blob: 57f503b185a906c74f4eed0a836e369d207a98c6 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/export.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59#include <linux/backing-dev.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
77 /*
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
80 */
81 anon_vma->root = anon_vma;
82 }
83
84 return anon_vma;
85}
86
87static inline void anon_vma_free(struct anon_vma *anon_vma)
88{
89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90
91 /*
92 * Synchronize against page_lock_anon_vma() such that
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
95 *
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * mutex_trylock() from page_lock_anon_vma(). This orders:
99 *
100 * page_lock_anon_vma() VS put_anon_vma()
101 * mutex_trylock() atomic_dec_and_test()
102 * LOCK MB
103 * atomic_read() mutex_is_locked()
104 *
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
107 */
108 might_sleep();
109 if (mutex_is_locked(&anon_vma->root->mutex)) {
110 anon_vma_lock(anon_vma);
111 anon_vma_unlock(anon_vma);
112 }
113
114 kmem_cache_free(anon_vma_cachep, anon_vma);
115}
116
117static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
118{
119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120}
121
122static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
123{
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125}
126
127static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
130{
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
134
135 /*
136 * It's critical to add new vmas to the tail of the anon_vma,
137 * see comment in huge_memory.c:__split_huge_page().
138 */
139 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
140}
141
142/**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
151 * not we either need to find an adjacent mapping that we
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
157 * optimistically looked up an anon_vma in page_lock_anon_vma()
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
169int anon_vma_prepare(struct vm_area_struct *vma)
170{
171 struct anon_vma *anon_vma = vma->anon_vma;
172 struct anon_vma_chain *avc;
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
177 struct anon_vma *allocated;
178
179 avc = anon_vma_chain_alloc(GFP_KERNEL);
180 if (!avc)
181 goto out_enomem;
182
183 anon_vma = find_mergeable_anon_vma(vma);
184 allocated = NULL;
185 if (!anon_vma) {
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
188 goto out_enomem_free_avc;
189 allocated = anon_vma;
190 }
191
192 anon_vma_lock(anon_vma);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
197 anon_vma_chain_link(vma, avc, anon_vma);
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
200 allocated = NULL;
201 avc = NULL;
202 }
203 spin_unlock(&mm->page_table_lock);
204 anon_vma_unlock(anon_vma);
205
206 if (unlikely(allocated))
207 put_anon_vma(allocated);
208 if (unlikely(avc))
209 anon_vma_chain_free(avc);
210 }
211 return 0;
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
217}
218
219/*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228{
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
232 mutex_unlock(&root->mutex);
233 root = new_root;
234 mutex_lock(&root->mutex);
235 }
236 return root;
237}
238
239static inline void unlock_anon_vma_root(struct anon_vma *root)
240{
241 if (root)
242 mutex_unlock(&root->mutex);
243}
244
245/*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
256 */
257int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258{
259 struct anon_vma_chain *avc, *pavc;
260 struct anon_vma *root = NULL;
261
262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 struct anon_vma *anon_vma;
264
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
288 }
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
291 unlock_anon_vma_root(root);
292 return 0;
293
294 enomem_failure:
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
304}
305
306/*
307 * Some rmap walk that needs to find all ptes/hugepmds without false
308 * negatives (like migrate and split_huge_page) running concurrent
309 * with operations that copy or move pagetables (like mremap() and
310 * fork()) to be safe. They depend on the anon_vma "same_anon_vma"
311 * list to be in a certain order: the dst_vma must be placed after the
312 * src_vma in the list. This is always guaranteed by fork() but
313 * mremap() needs to call this function to enforce it in case the
314 * dst_vma isn't newly allocated and chained with the anon_vma_clone()
315 * function but just an extension of a pre-existing vma through
316 * vma_merge.
