| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Complex tangent function for long double. | 
|  | 2 | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 3 | This file is part of the GNU C Library. | 
|  | 4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
|  | 5 |  | 
|  | 6 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 7 | modify it under the terms of the GNU Lesser General Public | 
|  | 8 | License as published by the Free Software Foundation; either | 
|  | 9 | version 2.1 of the License, or (at your option) any later version. | 
|  | 10 |  | 
|  | 11 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 14 | Lesser General Public License for more details. | 
|  | 15 |  | 
|  | 16 | You should have received a copy of the GNU Lesser General Public | 
|  | 17 | License along with the GNU C Library; if not, see | 
|  | 18 | <http://www.gnu.org/licenses/>.  */ | 
|  | 19 |  | 
|  | 20 | #include <complex.h> | 
|  | 21 | #include <fenv.h> | 
|  | 22 | #include <math.h> | 
|  | 23 | #include <math_private.h> | 
|  | 24 | #include <float.h> | 
|  | 25 |  | 
|  | 26 | /* To avoid spurious underflows, use this definition to treat IBM long | 
|  | 27 | double as approximating an IEEE-style format.  */ | 
|  | 28 | #if LDBL_MANT_DIG == 106 | 
|  | 29 | # undef LDBL_EPSILON | 
|  | 30 | # define LDBL_EPSILON 0x1p-106L | 
|  | 31 | #endif | 
|  | 32 |  | 
|  | 33 | __complex__ long double | 
|  | 34 | __ctanl (__complex__ long double x) | 
|  | 35 | { | 
|  | 36 | __complex__ long double res; | 
|  | 37 |  | 
|  | 38 | if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x))) | 
|  | 39 | { | 
|  | 40 | if (isinf (__imag__ x)) | 
|  | 41 | { | 
|  | 42 | if (isfinite (__real__ x) &&  fabsl (__real__ x) > 1.0L) | 
|  | 43 | { | 
|  | 44 | long double sinrx, cosrx; | 
|  | 45 | __sincosl (__real__ x, &sinrx, &cosrx); | 
|  | 46 | __real__ res = __copysignl (0.0L, sinrx * cosrx); | 
|  | 47 | } | 
|  | 48 | else | 
|  | 49 | __real__ res = __copysignl (0.0, __real__ x); | 
|  | 50 | __imag__ res = __copysignl (1.0, __imag__ x); | 
|  | 51 | } | 
|  | 52 | else if (__real__ x == 0.0) | 
|  | 53 | { | 
|  | 54 | res = x; | 
|  | 55 | } | 
|  | 56 | else | 
|  | 57 | { | 
|  | 58 | __real__ res = __nanl (""); | 
|  | 59 | __imag__ res = __nanl (""); | 
|  | 60 |  | 
|  | 61 | if (isinf (__real__ x)) | 
|  | 62 | feraiseexcept (FE_INVALID); | 
|  | 63 | } | 
|  | 64 | } | 
|  | 65 | else | 
|  | 66 | { | 
|  | 67 | long double sinrx, cosrx; | 
|  | 68 | long double den; | 
|  | 69 | const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2); | 
|  | 70 |  | 
|  | 71 | /* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y)) | 
|  | 72 | = (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */ | 
|  | 73 |  | 
|  | 74 | if (__glibc_likely (fabsl (__real__ x) > LDBL_MIN)) | 
|  | 75 | { | 
|  | 76 | __sincosl (__real__ x, &sinrx, &cosrx); | 
|  | 77 | } | 
|  | 78 | else | 
|  | 79 | { | 
|  | 80 | sinrx = __real__ x; | 
|  | 81 | cosrx = 1.0; | 
|  | 82 | } | 
|  | 83 |  | 
|  | 84 | if (fabsl (__imag__ x) > t) | 
|  | 85 | { | 
|  | 86 | /* Avoid intermediate overflow when the real part of the | 
|  | 87 | result may be subnormal.  Ignoring negligible terms, the | 
|  | 88 | imaginary part is +/- 1, the real part is | 
|  | 89 | sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y).  */ | 
|  | 90 | long double exp_2t = __ieee754_expl (2 * t); | 
|  | 91 |  | 
|  | 92 | __imag__ res = __copysignl (1.0, __imag__ x); | 
|  | 93 | __real__ res = 4 * sinrx * cosrx; | 
|  | 94 | __imag__ x = fabsl (__imag__ x); | 
|  | 95 | __imag__ x -= t; | 
|  | 96 | __real__ res /= exp_2t; | 
|  | 97 | if (__imag__ x > t) | 
|  | 98 | { | 
|  | 99 | /* Underflow (original imaginary part of x has absolute | 
|  | 100 | value > 2t).  */ | 
|  | 101 | __real__ res /= exp_2t; | 
|  | 102 | } | 
|  | 103 | else | 
|  | 104 | __real__ res /= __ieee754_expl (2 * __imag__ x); | 
|  | 105 | } | 
|  | 106 | else | 
|  | 107 | { | 
|  | 108 | long double sinhix, coshix; | 
|  | 109 | if (fabsl (__imag__ x) > LDBL_MIN) | 
|  | 110 | { | 
|  | 111 | sinhix = __ieee754_sinhl (__imag__ x); | 
|  | 112 | coshix = __ieee754_coshl (__imag__ x); | 
|  | 113 | } | 
|  | 114 | else | 
|  | 115 | { | 
|  | 116 | sinhix = __imag__ x; | 
|  | 117 | coshix = 1.0L; | 
|  | 118 | } | 
|  | 119 |  | 
|  | 120 | if (fabsl (sinhix) > fabsl (cosrx) * LDBL_EPSILON) | 
|  | 121 | den = cosrx * cosrx + sinhix * sinhix; | 
|  | 122 | else | 
|  | 123 | den = cosrx * cosrx; | 
|  | 124 | __real__ res = sinrx * cosrx / den; | 
|  | 125 | __imag__ res = sinhix * coshix / den; | 
|  | 126 | } | 
|  | 127 | math_check_force_underflow_complex (res); | 
|  | 128 | } | 
|  | 129 |  | 
|  | 130 | return res; | 
|  | 131 | } | 
|  | 132 | weak_alias (__ctanl, ctanl) |