed. Thus any sync request that might be pending | 
 | 	 * will be blocked by nr_pending, and we need to wait for | 
 | 	 * pending IO requests to complete or be queued for re-try. | 
 | 	 * Thus the number queued (nr_queued) plus this request (extra) | 
 | 	 * must match the number of pending IOs (nr_pending) before | 
 | 	 * we continue. | 
 | 	 */ | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	conf->barrier++; | 
 | 	conf->nr_waiting++; | 
 | 	wait_event_lock_irq(conf->wait_barrier, | 
 | 			    conf->nr_pending == conf->nr_queued+extra, | 
 | 			    conf->resync_lock, | 
 | 			    flush_pending_writes(conf)); | 
 |  | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void unfreeze_array(struct r10conf *conf) | 
 | { | 
 | 	/* reverse the effect of the freeze */ | 
 | 	spin_lock_irq(&conf->resync_lock); | 
 | 	conf->barrier--; | 
 | 	conf->nr_waiting--; | 
 | 	wake_up(&conf->wait_barrier); | 
 | 	spin_unlock_irq(&conf->resync_lock); | 
 | } | 
 |  | 
 | static void make_request(struct mddev *mddev, struct bio * bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct r10bio *r10_bio; | 
 | 	struct bio *read_bio; | 
 | 	int i; | 
 | 	int chunk_sects = conf->chunk_mask + 1; | 
 | 	const int rw = bio_data_dir(bio); | 
 | 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); | 
 | 	const unsigned long do_fua = (bio->bi_rw & REQ_FUA); | 
 | 	unsigned long flags; | 
 | 	struct md_rdev *blocked_rdev; | 
 | 	int plugged; | 
 | 	int sectors_handled; | 
 | 	int max_sectors; | 
 |  | 
 | 	if (unlikely(bio->bi_rw & REQ_FLUSH)) { | 
 | 		md_flush_request(mddev, bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* If this request crosses a chunk boundary, we need to | 
 | 	 * split it.  This will only happen for 1 PAGE (or less) requests. | 
 | 	 */ | 
 | 	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) | 
 | 		      > chunk_sects && | 
 | 		    conf->near_copies < conf->raid_disks)) { | 
 | 		struct bio_pair *bp; | 
 | 		/* Sanity check -- queue functions should prevent this happening */ | 
 | 		if (bio->bi_vcnt != 1 || | 
 | 		    bio->bi_idx != 0) | 
 | 			goto bad_map; | 
 | 		/* This is a one page bio that upper layers | 
 | 		 * refuse to split for us, so we need to split it. | 
 | 		 */ | 
 | 		bp = bio_split(bio, | 
 | 			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); | 
 |  | 
 | 		/* Each of these 'make_request' calls will call 'wait_barrier'. | 
 | 		 * If the first succeeds but the second blocks due to the resync | 
 | 		 * thread raising the barrier, we will deadlock because the | 
 | 		 * IO to the underlying device will be queued in generic_make_request | 
 | 		 * and will never complete, so will never reduce nr_pending. | 
 | 		 * So increment nr_waiting here so no new raise_barriers will | 
 | 		 * succeed, and so the second wait_barrier cannot block. | 
 | 		 */ | 
 | 		spin_lock_irq(&conf->resync_lock); | 
 | 		conf->nr_waiting++; | 
 | 		spin_unlock_irq(&conf->resync_lock); | 
 |  | 
 | 		make_request(mddev, &bp->bio1); | 
 | 		make_request(mddev, &bp->bio2); | 
 |  | 
 | 		spin_lock_irq(&conf->resync_lock); | 
 | 		conf->nr_waiting--; | 
 | 		wake_up(&conf->wait_barrier); | 
 | 		spin_unlock_irq(&conf->resync_lock); | 
 |  | 
 | 		bio_pair_release(bp); | 
 | 		return; | 
 | 	bad_map: | 
 | 		printk("md/raid10:%s: make_request bug: can't convert block across chunks" | 
 | 		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, | 
 | 		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10); | 
 |  | 
 | 		bio_io_error(bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	md_write_start(mddev, bio); | 
 |  | 
 | 	/* | 
 | 	 * Register the new request and wait if the reconstruction | 
 | 	 * thread has put up a bar for new requests. | 
 | 	 * Continue immediately if no resync is active currently. | 
 | 	 */ | 
 | 	wait_barrier(conf); | 
 |  | 
 | 	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); | 
 |  | 
 | 	r10_bio->master_bio = bio; | 
 | 	r10_bio->sectors = bio->bi_size >> 9; | 
 |  | 
 | 	r10_bio->mddev = mddev; | 
 | 	r10_bio->sector = bio->bi_sector; | 
 | 	r10_bio->state = 0; | 
 |  | 
 | 	/* We might need to issue multiple reads to different | 
 | 	 * devices if there are bad blocks around, so we keep | 
 | 	 * track of the number of reads in bio->bi_phys_segments. | 
 | 	 * If this is 0, there is only one r10_bio and no locking | 
 | 	 * will be needed when the request completes.  If it is | 
 | 	 * non-zero, then it is the number of not-completed requests. | 
 | 	 */ | 
 | 	bio->bi_phys_segments = 0; | 
 | 	clear_bit(BIO_SEG_VALID, &bio->bi_flags); | 
 |  | 
 | 	if (rw == READ) { | 
 | 		/* | 
 | 		 * read balancing logic: | 
 | 		 */ | 
 | 		struct md_rdev *rdev; | 
 | 		int slot; | 
 |  | 
 | read_again: | 
 | 		rdev = read_balance(conf, r10_bio, &max_sectors); | 
 | 		if (!rdev) { | 
 | 			raid_end_bio_io(r10_bio); | 
 | 			return; | 
 | 		} | 
 | 		slot = r10_bio->read_slot; | 
 |  | 
 | 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
 | 		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector, | 
 | 			    max_sectors); | 
 |  | 
 | 		r10_bio->devs[slot].bio = read_bio; | 
 | 		r10_bio->devs[slot].rdev = rdev; | 
 |  | 
 | 		read_bio->bi_sector = r10_bio->devs[slot].addr + | 
 | 			rdev->data_offset; | 
 | 		read_bio->bi_bdev = rdev->bdev; | 
 | 		read_bio->bi_end_io = raid10_end_read_request; | 
 | 		read_bio->bi_rw = READ | do_sync; | 
 | 		read_bio->bi_private = r10_bio; | 
 |  | 
 | 		if (max_sectors < r10_bio->sectors) { | 
 | 			/* Could not read all from this device, so we will | 
 | 			 * need another r10_bio. | 
 | 			 */ | 
 | 			sectors_handled = (r10_bio->sector + max_sectors | 
 | 					   - bio->bi_sector); | 
 | 			r10_bio->sectors = max_sectors; | 
 | 			spin_lock_irq(&conf->device_lock); | 
 | 			if (bio->bi_phys_segments == 0) | 
 | 				bio->bi_phys_segments = 2; | 
 | 			else | 
 | 				bio->bi_phys_segments++; | 
 | 			spin_unlock_irq(&conf->device_lock); | 
 | 			/* Cannot call generic_make_request directly | 
 | 			 * as that will be queued in __generic_make_request | 
 | 			 * and subsequent mempool_alloc might block | 
 | 			 * waiting for it.  so hand bio over to raid10d. | 
 | 			 */ | 
 | 			reschedule_retry(r10_bio); | 
 |  | 
 | 			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); | 
 |  | 
 | 			r10_bio->master_bio = bio; | 
 | 			r10_bio->sectors = ((bio->bi_size >> 9) | 
 | 					    - sectors_handled); | 
 | 			r10_bio->state = 0; | 
 | 			r10_bio->mddev = mddev; | 
 | 			r10_bio->sector = bio->bi_sector + sectors_handled; | 
 | 			goto read_again; | 
 | 		} else | 
 | 			generic_make_request(read_bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * WRITE: | 
 | 	 */ | 
 | 	if (conf->pending_count >= max_queued_requests) { | 
 | 		md_wakeup_thread(mddev->thread); | 
 | 		wait_event(conf->wait_barrier, | 
 | 			   conf->pending_count < max_queued_requests); | 
 | 	} | 
 | 	/* first select target devices under rcu_lock and | 
 | 	 * inc refcount on their rdev.  Record them by setting | 
 | 	 * bios[x] to bio | 
 | 	 * If there are known/acknowledged bad blocks on any device | 
 | 	 * on which we have seen a write error, we want to avoid | 
 | 	 * writing to those blocks.  This potentially requires several | 
 | 	 * writes to write around the bad blocks.  Each set of writes | 
 | 	 * gets its own r10_bio with a set of bios attached.  The number | 
 | 	 * of r10_bios is recored in bio->bi_phys_segments just as with | 
 | 	 * the read case. | 
 | 	 */ | 
 | 	plugged = mddev_check_plugged(mddev); | 
 |  | 
 | 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ | 
 | 	raid10_find_phys(conf, r10_bio); | 
 | retry_write: | 
 | 	blocked_rdev = NULL; | 
 | 	rcu_read_lock(); | 
 | 	max_sectors = r10_bio->sectors; | 
 |  | 
 | 	for (i = 0;  i < conf->copies; i++) { | 
 | 		int d = r10_bio->devs[i].devnum; | 
 | 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 		struct md_rdev *rrdev = rcu_dereference( | 
 | 			conf->mirrors[d].replacement); | 
 | 		if (rdev == rrdev) | 
 | 			rrdev = NULL; | 
 | 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			blocked_rdev = rdev; | 
 | 			break; | 
 | 		} | 
 | 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { | 
 | 			atomic_inc(&rrdev->nr_pending); | 
 | 			blocked_rdev = rrdev; | 
 | 			break; | 
 | 		} | 
 | 		if (rdev && (test_bit(Faulty, &rdev->flags) | 
 | 			     || test_bit(Unmerged, &rdev->flags))) | 
 | 			rdev = NULL; | 
 | 		if (rrdev && (test_bit(Faulty, &rrdev->flags) | 
 | 			      || test_bit(Unmerged, &rrdev->flags))) | 
 | 			rrdev = NULL; | 
 |  | 
 | 		r10_bio->devs[i].bio = NULL; | 
 | 		r10_bio->devs[i].repl_bio = NULL; | 
 |  | 
 | 		if (!rdev && !rrdev) { | 
 | 			set_bit(R10BIO_Degraded, &r10_bio->state); | 
 | 			continue; | 
 | 		} | 
 | 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { | 
 | 			sector_t first_bad; | 
 | 			sector_t dev_sector = r10_bio->devs[i].addr; | 
 | 			int bad_sectors; | 
 | 			int is_bad; | 
 |  | 
 | 			is_bad = is_badblock(rdev, dev_sector, | 
 | 					     max_sectors, | 
 | 					     &first_bad, &bad_sectors); | 
 | 			if (is_bad < 0) { | 
 | 				/* Mustn't write here until the bad block | 
 | 				 * is acknowledged | 
 | 				 */ | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				set_bit(BlockedBadBlocks, &rdev->flags); | 
 | 				blocked_rdev = rdev; | 
 | 				break; | 
 | 			} | 
 | 			if (is_bad && first_bad <= dev_sector) { | 
 | 				/* Cannot write here at all */ | 
 | 				bad_sectors -= (dev_sector - first_bad); | 
 | 				if (bad_sectors < max_sectors) | 
 | 					/* Mustn't write more than bad_sectors | 
 | 					 * to other devices yet | 
 | 					 */ | 
 | 					max_sectors = bad_sectors; | 
 | 				/* We don't set R10BIO_Degraded as that | 
 | 				 * only applies if the disk is missing, | 
 | 				 * so it might be re-added, and we want to | 
 | 				 * know to recover this chunk. | 
 | 				 * In this case the device is here, and the | 
 | 				 * fact that this chunk is not in-sync is | 
 | 				 * recorded in the bad block log. | 
 | 				 */ | 
 | 				continue; | 
 | 			} | 
 | 			if (is_bad) { | 
 | 				int good_sectors = first_bad - dev_sector; | 
 | 				if (good_sectors < max_sectors) | 
 | 					max_sectors = good_sectors; | 
 | 			} | 
 | 		} | 
 | 		if (rdev) { | 
 | 			r10_bio->devs[i].bio = bio; | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 		} | 
 | 		if (rrdev) { | 
 | 			r10_bio->devs[i].repl_bio = bio; | 
 | 			atomic_inc(&rrdev->nr_pending); | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (unlikely(blocked_rdev)) { | 
 | 		/* Have to wait for this device to get unblocked, then retry */ | 
 | 		int j; | 
 | 		int d; | 
 |  | 
 | 		for (j = 0; j < i; j++) { | 
 | 			if (r10_bio->devs[j].bio) { | 
 | 				d = r10_bio->devs[j].devnum; | 
 | 				rdev_dec_pending(conf->mirrors[d].rdev, mddev); | 
 | 			} | 
 | 			if (r10_bio->devs[j].repl_bio) { | 
 | 				struct md_rdev *rdev; | 
 | 				d = r10_bio->devs[j].devnum; | 