317 *
318 * NOTE: the same_anon_vma list can still be changed by other
319 * processes while mremap runs because mremap doesn't hold the
320 * anon_vma mutex to prevent modifications to the list while it
321 * runs. All we need to enforce is that the relative order of this
322 * process vmas isn't changing (we don't care about other vmas
323 * order). Each vma corresponds to an anon_vma_chain structure so
324 * there's no risk that other processes calling anon_vma_moveto_tail()
325 * and changing the same_anon_vma list under mremap() will screw with
326 * the relative order of this process vmas in the list, because we
327 * they can't alter the order of any vma that belongs to this
328 * process. And there can't be another anon_vma_moveto_tail() running
329 * concurrently with mremap() coming from this process because we hold
330 * the mmap_sem for the whole mremap(). fork() ordering dependency
331 * also shouldn't be affected because fork() only cares that the
332 * parent vmas are placed in the list before the child vmas and
333 * anon_vma_moveto_tail() won't reorder vmas from either the fork()
334 * parent or child.
335 */
336void anon_vma_moveto_tail(struct vm_area_struct *dst)
337{
338 struct anon_vma_chain *pavc;
339 struct anon_vma *root = NULL;
340
341 list_for_each_entry_reverse(pavc, &dst->anon_vma_chain, same_vma) {
342 struct anon_vma *anon_vma = pavc->anon_vma;
343 VM_BUG_ON(pavc->vma != dst);
344 root = lock_anon_vma_root(root, anon_vma);
345 list_del(&pavc->same_anon_vma);
346 list_add_tail(&pavc->same_anon_vma, &anon_vma->head);
347 }
348 unlock_anon_vma_root(root);
349}
350
351/*
352 * Attach vma to its own anon_vma, as well as to the anon_vmas that
353 * the corresponding VMA in the parent process is attached to.
354 * Returns 0 on success, non-zero on failure.
355 */
356int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
357{
358 struct anon_vma_chain *avc;
359 struct anon_vma *anon_vma;
360
361 /* Don't bother if the parent process has no anon_vma here. */
362 if (!pvma->anon_vma)
363 return 0;
364
365 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
366 vma->anon_vma = NULL;
367
368 /*
369 * First, attach the new VMA to the parent VMA's anon_vmas,
370 * so rmap can find non-COWed pages in child processes.
371 */
372 if (anon_vma_clone(vma, pvma))
373 return -ENOMEM;
374
375 /* An existing anon_vma has been reused, all done then. */
376 if (vma->anon_vma)
377 return 0;
378
379 /* Then add our own anon_vma. */
380 anon_vma = anon_vma_alloc();
381 if (!anon_vma)
382 goto out_error;
383 avc = anon_vma_chain_alloc(GFP_KERNEL);
384 if (!avc)
385 goto out_error_free_anon_vma;
386
387 /*
388 * The root anon_vma's spinlock is the lock actually used when we
389 * lock any of the anon_vmas in this anon_vma tree.
390 */
391 anon_vma->root = pvma->anon_vma->root;
392 anon_vma->parent = pvma->anon_vma;
393 /*
394 * With refcounts, an anon_vma can stay around longer than the
395 * process it belongs to. The root anon_vma needs to be pinned until
396 * this anon_vma is freed, because the lock lives in the root.
397 */
398 get_anon_vma(anon_vma->root);
399 /* Mark this anon_vma as the one where our new (COWed) pages go. */
400 vma->anon_vma = anon_vma;
401 anon_vma_lock(anon_vma);
402 anon_vma_chain_link(vma, avc, anon_vma);
403 anon_vma->parent->degree++;
404 anon_vma_unlock(anon_vma);
405
406 return 0;
407
408 out_error_free_anon_vma:
409 put_anon_vma(anon_vma);
410 out_error:
411 unlink_anon_vmas(vma);
412 return -ENOMEM;
413}
414
415void unlink_anon_vmas(struct vm_area_struct *vma)
416{
417 struct anon_vma_chain *avc, *next;
418 struct anon_vma *root = NULL;
419
420 /*
421 * Unlink each anon_vma chained to the VMA. This list is ordered
422 * from newest to oldest, ensuring the root anon_vma gets freed last.
