| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | 5 | * this file except in compliance with the License.  You can obtain a copy | 
|  | 6 | * in the file LICENSE in the source distribution or at | 
|  | 7 | * https://www.openssl.org/source/license.html | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | #include <stdlib.h> | 
|  | 11 | #include <string.h> | 
|  | 12 | #include <openssl/crypto.h> | 
|  | 13 |  | 
|  | 14 | #include "crypto/poly1305.h" | 
|  | 15 | #include "poly1305_local.h" | 
|  | 16 |  | 
|  | 17 | size_t Poly1305_ctx_size(void) | 
|  | 18 | { | 
|  | 19 | return sizeof(struct poly1305_context); | 
|  | 20 | } | 
|  | 21 |  | 
|  | 22 | /* pick 32-bit unsigned integer in little endian order */ | 
|  | 23 | static unsigned int U8TOU32(const unsigned char *p) | 
|  | 24 | { | 
|  | 25 | return (((unsigned int)(p[0] & 0xff)) | | 
|  | 26 | ((unsigned int)(p[1] & 0xff) << 8) | | 
|  | 27 | ((unsigned int)(p[2] & 0xff) << 16) | | 
|  | 28 | ((unsigned int)(p[3] & 0xff) << 24)); | 
|  | 29 | } | 
|  | 30 |  | 
|  | 31 | /* | 
|  | 32 | * Implementations can be classified by amount of significant bits in | 
|  | 33 | * words making up the multi-precision value, or in other words radix | 
|  | 34 | * or base of numerical representation, e.g. base 2^64, base 2^32, | 
|  | 35 | * base 2^26. Complementary characteristic is how wide is the result of | 
|  | 36 | * multiplication of pair of digits, e.g. it would take 128 bits to | 
|  | 37 | * accommodate multiplication result in base 2^64 case. These are used | 
|  | 38 | * interchangeably. To describe implementation that is. But interface | 
|  | 39 | * is designed to isolate this so that low-level primitives implemented | 
|  | 40 | * in assembly can be self-contained/self-coherent. | 
|  | 41 | */ | 
|  | 42 | #ifndef POLY1305_ASM | 
|  | 43 | /* | 
|  | 44 | * Even though there is __int128 reference implementation targeting | 
|  | 45 | * 64-bit platforms provided below, it's not obvious that it's optimal | 
|  | 46 | * choice for every one of them. Depending on instruction set overall | 
|  | 47 | * amount of instructions can be comparable to one in __int64 | 
|  | 48 | * implementation. Amount of multiplication instructions would be lower, | 
|  | 49 | * but not necessarily overall. And in out-of-order execution context, | 
|  | 50 | * it is the latter that can be crucial... | 
|  | 51 | * | 
|  | 52 | * On related note. Poly1305 author, D. J. Bernstein, discusses and | 
|  | 53 | * provides floating-point implementations of the algorithm in question. | 
|  | 54 | * It made a lot of sense by the time of introduction, because most | 
|  | 55 | * then-modern processors didn't have pipelined integer multiplier. | 
|  | 56 | * [Not to mention that some had non-constant timing for integer | 
|  | 57 | * multiplications.] Floating-point instructions on the other hand could | 
|  | 58 | * be issued every cycle, which allowed to achieve better performance. | 
|  | 59 | * Nowadays, with SIMD and/or out-or-order execution, shared or | 
