blob: bc5795b361585d983e3fdfdb6fc2bbaddf0a8aff [file] [log] [blame]
xf.libdd93d52023-05-12 07:10:14 -07001# Begin of automatic generation
2
3# Maximal error of functions:
4Function: "acos":
5float: 1
6ifloat: 1
7ildouble: 1
8ldouble: 1
9
10Function: "acos_downward":
11double: 1
12float: 1
13idouble: 1
14ifloat: 1
15ildouble: 1
16ldouble: 1
17
18Function: "acos_towardzero":
19double: 1
20float: 1
21idouble: 1
22ifloat: 1
23ildouble: 1
24ldouble: 1
25
26Function: "acos_upward":
27double: 1
28float: 1
29idouble: 1
30ifloat: 1
31ildouble: 1
32ldouble: 1
33
34Function: "acosh":
35double: 2
36float: 2
37idouble: 2
38ifloat: 2
39ildouble: 2
40ldouble: 2
41
42Function: "acosh_downward":
43double: 1
44float: 2
45idouble: 1
46ifloat: 2
47ildouble: 3
48ldouble: 3
49
50Function: "acosh_towardzero":
51double: 2
52float: 2
53idouble: 2
54ifloat: 2
55ildouble: 2
56ldouble: 2
57
58Function: "acosh_upward":
59double: 2
60float: 2
61idouble: 2
62ifloat: 2
63ildouble: 2
64ldouble: 2
65
66Function: "asin":
67float: 1
68ifloat: 1
69ildouble: 1
70ldouble: 1
71
72Function: "asin_downward":
73double: 1
74float: 1
75idouble: 1
76ifloat: 1
77ildouble: 2
78ldouble: 2
79
80Function: "asin_towardzero":
81double: 1
82float: 1
83idouble: 1
84ifloat: 1
85ildouble: 1
86ldouble: 1
87
88Function: "asin_upward":
89double: 1
90float: 1
91idouble: 1
92ifloat: 1
93ildouble: 2
94ldouble: 2
95
96Function: "asinh":
97double: 1
98float: 1
99idouble: 1
100ifloat: 1
101ildouble: 3
102ldouble: 3
103
104Function: "asinh_downward":
105double: 3
106float: 3
107idouble: 3
108ifloat: 3
109ildouble: 4
110ldouble: 4
111
112Function: "asinh_towardzero":
113double: 2
114float: 2
115idouble: 2
116ifloat: 2
117ildouble: 2
118ldouble: 2
119
120Function: "asinh_upward":
121double: 3
122float: 3
123idouble: 3
124ifloat: 3
125ildouble: 4
126ldouble: 4
127
128Function: "atan":
129double: 1
130float: 1
131idouble: 1
132ifloat: 1
133ildouble: 1
134ldouble: 1
135
136Function: "atan2":
137float: 1
138ifloat: 1
139ildouble: 1
140ldouble: 1
141
142Function: "atan2_downward":
143double: 1
144float: 2
145idouble: 1
146ifloat: 2
147ildouble: 2
148ldouble: 2
149
150Function: "atan2_towardzero":
151double: 1
152float: 2
153idouble: 1
154ifloat: 2
155ildouble: 3
156ldouble: 3
157
158Function: "atan2_upward":
159double: 1
160float: 1
161idouble: 1
162ifloat: 1
163ildouble: 2
164ldouble: 2
165
166Function: "atan_downward":
167double: 1
168float: 2
169idouble: 1
170ifloat: 2
171ildouble: 2
172ldouble: 2
173
174Function: "atan_towardzero":
175double: 1
176float: 1
177idouble: 1
178ifloat: 1
179ildouble: 1
180ldouble: 1
181
182Function: "atan_upward":
183double: 1
184float: 2
185idouble: 1
186ifloat: 2
187ildouble: 2
188ldouble: 2
189
190Function: "atanh":
191double: 2
192float: 2
193idouble: 2
194ifloat: 2
195ildouble: 3
196ldouble: 3
197
198Function: "atanh_downward":
199double: 3
200float: 3
201idouble: 3
202ifloat: 3
203ildouble: 4
204ldouble: 4
205
206Function: "atanh_towardzero":
207double: 2
208float: 2
209idouble: 2
210ifloat: 2
211ildouble: 2
212ldouble: 2
213
214Function: "atanh_upward":
215double: 3
216float: 3
217idouble: 3
218ifloat: 3
219ildouble: 4
220ldouble: 4
221
222Function: "cabs":
223double: 1
224idouble: 1
225ildouble: 1
226ldouble: 1
227
228Function: "cabs_downward":
229double: 1
230idouble: 1
231ildouble: 1
232ldouble: 1
233
234Function: "cabs_towardzero":
235double: 1
236idouble: 1
237ildouble: 1
238ldouble: 1
239
240Function: "cabs_upward":
241double: 1
242idouble: 1
243ildouble: 1
244ldouble: 1
245
246Function: Real part of "cacos":
247double: 1
248float: 2
249idouble: 1
250ifloat: 2
251ildouble: 2
252ldouble: 2
253
254Function: Imaginary part of "cacos":
255double: 1
256float: 2
257idouble: 1
258ifloat: 2
259ildouble: 2
260ldouble: 2
261
262Function: Real part of "cacos_downward":
263double: 2
264float: 2
265idouble: 2
266ifloat: 2
267ildouble: 2
268ldouble: 2
269
270Function: Imaginary part of "cacos_downward":
271double: 5
272float: 3
273idouble: 5
274ifloat: 3
275ildouble: 5
276ldouble: 5
277
278Function: Real part of "cacos_towardzero":
279double: 2
280float: 2
281idouble: 2
282ifloat: 2
283ildouble: 2
284ldouble: 2
285
286Function: Imaginary part of "cacos_towardzero":
287double: 5
288float: 3
289idouble: 5
290ifloat: 3
291ildouble: 5
292ldouble: 5
293
294Function: Real part of "cacos_upward":
295double: 2
296float: 2
297idouble: 2
298ifloat: 2
299ildouble: 3
300ldouble: 3
301
302Function: Imaginary part of "cacos_upward":