423 */
424 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
425 struct anon_vma *anon_vma = avc->anon_vma;
426
427 root = lock_anon_vma_root(root, anon_vma);
428 list_del(&avc->same_anon_vma);
429
430 /*
431 * Leave empty anon_vmas on the list - we'll need
432 * to free them outside the lock.
433 */
434 if (list_empty(&anon_vma->head)) {
435 anon_vma->parent->degree--;
436 continue;
437 }
438
439 list_del(&avc->same_vma);
440 anon_vma_chain_free(avc);
441 }
442 if (vma->anon_vma)
443 vma->anon_vma->degree--;
444 unlock_anon_vma_root(root);
445
446 /*
447 * Iterate the list once more, it now only contains empty and unlinked
448 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
449 * needing to acquire the anon_vma->root->mutex.
450 */
451 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
452 struct anon_vma *anon_vma = avc->anon_vma;
453
454 BUG_ON(anon_vma->degree);
455 put_anon_vma(anon_vma);
456
457 list_del(&avc->same_vma);
458 anon_vma_chain_free(avc);
459 }
460}
461
462static void anon_vma_ctor(void *data)
463{
464 struct anon_vma *anon_vma = data;
465
466 mutex_init(&anon_vma->mutex);
467 atomic_set(&anon_vma->refcount, 0);
468 INIT_LIST_HEAD(&anon_vma->head);
469}
470
471void __init anon_vma_init(void)
472{
473 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
474 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
475 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
476}
477
478/*
479 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
480 *
481 * Since there is no serialization what so ever against page_remove_rmap()
482 * the best this function can do is return a locked anon_vma that might
483 * have been relevant to this page.
484 *
485 * The page might have been remapped to a different anon_vma or the anon_vma
486 * returned may already be freed (and even reused).
487 *
488 * In case it was remapped to a different anon_vma, the new anon_vma will be a
489 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
490 * ensure that any anon_vma obtained from the page will still be valid for as
491 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
492 *
493 * All users of this function must be very careful when walking the anon_vma
494 * chain and verify that the page in question is indeed mapped in it
495 * [ something equivalent to page_mapped_in_vma() ].
496 *
497 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
498 * that the anon_vma pointer from page->mapping is valid if there is a
499 * mapcount, we can dereference the anon_vma after observing those.
500 */
501struct anon_vma *page_get_anon_vma(struct page *page)
502{
503 struct anon_vma *anon_vma = NULL;
504 unsigned long anon_mapping;
505
506 rcu_read_lock();
507 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
508 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
509 goto out;
510 if (!page_mapped(page))
511 goto out;
512
513 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
514 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
515 anon_vma = NULL;
516 goto out;
517 }
518
519 /*
520 * If this page is still mapped, then its anon_vma cannot have been
521 * freed. But if it has been unmapped, we have no security against the
522 * anon_vma structure being freed and reused (for another anon_vma:
523 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
524 * above cannot corrupt).
525 */
526 if (!page_mapped(page)) {
527 rcu_read_unlock();
528 put_anon_vma(anon_vma);
529 return NULL;
530 }
531out:
532 rcu_read_unlock();
533
534 return anon_vma;
535}
536
537/*
538 * Similar to page_get_anon_vma() except it locks the anon_vma.
539 *
540 * Its a little more complex as it tries to keep the fast path to a single
541 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
542 * reference like with page_get_anon_vma() and then block on the mutex.
543 */
544struct anon_vma *page_lock_anon_vma(struct page *page)
545{
546 struct anon_vma *anon_vma = NULL;
547 struct anon_vma *root_anon_vma;
548 unsigned long anon_mapping;
549
550 rcu_read_lock();
551 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
552 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
553 goto out;
554 if (!page_mapped(page))
555 goto out;
556
557 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
558 root_anon_vma = ACCESS_ONCE(anon_vma->root);
559 if (mutex_trylock(&root_anon_vma->mutex)) {
560 /*
561 * If the page is still mapped, then this anon_vma is still
562 * its anon_vma, and holding the mutex ensures that it will
563 * not go away, see anon_vma_free().