|  | 60 | * even emulated FPU, it's more complicated, and floating-point | 
|  | 61 | * implementation is not necessarily optimal choice in every situation, | 
|  | 62 | * rather contrary... | 
|  | 63 | * | 
|  | 64 | *                                              <appro@openssl.org> | 
|  | 65 | */ | 
|  | 66 |  | 
|  | 67 | typedef unsigned int u32; | 
|  | 68 |  | 
|  | 69 | /* | 
|  | 70 | * poly1305_blocks processes a multiple of POLY1305_BLOCK_SIZE blocks | 
|  | 71 | * of |inp| no longer than |len|. Behaviour for |len| not divisible by | 
|  | 72 | * block size is unspecified in general case, even though in reference | 
|  | 73 | * implementation the trailing chunk is simply ignored. Per algorithm | 
|  | 74 | * specification, every input block, complete or last partial, is to be | 
|  | 75 | * padded with a bit past most significant byte. The latter kind is then | 
|  | 76 | * padded with zeros till block size. This last partial block padding | 
|  | 77 | * is caller(*)'s responsibility, and because of this the last partial | 
|  | 78 | * block is always processed with separate call with |len| set to | 
|  | 79 | * POLY1305_BLOCK_SIZE and |padbit| to 0. In all other cases |padbit| | 
|  | 80 | * should be set to 1 to perform implicit padding with 128th bit. | 
|  | 81 | * poly1305_blocks does not actually check for this constraint though, | 
|  | 82 | * it's caller(*)'s responsibility to comply. | 
|  | 83 | * | 
|  | 84 | * (*)  In the context "caller" is not application code, but higher | 
|  | 85 | *      level Poly1305_* from this very module, so that quirks are | 
|  | 86 | *      handled locally. | 
|  | 87 | */ | 
|  | 88 | static void | 
|  | 89 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit); | 
|  | 90 |  | 
|  | 91 | /* | 
|  | 92 | * Type-agnostic "rip-off" from constant_time.h | 
|  | 93 | */ | 
|  | 94 | # define CONSTANT_TIME_CARRY(a,b) ( \ | 
|  | 95 | (a ^ ((a ^ b) | ((a - b) ^ b))) >> (sizeof(a) * 8 - 1) \ | 
|  | 96 | ) | 
|  | 97 |  | 
|  | 98 | # if (defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16) && \ | 
|  | 99 | (defined(__SIZEOF_LONG__) && __SIZEOF_LONG__==8) | 
|  | 100 |  | 
|  | 101 | typedef unsigned long u64; | 
|  | 102 | typedef __uint128_t u128; | 
|  | 103 |  | 
|  | 104 | typedef struct { | 
|  | 105 | u64 h[3]; | 
|  | 106 | u64 r[2]; | 
|  | 107 | } poly1305_internal; | 
|  | 108 |  | 
|  | 109 | /* pick 32-bit unsigned integer in little endian order */ | 
|  | 110 | static u64 U8TOU64(const unsigned char *p) | 
|  | 111 | { | 
|  | 112 | return (((u64)(p[0] & 0xff)) | | 
|  | 113 | ((u64)(p[1] & 0xff) << 8) | | 
|  | 114 | ((u64)(p[2] & 0xff) << 16) | | 
|  | 115 | ((u64)(p[3] & 0xff) << 24) | | 
|  | 116 | ((u64)(p[4] & 0xff) << 32) | | 
|  | 117 | ((u64)(p[5] & 0xff) << 40) | | 
|  | 118 | ((u64)(p[6] & 0xff) << 48) | | 
|  | 119 | ((u64)(p[7] & 0xff) << 56)); | 
|  | 120 | } | 
|  | 121 |  | 
|  | 122 | /* store a 32-bit unsigned integer in little endian */ | 
|  | 123 | static void U64TO8(unsigned char *p, u64 v) | 