 | 				rdev = conf->mirrors[d].replacement; | 
 | 				if (!rdev) { | 
 | 					/* Race with remove_disk */ | 
 | 					smp_mb(); | 
 | 					rdev = conf->mirrors[d].rdev; | 
 | 				} | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 			} | 
 | 		} | 
 | 		allow_barrier(conf); | 
 | 		md_wait_for_blocked_rdev(blocked_rdev, mddev); | 
 | 		wait_barrier(conf); | 
 | 		goto retry_write; | 
 | 	} | 
 |  | 
 | 	if (max_sectors < r10_bio->sectors) { | 
 | 		/* We are splitting this into multiple parts, so | 
 | 		 * we need to prepare for allocating another r10_bio. | 
 | 		 */ | 
 | 		r10_bio->sectors = max_sectors; | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		if (bio->bi_phys_segments == 0) | 
 | 			bio->bi_phys_segments = 2; | 
 | 		else | 
 | 			bio->bi_phys_segments++; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 	} | 
 | 	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector; | 
 |  | 
 | 	atomic_set(&r10_bio->remaining, 1); | 
 | 	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); | 
 |  | 
 | 	for (i = 0; i < conf->copies; i++) { | 
 | 		struct bio *mbio; | 
 | 		int d = r10_bio->devs[i].devnum; | 
 | 		if (r10_bio->devs[i].bio) { | 
 | 			struct md_rdev *rdev = conf->mirrors[d].rdev; | 
 | 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
 | 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, | 
 | 				    max_sectors); | 
 | 			r10_bio->devs[i].bio = mbio; | 
 |  | 
 | 			mbio->bi_sector	= (r10_bio->devs[i].addr+ | 
 | 					   rdev->data_offset); | 
 | 			mbio->bi_bdev = rdev->bdev; | 
 | 			mbio->bi_end_io	= raid10_end_write_request; | 
 | 			mbio->bi_rw = WRITE | do_sync | do_fua; | 
 | 			mbio->bi_private = r10_bio; | 
 |  | 
 | 			atomic_inc(&r10_bio->remaining); | 
 | 			spin_lock_irqsave(&conf->device_lock, flags); | 
 | 			bio_list_add(&conf->pending_bio_list, mbio); | 
 | 			conf->pending_count++; | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		} | 
 |  | 
 | 		if (r10_bio->devs[i].repl_bio) { | 
 | 			struct md_rdev *rdev = conf->mirrors[d].replacement; | 
 | 			if (rdev == NULL) { | 
 | 				/* Replacement just got moved to main 'rdev' */ | 
 | 				smp_mb(); | 
 | 				rdev = conf->mirrors[d].rdev; | 
 | 			} | 
 | 			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
 | 			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector, | 
 | 				    max_sectors); | 
 | 			r10_bio->devs[i].repl_bio = mbio; | 
 |  | 
 | 			mbio->bi_sector	= (r10_bio->devs[i].addr+ | 
 | 					   rdev->data_offset); | 
 | 			mbio->bi_bdev = rdev->bdev; | 
 | 			mbio->bi_end_io	= raid10_end_write_request; | 
 | 			mbio->bi_rw = WRITE | do_sync | do_fua; | 
 | 			mbio->bi_private = r10_bio; | 
 |  | 
 | 			atomic_inc(&r10_bio->remaining); | 
 | 			spin_lock_irqsave(&conf->device_lock, flags); | 
 | 			bio_list_add(&conf->pending_bio_list, mbio); | 
 | 			conf->pending_count++; | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Don't remove the bias on 'remaining' (one_write_done) until | 
 | 	 * after checking if we need to go around again. | 
 | 	 */ | 
 |  | 
 | 	if (sectors_handled < (bio->bi_size >> 9)) { | 
 | 		one_write_done(r10_bio); | 
 | 		/* We need another r10_bio.  It has already been counted | 
 | 		 * in bio->bi_phys_segments. | 
 | 		 */ | 
 | 		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); | 
 |  | 
 | 		r10_bio->master_bio = bio; | 
 | 		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled; | 
 |  | 
 | 		r10_bio->mddev = mddev; | 
 | 		r10_bio->sector = bio->bi_sector + sectors_handled; | 
 | 		r10_bio->state = 0; | 
 | 		goto retry_write; | 
 | 	} | 
 | 	one_write_done(r10_bio); | 
 |  | 
 | 	/* In case raid10d snuck in to freeze_array */ | 
 | 	wake_up(&conf->wait_barrier); | 
 |  | 
 | 	if (do_sync || !mddev->bitmap || !plugged) | 
 | 		md_wakeup_thread(mddev->thread); | 
 | } | 
 |  | 
 | static void status(struct seq_file *seq, struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int i; | 
 |  | 
 | 	if (conf->near_copies < conf->raid_disks) | 
 | 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); | 
 | 	if (conf->near_copies > 1) | 
 | 		seq_printf(seq, " %d near-copies", conf->near_copies); | 
 | 	if (conf->far_copies > 1) { | 
 | 		if (conf->far_offset) | 
 | 			seq_printf(seq, " %d offset-copies", conf->far_copies); | 
 | 		else | 
 | 			seq_printf(seq, " %d far-copies", conf->far_copies); | 
 | 	} | 
 | 	seq_printf(seq, " [%d/%d] [", conf->raid_disks, | 
 | 					conf->raid_disks - mddev->degraded); | 
 | 	for (i = 0; i < conf->raid_disks; i++) | 
 | 		seq_printf(seq, "%s", | 
 | 			      conf->mirrors[i].rdev && | 
 | 			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); | 
 | 	seq_printf(seq, "]"); | 
 | } | 
 |  | 
 | /* check if there are enough drives for | 
 |  * every block to appear on atleast one. | 
 |  * Don't consider the device numbered 'ignore' | 
 |  * as we might be about to remove it. | 
 |  */ | 
 | static int enough(struct r10conf *conf, int ignore) | 
 | { | 
 | 	int first = 0; | 
 |  | 
 | 	do { | 
 | 		int n = conf->copies; | 
 | 		int cnt = 0; | 
 | 		int this = first; | 
 | 		while (n--) { | 
 | 			if (conf->mirrors[this].rdev && | 
 | 			    this != ignore) | 
 | 				cnt++; | 
 | 			this = (this+1) % conf->raid_disks; | 
 | 		} | 
 | 		if (cnt == 0) | 
 | 			return 0; | 
 | 		first = (first + conf->near_copies) % conf->raid_disks; | 
 | 	} while (first != 0); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void error(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	char b[BDEVNAME_SIZE]; | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	/* | 
 | 	 * If it is not operational, then we have already marked it as dead | 
 | 	 * else if it is the last working disks, ignore the error, let the | 
 | 	 * next level up know. | 
 | 	 * else mark the drive as failed | 
 | 	 */ | 
 | 	if (test_bit(In_sync, &rdev->flags) | 
 | 	    && !enough(conf, rdev->raid_disk)) | 
 | 		/* | 
 | 		 * Don't fail the drive, just return an IO error. | 
 | 		 */ | 
 | 		return; | 
 | 	if (test_and_clear_bit(In_sync, &rdev->flags)) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		mddev->degraded++; | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 		/* | 
 | 		 * if recovery is running, make sure it aborts. | 
 | 		 */ | 
 | 		set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
 | 	} | 
 | 	set_bit(Blocked, &rdev->flags); | 
 | 	set_bit(Faulty, &rdev->flags); | 
 | 	set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
 | 	printk(KERN_ALERT | 
 | 	       "md/raid10:%s: Disk failure on %s, disabling device.\n" | 
 | 	       "md/raid10:%s: Operation continuing on %d devices.\n", | 
 | 	       mdname(mddev), bdevname(rdev->bdev, b), | 
 | 	       mdname(mddev), conf->raid_disks - mddev->degraded); | 
 | } | 
 |  | 
 | static void print_conf(struct r10conf *conf) | 
 | { | 
 | 	int i; | 
 | 	struct mirror_info *tmp; | 
 |  | 
 | 	printk(KERN_DEBUG "RAID10 conf printout:\n"); | 
 | 	if (!conf) { | 
 | 		printk(KERN_DEBUG "(!conf)\n"); | 
 | 		return; | 
 | 	} | 
 | 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, | 
 | 		conf->raid_disks); | 
 |  | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		char b[BDEVNAME_SIZE]; | 
 | 		tmp = conf->mirrors + i; | 
 | 		if (tmp->rdev) | 
 | 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", | 
 | 				i, !test_bit(In_sync, &tmp->rdev->flags), | 
 | 			        !test_bit(Faulty, &tmp->rdev->flags), | 
 | 				bdevname(tmp->rdev->bdev,b)); | 
 | 	} | 
 | } | 
 |  | 
 | static void close_sync(struct r10conf *conf) | 
 | { | 
 | 	wait_barrier(conf); | 
 | 	allow_barrier(conf); | 
 |  | 
 | 	mempool_destroy(conf->r10buf_pool); | 
 | 	conf->r10buf_pool = NULL; | 
 | } | 
 |  | 
 | static int raid10_spare_active(struct mddev *mddev) | 
 | { | 
 | 	int i; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct mirror_info *tmp; | 
 | 	int count = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Find all non-in_sync disks within the RAID10 configuration | 
 | 	 * and mark them in_sync | 
 | 	 */ | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 | 		tmp = conf->mirrors + i; | 
 | 		if (tmp->replacement | 
 | 		    && tmp->replacement->recovery_offset == MaxSector | 
 | 		    && !test_bit(Faulty, &tmp->replacement->flags) | 
 | 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { | 
 | 			/* Replacement has just become active */ | 
 | 			if (!tmp->rdev | 
 | 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) | 
 | 				count++; | 
 | 			if (tmp->rdev) { | 
 | 				/* Replaced device not technically faulty, | 
 | 				 * but we need to be sure it gets removed | 
 | 				 * and never re-added. | 
 | 				 */ | 
 | 				set_bit(Faulty, &tmp->rdev->flags); | 
 | 				sysfs_notify_dirent_safe( | 
 | 					tmp->rdev->sysfs_state); | 
 | 			} | 
 | 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); | 
 | 		} else if (tmp->rdev | 
 | 			   && tmp->rdev->recovery_offset == MaxSector | 
 | 			   && !test_bit(Faulty, &tmp->rdev->flags) | 
 | 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { | 
 | 			count++; | 
 | 			sysfs_notify_dirent(tmp->rdev->sysfs_state); | 
 | 		} | 
 | 	} | 
 | 	spin_lock_irqsave(&conf->device_lock, flags); | 
 | 	mddev->degraded -= count; | 
 | 	spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 	print_conf(conf); | 
 | 	return count; | 
 | } | 
 |  | 
 |  | 
 | static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int err = -EEXIST; | 
 | 	int mirror; | 
 | 	int first = 0; | 
 | 	int last = conf->raid_disks - 1; | 
 | 	struct request_queue *q = bdev_get_queue(rdev->bdev); | 
 |  | 
 | 	if (mddev->recovery_cp < MaxSector) | 
 | 		/* only hot-add to in-sync arrays, as recovery is | 
 | 		 * very different from resync | 
 | 		 */ | 
 | 		return -EBUSY; | 
 | 	if (rdev->saved_raid_disk < 0 && !enough(conf, -1)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (rdev->raid_disk >= 0) | 
 | 		first = last = rdev->raid_disk; | 
 |  | 
 | 	if (q->merge_bvec_fn) { | 
 | 		set_bit(Unmerged, &rdev->flags); | 
 | 		mddev->merge_check_needed = 1; | 
 | 	} | 
 |  | 
 | 	if (rdev->saved_raid_disk >= first && | 
 | 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL) | 
 | 		mirror = rdev->saved_raid_disk; | 
 | 	else | 
 | 		mirror = first; | 
 | 	for ( ; mirror <= last ; mirror++) { | 
 | 		struct mirror_info *p = &conf->mirrors[mirror]; | 
 | 		if (p->recovery_disabled == mddev->recovery_disabled) | 
 | 			continue; | 
 | 		if (p->rdev) { | 
 | 			if (!test_bit(WantReplacement, &p->rdev->flags) || | 
 | 			    p->replacement != NULL) | 
 | 				continue; | 
 | 			clear_bit(In_sync, &rdev->flags); | 
 | 			set_bit(Replacement, &rdev->flags); | 
 | 			rdev->raid_disk = mirror; | 
 | 			err = 0; | 
 | 			disk_stack_limits(mddev->gendisk, rdev->bdev, | 
 | 					  rdev->data_offset << 9); | 
 | 			conf->fullsync = 1; | 
 | 			rcu_assign_pointer(p->replacement, rdev); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		disk_stack_limits(mddev->gendisk, rdev->bdev, | 