564 */
565 if (!page_mapped(page)) {
566 mutex_unlock(&root_anon_vma->mutex);
567 anon_vma = NULL;
568 }
569 goto out;
570 }
571
572 /* trylock failed, we got to sleep */
573 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
574 anon_vma = NULL;
575 goto out;
576 }
577
578 if (!page_mapped(page)) {
579 rcu_read_unlock();
580 put_anon_vma(anon_vma);
581 return NULL;
582 }
583
584 /* we pinned the anon_vma, its safe to sleep */
585 rcu_read_unlock();
586 anon_vma_lock(anon_vma);
587
588 if (atomic_dec_and_test(&anon_vma->refcount)) {
589 /*
590 * Oops, we held the last refcount, release the lock
591 * and bail -- can't simply use put_anon_vma() because
592 * we'll deadlock on the anon_vma_lock() recursion.
593 */
594 anon_vma_unlock(anon_vma);
595 __put_anon_vma(anon_vma);
596 anon_vma = NULL;
597 }
598
599 return anon_vma;
600
601out:
602 rcu_read_unlock();
603 return anon_vma;
604}
605
606void page_unlock_anon_vma(struct anon_vma *anon_vma)
607{
608 anon_vma_unlock(anon_vma);
609}
610
611/*
612 * At what user virtual address is page expected in @vma?
613 * Returns virtual address or -EFAULT if page's index/offset is not
614 * within the range mapped the @vma.
615 */
616inline unsigned long
617vma_address(struct page *page, struct vm_area_struct *vma)
618{
619 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
620 unsigned long address;
621
622 if (unlikely(is_vm_hugetlb_page(vma)))
623 pgoff = page->index << huge_page_order(page_hstate(page));
624 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
625 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
626 /* page should be within @vma mapping range */
627 return -EFAULT;
628 }
629 return address;
630}
631
632/*
633 * At what user virtual address is page expected in vma?
634 * Caller should check the page is actually part of the vma.
635 */
636unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
637{
638 if (PageAnon(page)) {
639 struct anon_vma *page__anon_vma = page_anon_vma(page);
640 /*
641 * Note: swapoff's unuse_vma() is more efficient with this
642 * check, and needs it to match anon_vma when KSM is active.
643 */
644 if (!vma->anon_vma || !page__anon_vma ||
645 vma->anon_vma->root != page__anon_vma->root)
646 return -EFAULT;
647 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
648 if (!vma->vm_file ||
649 vma->vm_file->f_mapping != page->mapping)
650 return -EFAULT;
651 } else
652 return -EFAULT;
653 return vma_address(page, vma);
654}
655
656/*
657 * Check that @page is mapped at @address into @mm.
658 *
659 * If @sync is false, page_check_address may perform a racy check to avoid
660 * the page table lock when the pte is not present (helpful when reclaiming
661 * highly shared pages).
662 *
663 * On success returns with pte mapped and locked.
664 */
665pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
666 unsigned long address, spinlock_t **ptlp, int sync)
667{
668 pgd_t *pgd;
669 pud_t *pud;
670 pmd_t *pmd;
671 pte_t *pte;
672 spinlock_t *ptl;
673
674 if (unlikely(PageHuge(page))) {
675 /* when pud is not present, pte will be NULL */
676 pte = huge_pte_offset(mm, address);
677 if (!pte)
678 return NULL;
679
680 ptl = &mm->page_table_lock;
681 goto check;
682 }
683
684 pgd = pgd_offset(mm, address);
685 if (!pgd_present(*pgd))
686 return NULL;
687
688 pud = pud_offset(pgd, address);
689 if (!pud_present(*pud))
690 return NULL;
691
692 pmd = pmd_offset(pud, address);
693 if (!pmd_present(*pmd))
694 return NULL;
695 if (pmd_trans_huge(*pmd))
696 return NULL;
697
698 pte = pte_offset_map(pmd, address);
699 /* Make a quick check before getting the lock */
700 if (!sync && !pte_present(*pte)) {
701 pte_unmap(pte);
702 return NULL;
703 }
704
705 ptl = pte_lockptr(mm, pmd);
706check:
707 spin_lock(ptl);
708 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
709 *ptlp = ptl;
710 return pte;
711 }
712 pte_unmap_unlock(pte, ptl);
713 return NULL;
714}
715
716/**
717 * page_mapped_in_vma - check whether a page is really mapped in a VMA
718 * @page: the page to test
719 * @vma: the VMA to test
720 *
721 * Returns 1 if the page is mapped into the page tables of the VMA, 0
722 * if the page is not mapped into the page tables of this VMA. Only
723 * valid for normal file or anonymous VMAs.