|  | 124 | { | 
|  | 125 | p[0] = (unsigned char)((v) & 0xff); | 
|  | 126 | p[1] = (unsigned char)((v >> 8) & 0xff); | 
|  | 127 | p[2] = (unsigned char)((v >> 16) & 0xff); | 
|  | 128 | p[3] = (unsigned char)((v >> 24) & 0xff); | 
|  | 129 | p[4] = (unsigned char)((v >> 32) & 0xff); | 
|  | 130 | p[5] = (unsigned char)((v >> 40) & 0xff); | 
|  | 131 | p[6] = (unsigned char)((v >> 48) & 0xff); | 
|  | 132 | p[7] = (unsigned char)((v >> 56) & 0xff); | 
|  | 133 | } | 
|  | 134 |  | 
|  | 135 | static void poly1305_init(void *ctx, const unsigned char key[16]) | 
|  | 136 | { | 
|  | 137 | poly1305_internal *st = (poly1305_internal *) ctx; | 
|  | 138 |  | 
|  | 139 | /* h = 0 */ | 
|  | 140 | st->h[0] = 0; | 
|  | 141 | st->h[1] = 0; | 
|  | 142 | st->h[2] = 0; | 
|  | 143 |  | 
|  | 144 | /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ | 
|  | 145 | st->r[0] = U8TOU64(&key[0]) & 0x0ffffffc0fffffff; | 
|  | 146 | st->r[1] = U8TOU64(&key[8]) & 0x0ffffffc0ffffffc; | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | static void | 
|  | 150 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) | 
|  | 151 | { | 
|  | 152 | poly1305_internal *st = (poly1305_internal *)ctx; | 
|  | 153 | u64 r0, r1; | 
|  | 154 | u64 s1; | 
|  | 155 | u64 h0, h1, h2, c; | 
|  | 156 | u128 d0, d1; | 
|  | 157 |  | 
|  | 158 | r0 = st->r[0]; | 
|  | 159 | r1 = st->r[1]; | 
|  | 160 |  | 
|  | 161 | s1 = r1 + (r1 >> 2); | 
|  | 162 |  | 
|  | 163 | h0 = st->h[0]; | 
|  | 164 | h1 = st->h[1]; | 
|  | 165 | h2 = st->h[2]; | 
|  | 166 |  | 
|  | 167 | while (len >= POLY1305_BLOCK_SIZE) { | 
|  | 168 | /* h += m[i] */ | 
|  | 169 | h0 = (u64)(d0 = (u128)h0 + U8TOU64(inp + 0)); | 
|  | 170 | h1 = (u64)(d1 = (u128)h1 + (d0 >> 64) + U8TOU64(inp + 8)); | 
|  | 171 | /* | 
|  | 172 | * padbit can be zero only when original len was | 
|  | 173 | * POLY1306_BLOCK_SIZE, but we don't check | 
|  | 174 | */ | 
|  | 175 | h2 += (u64)(d1 >> 64) + padbit; | 
|  | 176 |  | 
|  | 177 | /* h *= r "%" p, where "%" stands for "partial remainder" */ | 
|  | 178 | d0 = ((u128)h0 * r0) + | 
|  | 179 | ((u128)h1 * s1); | 
|  | 180 | d1 = ((u128)h0 * r1) + | 
|  | 181 | ((u128)h1 * r0) + | 
|  | 182 | (h2 * s1); | 
|  | 183 | h2 = (h2 * r0); | 
|  | 184 |  | 
|  | 185 | /* last reduction step: */ | 
|  | 186 | /* a) h2:h0 = h2<<128 + d1<<64 + d0 */ | 
|  | 187 | h0 = (u64)d0; | 
|  | 188 | h1 = (u64)(d1 += d0 >> 64); | 
|  | 189 | h2 += (u64)(d1 >> 64); | 
|  | 190 | /* b) (h2:h0 += (h2:h0>>130) * 5) %= 2^130 */ | 
|  | 191 | c = (h2 >> 2) + (h2 & ~3UL); | 
|  | 192 | h2 &= 3; | 
|  | 193 | h0 += c; | 
|  | 194 | h1 += (c = CONSTANT_TIME_CARRY(h0,c)); | 
|  | 195 | h2 += CONSTANT_TIME_CARRY(h1,c); | 
|  | 196 | /* | 
|  | 197 | * Occasional overflows to 3rd bit of h2 are taken care of | 
|  | 198 | * "naturally". If after this point we end up at the top of | 
|  | 199 | * this loop, then the overflow bit will be accounted for | 
|  | 200 | * in next iteration. If we end up in poly1305_emit, then | 