303double: 4
304float: 4
305idouble: 4
306ifloat: 4
307ildouble: 5
308ldouble: 5
309
310Function: Real part of "cacosh":
311double: 1
312float: 2
313idouble: 1
314ifloat: 2
315ildouble: 2
316ldouble: 2
317
318Function: Imaginary part of "cacosh":
319double: 1
320float: 2
321idouble: 1
322ifloat: 2
323ildouble: 2
324ldouble: 2
325
326Function: Real part of "cacosh_downward":
327double: 5
328float: 3
329idouble: 5
330ifloat: 3
331ildouble: 5
332ldouble: 5
333
334Function: Imaginary part of "cacosh_downward":
335double: 2
336float: 2
337idouble: 2
338ifloat: 2
339ildouble: 2
340ldouble: 2
341
342Function: Real part of "cacosh_towardzero":
343double: 5
344float: 3
345idouble: 5
346ifloat: 3
347ildouble: 5
348ldouble: 5
349
350Function: Imaginary part of "cacosh_towardzero":
351double: 2
352float: 2
353idouble: 2
354ifloat: 2
355ildouble: 2
356ldouble: 2
357
358Function: Real part of "cacosh_upward":
359double: 4
360float: 4
361idouble: 4
362ifloat: 4
363ildouble: 5
364ldouble: 5
365
366Function: Imaginary part of "cacosh_upward":
367double: 2
368float: 2
369idouble: 2
370ifloat: 2
371ildouble: 3
372ldouble: 3
373
374Function: "carg":
375double: 1
376float: 1
377idouble: 1
378ifloat: 1
379ildouble: 2
380ldouble: 2
381
382Function: "carg_downward":
383double: 1
384float: 2
385idouble: 1
386ifloat: 2
387ildouble: 2
388ldouble: 2
389
390Function: "carg_towardzero":
391double: 1
392float: 2
393idouble: 1
394ifloat: 2
395ildouble: 3
396ldouble: 3
397
398Function: "carg_upward":
399double: 1
400float: 1
401idouble: 1
402ifloat: 1
403ildouble: 2
404ldouble: 2
405
406Function: Real part of "casin":
407double: 1
408float: 1
409idouble: 1
410ifloat: 1
411ildouble: 2
412ldouble: 2
413
414Function: Imaginary part of "casin":
415double: 1
416float: 2
417idouble: 1
418ifloat: 2
419ildouble: 2
420ldouble: 2
421
422Function: Real part of "casin_downward":
423double: 3
424float: 1
425idouble: 3
426ifloat: 1
427ildouble: 3
428ldouble: 3
429
430Function: Imaginary part of "casin_downward":
431double: 5
432float: 3
433idouble: 5
434ifloat: 3
435ildouble: 5
436ldouble: 5
437
438Function: Real part of "casin_towardzero":
439double: 3
440float: 1
441idouble: 3
442ifloat: 1
443ildouble: 3
444ldouble: 3
445
446Function: Imaginary part of "casin_towardzero":
447double: 5
448float: 3
449idouble: 5
450ifloat: 3
451ildouble: 5
452ldouble: 5
453
454Function: Real part of "casin_upward":
455double: 2
456float: 1
457idouble: 2
458ifloat: 1
459ildouble: 3
460ldouble: 3
461
462Function: Imaginary part of "casin_upward":
463double: 4
464float: 4
465idouble: 4
466ifloat: 4
467ildouble: 5
468ldouble: 5
469
470Function: Real part of "casinh":
471double: 1
472float: 2
473idouble: 1
474ifloat: 2
475ildouble: 2
476ldouble: 2
477
478Function: Imaginary part of "casinh":
479double: 1
480float: 1
481idouble: 1
482ifloat: 1
483ildouble: 2
484ldouble: 2
485
486Function: Real part of "casinh_downward":
487double: 5
488float: 3
489idouble: 5
490ifloat: 3
491ildouble: 5
492ldouble: 5
493
494Function: Imaginary part of "casinh_downward":
495double: 3
496float: 1
497idouble: 3
498ifloat: 1
499ildouble: 3
500ldouble: 3
501
502Function: Real part of "casinh_towardzero":
503double: 5
504float: 3
505idouble: 5
506ifloat: 3
507ildouble: 5
508ldouble: 5
509
510Function: Imaginary part of "casinh_towardzero":
511double: 3
512float: 1
513idouble: 3
514ifloat: 1
515ildouble: 3
516ldouble: 3
517
518Function: Real part of "casinh_upward":
519double: 4
520float: 4
521idouble: 4
522ifloat: 4
523ildouble: 5
524ldouble: 5
525
526Function: Imaginary part of "casinh_upward":
527double: 2
528float: 2
529idouble: 2
530ifloat: 2
531ildouble: 3
532ldouble: 3
533
534Function: Real part of "catan":
535float: 1
536ifloat: 1
537ildouble: 1
538ldouble: 1
539
540Function: Imaginary part of "catan":
541double: 1
542float: 1
543idouble: 1
544ifloat: 1
545ildouble: 1
546ldouble: 1
547
548Function: Real part of "catan_downward":
549double: 1
550float: 1
551idouble: 1
552ifloat: 1
553ildouble: 2
554ldouble: 2
555
556Function: Imaginary part of "catan_downward":
557double: 2
558float: 2
559idouble: 2
560ifloat: 2
561ildouble: 3
562ldouble: 3
563
564Function: Real part of "catan_towardzero":
565double: 1
566float: 1
567idouble: 1
568ifloat: 1
569ildouble: 2
570ldouble: 2
571
572Function: Imaginary part of "catan_towardzero":
573double: 2
574float: 1
575idouble: 2
576ifloat: 1
577ildouble: 3
578ldouble: 3
579
580Function: Real part of "catan_upward":