 | 				  rdev->data_offset << 9); | 
 |  | 
 | 		p->head_position = 0; | 
 | 		p->recovery_disabled = mddev->recovery_disabled - 1; | 
 | 		rdev->raid_disk = mirror; | 
 | 		err = 0; | 
 | 		if (rdev->saved_raid_disk != mirror) | 
 | 			conf->fullsync = 1; | 
 | 		rcu_assign_pointer(p->rdev, rdev); | 
 | 		break; | 
 | 	} | 
 | 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) { | 
 | 		/* Some requests might not have seen this new | 
 | 		 * merge_bvec_fn.  We must wait for them to complete | 
 | 		 * before merging the device fully. | 
 | 		 * First we make sure any code which has tested | 
 | 		 * our function has submitted the request, then | 
 | 		 * we wait for all outstanding requests to complete. | 
 | 		 */ | 
 | 		synchronize_sched(); | 
 | 		freeze_array(conf, 0); | 
 | 		unfreeze_array(conf); | 
 | 		clear_bit(Unmerged, &rdev->flags); | 
 | 	} | 
 | 	md_integrity_add_rdev(rdev, mddev); | 
 | 	print_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int err = 0; | 
 | 	int number = rdev->raid_disk; | 
 | 	struct md_rdev **rdevp; | 
 | 	struct mirror_info *p = conf->mirrors + number; | 
 |  | 
 | 	print_conf(conf); | 
 | 	if (rdev == p->rdev) | 
 | 		rdevp = &p->rdev; | 
 | 	else if (rdev == p->replacement) | 
 | 		rdevp = &p->replacement; | 
 | 	else | 
 | 		return 0; | 
 |  | 
 | 	if (test_bit(In_sync, &rdev->flags) || | 
 | 	    atomic_read(&rdev->nr_pending)) { | 
 | 		err = -EBUSY; | 
 | 		goto abort; | 
 | 	} | 
 | 	/* Only remove faulty devices if recovery | 
 | 	 * is not possible. | 
 | 	 */ | 
 | 	if (!test_bit(Faulty, &rdev->flags) && | 
 | 	    mddev->recovery_disabled != p->recovery_disabled && | 
 | 	    (!p->replacement || p->replacement == rdev) && | 
 | 	    enough(conf, -1)) { | 
 | 		err = -EBUSY; | 
 | 		goto abort; | 
 | 	} | 
 | 	*rdevp = NULL; | 
 | 	synchronize_rcu(); | 
 | 	if (atomic_read(&rdev->nr_pending)) { | 
 | 		/* lost the race, try later */ | 
 | 		err = -EBUSY; | 
 | 		*rdevp = rdev; | 
 | 		goto abort; | 
 | 	} else if (p->replacement) { | 
 | 		/* We must have just cleared 'rdev' */ | 
 | 		p->rdev = p->replacement; | 
 | 		clear_bit(Replacement, &p->replacement->flags); | 
 | 		smp_mb(); /* Make sure other CPUs may see both as identical | 
 | 			   * but will never see neither -- if they are careful. | 
 | 			   */ | 
 | 		p->replacement = NULL; | 
 | 		clear_bit(WantReplacement, &rdev->flags); | 
 | 	} else | 
 | 		/* We might have just remove the Replacement as faulty | 
 | 		 * Clear the flag just in case | 
 | 		 */ | 
 | 		clear_bit(WantReplacement, &rdev->flags); | 
 |  | 
 | 	err = md_integrity_register(mddev); | 
 |  | 
 | abort: | 
 |  | 
 | 	print_conf(conf); | 
 | 	return err; | 
 | } | 
 |  | 
 |  | 
 | static void end_sync_read(struct bio *bio, int error) | 
 | { | 
 | 	struct r10bio *r10_bio = bio->bi_private; | 
 | 	struct r10conf *conf = r10_bio->mddev->private; | 
 | 	int d; | 
 |  | 
 | 	d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); | 
 |  | 
 | 	if (test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
 | 		set_bit(R10BIO_Uptodate, &r10_bio->state); | 
 | 	else | 
 | 		/* The write handler will notice the lack of | 
 | 		 * R10BIO_Uptodate and record any errors etc | 
 | 		 */ | 
 | 		atomic_add(r10_bio->sectors, | 
 | 			   &conf->mirrors[d].rdev->corrected_errors); | 
 |  | 
 | 	/* for reconstruct, we always reschedule after a read. | 
 | 	 * for resync, only after all reads | 
 | 	 */ | 
 | 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); | 
 | 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) || | 
 | 	    atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		/* we have read all the blocks, | 
 | 		 * do the comparison in process context in raid10d | 
 | 		 */ | 
 | 		reschedule_retry(r10_bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void end_sync_request(struct r10bio *r10_bio) | 
 | { | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 |  | 
 | 	while (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		if (r10_bio->master_bio == NULL) { | 
 | 			/* the primary of several recovery bios */ | 
 | 			sector_t s = r10_bio->sectors; | 
 | 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
 | 			    test_bit(R10BIO_WriteError, &r10_bio->state)) | 
 | 				reschedule_retry(r10_bio); | 
 | 			else | 
 | 				put_buf(r10_bio); | 
 | 			md_done_sync(mddev, s, 1); | 
 | 			break; | 
 | 		} else { | 
 | 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; | 
 | 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
 | 			    test_bit(R10BIO_WriteError, &r10_bio->state)) | 
 | 				reschedule_retry(r10_bio); | 
 | 			else | 
 | 				put_buf(r10_bio); | 
 | 			r10_bio = r10_bio2; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void end_sync_write(struct bio *bio, int error) | 
 | { | 
 | 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	struct r10bio *r10_bio = bio->bi_private; | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int d; | 
 | 	sector_t first_bad; | 
 | 	int bad_sectors; | 
 | 	int slot; | 
 | 	int repl; | 
 | 	struct md_rdev *rdev = NULL; | 
 |  | 
 | 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
 | 	if (repl) | 
 | 		rdev = conf->mirrors[d].replacement; | 
 | 	else | 
 | 		rdev = conf->mirrors[d].rdev; | 
 |  | 
 | 	if (!uptodate) { | 
 | 		if (repl) | 
 | 			md_error(mddev, rdev); | 
 | 		else { | 
 | 			set_bit(WriteErrorSeen, &rdev->flags); | 
 | 			if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
 | 				set_bit(MD_RECOVERY_NEEDED, | 
 | 					&rdev->mddev->recovery); | 
 | 			set_bit(R10BIO_WriteError, &r10_bio->state); | 
 | 		} | 
 | 	} else if (is_badblock(rdev, | 
 | 			     r10_bio->devs[slot].addr, | 
 | 			     r10_bio->sectors, | 
 | 			     &first_bad, &bad_sectors)) | 
 | 		set_bit(R10BIO_MadeGood, &r10_bio->state); | 
 |  | 
 | 	rdev_dec_pending(rdev, mddev); | 
 |  | 
 | 	end_sync_request(r10_bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Note: sync and recover and handled very differently for raid10 | 
 |  * This code is for resync. | 
 |  * For resync, we read through virtual addresses and read all blocks. | 
 |  * If there is any error, we schedule a write.  The lowest numbered | 
 |  * drive is authoritative. | 
 |  * However requests come for physical address, so we need to map. | 
 |  * For every physical address there are raid_disks/copies virtual addresses, | 
 |  * which is always are least one, but is not necessarly an integer. | 
 |  * This means that a physical address can span multiple chunks, so we may | 
 |  * have to submit multiple io requests for a single sync request. | 
 |  */ | 
 | /* | 
 |  * We check if all blocks are in-sync and only write to blocks that | 
 |  * aren't in sync | 
 |  */ | 
 | static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int i, first; | 
 | 	struct bio *tbio, *fbio; | 
 | 	int vcnt; | 
 |  | 
 | 	atomic_set(&r10_bio->remaining, 1); | 
 |  | 
 | 	/* find the first device with a block */ | 
 | 	for (i=0; i<conf->copies; i++) | 
 | 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) | 
 | 			break; | 
 |  | 
 | 	if (i == conf->copies) | 
 | 		goto done; | 
 |  | 
 | 	first = i; | 
 | 	fbio = r10_bio->devs[i].bio; | 
 |  | 
 | 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); | 
 | 	/* now find blocks with errors */ | 
 | 	for (i=0 ; i < conf->copies ; i++) { | 
 | 		int  j, d; | 
 |  | 
 | 		tbio = r10_bio->devs[i].bio; | 
 |  | 
 | 		if (tbio->bi_end_io != end_sync_read) | 
 | 			continue; | 
 | 		if (i == first) | 
 | 			continue; | 
 | 		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { | 
 | 			/* We know that the bi_io_vec layout is the same for | 
 | 			 * both 'first' and 'i', so we just compare them. | 
 | 			 * All vec entries are PAGE_SIZE; | 
 | 			 */ | 
 | 			for (j = 0; j < vcnt; j++) | 
 | 				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), | 
 | 					   page_address(tbio->bi_io_vec[j].bv_page), | 
 | 					   fbio->bi_io_vec[j].bv_len)) | 
 | 					break; | 
 | 			if (j == vcnt) | 
 | 				continue; | 
 | 			mddev->resync_mismatches += r10_bio->sectors; | 
 | 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) | 
 | 				/* Don't fix anything. */ | 
 | 				continue; | 
 | 		} | 
 | 		/* Ok, we need to write this bio, either to correct an | 
 | 		 * inconsistency or to correct an unreadable block. | 
 | 		 * First we need to fixup bv_offset, bv_len and | 
 | 		 * bi_vecs, as the read request might have corrupted these | 
 | 		 */ | 
 | 		tbio->bi_vcnt = vcnt; | 
 | 		tbio->bi_size = r10_bio->sectors << 9; | 
 | 		tbio->bi_idx = 0; | 
 | 		tbio->bi_phys_segments = 0; | 
 | 		tbio->bi_flags &= ~(BIO_POOL_MASK - 1); | 
 | 		tbio->bi_flags |= 1 << BIO_UPTODATE; | 
 | 		tbio->bi_next = NULL; | 
 | 		tbio->bi_rw = WRITE; | 
 | 		tbio->bi_private = r10_bio; | 
 | 		tbio->bi_sector = r10_bio->devs[i].addr; | 
 |  | 
 | 		for (j=0; j < vcnt ; j++) { | 
 | 			tbio->bi_io_vec[j].bv_offset = 0; | 
 | 			tbio->bi_io_vec[j].bv_len = PAGE_SIZE; | 
 |  | 
 | 			memcpy(page_address(tbio->bi_io_vec[j].bv_page), | 
 | 			       page_address(fbio->bi_io_vec[j].bv_page), | 
 | 			       PAGE_SIZE); | 
 | 		} | 
 | 		tbio->bi_end_io = end_sync_write; | 
 |  | 
 | 		d = r10_bio->devs[i].devnum; | 
 | 		atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 		atomic_inc(&r10_bio->remaining); | 
 | 		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); | 
 |  | 
 | 		tbio->bi_sector += conf->mirrors[d].rdev->data_offset; | 
 | 		tbio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
 | 		generic_make_request(tbio); | 
 | 	} | 
 |  | 
 | 	/* Now write out to any replacement devices | 
 | 	 * that are active | 
 | 	 */ | 
 | 	for (i = 0; i < conf->copies; i++) { | 
 | 		int j, d; | 
 |  | 
 | 		tbio = r10_bio->devs[i].repl_bio; | 
 | 		if (!tbio || !tbio->bi_end_io) | 
 | 			continue; | 
 | 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write | 
 | 		    && r10_bio->devs[i].bio != fbio) | 
 | 			for (j = 0; j < vcnt; j++) | 
 | 				memcpy(page_address(tbio->bi_io_vec[j].bv_page), | 
 | 				       page_address(fbio->bi_io_vec[j].bv_page), | 
 | 				       PAGE_SIZE); | 
 | 		d = r10_bio->devs[i].devnum; | 
 | 		atomic_inc(&r10_bio->remaining); | 
 | 		md_sync_acct(conf->mirrors[d].replacement->bdev, | 
 | 			     tbio->bi_size >> 9); | 
 | 		generic_make_request(tbio); | 
 | 	} | 
 |  | 
 | done: | 
 | 	if (atomic_dec_and_test(&r10_bio->remaining)) { | 
 | 		md_done_sync(mddev, r10_bio->sectors, 1); | 
 | 		put_buf(r10_bio); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Now for the recovery code. | 
 |  * Recovery happens across physical sectors. | 
 |  * We recover all non-is_sync drives by finding the virtual address of | 
 |  * each, and then choose a working drive that also has that virt address. | 
 |  * There is a separate r10_bio for each non-in_sync drive. | 
 |  * Only the first two slots are in use. The first for reading, | 
 |  * The second for writing. | 
 |  * | 