|  | 201 | * comparison to modulus below will still count as "carry | 
|  | 202 | * into 131st bit", so that properly reduced value will be | 
|  | 203 | * picked in conditional move. | 
|  | 204 | */ | 
|  | 205 |  | 
|  | 206 | inp += POLY1305_BLOCK_SIZE; | 
|  | 207 | len -= POLY1305_BLOCK_SIZE; | 
|  | 208 | } | 
|  | 209 |  | 
|  | 210 | st->h[0] = h0; | 
|  | 211 | st->h[1] = h1; | 
|  | 212 | st->h[2] = h2; | 
|  | 213 | } | 
|  | 214 |  | 
|  | 215 | static void poly1305_emit(void *ctx, unsigned char mac[16], | 
|  | 216 | const u32 nonce[4]) | 
|  | 217 | { | 
|  | 218 | poly1305_internal *st = (poly1305_internal *) ctx; | 
|  | 219 | u64 h0, h1, h2; | 
|  | 220 | u64 g0, g1, g2; | 
|  | 221 | u128 t; | 
|  | 222 | u64 mask; | 
|  | 223 |  | 
|  | 224 | h0 = st->h[0]; | 
|  | 225 | h1 = st->h[1]; | 
|  | 226 | h2 = st->h[2]; | 
|  | 227 |  | 
|  | 228 | /* compare to modulus by computing h + -p */ | 
|  | 229 | g0 = (u64)(t = (u128)h0 + 5); | 
|  | 230 | g1 = (u64)(t = (u128)h1 + (t >> 64)); | 
|  | 231 | g2 = h2 + (u64)(t >> 64); | 
|  | 232 |  | 
|  | 233 | /* if there was carry into 131st bit, h1:h0 = g1:g0 */ | 
|  | 234 | mask = 0 - (g2 >> 2); | 
|  | 235 | g0 &= mask; | 
|  | 236 | g1 &= mask; | 
|  | 237 | mask = ~mask; | 
|  | 238 | h0 = (h0 & mask) | g0; | 
|  | 239 | h1 = (h1 & mask) | g1; | 
|  | 240 |  | 
|  | 241 | /* mac = (h + nonce) % (2^128) */ | 
|  | 242 | h0 = (u64)(t = (u128)h0 + nonce[0] + ((u64)nonce[1]<<32)); | 
|  | 243 | h1 = (u64)(t = (u128)h1 + nonce[2] + ((u64)nonce[3]<<32) + (t >> 64)); | 
|  | 244 |  | 
|  | 245 | U64TO8(mac + 0, h0); | 
|  | 246 | U64TO8(mac + 8, h1); | 
|  | 247 | } | 
|  | 248 |  | 
|  | 249 | # else | 
|  | 250 |  | 
|  | 251 | #  if defined(_WIN32) && !defined(__MINGW32__) | 
|  | 252 | typedef unsigned __int64 u64; | 
|  | 253 | #  elif defined(__arch64__) | 
|  | 254 | typedef unsigned long u64; | 
|  | 255 | #  else | 
|  | 256 | typedef unsigned long long u64; | 
|  | 257 | #  endif | 
|  | 258 |  | 
|  | 259 | typedef struct { | 
|  | 260 | u32 h[5]; | 
|  | 261 | u32 r[4]; | 
|  | 262 | } poly1305_internal; | 
|  | 263 |  | 
|  | 264 | /* store a 32-bit unsigned integer in little endian */ | 
|  | 265 | static void U32TO8(unsigned char *p, unsigned int v) | 
|  | 266 | { | 
|  | 267 | p[0] = (unsigned char)((v) & 0xff); | 
|  | 268 | p[1] = (unsigned char)((v >> 8) & 0xff); | 
|  | 269 | p[2] = (unsigned char)((v >> 16) & 0xff); | 
|  | 270 | p[3] = (unsigned char)((v >> 24) & 0xff); | 
|  | 271 | } | 
|  | 272 |  | 
|  | 273 | static void poly1305_init(void *ctx, const unsigned char key[16]) | 
|  | 274 | { | 
|  | 275 | poly1305_internal *st = (poly1305_internal *) ctx; | 
|  | 276 |  | 
|  | 277 | /* h = 0 */ | 
|  | 278 | st->h[0] = 0; | 
|  | 279 | st->h[1] = 0; | 
|  | 280 | st->h[2] = 0; | 
|  | 281 | st->h[3] = 0; | 
|  | 282 | st->h[4] = 0; | 
|  | 283 |  | 
|  | 284 | /* r &= 0xffffffc0ffffffc0ffffffc0fffffff */ | 
|  | 285 | st->r[0] = U8TOU32(&key[0]) & 0x0fffffff; | 
|  | 286 | st->r[1] = U8TOU32(&key[4]) & 0x0ffffffc; | 