724 */
725int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
726{
727 unsigned long address;
728 pte_t *pte;
729 spinlock_t *ptl;
730
731 address = vma_address(page, vma);
732 if (address == -EFAULT) /* out of vma range */
733 return 0;
734 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
735 if (!pte) /* the page is not in this mm */
736 return 0;
737 pte_unmap_unlock(pte, ptl);
738
739 return 1;
740}
741
742/*
743 * Subfunctions of page_referenced: page_referenced_one called
744 * repeatedly from either page_referenced_anon or page_referenced_file.
745 */
746int page_referenced_one(struct page *page, struct vm_area_struct *vma,
747 unsigned long address, unsigned int *mapcount,
748 unsigned long *vm_flags)
749{
750 struct mm_struct *mm = vma->vm_mm;
751 int referenced = 0;
752
753 if (unlikely(PageTransHuge(page))) {
754 pmd_t *pmd;
755
756 spin_lock(&mm->page_table_lock);
757 /*
758 * rmap might return false positives; we must filter
759 * these out using page_check_address_pmd().
760 */
761 pmd = page_check_address_pmd(page, mm, address,
762 PAGE_CHECK_ADDRESS_PMD_FLAG);
763 if (!pmd) {
764 spin_unlock(&mm->page_table_lock);
765 goto out;
766 }
767
768 if (vma->vm_flags & VM_LOCKED) {
769 spin_unlock(&mm->page_table_lock);
770 *mapcount = 0; /* break early from loop */
771 *vm_flags |= VM_LOCKED;
772 goto out;
773 }
774
775 /* go ahead even if the pmd is pmd_trans_splitting() */
776 if (pmdp_clear_flush_young_notify(vma, address, pmd))
777 referenced++;
778 spin_unlock(&mm->page_table_lock);
779 } else {
780 pte_t *pte;
781 spinlock_t *ptl;
782
783 /*
784 * rmap might return false positives; we must filter
785 * these out using page_check_address().
786 */
787 pte = page_check_address(page, mm, address, &ptl, 0);
788 if (!pte)
789 goto out;
790
791 if (vma->vm_flags & VM_LOCKED) {
792 pte_unmap_unlock(pte, ptl);
793 *mapcount = 0; /* break early from loop */
794 *vm_flags |= VM_LOCKED;
795 goto out;
796 }
797
798 if (ptep_clear_flush_young_notify(vma, address, pte)) {
799 /*
800 * Don't treat a reference through a sequentially read
801 * mapping as such. If the page has been used in
802 * another mapping, we will catch it; if this other
803 * mapping is already gone, the unmap path will have
804 * set PG_referenced or activated the page.