581float: 1
582ifloat: 1
583ildouble: 1
584ldouble: 1
585
586Function: Imaginary part of "catan_upward":
587double: 3
588float: 3
589idouble: 3
590ifloat: 3
591ildouble: 3
592ldouble: 3
593
594Function: Real part of "catanh":
595double: 1
596float: 1
597idouble: 1
598ifloat: 1
599ildouble: 1
600ldouble: 1
601
602Function: Imaginary part of "catanh":
603float: 1
604ifloat: 1
605ildouble: 1
606ldouble: 1
607
608Function: Real part of "catanh_downward":
609double: 2
610float: 2
611idouble: 2
612ifloat: 2
613ildouble: 3
614ldouble: 3
615
616Function: Imaginary part of "catanh_downward":
617double: 1
618float: 2
619idouble: 1
620ifloat: 2
621ildouble: 2
622ldouble: 2
623
624Function: Real part of "catanh_towardzero":
625double: 2
626float: 1
627idouble: 2
628ifloat: 1
629ildouble: 3
630ldouble: 3
631
632Function: Imaginary part of "catanh_towardzero":
633double: 1
634float: 2
635idouble: 1
636ifloat: 2
637ildouble: 2
638ldouble: 2
639
640Function: Real part of "catanh_upward":
641double: 4
642float: 3
643idouble: 4
644ifloat: 3
645ildouble: 4
646ldouble: 4
647
648Function: Imaginary part of "catanh_upward":
649float: 1
650ifloat: 1
651ildouble: 1
652ldouble: 1
653
654Function: "cbrt":
655double: 3
656float: 1
657idouble: 3
658ifloat: 1
659ildouble: 1
660ldouble: 1
661
662Function: "cbrt_downward":
663double: 4
664float: 1
665idouble: 4
666ifloat: 1
667ildouble: 1
668ldouble: 1
669
670Function: "cbrt_towardzero":
671double: 3
672float: 1
673idouble: 3
674ifloat: 1
675ildouble: 1
676ldouble: 1
677
678Function: "cbrt_upward":
679double: 5
680float: 1
681idouble: 5
682ifloat: 1
683ildouble: 1
684ldouble: 1
685
686Function: Real part of "ccos":
687double: 1
688float: 1
689idouble: 1
690ifloat: 1
691ildouble: 1
692ldouble: 1
693
694Function: Imaginary part of "ccos":
695double: 1
696float: 1
697idouble: 1
698ifloat: 1
699ildouble: 1
700ldouble: 1
701
702Function: Real part of "ccos_downward":
703double: 1
704float: 1
705idouble: 1
706ifloat: 1
707ildouble: 2
708ldouble: 2
709
710Function: Imaginary part of "ccos_downward":
711double: 2
712float: 3
713idouble: 2
714ifloat: 3
715ildouble: 2
716ldouble: 2
717
718Function: Real part of "ccos_towardzero":
719double: 1
720float: 2
721idouble: 1
722ifloat: 2
723ildouble: 2
724ldouble: 2
725
726Function: Imaginary part of "ccos_towardzero":
727double: 2
728float: 3
729idouble: 2
730ifloat: 3
731ildouble: 2
732ldouble: 2
733
734Function: Real part of "ccos_upward":
735double: 1
736float: 2
737idouble: 1
738ifloat: 2
739ildouble: 3
740ldouble: 3
741
742Function: Imaginary part of "ccos_upward":
743double: 2
744float: 2
745idouble: 2
746ifloat: 2
747ildouble: 2
748ldouble: 2
749
750Function: Real part of "ccosh":
751double: 1
752float: 1
753idouble: 1
754ifloat: 1
755ildouble: 1
756ldouble: 1
757
758Function: Imaginary part of "ccosh":
759double: 1
760float: 1
761idouble: 1
762ifloat: 1
763ildouble: 1
764ldouble: 1
765
766Function: Real part of "ccosh_downward":
767double: 1
768float: 3
769idouble: 1
770ifloat: 3
771ildouble: 2
772ldouble: 2
773
774Function: Imaginary part of "ccosh_downward":
775double: 2
776float: 3
777idouble: 2
778ifloat: 3
779ildouble: 2
780ldouble: 2
781
782Function: Real part of "ccosh_towardzero":
783double: 1
784float: 3
785idouble: 1
786ifloat: 3
787ildouble: 2
788ldouble: 2
789
790Function: Imaginary part of "ccosh_towardzero":
791double: 2
792float: 3
793idouble: 2
794ifloat: 3
795ildouble: 2
796ldouble: 2
797
798Function: Real part of "ccosh_upward":
799double: 1
800float: 2
801idouble: 1
802ifloat: 2
803ildouble: 3
804ldouble: 3
805
806Function: Imaginary part of "ccosh_upward":
807double: 2
808float: 2
809idouble: 2
810ifloat: 2
811ildouble: 2
812ldouble: 2
813
814Function: Real part of "cexp":
815double: 2
816float: 1
817idouble: 2
818ifloat: 1
819ildouble: 1
820ldouble: 1
821
822Function: Imaginary part of "cexp":
823double: 1
824float: 2
825idouble: 1
826ifloat: 2
827ildouble: 1
828ldouble: 1
829
830Function: Real part of "cexp_downward":
831double: 1
832float: 2
833idouble: 1
834ifloat: 2
835ildouble: 2
836ldouble: 2
837
838Function: Imaginary part of "cexp_downward":
839double: 1
840float: 3
841idouble: 1
842ifloat: 3
843ildouble: 2
844ldouble: 2
845
846Function: Real part of "cexp_towardzero":
847double: 1
848float: 2
849idouble: 1
850ifloat: 2
851ildouble: 2
852ldouble: 2
853
854Function: Imaginary part of "cexp_towardzero":
855double: 1
856float: 3
857idouble: 1
858ifloat: 3