|  | 287 | st->r[2] = U8TOU32(&key[8]) & 0x0ffffffc; | 
|  | 288 | st->r[3] = U8TOU32(&key[12]) & 0x0ffffffc; | 
|  | 289 | } | 
|  | 290 |  | 
|  | 291 | static void | 
|  | 292 | poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, u32 padbit) | 
|  | 293 | { | 
|  | 294 | poly1305_internal *st = (poly1305_internal *)ctx; | 
|  | 295 | u32 r0, r1, r2, r3; | 
|  | 296 | u32 s1, s2, s3; | 
|  | 297 | u32 h0, h1, h2, h3, h4, c; | 
|  | 298 | u64 d0, d1, d2, d3; | 
|  | 299 |  | 
|  | 300 | r0 = st->r[0]; | 
|  | 301 | r1 = st->r[1]; | 
|  | 302 | r2 = st->r[2]; | 
|  | 303 | r3 = st->r[3]; | 
|  | 304 |  | 
|  | 305 | s1 = r1 + (r1 >> 2); | 
|  | 306 | s2 = r2 + (r2 >> 2); | 
|  | 307 | s3 = r3 + (r3 >> 2); | 
|  | 308 |  | 
|  | 309 | h0 = st->h[0]; | 
|  | 310 | h1 = st->h[1]; | 
|  | 311 | h2 = st->h[2]; | 
|  | 312 | h3 = st->h[3]; | 
|  | 313 | h4 = st->h[4]; | 
|  | 314 |  | 
|  | 315 | while (len >= POLY1305_BLOCK_SIZE) { | 
|  | 316 | /* h += m[i] */ | 
|  | 317 | h0 = (u32)(d0 = (u64)h0 + U8TOU32(inp + 0)); | 
|  | 318 | h1 = (u32)(d1 = (u64)h1 + (d0 >> 32) + U8TOU32(inp + 4)); | 
|  | 319 | h2 = (u32)(d2 = (u64)h2 + (d1 >> 32) + U8TOU32(inp + 8)); | 
|  | 320 | h3 = (u32)(d3 = (u64)h3 + (d2 >> 32) + U8TOU32(inp + 12)); | 
|  | 321 | h4 += (u32)(d3 >> 32) + padbit; | 
|  | 322 |  | 
|  | 323 | /* h *= r "%" p, where "%" stands for "partial remainder" */ | 
|  | 324 | d0 = ((u64)h0 * r0) + | 
|  | 325 | ((u64)h1 * s3) + | 
|  | 326 | ((u64)h2 * s2) + | 
|  | 327 | ((u64)h3 * s1); | 
|  | 328 | d1 = ((u64)h0 * r1) + | 
|  | 329 | ((u64)h1 * r0) + | 
|  | 330 | ((u64)h2 * s3) + | 
|  | 331 | ((u64)h3 * s2) + | 
|  | 332 | (h4 * s1); | 
|  | 333 | d2 = ((u64)h0 * r2) + | 
|  | 334 | ((u64)h1 * r1) + | 
|  | 335 | ((u64)h2 * r0) + | 
|  | 336 | ((u64)h3 * s3) + | 
|  | 337 | (h4 * s2); | 
|  | 338 | d3 = ((u64)h0 * r3) + | 
|  | 339 | ((u64)h1 * r2) + | 
|  | 340 | ((u64)h2 * r1) + | 
|  | 341 | ((u64)h3 * r0) + | 
|  | 342 | (h4 * s3); | 
|  | 343 | h4 = (h4 * r0); | 
|  | 344 |  | 
|  | 345 | /* last reduction step: */ | 
|  | 346 | /* a) h4:h0 = h4<<128 + d3<<96 + d2<<64 + d1<<32 + d0 */ | 
|  | 347 | h0 = (u32)d0; | 
|  | 348 | h1 = (u32)(d1 += d0 >> 32); | 
|  | 349 | h2 = (u32)(d2 += d1 >> 32); | 
|  | 350 | h3 = (u32)(d3 += d2 >> 32); | 
|  | 351 | h4 += (u32)(d3 >> 32); | 
|  | 352 | /* b) (h4:h0 += (h4:h0>>130) * 5) %= 2^130 */ | 
|  | 353 | c = (h4 >> 2) + (h4 & ~3U); | 
|  | 354 | h4 &= 3; | 
|  | 355 | h0 += c; | 
|  | 356 | h1 += (c = CONSTANT_TIME_CARRY(h0,c)); | 
|  | 357 | h2 += (c = CONSTANT_TIME_CARRY(h1,c)); | 
|  | 358 | h3 += (c = CONSTANT_TIME_CARRY(h2,c)); | 
|  | 359 | h4 += CONSTANT_TIME_CARRY(h3,c); | 
|  | 360 | /* | 
|  | 361 | * Occasional overflows to 3rd bit of h4 are taken care of | 
|  | 362 | * "naturally". If after this point we end up at the top of | 
|  | 363 | * this loop, then the overflow bit will be accounted for | 
|  | 364 | * in next iteration. If we end up in poly1305_emit, then | 
|  | 365 | * comparison to modulus below will still count as "carry | 