805 */
806 if (likely(!VM_SequentialReadHint(vma)))
807 referenced++;
808 }
809 pte_unmap_unlock(pte, ptl);
810 }
811
812 /* Pretend the page is referenced if the task has the
813 swap token and is in the middle of a page fault. */
814 if (mm != current->mm && has_swap_token(mm) &&
815 rwsem_is_locked(&mm->mmap_sem))
816 referenced++;
817
818 (*mapcount)--;
819
820 if (referenced)
821 *vm_flags |= vma->vm_flags;
822out:
823 return referenced;
824}
825
826static int page_referenced_anon(struct page *page,
827 struct mem_cgroup *memcg,
828 unsigned long *vm_flags)
829{
830 unsigned int mapcount;
831 struct anon_vma *anon_vma;
832 struct anon_vma_chain *avc;
833 int referenced = 0;
834
835 anon_vma = page_lock_anon_vma(page);
836 if (!anon_vma)
837 return referenced;
838
839 mapcount = page_mapcount(page);
840 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
841 struct vm_area_struct *vma = avc->vma;
842 unsigned long address = vma_address(page, vma);
843 if (address == -EFAULT)
844 continue;
845 /*
846 * If we are reclaiming on behalf of a cgroup, skip
847 * counting on behalf of references from different
848 * cgroups
849 */
850 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
851 continue;
852 referenced += page_referenced_one(page, vma, address,
853 &mapcount, vm_flags);
854 if (!mapcount)
855 break;
856 }
857
858 page_unlock_anon_vma(anon_vma);
859 return referenced;
860}
861
862/**
863 * page_referenced_file - referenced check for object-based rmap
864 * @page: the page we're checking references on.
865 * @memcg: target memory control group
866 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
867 *
868 * For an object-based mapped page, find all the places it is mapped and
869 * check/clear the referenced flag. This is done by following the page->mapping
870 * pointer, then walking the chain of vmas it holds. It returns the number
871 * of references it found.
872 *
873 * This function is only called from page_referenced for object-based pages.
874 */
875static int page_referenced_file(struct page *page,
876 struct mem_cgroup *memcg,
877 unsigned long *vm_flags)
878{
879 unsigned int mapcount;
880 struct address_space *mapping = page->mapping;
881 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
882 struct vm_area_struct *vma;
883 struct prio_tree_iter iter;
884 int referenced = 0;
885
886 /*
887 * The caller's checks on page->mapping and !PageAnon have made
888 * sure that this is a file page: the check for page->mapping
889 * excludes the case just before it gets set on an anon page.
890 */
891 BUG_ON(PageAnon(page));
892
893 /*
894 * The page lock not only makes sure that page->mapping cannot
895 * suddenly be NULLified by truncation, it makes sure that the
896 * structure at mapping cannot be freed and reused yet,
897 * so we can safely take mapping->i_mmap_mutex.
898 */
899 BUG_ON(!PageLocked(page));
900
901 mutex_lock(&mapping->i_mmap_mutex);
902
903 /*
904 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
905 * is more likely to be accurate if we note it after spinning.
906 */
907 mapcount = page_mapcount(page);
908
909 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
910 unsigned long address = vma_address(page, vma);
911 if (address == -EFAULT)
912 continue;
913 /*
914 * If we are reclaiming on behalf of a cgroup, skip
915 * counting on behalf of references from different
916 * cgroups
917 */
918 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
919 continue;
920 referenced += page_referenced_one(page, vma, address,
921 &mapcount, vm_flags);
922 if (!mapcount)
923 break;
924 }
925
926 mutex_unlock(&mapping->i_mmap_mutex);
927 return referenced;
928}
929
930/**
931 * page_referenced - test if the page was referenced
932 * @page: the page to test
933 * @is_locked: caller holds lock on the page
934 * @memcg: target memory cgroup
935 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
936 *
937 * Quick test_and_clear_referenced for all mappings to a page,
938 * returns the number of ptes which referenced the page.