 |  */ | 
 | static void fix_recovery_read_error(struct r10bio *r10_bio) | 
 | { | 
 | 	/* We got a read error during recovery. | 
 | 	 * We repeat the read in smaller page-sized sections. | 
 | 	 * If a read succeeds, write it to the new device or record | 
 | 	 * a bad block if we cannot. | 
 | 	 * If a read fails, record a bad block on both old and | 
 | 	 * new devices. | 
 | 	 */ | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct bio *bio = r10_bio->devs[0].bio; | 
 | 	sector_t sect = 0; | 
 | 	int sectors = r10_bio->sectors; | 
 | 	int idx = 0; | 
 | 	int dr = r10_bio->devs[0].devnum; | 
 | 	int dw = r10_bio->devs[1].devnum; | 
 |  | 
 | 	while (sectors) { | 
 | 		int s = sectors; | 
 | 		struct md_rdev *rdev; | 
 | 		sector_t addr; | 
 | 		int ok; | 
 |  | 
 | 		if (s > (PAGE_SIZE>>9)) | 
 | 			s = PAGE_SIZE >> 9; | 
 |  | 
 | 		rdev = conf->mirrors[dr].rdev; | 
 | 		addr = r10_bio->devs[0].addr + sect, | 
 | 		ok = sync_page_io(rdev, | 
 | 				  addr, | 
 | 				  s << 9, | 
 | 				  bio->bi_io_vec[idx].bv_page, | 
 | 				  READ, false); | 
 | 		if (ok) { | 
 | 			rdev = conf->mirrors[dw].rdev; | 
 | 			addr = r10_bio->devs[1].addr + sect; | 
 | 			ok = sync_page_io(rdev, | 
 | 					  addr, | 
 | 					  s << 9, | 
 | 					  bio->bi_io_vec[idx].bv_page, | 
 | 					  WRITE, false); | 
 | 			if (!ok) { | 
 | 				set_bit(WriteErrorSeen, &rdev->flags); | 
 | 				if (!test_and_set_bit(WantReplacement, | 
 | 						      &rdev->flags)) | 
 | 					set_bit(MD_RECOVERY_NEEDED, | 
 | 						&rdev->mddev->recovery); | 
 | 			} | 
 | 		} | 
 | 		if (!ok) { | 
 | 			/* We don't worry if we cannot set a bad block - | 
 | 			 * it really is bad so there is no loss in not | 
 | 			 * recording it yet | 
 | 			 */ | 
 | 			rdev_set_badblocks(rdev, addr, s, 0); | 
 |  | 
 | 			if (rdev != conf->mirrors[dw].rdev) { | 
 | 				/* need bad block on destination too */ | 
 | 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev; | 
 | 				addr = r10_bio->devs[1].addr + sect; | 
 | 				ok = rdev_set_badblocks(rdev2, addr, s, 0); | 
 | 				if (!ok) { | 
 | 					/* just abort the recovery */ | 
 | 					printk(KERN_NOTICE | 
 | 					       "md/raid10:%s: recovery aborted" | 
 | 					       " due to read error\n", | 
 | 					       mdname(mddev)); | 
 |  | 
 | 					conf->mirrors[dw].recovery_disabled | 
 | 						= mddev->recovery_disabled; | 
 | 					set_bit(MD_RECOVERY_INTR, | 
 | 						&mddev->recovery); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		sectors -= s; | 
 | 		sect += s; | 
 | 		idx++; | 
 | 	} | 
 | } | 
 |  | 
 | static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	int d; | 
 | 	struct bio *wbio, *wbio2; | 
 |  | 
 | 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { | 
 | 		fix_recovery_read_error(r10_bio); | 
 | 		end_sync_request(r10_bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * share the pages with the first bio | 
 | 	 * and submit the write request | 
 | 	 */ | 
 | 	d = r10_bio->devs[1].devnum; | 
 | 	wbio = r10_bio->devs[1].bio; | 
 | 	wbio2 = r10_bio->devs[1].repl_bio; | 
 | 	/* Need to test wbio2->bi_end_io before we call | 
 | 	 * generic_make_request as if the former is NULL, | 
 | 	 * the latter is free to free wbio2. | 
 | 	 */ | 
 | 	if (wbio2 && !wbio2->bi_end_io) | 
 | 		wbio2 = NULL; | 
 | 	if (wbio->bi_end_io) { | 
 | 		atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); | 
 | 		generic_make_request(wbio); | 
 | 	} | 
 | 	if (wbio2) { | 
 | 		atomic_inc(&conf->mirrors[d].replacement->nr_pending); | 
 | 		md_sync_acct(conf->mirrors[d].replacement->bdev, | 
 | 			     wbio2->bi_size >> 9); | 
 | 		generic_make_request(wbio2); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Used by fix_read_error() to decay the per rdev read_errors. | 
 |  * We halve the read error count for every hour that has elapsed | 
 |  * since the last recorded read error. | 
 |  * | 
 |  */ | 
 | static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) | 
 | { | 
 | 	struct timespec cur_time_mon; | 
 | 	unsigned long hours_since_last; | 
 | 	unsigned int read_errors = atomic_read(&rdev->read_errors); | 
 |  | 
 | 	ktime_get_ts(&cur_time_mon); | 
 |  | 
 | 	if (rdev->last_read_error.tv_sec == 0 && | 
 | 	    rdev->last_read_error.tv_nsec == 0) { | 
 | 		/* first time we've seen a read error */ | 
 | 		rdev->last_read_error = cur_time_mon; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	hours_since_last = (cur_time_mon.tv_sec - | 
 | 			    rdev->last_read_error.tv_sec) / 3600; | 
 |  | 
 | 	rdev->last_read_error = cur_time_mon; | 
 |  | 
 | 	/* | 
 | 	 * if hours_since_last is > the number of bits in read_errors | 
 | 	 * just set read errors to 0. We do this to avoid | 
 | 	 * overflowing the shift of read_errors by hours_since_last. | 
 | 	 */ | 
 | 	if (hours_since_last >= 8 * sizeof(read_errors)) | 
 | 		atomic_set(&rdev->read_errors, 0); | 
 | 	else | 
 | 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last); | 
 | } | 
 |  | 
 | static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, | 
 | 			    int sectors, struct page *page, int rw) | 
 | { | 
 | 	sector_t first_bad; | 
 | 	int bad_sectors; | 
 |  | 
 | 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) | 
 | 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) | 
 | 		return -1; | 
 | 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) | 
 | 		/* success */ | 
 | 		return 1; | 
 | 	if (rw == WRITE) { | 
 | 		set_bit(WriteErrorSeen, &rdev->flags); | 
 | 		if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
 | 			set_bit(MD_RECOVERY_NEEDED, | 
 | 				&rdev->mddev->recovery); | 
 | 	} | 
 | 	/* need to record an error - either for the block or the device */ | 
 | 	if (!rdev_set_badblocks(rdev, sector, sectors, 0)) | 
 | 		md_error(rdev->mddev, rdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a kernel thread which: | 
 |  * | 
 |  *	1.	Retries failed read operations on working mirrors. | 
 |  *	2.	Updates the raid superblock when problems encounter. | 
 |  *	3.	Performs writes following reads for array synchronising. | 
 |  */ | 
 |  | 
 | static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	int sect = 0; /* Offset from r10_bio->sector */ | 
 | 	int sectors = r10_bio->sectors; | 
 | 	struct md_rdev*rdev; | 
 | 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors); | 
 | 	int d = r10_bio->devs[r10_bio->read_slot].devnum; | 
 |  | 
 | 	/* still own a reference to this rdev, so it cannot | 
 | 	 * have been cleared recently. | 
 | 	 */ | 
 | 	rdev = conf->mirrors[d].rdev; | 
 |  | 
 | 	if (test_bit(Faulty, &rdev->flags)) | 
 | 		/* drive has already been failed, just ignore any | 
 | 		   more fix_read_error() attempts */ | 
 | 		return; | 
 |  | 
 | 	check_decay_read_errors(mddev, rdev); | 
 | 	atomic_inc(&rdev->read_errors); | 
 | 	if (atomic_read(&rdev->read_errors) > max_read_errors) { | 
 | 		char b[BDEVNAME_SIZE]; | 
 | 		bdevname(rdev->bdev, b); | 
 |  | 
 | 		printk(KERN_NOTICE | 
 | 		       "md/raid10:%s: %s: Raid device exceeded " | 
 | 		       "read_error threshold [cur %d:max %d]\n", | 
 | 		       mdname(mddev), b, | 
 | 		       atomic_read(&rdev->read_errors), max_read_errors); | 
 | 		printk(KERN_NOTICE | 
 | 		       "md/raid10:%s: %s: Failing raid device\n", | 
 | 		       mdname(mddev), b); | 
 | 		md_error(mddev, conf->mirrors[d].rdev); | 
 | 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	while(sectors) { | 
 | 		int s = sectors; | 
 | 		int sl = r10_bio->read_slot; | 
 | 		int success = 0; | 
 | 		int start; | 
 |  | 
 | 		if (s > (PAGE_SIZE>>9)) | 
 | 			s = PAGE_SIZE >> 9; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		do { | 
 | 			sector_t first_bad; | 
 | 			int bad_sectors; | 
 |  | 
 | 			d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (rdev && | 
 | 			    !test_bit(Unmerged, &rdev->flags) && | 
 | 			    test_bit(In_sync, &rdev->flags) && | 
 | 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, | 
 | 					&first_bad, &bad_sectors) == 0) { | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				rcu_read_unlock(); | 
 | 				success = sync_page_io(rdev, | 
 | 						       r10_bio->devs[sl].addr + | 
 | 						       sect, | 
 | 						       s<<9, | 
 | 						       conf->tmppage, READ, false); | 
 | 				rdev_dec_pending(rdev, mddev); | 
 | 				rcu_read_lock(); | 
 | 				if (success) | 
 | 					break; | 
 | 			} | 
 | 			sl++; | 
 | 			if (sl == conf->copies) | 
 | 				sl = 0; | 
 | 		} while (!success && sl != r10_bio->read_slot); | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if (!success) { | 
 | 			/* Cannot read from anywhere, just mark the block | 
 | 			 * as bad on the first device to discourage future | 
 | 			 * reads. | 
 | 			 */ | 
 | 			int dn = r10_bio->devs[r10_bio->read_slot].devnum; | 
 | 			rdev = conf->mirrors[dn].rdev; | 
 |  | 
 | 			if (!rdev_set_badblocks( | 
 | 				    rdev, | 
 | 				    r10_bio->devs[r10_bio->read_slot].addr | 
 | 				    + sect, | 
 | 				    s, 0)) { | 
 | 				md_error(mddev, rdev); | 
 | 				r10_bio->devs[r10_bio->read_slot].bio | 
 | 					= IO_BLOCKED; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		start = sl; | 
 | 		/* write it back and re-read */ | 
 | 		rcu_read_lock(); | 
 | 		while (sl != r10_bio->read_slot) { | 
 | 			char b[BDEVNAME_SIZE]; | 
 |  | 
 | 			if (sl==0) | 
 | 				sl = conf->copies; | 
 | 			sl--; | 
 | 			d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (!rdev || | 
 | 			    test_bit(Unmerged, &rdev->flags) || | 
 | 			    !test_bit(In_sync, &rdev->flags)) | 
 | 				continue; | 
 |  | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			rcu_read_unlock(); | 
 | 			if (r10_sync_page_io(rdev, | 
 | 					     r10_bio->devs[sl].addr + | 
 | 					     sect, | 
 | 					     s, conf->tmppage, WRITE) | 
 | 			    == 0) { | 
 | 				/* Well, this device is dead */ | 
 | 				printk(KERN_NOTICE | 
 | 				       "md/raid10:%s: read correction " | 
 | 				       "write failed" | 
 | 				       " (%d sectors at %llu on %s)\n", | 
 | 				       mdname(mddev), s, | 
 | 				       (unsigned long long)( | 
 | 					       sect + rdev->data_offset), | 
 | 				       bdevname(rdev->bdev, b)); | 
 | 				printk(KERN_NOTICE "md/raid10:%s: %s: failing " | 
 | 				       "drive\n", | 
 | 				       mdname(mddev), | 
 | 				       bdevname(rdev->bdev, b)); | 
 | 			} | 
 | 			rdev_dec_pending(rdev, mddev); | 
 | 			rcu_read_lock(); | 
 | 		} | 
 | 		sl = start; | 
 | 		while (sl != r10_bio->read_slot) { | 
 | 			char b[BDEVNAME_SIZE]; | 
 |  | 
 | 			if (sl==0) | 
 | 				sl = conf->copies; | 
 | 			sl--; | 
 | 			d = r10_bio->devs[sl].devnum; | 
 | 			rdev = rcu_dereference(conf->mirrors[d].rdev); | 
 | 			if (!rdev || | 
 | 			    !test_bit(In_sync, &rdev->flags)) | 
 | 				continue; | 
 |  | 
 | 			atomic_inc(&rdev->nr_pending); | 
 | 			rcu_read_unlock(); | 
 | 			switch (r10_sync_page_io(rdev, | 
 | 					     r10_bio->devs[sl].addr + | 
 | 					     sect, | 
 | 					     s, conf->tmppage, | 