859ildouble: 2
860ldouble: 2
861
862Function: Real part of "cexp_upward":
863double: 1
864float: 2
865idouble: 1
866ifloat: 2
867ildouble: 3
868ldouble: 3
869
870Function: Imaginary part of "cexp_upward":
871double: 1
872float: 2
873idouble: 1
874ifloat: 2
875ildouble: 3
876ldouble: 3
877
878Function: Real part of "clog":
879double: 3
880float: 3
881idouble: 3
882ifloat: 3
883ildouble: 2
884ldouble: 2
885
886Function: Imaginary part of "clog":
887double: 1
888float: 1
889idouble: 1
890ifloat: 1
891ildouble: 1
892ldouble: 1
893
894Function: Real part of "clog10":
895double: 3
896float: 4
897idouble: 3
898ifloat: 4
899ildouble: 2
900ldouble: 2
901
902Function: Imaginary part of "clog10":
903double: 1
904float: 2
905idouble: 1
906ifloat: 2
907ildouble: 2
908ldouble: 2
909
910Function: Real part of "clog10_downward":
911double: 5
912float: 4
913idouble: 5
914ifloat: 4
915ildouble: 3
916ldouble: 3
917
918Function: Imaginary part of "clog10_downward":
919double: 2
920float: 4
921idouble: 2
922ifloat: 4
923ildouble: 3
924ldouble: 3
925
926Function: Real part of "clog10_towardzero":
927double: 5
928float: 5
929idouble: 5
930ifloat: 5
931ildouble: 4
932ldouble: 4
933
934Function: Imaginary part of "clog10_towardzero":
935double: 2
936float: 4
937idouble: 2
938ifloat: 4
939ildouble: 3
940ldouble: 3
941
942Function: Real part of "clog10_upward":
943double: 6
944float: 5
945idouble: 6
946ifloat: 5
947ildouble: 4
948ldouble: 4
949
950Function: Imaginary part of "clog10_upward":
951double: 2
952float: 4
953idouble: 2
954ifloat: 4
955ildouble: 3
956ldouble: 3
957
958Function: Real part of "clog_downward":
959double: 4
960float: 3
961idouble: 4
962ifloat: 3
963ildouble: 3
964ldouble: 3
965
966Function: Imaginary part of "clog_downward":
967double: 1
968float: 2
969idouble: 1
970ifloat: 2
971ildouble: 2
972ldouble: 2
973
974Function: Real part of "clog_towardzero":
975double: 4
976float: 4
977idouble: 4
978ifloat: 4
979ildouble: 3
980ldouble: 3
981
982Function: Imaginary part of "clog_towardzero":
983double: 1
984float: 3
985idouble: 1
986ifloat: 3
987ildouble: 2
988ldouble: 2
989
990Function: Real part of "clog_upward":
991double: 4
992float: 3
993idouble: 4
994ifloat: 3
995ildouble: 4
996ldouble: 4
997
998Function: Imaginary part of "clog_upward":
999double: 1
1000float: 2
1001idouble: 1
1002ifloat: 2
1003ildouble: 2
1004ldouble: 2
1005
1006Function: "cos":
1007float: 1
1008ifloat: 1
1009ildouble: 1
1010ldouble: 1
1011
1012Function: "cos_downward":
1013double: 1
1014float: 2
1015idouble: 1
1016ifloat: 2
1017ildouble: 3
1018ldouble: 3
1019
1020Function: "cos_towardzero":
1021double: 1
1022float: 1
1023idouble: 1
1024ifloat: 1
1025ildouble: 1
1026ldouble: 1
1027
1028Function: "cos_upward":
1029double: 1
1030float: 2
1031idouble: 1
1032ifloat: 2
1033ildouble: 2
1034ldouble: 2
1035
1036Function: "cosh":
1037double: 1
1038float: 1
1039idouble: 1
1040ifloat: 1
1041ildouble: 1
1042ldouble: 1
1043
1044Function: "cosh_downward":
1045double: 1
1046float: 1
1047idouble: 1
1048ifloat: 1
1049ildouble: 1
1050ldouble: 2
1051
1052Function: "cosh_towardzero":
1053double: 1
1054float: 1
1055idouble: 1
1056ifloat: 1
1057ildouble: 1
1058ldouble: 2
1059
1060Function: "cosh_upward":
1061double: 1
1062float: 2
1063idouble: 1
1064ifloat: 2
1065ildouble: 1
1066ldouble: 3
1067
1068Function: Real part of "cpow":
1069double: 2
1070float: 5
1071idouble: 2
1072ifloat: 5
1073ildouble: 4
1074ldouble: 4
1075
1076Function: Imaginary part of "cpow":
1077float: 2
1078ifloat: 2
1079ildouble: 1
1080ldouble: 1
1081
1082Function: Real part of "cpow_downward":
1083double: 4
1084float: 8
1085idouble: 4
1086ifloat: 8
1087ildouble: 6
1088ldouble: 6
1089
1090Function: Imaginary part of "cpow_downward":
1091double: 1
1092float: 2
1093idouble: 1
1094ifloat: 2
1095ildouble: 2
1096ldouble: 2
1097
1098Function: Real part of "cpow_towardzero":
1099double: 4
1100float: 8
1101idouble: 4
1102ifloat: 8
1103ildouble: 6
1104ldouble: 6
1105
1106Function: Imaginary part of "cpow_towardzero":
1107double: 1
1108float: 2
1109idouble: 1
1110ifloat: 2
1111ildouble: 2
1112ldouble: 2
1113
1114Function: Real part of "cpow_upward":
1115double: 4
1116float: 1
1117idouble: 4
1118ifloat: 1
1119ildouble: 3
1120ldouble: 3
1121
1122Function: Imaginary part of "cpow_upward":
1123double: 1
1124float: 2
1125idouble: 1
1126ifloat: 2
1127ildouble: 2
1128ldouble: 2
1129
1130Function: Real part of "csin":
1131double: 1
1132float: 1
1133idouble: 1
1134ifloat: 1