939 */
940int page_referenced(struct page *page,
941 int is_locked,
942 struct mem_cgroup *memcg,
943 unsigned long *vm_flags)
944{
945 int referenced = 0;
946 int we_locked = 0;
947
948 *vm_flags = 0;
949 if (page_mapped(page) && page_rmapping(page)) {
950 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
951 we_locked = trylock_page(page);
952 if (!we_locked) {
953 referenced++;
954 goto out;
955 }
956 }
957 if (unlikely(PageKsm(page)))
958 referenced += page_referenced_ksm(page, memcg,
959 vm_flags);
960 else if (PageAnon(page))
961 referenced += page_referenced_anon(page, memcg,
962 vm_flags);
963 else if (page->mapping)
964 referenced += page_referenced_file(page, memcg,
965 vm_flags);
966 if (we_locked)
967 unlock_page(page);
968
969 if (page_test_and_clear_young(page_to_pfn(page)))
970 referenced++;
971 }
972out:
973 return referenced;
974}
975
976static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
977 unsigned long address)
978{
979 struct mm_struct *mm = vma->vm_mm;
980 pte_t *pte;
981 spinlock_t *ptl;
982 int ret = 0;
983
984 pte = page_check_address(page, mm, address, &ptl, 1);
985 if (!pte)
986 goto out;
987
988 if (pte_dirty(*pte) || pte_write(*pte)) {
989 pte_t entry;
990
991 flush_cache_page(vma, address, pte_pfn(*pte));
992 entry = ptep_clear_flush_notify(vma, address, pte);
993 entry = pte_wrprotect(entry);
994 entry = pte_mkclean(entry);
995 set_pte_at(mm, address, pte, entry);
996 ret = 1;
997 }
998
999 pte_unmap_unlock(pte, ptl);
1000out:
1001 return ret;
1002}
1003
1004static int page_mkclean_file(struct address_space *mapping, struct page *page)
1005{
1006 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1007 struct vm_area_struct *vma;
1008 struct prio_tree_iter iter;
1009 int ret = 0;
1010
1011 BUG_ON(PageAnon(page));
1012
1013 mutex_lock(&mapping->i_mmap_mutex);
1014 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1015 if (vma->vm_flags & VM_SHARED) {
1016 unsigned long address = vma_address(page, vma);
1017 if (address == -EFAULT)
1018 continue;
1019 ret += page_mkclean_one(page, vma, address);
1020 }
1021 }
1022 mutex_unlock(&mapping->i_mmap_mutex);
1023 return ret;
1024}
1025
1026int page_mkclean(struct page *page)
1027{
1028 int ret = 0;
1029
1030 BUG_ON(!PageLocked(page));
1031
1032 if (page_mapped(page)) {
1033 struct address_space *mapping = page_mapping(page);
1034 if (mapping)
1035 ret = page_mkclean_file(mapping, page);
1036 }
1037
1038 return ret;
1039}
1040EXPORT_SYMBOL_GPL(page_mkclean);
1041
1042/**
1043 * page_move_anon_rmap - move a page to our anon_vma
1044 * @page: the page to move to our anon_vma
1045 * @vma: the vma the page belongs to
1046 * @address: the user virtual address mapped
1047 *
1048 * When a page belongs exclusively to one process after a COW event,
1049 * that page can be moved into the anon_vma that belongs to just that
1050 * process, so the rmap code will not search the parent or sibling
1051 * processes.
1052 */
1053void page_move_anon_rmap(struct page *page,
1054 struct vm_area_struct *vma, unsigned long address)
1055{
1056 struct anon_vma *anon_vma = vma->anon_vma;
1057
1058 VM_BUG_ON(!PageLocked(page));
1059 VM_BUG_ON(!anon_vma);
1060 VM_BUG_ON(page->index != linear_page_index(vma, address));
1061
1062 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1063 page->mapping = (struct address_space *) anon_vma;
1064}
1065
1066/**
1067 * __page_set_anon_rmap - set up new anonymous rmap
1068 * @page: Page to add to rmap
1069 * @vma: VM area to add page to.
1070 * @address: User virtual address of the mapping
1071 * @exclusive: the page is exclusively owned by the current process
1072 */
1073static void __page_set_anon_rmap(struct page *page,
1074 struct vm_area_struct *vma, unsigned long address, int exclusive)
1075{
1076 struct anon_vma *anon_vma = vma->anon_vma;
1077
1078 BUG_ON(!anon_vma);
1079
1080 if (PageAnon(page))
1081 return;
1082
1083 /*
1084 * If the page isn't exclusively mapped into this vma,
1085 * we must use the _oldest_ possible anon_vma for the
1086 * page mapping!