 | 						 READ)) { | 
 | 			case 0: | 
 | 				/* Well, this device is dead */ | 
 | 				printk(KERN_NOTICE | 
 | 				       "md/raid10:%s: unable to read back " | 
 | 				       "corrected sectors" | 
 | 				       " (%d sectors at %llu on %s)\n", | 
 | 				       mdname(mddev), s, | 
 | 				       (unsigned long long)( | 
 | 					       sect + rdev->data_offset), | 
 | 				       bdevname(rdev->bdev, b)); | 
 | 				printk(KERN_NOTICE "md/raid10:%s: %s: failing " | 
 | 				       "drive\n", | 
 | 				       mdname(mddev), | 
 | 				       bdevname(rdev->bdev, b)); | 
 | 				break; | 
 | 			case 1: | 
 | 				printk(KERN_INFO | 
 | 				       "md/raid10:%s: read error corrected" | 
 | 				       " (%d sectors at %llu on %s)\n", | 
 | 				       mdname(mddev), s, | 
 | 				       (unsigned long long)( | 
 | 					       sect + rdev->data_offset), | 
 | 				       bdevname(rdev->bdev, b)); | 
 | 				atomic_add(s, &rdev->corrected_errors); | 
 | 			} | 
 |  | 
 | 			rdev_dec_pending(rdev, mddev); | 
 | 			rcu_read_lock(); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		sectors -= s; | 
 | 		sect += s; | 
 | 	} | 
 | } | 
 |  | 
 | static void bi_complete(struct bio *bio, int error) | 
 | { | 
 | 	complete((struct completion *)bio->bi_private); | 
 | } | 
 |  | 
 | static int submit_bio_wait(int rw, struct bio *bio) | 
 | { | 
 | 	struct completion event; | 
 | 	rw |= REQ_SYNC; | 
 |  | 
 | 	init_completion(&event); | 
 | 	bio->bi_private = &event; | 
 | 	bio->bi_end_io = bi_complete; | 
 | 	submit_bio(rw, bio); | 
 | 	wait_for_completion(&event); | 
 |  | 
 | 	return test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | } | 
 |  | 
 | static int narrow_write_error(struct r10bio *r10_bio, int i) | 
 | { | 
 | 	struct bio *bio = r10_bio->master_bio; | 
 | 	struct mddev *mddev = r10_bio->mddev; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; | 
 | 	/* bio has the data to be written to slot 'i' where | 
 | 	 * we just recently had a write error. | 
 | 	 * We repeatedly clone the bio and trim down to one block, | 
 | 	 * then try the write.  Where the write fails we record | 
 | 	 * a bad block. | 
 | 	 * It is conceivable that the bio doesn't exactly align with | 
 | 	 * blocks.  We must handle this. | 
 | 	 * | 
 | 	 * We currently own a reference to the rdev. | 
 | 	 */ | 
 |  | 
 | 	int block_sectors; | 
 | 	sector_t sector; | 
 | 	int sectors; | 
 | 	int sect_to_write = r10_bio->sectors; | 
 | 	int ok = 1; | 
 |  | 
 | 	if (rdev->badblocks.shift < 0) | 
 | 		return 0; | 
 |  | 
 | 	block_sectors = 1 << rdev->badblocks.shift; | 
 | 	sector = r10_bio->sector; | 
 | 	sectors = ((r10_bio->sector + block_sectors) | 
 | 		   & ~(sector_t)(block_sectors - 1)) | 
 | 		- sector; | 
 |  | 
 | 	while (sect_to_write) { | 
 | 		struct bio *wbio; | 
 | 		if (sectors > sect_to_write) | 
 | 			sectors = sect_to_write; | 
 | 		/* Write at 'sector' for 'sectors' */ | 
 | 		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
 | 		md_trim_bio(wbio, sector - bio->bi_sector, sectors); | 
 | 		wbio->bi_sector = (r10_bio->devs[i].addr+ | 
 | 				   rdev->data_offset+ | 
 | 				   (sector - r10_bio->sector)); | 
 | 		wbio->bi_bdev = rdev->bdev; | 
 | 		if (submit_bio_wait(WRITE, wbio) == 0) | 
 | 			/* Failure! */ | 
 | 			ok = rdev_set_badblocks(rdev, sector, | 
 | 						sectors, 0) | 
 | 				&& ok; | 
 |  | 
 | 		bio_put(wbio); | 
 | 		sect_to_write -= sectors; | 
 | 		sector += sectors; | 
 | 		sectors = block_sectors; | 
 | 	} | 
 | 	return ok; | 
 | } | 
 |  | 
 | static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) | 
 | { | 
 | 	int slot = r10_bio->read_slot; | 
 | 	struct bio *bio; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct md_rdev *rdev = r10_bio->devs[slot].rdev; | 
 | 	char b[BDEVNAME_SIZE]; | 
 | 	unsigned long do_sync; | 
 | 	int max_sectors; | 
 |  | 
 | 	/* we got a read error. Maybe the drive is bad.  Maybe just | 
 | 	 * the block and we can fix it. | 
 | 	 * We freeze all other IO, and try reading the block from | 
 | 	 * other devices.  When we find one, we re-write | 
 | 	 * and check it that fixes the read error. | 
 | 	 * This is all done synchronously while the array is | 
 | 	 * frozen. | 
 | 	 */ | 
 | 	bio = r10_bio->devs[slot].bio; | 
 | 	bdevname(bio->bi_bdev, b); | 
 | 	bio_put(bio); | 
 | 	r10_bio->devs[slot].bio = NULL; | 
 |  | 
 | 	if (mddev->ro == 0) { | 
 | 		freeze_array(conf, 1); | 
 | 		fix_read_error(conf, mddev, r10_bio); | 
 | 		unfreeze_array(conf); | 
 | 	} else | 
 | 		r10_bio->devs[slot].bio = IO_BLOCKED; | 
 |  | 
 | 	rdev_dec_pending(rdev, mddev); | 
 |  | 
 | read_more: | 
 | 	rdev = read_balance(conf, r10_bio, &max_sectors); | 
 | 	if (rdev == NULL) { | 
 | 		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" | 
 | 		       " read error for block %llu\n", | 
 | 		       mdname(mddev), b, | 
 | 		       (unsigned long long)r10_bio->sector); | 
 | 		raid_end_bio_io(r10_bio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); | 
 | 	slot = r10_bio->read_slot; | 
 | 	printk_ratelimited( | 
 | 		KERN_ERR | 
 | 		"md/raid10:%s: %s: redirecting " | 
 | 		"sector %llu to another mirror\n", | 
 | 		mdname(mddev), | 
 | 		bdevname(rdev->bdev, b), | 
 | 		(unsigned long long)r10_bio->sector); | 
 | 	bio = bio_clone_mddev(r10_bio->master_bio, | 
 | 			      GFP_NOIO, mddev); | 
 | 	md_trim_bio(bio, | 
 | 		    r10_bio->sector - bio->bi_sector, | 
 | 		    max_sectors); | 
 | 	r10_bio->devs[slot].bio = bio; | 
 | 	r10_bio->devs[slot].rdev = rdev; | 
 | 	bio->bi_sector = r10_bio->devs[slot].addr | 
 | 		+ rdev->data_offset; | 
 | 	bio->bi_bdev = rdev->bdev; | 
 | 	bio->bi_rw = READ | do_sync; | 
 | 	bio->bi_private = r10_bio; | 
 | 	bio->bi_end_io = raid10_end_read_request; | 
 | 	if (max_sectors < r10_bio->sectors) { | 
 | 		/* Drat - have to split this up more */ | 
 | 		struct bio *mbio = r10_bio->master_bio; | 
 | 		int sectors_handled = | 
 | 			r10_bio->sector + max_sectors | 
 | 			- mbio->bi_sector; | 
 | 		r10_bio->sectors = max_sectors; | 
 | 		spin_lock_irq(&conf->device_lock); | 
 | 		if (mbio->bi_phys_segments == 0) | 
 | 			mbio->bi_phys_segments = 2; | 
 | 		else | 
 | 			mbio->bi_phys_segments++; | 
 | 		spin_unlock_irq(&conf->device_lock); | 
 | 		generic_make_request(bio); | 
 |  | 
 | 		r10_bio = mempool_alloc(conf->r10bio_pool, | 
 | 					GFP_NOIO); | 
 | 		r10_bio->master_bio = mbio; | 
 | 		r10_bio->sectors = (mbio->bi_size >> 9) | 
 | 			- sectors_handled; | 
 | 		r10_bio->state = 0; | 
 | 		set_bit(R10BIO_ReadError, | 
 | 			&r10_bio->state); | 
 | 		r10_bio->mddev = mddev; | 
 | 		r10_bio->sector = mbio->bi_sector | 
 | 			+ sectors_handled; | 
 |  | 
 | 		goto read_more; | 
 | 	} else | 
 | 		generic_make_request(bio); | 
 | } | 
 |  | 
 | static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) | 
 | { | 
 | 	/* Some sort of write request has finished and it | 
 | 	 * succeeded in writing where we thought there was a | 
 | 	 * bad block.  So forget the bad block. | 
 | 	 * Or possibly if failed and we need to record | 
 | 	 * a bad block. | 
 | 	 */ | 
 | 	int m; | 
 | 	struct md_rdev *rdev; | 
 |  | 
 | 	if (test_bit(R10BIO_IsSync, &r10_bio->state) || | 
 | 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) { | 
 | 		for (m = 0; m < conf->copies; m++) { | 
 | 			int dev = r10_bio->devs[m].devnum; | 
 | 			rdev = conf->mirrors[dev].rdev; | 
 | 			if (r10_bio->devs[m].bio == NULL) | 
 | 				continue; | 
 | 			if (test_bit(BIO_UPTODATE, | 
 | 				     &r10_bio->devs[m].bio->bi_flags)) { | 
 | 				rdev_clear_badblocks( | 
 | 					rdev, | 
 | 					r10_bio->devs[m].addr, | 
 | 					r10_bio->sectors); | 
 | 			} else { | 
 | 				if (!rdev_set_badblocks( | 
 | 					    rdev, | 
 | 					    r10_bio->devs[m].addr, | 
 | 					    r10_bio->sectors, 0)) | 
 | 					md_error(conf->mddev, rdev); | 
 | 			} | 
 | 			rdev = conf->mirrors[dev].replacement; | 
 | 			if (r10_bio->devs[m].repl_bio == NULL) | 
 | 				continue; | 
 | 			if (test_bit(BIO_UPTODATE, | 
 | 				     &r10_bio->devs[m].repl_bio->bi_flags)) { | 
 | 				rdev_clear_badblocks( | 
 | 					rdev, | 
 | 					r10_bio->devs[m].addr, | 
 | 					r10_bio->sectors); | 
 | 			} else { | 
 | 				if (!rdev_set_badblocks( | 
 | 					    rdev, | 
 | 					    r10_bio->devs[m].addr, | 
 | 					    r10_bio->sectors, 0)) | 
 | 					md_error(conf->mddev, rdev); | 
 | 			} | 
 | 		} | 
 | 		put_buf(r10_bio); | 
 | 	} else { | 
 | 		for (m = 0; m < conf->copies; m++) { | 
 | 			int dev = r10_bio->devs[m].devnum; | 
 | 			struct bio *bio = r10_bio->devs[m].bio; | 
 | 			rdev = conf->mirrors[dev].rdev; | 
 | 			if (bio == IO_MADE_GOOD) { | 
 | 				rdev_clear_badblocks( | 
 | 					rdev, | 
 | 					r10_bio->devs[m].addr, | 
 | 					r10_bio->sectors); | 
 | 				rdev_dec_pending(rdev, conf->mddev); | 
 | 			} else if (bio != NULL && | 
 | 				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) { | 
 | 				if (!narrow_write_error(r10_bio, m)) { | 
 | 					md_error(conf->mddev, rdev); | 
 | 					set_bit(R10BIO_Degraded, | 
 | 						&r10_bio->state); | 
 | 				} | 
 | 				rdev_dec_pending(rdev, conf->mddev); | 
 | 			} | 
 | 			bio = r10_bio->devs[m].repl_bio; | 
 | 			rdev = conf->mirrors[dev].replacement; | 
 | 			if (rdev && bio == IO_MADE_GOOD) { | 
 | 				rdev_clear_badblocks( | 
 | 					rdev, | 
 | 					r10_bio->devs[m].addr, | 
 | 					r10_bio->sectors); | 
 | 				rdev_dec_pending(rdev, conf->mddev); | 
 | 			} | 
 | 		} | 
 | 		if (test_bit(R10BIO_WriteError, | 
 | 			     &r10_bio->state)) | 
 | 			close_write(r10_bio); | 
 | 		raid_end_bio_io(r10_bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void raid10d(struct mddev *mddev) | 
 | { | 
 | 	struct r10bio *r10_bio; | 
 | 	unsigned long flags; | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct list_head *head = &conf->retry_list; | 
 | 	struct blk_plug plug; | 
 |  | 
 | 	md_check_recovery(mddev); | 
 |  | 
 | 	blk_start_plug(&plug); | 
 | 	for (;;) { | 
 |  | 
 | 		flush_pending_writes(conf); | 
 |  | 
 | 		spin_lock_irqsave(&conf->device_lock, flags); | 
 | 		if (list_empty(head)) { | 
 | 			spin_unlock_irqrestore(&conf->device_lock, flags); | 
 | 			break; | 
 | 		} | 
 | 		r10_bio = list_entry(head->prev, struct r10bio, retry_list); | 
 | 		list_del(head->prev); | 
 | 		conf->nr_queued--; | 
 | 		spin_unlock_irqrestore(&conf->device_lock, flags); | 
 |  | 
 | 		mddev = r10_bio->mddev; | 
 | 		conf = mddev->private; | 
 | 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
 | 		    test_bit(R10BIO_WriteError, &r10_bio->state)) | 
 | 			handle_write_completed(conf, r10_bio); | 
 | 		else if (test_bit(R10BIO_IsSync, &r10_bio->state)) | 
 | 			sync_request_write(mddev, r10_bio); | 
 | 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) | 
 | 			recovery_request_write(mddev, r10_bio); | 
 | 		else if (test_bit(R10BIO_ReadError, &r10_bio->state)) | 
 | 			handle_read_error(mddev, r10_bio); | 
 | 		else { | 
 | 			/* just a partial read to be scheduled from a | 