|  | 366 | * into 131st bit", so that properly reduced value will be | 
|  | 367 | * picked in conditional move. | 
|  | 368 | */ | 
|  | 369 |  | 
|  | 370 | inp += POLY1305_BLOCK_SIZE; | 
|  | 371 | len -= POLY1305_BLOCK_SIZE; | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | st->h[0] = h0; | 
|  | 375 | st->h[1] = h1; | 
|  | 376 | st->h[2] = h2; | 
|  | 377 | st->h[3] = h3; | 
|  | 378 | st->h[4] = h4; | 
|  | 379 | } | 
|  | 380 |  | 
|  | 381 | static void poly1305_emit(void *ctx, unsigned char mac[16], | 
|  | 382 | const u32 nonce[4]) | 
|  | 383 | { | 
|  | 384 | poly1305_internal *st = (poly1305_internal *) ctx; | 
|  | 385 | u32 h0, h1, h2, h3, h4; | 
|  | 386 | u32 g0, g1, g2, g3, g4; | 
|  | 387 | u64 t; | 
|  | 388 | u32 mask; | 
|  | 389 |  | 
|  | 390 | h0 = st->h[0]; | 
|  | 391 | h1 = st->h[1]; | 
|  | 392 | h2 = st->h[2]; | 
|  | 393 | h3 = st->h[3]; | 
|  | 394 | h4 = st->h[4]; | 
|  | 395 |  | 
|  | 396 | /* compare to modulus by computing h + -p */ | 
|  | 397 | g0 = (u32)(t = (u64)h0 + 5); | 
|  | 398 | g1 = (u32)(t = (u64)h1 + (t >> 32)); | 
|  | 399 | g2 = (u32)(t = (u64)h2 + (t >> 32)); | 
|  | 400 | g3 = (u32)(t = (u64)h3 + (t >> 32)); | 
|  | 401 | g4 = h4 + (u32)(t >> 32); | 
|  | 402 |  | 
|  | 403 | /* if there was carry into 131st bit, h3:h0 = g3:g0 */ | 
|  | 404 | mask = 0 - (g4 >> 2); | 
|  | 405 | g0 &= mask; | 
|  | 406 | g1 &= mask; | 
|  | 407 | g2 &= mask; | 
|  | 408 | g3 &= mask; | 
|  | 409 | mask = ~mask; | 
|  | 410 | h0 = (h0 & mask) | g0; | 
|  | 411 | h1 = (h1 & mask) | g1; | 
|  | 412 | h2 = (h2 & mask) | g2; | 
|  | 413 | h3 = (h3 & mask) | g3; | 
|  | 414 |  | 
|  | 415 | /* mac = (h + nonce) % (2^128) */ | 
|  | 416 | h0 = (u32)(t = (u64)h0 + nonce[0]); | 
|  | 417 | h1 = (u32)(t = (u64)h1 + (t >> 32) + nonce[1]); | 
|  | 418 | h2 = (u32)(t = (u64)h2 + (t >> 32) + nonce[2]); | 
|  | 419 | h3 = (u32)(t = (u64)h3 + (t >> 32) + nonce[3]); | 
|  | 420 |  | 
|  | 421 | U32TO8(mac + 0, h0); | 
|  | 422 | U32TO8(mac + 4, h1); | 
|  | 423 | U32TO8(mac + 8, h2); | 
|  | 424 | U32TO8(mac + 12, h3); | 
|  | 425 | } | 
|  | 426 | # endif | 
|  | 427 | #else | 
|  | 428 | int poly1305_init(void *ctx, const unsigned char key[16], void *func); | 
|  | 429 | void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len, | 
|  | 430 | unsigned int padbit); | 
|  | 431 | void poly1305_emit(void *ctx, unsigned char mac[16], | 
|  | 432 | const unsigned int nonce[4]); | 
|  | 433 | #endif | 
|  | 434 |  | 
|  | 435 | void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32]) | 
|  | 436 | { | 
|  | 437 | ctx->nonce[0] = U8TOU32(&key[16]); | 
|  | 438 | ctx->nonce[1] = U8TOU32(&key[20]); | 
|  | 439 | ctx->nonce[2] = U8TOU32(&key[24]); | 
|  | 440 | ctx->nonce[3] = U8TOU32(&key[28]); | 
|  | 441 |  | 
|  | 442 | #ifndef POLY1305_ASM | 
|  | 443 | poly1305_init(ctx->opaque, key); | 
|  | 444 | #else | 
|  | 445 | /* | 
|  | 446 | * Unlike reference poly1305_init assembly counterpart is expected | 
|  | 447 | * to return a value: non-zero if it initializes ctx->func, and zero | 