1135ildouble: 1
1136ldouble: 1
1137
1138Function: Imaginary part of "csin":
1139ildouble: 1
1140ldouble: 1
1141
1142Function: Real part of "csin_downward":
1143double: 2
1144float: 3
1145idouble: 2
1146ifloat: 3
1147ildouble: 2
1148ldouble: 2
1149
1150Function: Imaginary part of "csin_downward":
1151double: 1
1152float: 1
1153idouble: 1
1154ifloat: 1
1155ildouble: 2
1156ldouble: 2
1157
1158Function: Real part of "csin_towardzero":
1159double: 2
1160float: 3
1161idouble: 2
1162ifloat: 3
1163ildouble: 2
1164ldouble: 2
1165
1166Function: Imaginary part of "csin_towardzero":
1167double: 1
1168float: 1
1169idouble: 1
1170ifloat: 1
1171ildouble: 2
1172ldouble: 2
1173
1174Function: Real part of "csin_upward":
1175double: 2
1176float: 2
1177idouble: 2
1178ifloat: 2
1179ildouble: 2
1180ldouble: 2
1181
1182Function: Imaginary part of "csin_upward":
1183double: 1
1184float: 2
1185idouble: 1
1186ifloat: 2
1187ildouble: 3
1188ldouble: 3
1189
1190Function: Real part of "csinh":
1191float: 1
1192ifloat: 1
1193ildouble: 1
1194ldouble: 1
1195
1196Function: Imaginary part of "csinh":
1197double: 1
1198float: 1
1199idouble: 1
1200ifloat: 1
1201ildouble: 1
1202ldouble: 1
1203
1204Function: Real part of "csinh_downward":
1205double: 2
1206float: 2
1207idouble: 2
1208ifloat: 2
1209ildouble: 2
1210ldouble: 2
1211
1212Function: Imaginary part of "csinh_downward":
1213double: 2
1214float: 3
1215idouble: 2
1216ifloat: 3
1217ildouble: 2
1218ldouble: 2
1219
1220Function: Real part of "csinh_towardzero":
1221double: 2
1222float: 2
1223idouble: 2
1224ifloat: 2
1225ildouble: 2
1226ldouble: 2
1227
1228Function: Imaginary part of "csinh_towardzero":
1229double: 2
1230float: 3
1231idouble: 2
1232ifloat: 3
1233ildouble: 2
1234ldouble: 2
1235
1236Function: Real part of "csinh_upward":
1237double: 1
1238float: 2
1239idouble: 1
1240ifloat: 2
1241ildouble: 3
1242ldouble: 3
1243
1244Function: Imaginary part of "csinh_upward":
1245double: 2
1246float: 2
1247idouble: 2
1248ifloat: 2
1249ildouble: 2
1250ldouble: 2
1251
1252Function: Real part of "csqrt":
1253double: 2
1254float: 2
1255idouble: 2
1256ifloat: 2
1257ildouble: 2
1258ldouble: 2
1259
1260Function: Imaginary part of "csqrt":
1261double: 2
1262float: 2
1263idouble: 2
1264ifloat: 2
1265ildouble: 2
1266ldouble: 2
1267
1268Function: Real part of "csqrt_downward":
1269double: 5
1270float: 4
1271idouble: 5
1272ifloat: 4
1273ildouble: 4
1274ldouble: 4
1275
1276Function: Imaginary part of "csqrt_downward":
1277double: 4
1278float: 3
1279idouble: 4
1280ifloat: 3
1281ildouble: 3
1282ldouble: 3
1283
1284Function: Real part of "csqrt_towardzero":
1285double: 4
1286float: 3
1287idouble: 4
1288ifloat: 3
1289ildouble: 3
1290ldouble: 3
1291
1292Function: Imaginary part of "csqrt_towardzero":
1293double: 4
1294float: 3
1295idouble: 4
1296ifloat: 3
1297ildouble: 3
1298ldouble: 3
1299
1300Function: Real part of "csqrt_upward":
1301double: 5
1302float: 4
1303idouble: 5
1304ifloat: 4
1305ildouble: 4
1306ldouble: 4
1307
1308Function: Imaginary part of "csqrt_upward":
1309double: 3
1310float: 3
1311idouble: 3
1312ifloat: 3
1313ildouble: 3
1314ldouble: 3
1315
1316Function: Real part of "ctan":
1317double: 1
1318float: 1
1319idouble: 1
1320ifloat: 1
1321ildouble: 3
1322ldouble: 3
1323
1324Function: Imaginary part of "ctan":
1325double: 2
1326float: 1
1327idouble: 2
1328ifloat: 1
1329ildouble: 3
1330ldouble: 3
1331
1332Function: Real part of "ctan_downward":
1333double: 6
1334float: 5
1335idouble: 6
1336ifloat: 5
1337ildouble: 4
1338ldouble: 4
1339
1340Function: Imaginary part of "ctan_downward":
1341double: 2
1342float: 1
1343idouble: 2
1344ifloat: 1
1345ildouble: 5
1346ldouble: 5
1347
1348Function: Real part of "ctan_towardzero":
1349double: 5
1350float: 3
1351idouble: 5
1352ifloat: 3
1353ildouble: 4
1354ldouble: 4
1355
1356Function: Imaginary part of "ctan_towardzero":
1357double: 2
1358float: 2
1359idouble: 2
1360ifloat: 2
1361ildouble: 5
1362ldouble: 5
1363
1364Function: Real part of "ctan_upward":
1365double: 2
1366float: 3
1367idouble: 2
1368ifloat: 3
1369ildouble: 5
1370ldouble: 5
1371
1372Function: Imaginary part of "ctan_upward":
1373double: 2
1374float: 3
1375idouble: 2
1376ifloat: 3
1377ildouble: 5
1378ldouble: 5
1379
1380Function: Real part of "ctanh":
1381double: 2
1382float: 2
1383idouble: 2
1384ifloat: 2
1385ildouble: 3
1386ldouble: 3
1387
1388Function: Imaginary part of "ctanh":
1389double: 2
1390float: 1
1391idouble: 2
1392ifloat: 1
1393ildouble: 3