 | 			 * separate context | 
 | 			 */ | 
 | 			int slot = r10_bio->read_slot; | 
 | 			generic_make_request(r10_bio->devs[slot].bio); | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) | 
 | 			md_check_recovery(mddev); | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 | } | 
 |  | 
 |  | 
 | static int init_resync(struct r10conf *conf) | 
 | { | 
 | 	int buffs; | 
 | 	int i; | 
 |  | 
 | 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; | 
 | 	BUG_ON(conf->r10buf_pool); | 
 | 	conf->have_replacement = 0; | 
 | 	for (i = 0; i < conf->raid_disks; i++) | 
 | 		if (conf->mirrors[i].replacement) | 
 | 			conf->have_replacement = 1; | 
 | 	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); | 
 | 	if (!conf->r10buf_pool) | 
 | 		return -ENOMEM; | 
 | 	conf->next_resync = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * perform a "sync" on one "block" | 
 |  * | 
 |  * We need to make sure that no normal I/O request - particularly write | 
 |  * requests - conflict with active sync requests. | 
 |  * | 
 |  * This is achieved by tracking pending requests and a 'barrier' concept | 
 |  * that can be installed to exclude normal IO requests. | 
 |  * | 
 |  * Resync and recovery are handled very differently. | 
 |  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. | 
 |  * | 
 |  * For resync, we iterate over virtual addresses, read all copies, | 
 |  * and update if there are differences.  If only one copy is live, | 
 |  * skip it. | 
 |  * For recovery, we iterate over physical addresses, read a good | 
 |  * value for each non-in_sync drive, and over-write. | 
 |  * | 
 |  * So, for recovery we may have several outstanding complex requests for a | 
 |  * given address, one for each out-of-sync device.  We model this by allocating | 
 |  * a number of r10_bio structures, one for each out-of-sync device. | 
 |  * As we setup these structures, we collect all bio's together into a list | 
 |  * which we then process collectively to add pages, and then process again | 
 |  * to pass to generic_make_request. | 
 |  * | 
 |  * The r10_bio structures are linked using a borrowed master_bio pointer. | 
 |  * This link is counted in ->remaining.  When the r10_bio that points to NULL | 
 |  * has its remaining count decremented to 0, the whole complex operation | 
 |  * is complete. | 
 |  * | 
 |  */ | 
 |  | 
 | static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, | 
 | 			     int *skipped, int go_faster) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	struct r10bio *r10_bio; | 
 | 	struct bio *biolist = NULL, *bio; | 
 | 	sector_t max_sector, nr_sectors; | 
 | 	int i; | 
 | 	int max_sync; | 
 | 	sector_t sync_blocks; | 
 | 	sector_t sectors_skipped = 0; | 
 | 	int chunks_skipped = 0; | 
 |  | 
 | 	if (!conf->r10buf_pool) | 
 | 		if (init_resync(conf)) | 
 | 			return 0; | 
 |  | 
 |  skipped: | 
 | 	max_sector = mddev->dev_sectors; | 
 | 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) | 
 | 		max_sector = mddev->resync_max_sectors; | 
 | 	if (sector_nr >= max_sector) { | 
 | 		/* If we aborted, we need to abort the | 
 | 		 * sync on the 'current' bitmap chucks (there can | 
 | 		 * be several when recovering multiple devices). | 
 | 		 * as we may have started syncing it but not finished. | 
 | 		 * We can find the current address in | 
 | 		 * mddev->curr_resync, but for recovery, | 
 | 		 * we need to convert that to several | 
 | 		 * virtual addresses. | 
 | 		 */ | 
 | 		if (mddev->curr_resync < max_sector) { /* aborted */ | 
 | 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) | 
 | 				bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
 | 						&sync_blocks, 1); | 
 | 			else for (i=0; i<conf->raid_disks; i++) { | 
 | 				sector_t sect = | 
 | 					raid10_find_virt(conf, mddev->curr_resync, i); | 
 | 				bitmap_end_sync(mddev->bitmap, sect, | 
 | 						&sync_blocks, 1); | 
 | 			} | 
 | 		} else { | 
 | 			/* completed sync */ | 
 | 			if ((!mddev->bitmap || conf->fullsync) | 
 | 			    && conf->have_replacement | 
 | 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
 | 				/* Completed a full sync so the replacements | 
 | 				 * are now fully recovered. | 
 | 				 */ | 
 | 				for (i = 0; i < conf->raid_disks; i++) | 
 | 					if (conf->mirrors[i].replacement) | 
 | 						conf->mirrors[i].replacement | 
 | 							->recovery_offset | 
 | 							= MaxSector; | 
 | 			} | 
 | 			conf->fullsync = 0; | 
 | 		} | 
 | 		bitmap_close_sync(mddev->bitmap); | 
 | 		close_sync(conf); | 
 | 		*skipped = 1; | 
 | 		return sectors_skipped; | 
 | 	} | 
 | 	if (chunks_skipped >= conf->raid_disks) { | 
 | 		/* if there has been nothing to do on any drive, | 
 | 		 * then there is nothing to do at all.. | 
 | 		 */ | 
 | 		*skipped = 1; | 
 | 		return (max_sector - sector_nr) + sectors_skipped; | 
 | 	} | 
 |  | 
 | 	if (max_sector > mddev->resync_max) | 
 | 		max_sector = mddev->resync_max; /* Don't do IO beyond here */ | 
 |  | 
 | 	/* make sure whole request will fit in a chunk - if chunks | 
 | 	 * are meaningful | 
 | 	 */ | 
 | 	if (conf->near_copies < conf->raid_disks && | 
 | 	    max_sector > (sector_nr | conf->chunk_mask)) | 
 | 		max_sector = (sector_nr | conf->chunk_mask) + 1; | 
 | 	/* | 
 | 	 * If there is non-resync activity waiting for us then | 
 | 	 * put in a delay to throttle resync. | 
 | 	 */ | 
 | 	if (!go_faster && conf->nr_waiting) | 
 | 		msleep_interruptible(1000); | 
 |  | 
 | 	/* Again, very different code for resync and recovery. | 
 | 	 * Both must result in an r10bio with a list of bios that | 
 | 	 * have bi_end_io, bi_sector, bi_bdev set, | 
 | 	 * and bi_private set to the r10bio. | 
 | 	 * For recovery, we may actually create several r10bios | 
 | 	 * with 2 bios in each, that correspond to the bios in the main one. | 
 | 	 * In this case, the subordinate r10bios link back through a | 
 | 	 * borrowed master_bio pointer, and the counter in the master | 
 | 	 * includes a ref from each subordinate. | 
 | 	 */ | 
 | 	/* First, we decide what to do and set ->bi_end_io | 
 | 	 * To end_sync_read if we want to read, and | 
 | 	 * end_sync_write if we will want to write. | 
 | 	 */ | 
 |  | 
 | 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); | 
 | 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
 | 		/* recovery... the complicated one */ | 
 | 		int j; | 
 | 		r10_bio = NULL; | 
 |  | 
 | 		for (i=0 ; i<conf->raid_disks; i++) { | 
 | 			int still_degraded; | 
 | 			struct r10bio *rb2; | 
 | 			sector_t sect; | 
 | 			int must_sync; | 
 | 			int any_working; | 
 | 			struct mirror_info *mirror = &conf->mirrors[i]; | 
 |  | 
 | 			if ((mirror->rdev == NULL || | 
 | 			     test_bit(In_sync, &mirror->rdev->flags)) | 
 | 			    && | 
 | 			    (mirror->replacement == NULL || | 
 | 			     test_bit(Faulty, | 
 | 				      &mirror->replacement->flags))) | 
 | 				continue; | 
 |  | 
 | 			still_degraded = 0; | 
 | 			/* want to reconstruct this device */ | 
 | 			rb2 = r10_bio; | 
 | 			sect = raid10_find_virt(conf, sector_nr, i); | 
 | 			if (sect >= mddev->resync_max_sectors) { | 
 | 				/* last stripe is not complete - don't | 
 | 				 * try to recover this sector. | 
 | 				 */ | 
 | 				continue; | 
 | 			} | 
 | 			/* Unless we are doing a full sync, or a replacement | 
 | 			 * we only need to recover the block if it is set in | 
 | 			 * the bitmap | 
 | 			 */ | 
 | 			must_sync = bitmap_start_sync(mddev->bitmap, sect, | 
 | 						      &sync_blocks, 1); | 
 | 			if (sync_blocks < max_sync) | 
 | 				max_sync = sync_blocks; | 
 | 			if (!must_sync && | 
 | 			    mirror->replacement == NULL && | 
 | 			    !conf->fullsync) { | 
 | 				/* yep, skip the sync_blocks here, but don't assume | 
 | 				 * that there will never be anything to do here | 
 | 				 */ | 
 | 				chunks_skipped = -1; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
 | 			raise_barrier(conf, rb2 != NULL); | 
 | 			atomic_set(&r10_bio->remaining, 0); | 
 |  | 
 | 			r10_bio->master_bio = (struct bio*)rb2; | 
 | 			if (rb2) | 
 | 				atomic_inc(&rb2->remaining); | 
 | 			r10_bio->mddev = mddev; | 
 | 			set_bit(R10BIO_IsRecover, &r10_bio->state); | 
 | 			r10_bio->sector = sect; | 
 |  | 
 | 			raid10_find_phys(conf, r10_bio); | 
 |  | 
 | 			/* Need to check if the array will still be | 
 | 			 * degraded | 
 | 			 */ | 
 | 			for (j=0; j<conf->raid_disks; j++) | 
 | 				if (conf->mirrors[j].rdev == NULL || | 
 | 				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { | 
 | 					still_degraded = 1; | 
 | 					break; | 
 | 				} | 
 |  | 
 | 			must_sync = bitmap_start_sync(mddev->bitmap, sect, | 
 | 						      &sync_blocks, still_degraded); | 
 |  | 
 | 			any_working = 0; | 
 | 			for (j=0; j<conf->copies;j++) { | 
 | 				int k; | 
 | 				int d = r10_bio->devs[j].devnum; | 
 | 				sector_t from_addr, to_addr; | 
 | 				struct md_rdev *rdev; | 
 | 				sector_t sector, first_bad; | 
 | 				int bad_sectors; | 
 | 				if (!conf->mirrors[d].rdev || | 
 | 				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) | 
 | 					continue; | 
 | 				/* This is where we read from */ | 
 | 				any_working = 1; | 
 | 				rdev = conf->mirrors[d].rdev; | 
 | 				sector = r10_bio->devs[j].addr; | 
 |  | 
 | 				if (is_badblock(rdev, sector, max_sync, | 
 | 						&first_bad, &bad_sectors)) { | 
 | 					if (first_bad > sector) | 
 | 						max_sync = first_bad - sector; | 
 | 					else { | 
 | 						bad_sectors -= (sector | 
 | 								- first_bad); | 
 | 						if (max_sync > bad_sectors) | 
 | 							max_sync = bad_sectors; | 
 | 						continue; | 
 | 					} | 
 | 				} | 
 | 				bio = r10_bio->devs[0].bio; | 
 | 				bio->bi_next = biolist; | 
 | 				biolist = bio; | 
 | 				bio->bi_private = r10_bio; | 
 | 				bio->bi_end_io = end_sync_read; | 
 | 				bio->bi_rw = READ; | 
 | 				from_addr = r10_bio->devs[j].addr; | 
 | 				bio->bi_sector = from_addr + rdev->data_offset; | 
 | 				bio->bi_bdev = rdev->bdev; | 
 | 				atomic_inc(&rdev->nr_pending); | 
 | 				/* and we write to 'i' (if not in_sync) */ | 
 |  | 
 | 				for (k=0; k<conf->copies; k++) | 
 | 					if (r10_bio->devs[k].devnum == i) | 
 | 						break; | 
 | 				BUG_ON(k == conf->copies); | 
 | 				to_addr = r10_bio->devs[k].addr; | 
 | 				r10_bio->devs[0].devnum = d; | 
 | 				r10_bio->devs[0].addr = from_addr; | 
 | 				r10_bio->devs[1].devnum = i; | 
 | 				r10_bio->devs[1].addr = to_addr; | 
 |  | 
 | 				rdev = mirror->rdev; | 
 | 				if (!test_bit(In_sync, &rdev->flags)) { | 
 | 					bio = r10_bio->devs[1].bio; | 
 | 					bio->bi_next = biolist; | 
 | 					biolist = bio; | 
 | 					bio->bi_private = r10_bio; | 
 | 					bio->bi_end_io = end_sync_write; | 
 | 					bio->bi_rw = WRITE; | 
 | 					bio->bi_sector = to_addr | 
 | 						+ rdev->data_offset; | 
 | 					bio->bi_bdev = rdev->bdev; | 
 | 					atomic_inc(&r10_bio->remaining); | 
 | 				} else | 
 | 					r10_bio->devs[1].bio->bi_end_io = NULL; | 
 |  | 
 | 				/* and maybe write to replacement */ | 