|  | 448 | * otherwise. Latter is to simplify assembly in cases when there no | 
|  | 449 | * multiple code paths to switch between. | 
|  | 450 | */ | 
|  | 451 | if (!poly1305_init(ctx->opaque, key, &ctx->func)) { | 
|  | 452 | ctx->func.blocks = poly1305_blocks; | 
|  | 453 | ctx->func.emit = poly1305_emit; | 
|  | 454 | } | 
|  | 455 | #endif | 
|  | 456 |  | 
|  | 457 | ctx->num = 0; | 
|  | 458 |  | 
|  | 459 | } | 
|  | 460 |  | 
|  | 461 | #ifdef POLY1305_ASM | 
|  | 462 | /* | 
|  | 463 | * This "eclipses" poly1305_blocks and poly1305_emit, but it's | 
|  | 464 | * conscious choice imposed by -Wshadow compiler warnings. | 
|  | 465 | */ | 
|  | 466 | # define poly1305_blocks (*poly1305_blocks_p) | 
|  | 467 | # define poly1305_emit   (*poly1305_emit_p) | 
|  | 468 | #endif | 
|  | 469 |  | 
|  | 470 | void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len) | 
|  | 471 | { | 
|  | 472 | #ifdef POLY1305_ASM | 
|  | 473 | /* | 
|  | 474 | * As documented, poly1305_blocks is never called with input | 
|  | 475 | * longer than single block and padbit argument set to 0. This | 
|  | 476 | * property is fluently used in assembly modules to optimize | 
|  | 477 | * padbit handling on loop boundary. | 
|  | 478 | */ | 
|  | 479 | poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; | 
|  | 480 | #endif | 
|  | 481 | size_t rem, num; | 
|  | 482 |  | 
|  | 483 | if ((num = ctx->num)) { | 
|  | 484 | rem = POLY1305_BLOCK_SIZE - num; | 
|  | 485 | if (len >= rem) { | 
|  | 486 | memcpy(ctx->data + num, inp, rem); | 
|  | 487 | poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1); | 
|  | 488 | inp += rem; | 
|  | 489 | len -= rem; | 
|  | 490 | } else { | 
|  | 491 | /* Still not enough data to process a block. */ | 
|  | 492 | memcpy(ctx->data + num, inp, len); | 
|  | 493 | ctx->num = num + len; | 
|  | 494 | return; | 
|  | 495 | } | 
|  | 496 | } | 
|  | 497 |  | 
|  | 498 | rem = len % POLY1305_BLOCK_SIZE; | 
|  | 499 | len -= rem; | 
|  | 500 |  | 
|  | 501 | if (len >= POLY1305_BLOCK_SIZE) { | 
|  | 502 | poly1305_blocks(ctx->opaque, inp, len, 1); | 
|  | 503 | inp += len; | 
|  | 504 | } | 
|  | 505 |  | 
|  | 506 | if (rem) | 
|  | 507 | memcpy(ctx->data, inp, rem); | 
|  | 508 |  | 
|  | 509 | ctx->num = rem; | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16]) | 
|  | 513 | { | 
|  | 514 | #ifdef POLY1305_ASM | 
|  | 515 | poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks; | 
|  | 516 | poly1305_emit_f poly1305_emit_p = ctx->func.emit; | 
|  | 517 | #endif | 
|  | 518 | size_t num; | 
|  | 519 |  | 
|  | 520 | if ((num = ctx->num)) { | 
|  | 521 | ctx->data[num++] = 1;   /* pad bit */ | 
|  | 522 | while (num < POLY1305_BLOCK_SIZE) | 
|  | 523 | ctx->data[num++] = 0; | 
|  | 524 | poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0); | 
|  | 525 | } | 
|  | 526 |  | 
|  | 527 | poly1305_emit(ctx->opaque, mac, ctx->nonce); | 
|  | 528 |  | 
|  | 529 | /* zero out the state */ | 
|  | 530 | OPENSSL_cleanse(ctx, sizeof(*ctx)); | 
|  | 531 | } |