1394ldouble: 3
1395
1396Function: Real part of "ctanh_downward":
1397double: 4
1398float: 1
1399idouble: 4
1400ifloat: 1
1401ildouble: 5
1402ldouble: 5
1403
1404Function: Imaginary part of "ctanh_downward":
1405double: 6
1406float: 5
1407idouble: 6
1408ifloat: 5
1409ildouble: 4
1410ldouble: 4
1411
1412Function: Real part of "ctanh_towardzero":
1413double: 2
1414float: 2
1415idouble: 2
1416ifloat: 2
1417ildouble: 5
1418ldouble: 5
1419
1420Function: Imaginary part of "ctanh_towardzero":
1421double: 5
1422float: 2
1423idouble: 5
1424ifloat: 2
1425ildouble: 3
1426ldouble: 3
1427
1428Function: Real part of "ctanh_upward":
1429double: 2
1430float: 3
1431idouble: 2
1432ifloat: 3
1433ildouble: 5
1434ldouble: 5
1435
1436Function: Imaginary part of "ctanh_upward":
1437double: 2
1438float: 3
1439idouble: 2
1440ifloat: 3
1441ildouble: 5
1442ldouble: 5
1443
1444Function: "erf":
1445double: 1
1446float: 1
1447idouble: 1
1448ifloat: 1
1449ildouble: 1
1450ldouble: 1
1451
1452Function: "erf_downward":
1453double: 1
1454float: 1
1455idouble: 1
1456ifloat: 1
1457ildouble: 2
1458ldouble: 2
1459
1460Function: "erf_towardzero":
1461double: 1
1462float: 1
1463idouble: 1
1464ifloat: 1
1465ildouble: 1
1466ldouble: 1
1467
1468Function: "erf_upward":
1469double: 1
1470float: 1
1471idouble: 1
1472ifloat: 1
1473ildouble: 2
1474ldouble: 2
1475
1476Function: "erfc":
1477double: 2
1478float: 2
1479idouble: 2
1480ifloat: 2
1481ildouble: 2
1482ldouble: 2
1483
1484Function: "erfc_downward":
1485double: 3
1486float: 4
1487idouble: 3
1488ifloat: 4
1489ildouble: 5
1490ldouble: 5
1491
1492Function: "erfc_towardzero":
1493double: 3
1494float: 3
1495idouble: 3
1496ifloat: 3
1497ildouble: 4
1498ldouble: 4
1499
1500Function: "erfc_upward":
1501double: 3
1502float: 4
1503idouble: 3
1504ifloat: 4
1505ildouble: 5
1506ldouble: 5
1507
1508Function: "exp":
1509float: 1
1510ifloat: 1
1511ildouble: 1
1512ldouble: 1
1513
1514Function: "exp10":
1515double: 2
1516idouble: 2
1517ildouble: 2
1518ldouble: 2
1519
1520Function: "exp10_downward":
1521double: 2
1522float: 1
1523idouble: 2
1524ifloat: 1
1525ildouble: 3
1526ldouble: 3
1527
1528Function: "exp10_towardzero":
1529double: 2
1530float: 1
1531idouble: 2
1532ifloat: 1
1533ildouble: 3
1534ldouble: 3
1535
1536Function: "exp10_upward":
1537double: 2
1538float: 1
1539idouble: 2
1540ifloat: 1
1541ildouble: 3
1542ldouble: 3
1543
1544Function: "exp2":
1545double: 1
1546float: 1
1547idouble: 1
1548ifloat: 1
1549ildouble: 1
1550ldouble: 1
1551
1552Function: "exp2_downward":
1553double: 1
1554float: 1
1555idouble: 1
1556ifloat: 1
1557ildouble: 1
1558ldouble: 1
1559
1560Function: "exp2_towardzero":
1561double: 1
1562float: 1
1563idouble: 1
1564ifloat: 1
1565ildouble: 1
1566ldouble: 1
1567
1568Function: "exp2_upward":
1569double: 1
1570float: 1
1571idouble: 1
1572ifloat: 1
1573ildouble: 2
1574ldouble: 2
1575
1576Function: "exp_downward":
1577double: 1
1578idouble: 1
1579
1580Function: "exp_towardzero":
1581double: 1
1582idouble: 1
1583
1584Function: "exp_upward":
1585double: 1
1586idouble: 1
1587
1588Function: "expm1":
1589double: 1
1590float: 1
1591idouble: 1
1592ifloat: 1
1593ildouble: 1
1594ldouble: 1
1595
1596Function: "expm1_downward":
1597double: 1
1598float: 1
1599idouble: 1
1600ifloat: 1
1601ildouble: 2
1602ldouble: 2
1603
1604Function: "expm1_towardzero":
1605double: 1
1606float: 2
1607idouble: 1
1608ifloat: 2
1609ildouble: 4
1610ldouble: 4
1611
1612Function: "expm1_upward":
1613double: 1
1614float: 1
1615idouble: 1
1616ifloat: 1
1617ildouble: 3
1618ldouble: 3
1619
1620Function: "gamma":
1621double: 3
1622float: 4
1623idouble: 3
1624ifloat: 4
1625ildouble: 5
1626ldouble: 5
1627
1628Function: "gamma_downward":
1629double: 4
1630float: 4
1631idouble: 4
1632ifloat: 4
1633ildouble: 8
1634ldouble: 8
1635
1636Function: "gamma_towardzero":
1637double: 4
1638float: 3
1639idouble: 4
1640ifloat: 3
1641ildouble: 5
1642ldouble: 5
1643
1644Function: "gamma_upward":
1645double: 4
1646float: 5
1647idouble: 4
1648ifloat: 5
1649ildouble: 8
1650ldouble: 8
1651
1652Function: "hypot":
1653double: 1
1654idouble: 1
1655ildouble: 1
1656ldouble: 1
1657
1658Function: "hypot_downward":
1659double: 1
1660idouble: 1
1661ildouble: 1
1662ldouble: 1
1663
1664Function: "hypot_towardzero":
1665double: 1
1666idouble: 1
1667ildouble: 1
1668ldouble: 1
1669
1670Function: "hypot_upward":
1671double: 1
1672idouble: 1
1673ildouble: 1
1674ldouble: 1
1675
1676Function: "j0":
1677double: 2
1678float: 2
1679idouble: 2