 | 				bio = r10_bio->devs[1].repl_bio; | 
 | 				if (bio) | 
 | 					bio->bi_end_io = NULL; | 
 | 				rdev = mirror->replacement; | 
 | 				/* Note: if rdev != NULL, then bio | 
 | 				 * cannot be NULL as r10buf_pool_alloc will | 
 | 				 * have allocated it. | 
 | 				 * So the second test here is pointless. | 
 | 				 * But it keeps semantic-checkers happy, and | 
 | 				 * this comment keeps human reviewers | 
 | 				 * happy. | 
 | 				 */ | 
 | 				if (rdev == NULL || bio == NULL || | 
 | 				    test_bit(Faulty, &rdev->flags)) | 
 | 					break; | 
 | 				bio->bi_next = biolist; | 
 | 				biolist = bio; | 
 | 				bio->bi_private = r10_bio; | 
 | 				bio->bi_end_io = end_sync_write; | 
 | 				bio->bi_rw = WRITE; | 
 | 				bio->bi_sector = to_addr + rdev->data_offset; | 
 | 				bio->bi_bdev = rdev->bdev; | 
 | 				atomic_inc(&r10_bio->remaining); | 
 | 				break; | 
 | 			} | 
 | 			if (j == conf->copies) { | 
 | 				/* Cannot recover, so abort the recovery or | 
 | 				 * record a bad block */ | 
 | 				if (any_working) { | 
 | 					/* problem is that there are bad blocks | 
 | 					 * on other device(s) | 
 | 					 */ | 
 | 					int k; | 
 | 					for (k = 0; k < conf->copies; k++) | 
 | 						if (r10_bio->devs[k].devnum == i) | 
 | 							break; | 
 | 					if (!test_bit(In_sync, | 
 | 						      &mirror->rdev->flags) | 
 | 					    && !rdev_set_badblocks( | 
 | 						    mirror->rdev, | 
 | 						    r10_bio->devs[k].addr, | 
 | 						    max_sync, 0)) | 
 | 						any_working = 0; | 
 | 					if (mirror->replacement && | 
 | 					    !rdev_set_badblocks( | 
 | 						    mirror->replacement, | 
 | 						    r10_bio->devs[k].addr, | 
 | 						    max_sync, 0)) | 
 | 						any_working = 0; | 
 | 				} | 
 | 				if (!any_working)  { | 
 | 					if (!test_and_set_bit(MD_RECOVERY_INTR, | 
 | 							      &mddev->recovery)) | 
 | 						printk(KERN_INFO "md/raid10:%s: insufficient " | 
 | 						       "working devices for recovery.\n", | 
 | 						       mdname(mddev)); | 
 | 					mirror->recovery_disabled | 
 | 						= mddev->recovery_disabled; | 
 | 				} | 
 | 				put_buf(r10_bio); | 
 | 				if (rb2) | 
 | 					atomic_dec(&rb2->remaining); | 
 | 				r10_bio = rb2; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		if (biolist == NULL) { | 
 | 			while (r10_bio) { | 
 | 				struct r10bio *rb2 = r10_bio; | 
 | 				r10_bio = (struct r10bio*) rb2->master_bio; | 
 | 				rb2->master_bio = NULL; | 
 | 				put_buf(rb2); | 
 | 			} | 
 | 			goto giveup; | 
 | 		} | 
 | 	} else { | 
 | 		/* resync. Schedule a read for every block at this virt offset */ | 
 | 		int count = 0; | 
 |  | 
 | 		bitmap_cond_end_sync(mddev->bitmap, sector_nr); | 
 |  | 
 | 		if (!bitmap_start_sync(mddev->bitmap, sector_nr, | 
 | 				       &sync_blocks, mddev->degraded) && | 
 | 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, | 
 | 						 &mddev->recovery)) { | 
 | 			/* We can skip this block */ | 
 | 			*skipped = 1; | 
 | 			return sync_blocks + sectors_skipped; | 
 | 		} | 
 | 		if (sync_blocks < max_sync) | 
 | 			max_sync = sync_blocks; | 
 | 		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
 |  | 
 | 		r10_bio->mddev = mddev; | 
 | 		atomic_set(&r10_bio->remaining, 0); | 
 | 		raise_barrier(conf, 0); | 
 | 		conf->next_resync = sector_nr; | 
 |  | 
 | 		r10_bio->master_bio = NULL; | 
 | 		r10_bio->sector = sector_nr; | 
 | 		set_bit(R10BIO_IsSync, &r10_bio->state); | 
 | 		raid10_find_phys(conf, r10_bio); | 
 | 		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; | 
 |  | 
 | 		for (i=0; i<conf->copies; i++) { | 
 | 			int d = r10_bio->devs[i].devnum; | 
 | 			sector_t first_bad, sector; | 
 | 			int bad_sectors; | 
 |  | 
 | 			if (r10_bio->devs[i].repl_bio) | 
 | 				r10_bio->devs[i].repl_bio->bi_end_io = NULL; | 
 |  | 
 | 			bio = r10_bio->devs[i].bio; | 
 | 			bio->bi_end_io = NULL; | 
 | 			clear_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 			if (conf->mirrors[d].rdev == NULL || | 
 | 			    test_bit(Faulty, &conf->mirrors[d].rdev->flags)) | 
 | 				continue; | 
 | 			sector = r10_bio->devs[i].addr; | 
 | 			if (is_badblock(conf->mirrors[d].rdev, | 
 | 					sector, max_sync, | 
 | 					&first_bad, &bad_sectors)) { | 
 | 				if (first_bad > sector) | 
 | 					max_sync = first_bad - sector; | 
 | 				else { | 
 | 					bad_sectors -= (sector - first_bad); | 
 | 					if (max_sync > bad_sectors) | 
 | 						max_sync = bad_sectors; | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 | 			atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 			atomic_inc(&r10_bio->remaining); | 
 | 			bio->bi_next = biolist; | 
 | 			biolist = bio; | 
 | 			bio->bi_private = r10_bio; | 
 | 			bio->bi_end_io = end_sync_read; | 
 | 			bio->bi_rw = READ; | 
 | 			bio->bi_sector = sector + | 
 | 				conf->mirrors[d].rdev->data_offset; | 
 | 			bio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
 | 			count++; | 
 |  | 
 | 			if (conf->mirrors[d].replacement == NULL || | 
 | 			    test_bit(Faulty, | 
 | 				     &conf->mirrors[d].replacement->flags)) | 
 | 				continue; | 
 |  | 
 | 			/* Need to set up for writing to the replacement */ | 
 | 			bio = r10_bio->devs[i].repl_bio; | 
 | 			clear_bit(BIO_UPTODATE, &bio->bi_flags); | 
 |  | 
 | 			sector = r10_bio->devs[i].addr; | 
 | 			atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
 | 			bio->bi_next = biolist; | 
 | 			biolist = bio; | 
 | 			bio->bi_private = r10_bio; | 
 | 			bio->bi_end_io = end_sync_write; | 
 | 			bio->bi_rw = WRITE; | 
 | 			bio->bi_sector = sector + | 
 | 				conf->mirrors[d].replacement->data_offset; | 
 | 			bio->bi_bdev = conf->mirrors[d].replacement->bdev; | 
 | 			count++; | 
 | 		} | 
 |  | 
 | 		if (count < 2) { | 
 | 			for (i=0; i<conf->copies; i++) { | 
 | 				int d = r10_bio->devs[i].devnum; | 
 | 				if (r10_bio->devs[i].bio->bi_end_io) | 
 | 					rdev_dec_pending(conf->mirrors[d].rdev, | 
 | 							 mddev); | 
 | 				if (r10_bio->devs[i].repl_bio && | 
 | 				    r10_bio->devs[i].repl_bio->bi_end_io) | 
 | 					rdev_dec_pending( | 
 | 						conf->mirrors[d].replacement, | 
 | 						mddev); | 
 | 			} | 
 | 			put_buf(r10_bio); | 
 | 			biolist = NULL; | 
 | 			goto giveup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (bio = biolist; bio ; bio=bio->bi_next) { | 
 |  | 
 | 		bio->bi_flags &= ~(BIO_POOL_MASK - 1); | 
 | 		if (bio->bi_end_io) | 
 | 			bio->bi_flags |= 1 << BIO_UPTODATE; | 
 | 		bio->bi_vcnt = 0; | 
 | 		bio->bi_idx = 0; | 
 | 		bio->bi_phys_segments = 0; | 
 | 		bio->bi_size = 0; | 
 | 	} | 
 |  | 
 | 	nr_sectors = 0; | 
 | 	if (sector_nr + max_sync < max_sector) | 
 | 		max_sector = sector_nr + max_sync; | 
 | 	do { | 
 | 		struct page *page; | 
 | 		int len = PAGE_SIZE; | 
 | 		if (sector_nr + (len>>9) > max_sector) | 
 | 			len = (max_sector - sector_nr) << 9; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		for (bio= biolist ; bio ; bio=bio->bi_next) { | 
 | 			struct bio *bio2; | 
 | 			page = bio->bi_io_vec[bio->bi_vcnt].bv_page; | 
 | 			if (bio_add_page(bio, page, len, 0)) | 
 | 				continue; | 
 |  | 
 | 			/* stop here */ | 
 | 			bio->bi_io_vec[bio->bi_vcnt].bv_page = page; | 
 | 			for (bio2 = biolist; | 
 | 			     bio2 && bio2 != bio; | 
 | 			     bio2 = bio2->bi_next) { | 
 | 				/* remove last page from this bio */ | 
 | 				bio2->bi_vcnt--; | 
 | 				bio2->bi_size -= len; | 
 | 				bio2->bi_flags &= ~(1<< BIO_SEG_VALID); | 
 | 			} | 
 | 			goto bio_full; | 
 | 		} | 
 | 		nr_sectors += len>>9; | 
 | 		sector_nr += len>>9; | 
 | 	} while (biolist->bi_vcnt < RESYNC_PAGES); | 
 |  bio_full: | 
 | 	r10_bio->sectors = nr_sectors; | 
 |  | 
 | 	while (biolist) { | 
 | 		bio = biolist; | 
 | 		biolist = biolist->bi_next; | 
 |  | 
 | 		bio->bi_next = NULL; | 
 | 		r10_bio = bio->bi_private; | 
 | 		r10_bio->sectors = nr_sectors; | 
 |  | 
 | 		if (bio->bi_end_io == end_sync_read) { | 
 | 			md_sync_acct(bio->bi_bdev, nr_sectors); | 
 | 			generic_make_request(bio); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sectors_skipped) | 
 | 		/* pretend they weren't skipped, it makes | 
 | 		 * no important difference in this case | 
 | 		 */ | 
 | 		md_done_sync(mddev, sectors_skipped, 1); | 
 |  | 
 | 	return sectors_skipped + nr_sectors; | 
 |  giveup: | 
 | 	/* There is nowhere to write, so all non-sync | 
 | 	 * drives must be failed or in resync, all drives | 
 | 	 * have a bad block, so try the next chunk... | 
 | 	 */ | 
 | 	if (sector_nr + max_sync < max_sector) | 
 | 		max_sector = sector_nr + max_sync; | 
 |  | 
 | 	sectors_skipped += (max_sector - sector_nr); | 
 | 	chunks_skipped ++; | 
 | 	sector_nr = max_sector; | 
 | 	goto skipped; | 
 | } | 
 |  | 
 | static sector_t | 
 | raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) | 
 | { | 
 | 	sector_t size; | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	if (!raid_disks) | 
 | 		raid_disks = conf->raid_disks; | 
 | 	if (!sectors) | 
 | 		sectors = conf->dev_sectors; | 
 |  | 
 | 	size = sectors >> conf->chunk_shift; | 
 | 	sector_div(size, conf->far_copies); | 
 | 	size = size * raid_disks; | 
 | 	sector_div(size, conf->near_copies); | 
 |  | 
 | 	return size << conf->chunk_shift; | 
 | } | 
 |  | 
 | static void calc_sectors(struct r10conf *conf, sector_t size) | 
 | { | 
 | 	/* Calculate the number of sectors-per-device that will | 
 | 	 * actually be used, and set conf->dev_sectors and | 
 | 	 * conf->stride | 
 | 	 */ | 
 |  | 
 | 	size = size >> conf->chunk_shift; | 
 | 	sector_div(size, conf->far_copies); | 
 | 	size = size * conf->raid_disks; | 
 | 	sector_div(size, conf->near_copies); | 
 | 	/* 'size' is now the number of chunks in the array */ | 
 | 	/* calculate "used chunks per device" */ | 
 | 	size = size * conf->copies; | 
 |  | 
 | 	/* We need to round up when dividing by raid_disks to | 
 | 	 * get the stride size. | 
 | 	 */ | 
 | 	size = DIV_ROUND_UP_SECTOR_T(size, conf->raid_disks); | 
 |  | 
 | 	conf->dev_sectors = size << conf->chunk_shift; | 
 |  | 
 | 	if (conf->far_offset) | 
 | 		conf->stride = 1 << conf->chunk_shift; | 
 | 	else { | 
 | 		sector_div(size, conf->far_copies); | 
 | 		conf->stride = size << conf->chunk_shift; | 
 | 	} | 
 | } | 
 |  | 
 | static struct r10conf *setup_conf(struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf = NULL; | 
 | 	int nc, fc, fo; | 
 | 	int err = -EINVAL; | 
 |  | 
 | 	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || | 
 | 	    !is_power_of_2(mddev->new_chunk_sectors)) { | 
 | 		printk(KERN_ERR "md/raid10:%s: chunk size must be " | 
 | 		       "at least PAGE_SIZE(%ld) and be a power of 2.\n", | 
 | 		       mdname(mddev), PAGE_SIZE); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nc = mddev->new_layout & 255; | 
 | 	fc = (mddev->new_layout >> 8) & 255; | 
 | 	fo = mddev->new_layout & (1<<16); | 
 |  | 
 | 	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || | 
 | 	    (mddev->new_layout >> 17)) { | 
 | 		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", | 