1680ifloat: 2
1681ildouble: 2
1682ldouble: 2
1683
1684Function: "j0_downward":
1685double: 2
1686float: 3
1687idouble: 2
1688ifloat: 3
1689ildouble: 4
1690ldouble: 4
1691
1692Function: "j0_towardzero":
1693double: 2
1694float: 1
1695idouble: 2
1696ifloat: 1
1697ildouble: 2
1698ldouble: 2
1699
1700Function: "j0_upward":
1701double: 3
1702float: 2
1703idouble: 3
1704ifloat: 2
1705ildouble: 5
1706ldouble: 5
1707
1708Function: "j1":
1709double: 1
1710float: 2
1711idouble: 1
1712ifloat: 2
1713ildouble: 4
1714ldouble: 4
1715
1716Function: "j1_downward":
1717double: 3
1718float: 2
1719idouble: 3
1720ifloat: 2
1721ildouble: 4
1722ldouble: 4
1723
1724Function: "j1_towardzero":
1725double: 3
1726float: 2
1727idouble: 3
1728ifloat: 2
1729ildouble: 4
1730ldouble: 4
1731
1732Function: "j1_upward":
1733double: 3
1734float: 4
1735idouble: 3
1736ifloat: 4
1737ildouble: 3
1738ldouble: 3
1739
1740Function: "jn":
1741double: 4
1742float: 4
1743idouble: 4
1744ifloat: 4
1745ildouble: 7
1746ldouble: 7
1747
1748Function: "jn_downward":
1749double: 4
1750float: 5
1751idouble: 4
1752ifloat: 5
1753ildouble: 8
1754ldouble: 8
1755
1756Function: "jn_towardzero":
1757double: 4
1758float: 5
1759idouble: 4
1760ifloat: 5
1761ildouble: 8
1762ldouble: 8
1763
1764Function: "jn_upward":
1765double: 5
1766float: 4
1767idouble: 5
1768ifloat: 4
1769ildouble: 7
1770ldouble: 7
1771
1772Function: "lgamma":
1773double: 3
1774float: 4
1775idouble: 3
1776ifloat: 4
1777ildouble: 5
1778ldouble: 5
1779
1780Function: "lgamma_downward":
1781double: 4
1782float: 4
1783idouble: 4
1784ifloat: 4
1785ildouble: 8
1786ldouble: 8
1787
1788Function: "lgamma_towardzero":
1789double: 4
1790float: 3
1791idouble: 4
1792ifloat: 3
1793ildouble: 5
1794ldouble: 5
1795
1796Function: "lgamma_upward":
1797double: 4
1798float: 5
1799idouble: 4
1800ifloat: 5
1801ildouble: 8
1802ldouble: 8
1803
1804Function: "log":
1805float: 1
1806ifloat: 1
1807ildouble: 1
1808ldouble: 1
1809
1810Function: "log10":
1811double: 2
1812float: 2
1813idouble: 2
1814ifloat: 2
1815ildouble: 1
1816ldouble: 1
1817
1818Function: "log10_downward":
1819double: 2
1820float: 3
1821idouble: 2
1822ifloat: 3
1823ildouble: 1
1824ldouble: 1
1825
1826Function: "log10_towardzero":
1827double: 2
1828float: 2
1829idouble: 2
1830ifloat: 2
1831ildouble: 1
1832ldouble: 1
1833
1834Function: "log10_upward":
1835double: 2
1836float: 2
1837idouble: 2
1838ifloat: 2
1839ildouble: 1
1840ldouble: 1
1841
1842Function: "log1p":
1843double: 1
1844float: 1
1845idouble: 1
1846ifloat: 1
1847ildouble: 2
1848ldouble: 2
1849
1850Function: "log1p_downward":
1851double: 1
1852float: 2
1853idouble: 1
1854ifloat: 2
1855ildouble: 3
1856ldouble: 3
1857
1858Function: "log1p_towardzero":
1859double: 2
1860float: 2
1861idouble: 2
1862ifloat: 2
1863ildouble: 3
1864ldouble: 3
1865
1866Function: "log1p_upward":
1867double: 2
1868float: 2
1869idouble: 2
1870ifloat: 2
1871ildouble: 2
1872ldouble: 2
1873
1874Function: "log2":
1875double: 1
1876float: 1
1877idouble: 1
1878ifloat: 1
1879ildouble: 2
1880ldouble: 2
1881
1882Function: "log2_downward":
1883double: 3
1884float: 3
1885idouble: 3
1886ifloat: 3
1887ildouble: 3
1888ldouble: 3
1889
1890Function: "log2_towardzero":
1891double: 2
1892float: 2
1893idouble: 2
1894ifloat: 2
1895ildouble: 1
1896ldouble: 1
1897
1898Function: "log2_upward":
1899double: 3
1900float: 3
1901idouble: 3
1902ifloat: 3
1903ildouble: 1
1904ldouble: 1
1905
1906Function: "log_downward":
1907float: 2
1908ifloat: 2
1909ildouble: 1
1910ldouble: 1
1911
1912Function: "log_towardzero":
1913float: 1
1914ifloat: 1
1915ildouble: 2
1916ldouble: 2
1917
1918Function: "log_upward":
1919double: 1
1920float: 1
1921idouble: 1
1922ifloat: 1
1923ildouble: 1
1924ldouble: 1
1925
1926Function: "pow":
1927float: 1
1928ifloat: 1
1929ildouble: 2
1930ldouble: 2
1931
1932Function: "pow10":
1933double: 2
1934idouble: 2
1935ildouble: 2
1936ldouble: 2
1937
1938Function: "pow10_downward":
1939double: 2
1940float: 1
1941idouble: 2
1942ifloat: 1
1943ildouble: 3
1944ldouble: 3
1945
1946Function: "pow10_towardzero":
1947double: 2
1948float: 1
1949idouble: 2
1950ifloat: 1
1951ildouble: 3
1952ldouble: 3
1953
1954Function: "pow10_upward":
1955double: 2
1956float: 1
1957idouble: 2
1958ifloat: 1
1959ildouble: 3
1960ldouble: 3
1961
1962Function: "pow_downward":
1963double: 1
1964float: 1
1965idouble: 1
1966ifloat: 1
1967ildouble: 2
1968ldouble: 2
1969
1970Function: "pow_towardzero":
1971double: 1
1972float: 1
1973idouble: 1
1974ifloat: 1
1975ildouble: 2
1976ldouble: 2
1977
1978Function: "pow_upward":
1979double: 1
1980float: 1
1981idouble: 1
1982ifloat: 1
1983ildouble: 2
1984ldouble: 2
1985
1986Function: "sin":
1987float: 1
1988ifloat: 1
1989ildouble: 1
1990ldouble: 1
1991
1992Function: "sin_downward":
1993double: 1
1994float: 2
1995idouble: 1
1996ifloat: 2
1997ildouble: 3
1998ldouble: 3
1999
2000Function: "sin_towardzero":
2001double: 1
2002float: 1
2003idouble: 1
2004ifloat: 1
2005ildouble: 2
2006ldouble: 2
2007
2008Function: "sin_upward":
2009double: 1
2010float: 2
2011idouble: 1
2012ifloat: 2
2013ildouble: 3
2014ldouble: 3
2015
2016Function: "sincos":
2017float: 1
2018ifloat: 1
2019ildouble: 1
2020ldouble: 1
2021
2022Function: "sincos_downward":
2023double: 1
2024float: 2
2025idouble: 1
2026ifloat: 2
2027ildouble: 3
2028ldouble: 3
2029
2030Function: "sincos_towardzero":
2031double: 1
2032float: 1
2033idouble: 1
2034ifloat: 1
2035ildouble: 2
2036ldouble: 2
2037
2038Function: "sincos_upward":
2039double: 1
2040float: 2
2041idouble: 1
2042ifloat: 2
2043ildouble: 3
2044ldouble: 3
2045
2046Function: "sinh":
2047double: 2
2048float: 2
2049idouble: 2
2050ifloat: 2
2051ildouble: 2
2052ldouble: 2
2053
2054Function: "sinh_downward":
2055double: 3
2056float: 3
2057idouble: 3
2058ifloat: 3
2059ildouble: 3
2060ldouble: 3
2061
2062Function: "sinh_towardzero":
2063double: 2
2064float: 2
2065idouble: 2
2066ifloat: 2
2067ildouble: 3
2068ldouble: 3
2069
2070Function: "sinh_upward":
2071double: 3
2072float: 3
2073idouble: 3
2074ifloat: 3
2075ildouble: 4
2076ldouble: 4
2077
2078Function: "tan":
2079float: 1
2080ifloat: 1
2081ildouble: 1
2082ldouble: 1
2083
2084Function: "tan_downward":
2085double: 1
2086float: 2
2087idouble: 1
2088ifloat: 2
2089ildouble: 1
2090ldouble: 1
2091
2092Function: "tan_towardzero":
2093double: 1
2094float: 1
2095idouble: 1
2096ifloat: 1
2097ildouble: 1
2098ldouble: 1
2099
2100Function: "tan_upward":
2101double: 1
2102float: 1
2103idouble: 1
2104ifloat: 1
2105ildouble: 1
2106ldouble: 1
2107
2108Function: "tanh":
2109double: 2
2110float: 2
2111idouble: 2
2112ifloat: 2
2113ildouble: 2
2114ldouble: 2
2115
2116Function: "tanh_downward":
2117double: 3
2118float: 3
2119idouble: 3
2120ifloat: 3
2121ildouble: 4
2122ldouble: 4
2123
2124Function: "tanh_towardzero":
2125double: 2
2126float: 2
2127idouble: 2
2128ifloat: 2
2129ildouble: 3
2130ldouble: 3
2131
2132Function: "tanh_upward":
2133double: 3
2134float: 3
2135idouble: 3
2136ifloat: 3
2137ildouble: 3
2138ldouble: 3
2139
2140Function: "tgamma":
2141double: 5
2142float: 4
2143idouble: 5
2144ifloat: 4
2145ildouble: 4
2146ldouble: 4
2147
2148Function: "tgamma_downward":
2149double: 5
2150float: 5
2151idouble: 5
2152ifloat: 5
2153ildouble: 5
2154ldouble: 5
2155
2156Function: "tgamma_towardzero":
2157double: 5
2158float: 4
2159idouble: 5
2160ifloat: 4
2161ildouble: 5
2162ldouble: 5
2163
2164Function: "tgamma_upward":
2165double: 4
2166float: 4
2167idouble: 4
2168ifloat: 4
2169ildouble: 4
2170ldouble: 4
2171
2172Function: "y0":
2173double: 2
2174float: 1
2175idouble: 2
2176ifloat: 1
2177ildouble: 3
2178ldouble: 3
2179
2180Function: "y0_downward":
2181double: 3
2182float: 2
2183idouble: 3
2184ifloat: 2
2185ildouble: 4
2186ldouble: 4
2187
2188Function: "y0_towardzero":
2189double: 3
2190float: 3
2191idouble: 3
2192ifloat: 3
2193ildouble: 3
2194ldouble: 3
2195
2196Function: "y0_upward":
2197double: 2
2198float: 3
2199idouble: 2
2200ifloat: 3
2201ildouble: 3
2202ldouble: 3
2203
2204Function: "y1":
2205double: 3
2206float: 2
2207idouble: 3
2208ifloat: 2
2209ildouble: 2
2210ldouble: 2
2211
2212Function: "y1_downward":
2213double: 3
2214float: 2
2215idouble: 3
2216ifloat: 2
2217ildouble: 4
2218ldouble: 4
2219
2220Function: "y1_towardzero":
2221double: 3
2222float: 2
2223idouble: 3
2224ifloat: 2
2225ildouble: 2
2226ldouble: 2
2227
2228Function: "y1_upward":
2229double: 5
2230float: 2
2231idouble: 5
2232ifloat: 2
2233ildouble: 5
2234ldouble: 5
2235
2236Function: "yn":
2237double: 3
2238float: 2
2239idouble: 3
2240ifloat: 2
2241ildouble: 5
2242ldouble: 5
2243
2244Function: "yn_downward":
2245double: 3
2246float: 2
2247idouble: 3
2248ifloat: 2
2249ildouble: 5
2250ldouble: 5
2251
2252Function: "yn_towardzero":
2253double: 3
2254float: 3
2255idouble: 3
2256ifloat: 3
2257ildouble: 5
2258ldouble: 5
2259
2260Function: "yn_upward":
2261double: 4
2262float: 3
2263idouble: 4
2264ifloat: 3
2265ildouble: 5
2266ldouble: 5
2267
2268# end of automatic generation