 | 		       mdname(mddev), mddev->new_layout); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); | 
 | 	if (!conf) | 
 | 		goto out; | 
 |  | 
 | 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, | 
 | 				GFP_KERNEL); | 
 | 	if (!conf->mirrors) | 
 | 		goto out; | 
 |  | 
 | 	conf->tmppage = alloc_page(GFP_KERNEL); | 
 | 	if (!conf->tmppage) | 
 | 		goto out; | 
 |  | 
 |  | 
 | 	conf->raid_disks = mddev->raid_disks; | 
 | 	conf->near_copies = nc; | 
 | 	conf->far_copies = fc; | 
 | 	conf->copies = nc*fc; | 
 | 	conf->far_offset = fo; | 
 | 	conf->chunk_mask = mddev->new_chunk_sectors - 1; | 
 | 	conf->chunk_shift = ffz(~mddev->new_chunk_sectors); | 
 |  | 
 | 	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, | 
 | 					   r10bio_pool_free, conf); | 
 | 	if (!conf->r10bio_pool) | 
 | 		goto out; | 
 |  | 
 | 	calc_sectors(conf, mddev->dev_sectors); | 
 |  | 
 | 	spin_lock_init(&conf->device_lock); | 
 | 	INIT_LIST_HEAD(&conf->retry_list); | 
 |  | 
 | 	spin_lock_init(&conf->resync_lock); | 
 | 	init_waitqueue_head(&conf->wait_barrier); | 
 |  | 
 | 	conf->thread = md_register_thread(raid10d, mddev, NULL); | 
 | 	if (!conf->thread) | 
 | 		goto out; | 
 |  | 
 | 	conf->mddev = mddev; | 
 | 	return conf; | 
 |  | 
 |  out: | 
 | 	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", | 
 | 	       mdname(mddev)); | 
 | 	if (conf) { | 
 | 		if (conf->r10bio_pool) | 
 | 			mempool_destroy(conf->r10bio_pool); | 
 | 		kfree(conf->mirrors); | 
 | 		safe_put_page(conf->tmppage); | 
 | 		kfree(conf); | 
 | 	} | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static int run(struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf; | 
 | 	int i, disk_idx, chunk_size; | 
 | 	struct mirror_info *disk; | 
 | 	struct md_rdev *rdev; | 
 | 	sector_t size; | 
 |  | 
 | 	/* | 
 | 	 * copy the already verified devices into our private RAID10 | 
 | 	 * bookkeeping area. [whatever we allocate in run(), | 
 | 	 * should be freed in stop()] | 
 | 	 */ | 
 |  | 
 | 	if (mddev->private == NULL) { | 
 | 		conf = setup_conf(mddev); | 
 | 		if (IS_ERR(conf)) | 
 | 			return PTR_ERR(conf); | 
 | 		mddev->private = conf; | 
 | 	} | 
 | 	conf = mddev->private; | 
 | 	if (!conf) | 
 | 		goto out; | 
 |  | 
 | 	mddev->thread = conf->thread; | 
 | 	conf->thread = NULL; | 
 |  | 
 | 	chunk_size = mddev->chunk_sectors << 9; | 
 | 	blk_queue_io_min(mddev->queue, chunk_size); | 
 | 	if (conf->raid_disks % conf->near_copies) | 
 | 		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); | 
 | 	else | 
 | 		blk_queue_io_opt(mddev->queue, chunk_size * | 
 | 				 (conf->raid_disks / conf->near_copies)); | 
 |  | 
 | 	rdev_for_each(rdev, mddev) { | 
 | 		struct request_queue *q; | 
 | 		disk_idx = rdev->raid_disk; | 
 | 		if (disk_idx >= conf->raid_disks | 
 | 		    || disk_idx < 0) | 
 | 			continue; | 
 | 		disk = conf->mirrors + disk_idx; | 
 |  | 
 | 		if (test_bit(Replacement, &rdev->flags)) { | 
 | 			if (disk->replacement) | 
 | 				goto out_free_conf; | 
 | 			disk->replacement = rdev; | 
 | 		} else { | 
 | 			if (disk->rdev) | 
 | 				goto out_free_conf; | 
 | 			disk->rdev = rdev; | 
 | 		} | 
 | 		q = bdev_get_queue(rdev->bdev); | 
 | 		if (q->merge_bvec_fn) | 
 | 			mddev->merge_check_needed = 1; | 
 |  | 
 | 		disk_stack_limits(mddev->gendisk, rdev->bdev, | 
 | 				  rdev->data_offset << 9); | 
 |  | 
 | 		disk->head_position = 0; | 
 | 	} | 
 | 	/* need to check that every block has at least one working mirror */ | 
 | 	if (!enough(conf, -1)) { | 
 | 		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", | 
 | 		       mdname(mddev)); | 
 | 		goto out_free_conf; | 
 | 	} | 
 |  | 
 | 	mddev->degraded = 0; | 
 | 	for (i = 0; i < conf->raid_disks; i++) { | 
 |  | 
 | 		disk = conf->mirrors + i; | 
 |  | 
 | 		if (!disk->rdev && disk->replacement) { | 
 | 			/* The replacement is all we have - use it */ | 
 | 			disk->rdev = disk->replacement; | 
 | 			disk->replacement = NULL; | 
 | 			clear_bit(Replacement, &disk->rdev->flags); | 
 | 		} | 
 |  | 
 | 		if (!disk->rdev || | 
 | 		    !test_bit(In_sync, &disk->rdev->flags)) { | 
 | 			disk->head_position = 0; | 
 | 			mddev->degraded++; | 
 | 			if (disk->rdev) | 
 | 				conf->fullsync = 1; | 
 | 		} | 
 | 		disk->recovery_disabled = mddev->recovery_disabled - 1; | 
 | 	} | 
 |  | 
 | 	if (mddev->recovery_cp != MaxSector) | 
 | 		printk(KERN_NOTICE "md/raid10:%s: not clean" | 
 | 		       " -- starting background reconstruction\n", | 
 | 		       mdname(mddev)); | 
 | 	printk(KERN_INFO | 
 | 		"md/raid10:%s: active with %d out of %d devices\n", | 
 | 		mdname(mddev), conf->raid_disks - mddev->degraded, | 
 | 		conf->raid_disks); | 
 | 	/* | 
 | 	 * Ok, everything is just fine now | 
 | 	 */ | 
 | 	mddev->dev_sectors = conf->dev_sectors; | 
 | 	size = raid10_size(mddev, 0, 0); | 
 | 	md_set_array_sectors(mddev, size); | 
 | 	mddev->resync_max_sectors = size; | 
 |  | 
 | 	mddev->queue->backing_dev_info.congested_fn = raid10_congested; | 
 | 	mddev->queue->backing_dev_info.congested_data = mddev; | 
 |  | 
 | 	/* Calculate max read-ahead size. | 
 | 	 * We need to readahead at least twice a whole stripe.... | 
 | 	 * maybe... | 
 | 	 */ | 
 | 	{ | 
 | 		int stripe = conf->raid_disks * | 
 | 			((mddev->chunk_sectors << 9) / PAGE_SIZE); | 
 | 		stripe /= conf->near_copies; | 
 | 		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) | 
 | 			mddev->queue->backing_dev_info.ra_pages = 2* stripe; | 
 | 	} | 
 |  | 
 | 	blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); | 
 |  | 
 | 	if (md_integrity_register(mddev)) | 
 | 		goto out_free_conf; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_conf: | 
 | 	md_unregister_thread(&mddev->thread); | 
 | 	if (conf->r10bio_pool) | 
 | 		mempool_destroy(conf->r10bio_pool); | 
 | 	safe_put_page(conf->tmppage); | 
 | 	kfree(conf->mirrors); | 
 | 	kfree(conf); | 
 | 	mddev->private = NULL; | 
 | out: | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static int stop(struct mddev *mddev) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	raise_barrier(conf, 0); | 
 | 	lower_barrier(conf); | 
 |  | 
 | 	md_unregister_thread(&mddev->thread); | 
 | 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ | 
 | 	if (conf->r10bio_pool) | 
 | 		mempool_destroy(conf->r10bio_pool); | 
 | 	kfree(conf->mirrors); | 
 | 	kfree(conf); | 
 | 	mddev->private = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void raid10_quiesce(struct mddev *mddev, int state) | 
 | { | 
 | 	struct r10conf *conf = mddev->private; | 
 |  | 
 | 	switch(state) { | 
 | 	case 1: | 
 | 		raise_barrier(conf, 0); | 
 | 		break; | 
 | 	case 0: | 
 | 		lower_barrier(conf); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int raid10_resize(struct mddev *mddev, sector_t sectors) | 
 | { | 
 | 	/* Resize of 'far' arrays is not supported. | 
 | 	 * For 'near' and 'offset' arrays we can set the | 
 | 	 * number of sectors used to be an appropriate multiple | 
 | 	 * of the chunk size. | 
 | 	 * For 'offset', this is far_copies*chunksize. | 
 | 	 * For 'near' the multiplier is the LCM of | 
 | 	 * near_copies and raid_disks. | 
 | 	 * So if far_copies > 1 && !far_offset, fail. | 
 | 	 * Else find LCM(raid_disks, near_copy)*far_copies and | 
 | 	 * multiply by chunk_size.  Then round to this number. | 
 | 	 * This is mostly done by raid10_size() | 
 | 	 */ | 
 | 	struct r10conf *conf = mddev->private; | 
 | 	sector_t oldsize, size; | 
 |  | 
 | 	if (conf->far_copies > 1 && !conf->far_offset) | 
 | 		return -EINVAL; | 
 |  | 
 | 	oldsize = raid10_size(mddev, 0, 0); | 
 | 	size = raid10_size(mddev, sectors, 0); | 
 | 	md_set_array_sectors(mddev, size); | 
 | 	if (mddev->array_sectors > size) | 
 | 		return -EINVAL; | 
 | 	set_capacity(mddev->gendisk, mddev->array_sectors); | 
 | 	revalidate_disk(mddev->gendisk); | 
 | 	if (sectors > mddev->dev_sectors && | 
 | 	    mddev->recovery_cp > oldsize) { | 
 | 		mddev->recovery_cp = oldsize; | 
 | 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
 | 	} | 
 | 	calc_sectors(conf, sectors); | 
 | 	mddev->dev_sectors = conf->dev_sectors; | 
 | 	mddev->resync_max_sectors = size; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *raid10_takeover_raid0(struct mddev *mddev) | 
 | { | 
 | 	struct md_rdev *rdev; | 
 | 	struct r10conf *conf; | 
 |  | 
 | 	if (mddev->degraded > 0) { | 
 | 		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", | 
 | 		       mdname(mddev)); | 
 | 		return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	/* Set new parameters */ | 
 | 	mddev->new_level = 10; | 
 | 	/* new layout: far_copies = 1, near_copies = 2 */ | 
 | 	mddev->new_layout = (1<<8) + 2; | 
 | 	mddev->new_chunk_sectors = mddev->chunk_sectors; | 
 | 	mddev->delta_disks = mddev->raid_disks; | 
 | 	mddev->raid_disks *= 2; | 
 | 	/* make sure it will be not marked as dirty */ | 
 | 	mddev->recovery_cp = MaxSector; | 
 |  | 
 | 	conf = setup_conf(mddev); | 
 | 	if (!IS_ERR(conf)) { | 
 | 		rdev_for_each(rdev, mddev) | 
 | 			if (rdev->raid_disk >= 0) | 
 | 				rdev->new_raid_disk = rdev->raid_disk * 2; | 
 | 		conf->barrier = 1; | 
 | 	} | 
 |  | 
 | 	return conf; | 
 | } | 
 |  | 
 | static void *raid10_takeover(struct mddev *mddev) | 
 | { | 
 | 	struct r0conf *raid0_conf; | 
 |  | 
 | 	/* raid10 can take over: | 
 | 	 *  raid0 - providing it has only two drives | 
 | 	 */ | 
 | 	if (mddev->level == 0) { | 
 | 		/* for raid0 takeover only one zone is supported */ | 
 | 		raid0_conf = mddev->private; | 
 | 		if (raid0_conf->nr_strip_zones > 1) { | 
 | 			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" | 
 | 			       " with more than one zone.\n", | 
 | 			       mdname(mddev)); | 
 | 			return ERR_PTR(-EINVAL); | 
 | 		} | 
 | 		return raid10_takeover_raid0(mddev); | 
 | 	} | 
 | 	return ERR_PTR(-EINVAL); | 
 | } | 
 |  | 
 | static struct md_personality raid10_personality = | 
 | { | 
 | 	.name		= "raid10", | 
 | 	.level		= 10, | 
 | 	.owner		= THIS_MODULE, | 
 | 	.make_request	= make_request, | 
 | 	.run		= run, | 
 | 	.stop		= stop, | 
 | 	.status		= status, | 
 | 	.error_handler	= error, | 
 | 	.hot_add_disk	= raid10_add_disk, | 
 | 	.hot_remove_disk= raid10_remove_disk, | 
 | 	.spare_active	= raid10_spare_active, | 
 | 	.sync_request	= sync_request, | 
 | 	.quiesce	= raid10_quiesce, | 
 | 	.size		= raid10_size, | 
 | 	.resize		= raid10_resize, | 
 | 	.takeover	= raid10_takeover, | 
 | }; | 
 |  | 
 | static int __init raid_init(void) | 
 | { | 
 | 	return register_md_personality(&raid10_personality); | 
 | } | 
 |  | 
 | static void raid_exit(void) | 
 | { | 
 | 	unregister_md_personality(&raid10_personality); | 
 | } | 
 |  | 
 | module_init(raid_init); | 
 | module_exit(raid_exit); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); | 
 | MODULE_ALIAS("md-personality-9"); /* RAID10 */ | 
 | MODULE_ALIAS("md-raid10"); | 
 | MODULE_ALIAS("md-level-10"); | 
 |  | 
 | module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); |