1087 */
1088 if (!exclusive)
1089 anon_vma = anon_vma->root;
1090
1091 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1092 page->mapping = (struct address_space *) anon_vma;
1093 page->index = linear_page_index(vma, address);
1094}
1095
1096/**
1097 * __page_check_anon_rmap - sanity check anonymous rmap addition
1098 * @page: the page to add the mapping to
1099 * @vma: the vm area in which the mapping is added
1100 * @address: the user virtual address mapped
1101 */
1102static void __page_check_anon_rmap(struct page *page,
1103 struct vm_area_struct *vma, unsigned long address)
1104{
1105#ifdef CONFIG_DEBUG_VM
1106 /*
1107 * The page's anon-rmap details (mapping and index) are guaranteed to
1108 * be set up correctly at this point.
1109 *
1110 * We have exclusion against page_add_anon_rmap because the caller
1111 * always holds the page locked, except if called from page_dup_rmap,
1112 * in which case the page is already known to be setup.
1113 *
1114 * We have exclusion against page_add_new_anon_rmap because those pages
1115 * are initially only visible via the pagetables, and the pte is locked
1116 * over the call to page_add_new_anon_rmap.
1117 */
1118 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1119 BUG_ON(page->index != linear_page_index(vma, address));
1120#endif
1121}
1122
1123/**
1124 * page_add_anon_rmap - add pte mapping to an anonymous page
1125 * @page: the page to add the mapping to
1126 * @vma: the vm area in which the mapping is added
1127 * @address: the user virtual address mapped
1128 *
1129 * The caller needs to hold the pte lock, and the page must be locked in
1130 * the anon_vma case: to serialize mapping,index checking after setting,
1131 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1132 * (but PageKsm is never downgraded to PageAnon).
1133 */
1134void page_add_anon_rmap(struct page *page,
1135 struct vm_area_struct *vma, unsigned long address)
1136{
1137 do_page_add_anon_rmap(page, vma, address, 0);
1138}
1139
1140/*
1141 * Special version of the above for do_swap_page, which often runs
1142 * into pages that are exclusively owned by the current process.
1143 * Everybody else should continue to use page_add_anon_rmap above.
1144 */
1145void do_page_add_anon_rmap(struct page *page,
1146 struct vm_area_struct *vma, unsigned long address, int exclusive)
1147{
1148 int first = atomic_inc_and_test(&page->_mapcount);
1149 if (first) {
1150 if (!PageTransHuge(page))
1151 __inc_zone_page_state(page, NR_ANON_PAGES);
1152 else
1153 __inc_zone_page_state(page,
1154 NR_ANON_TRANSPARENT_HUGEPAGES);
1155 }
1156 if (unlikely(PageKsm(page)))
1157 return;
1158
1159 VM_BUG_ON(!PageLocked(page));
1160 /* address might be in next vma when migration races vma_adjust */
1161 if (first)
1162 __page_set_anon_rmap(page, vma, address, exclusive);
1163 else
1164 __page_check_anon_rmap(page, vma, address);
1165}
1166
1167/**
1168 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1169 * @page: the page to add the mapping to
1170 * @vma: the vm area in which the mapping is added
1171 * @address: the user virtual address mapped
1172 *
1173 * Same as page_add_anon_rmap but must only be called on *new* pages.
1174 * This means the inc-and-test can be bypassed.
1175 * Page does not have to be locked.
1176 */
1177void page_add_new_anon_rmap(struct page *page,
1178 struct vm_area_struct *vma, unsigned long address)
1179{
1180 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1181 SetPageSwapBacked(page);
1182 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1183 if (!PageTransHuge(page))
1184 __inc_zone_page_state(page, NR_ANON_PAGES);
1185 else
1186 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1187 __page_set_anon_rmap(page, vma, address, 1);
1188 if (page_evictable(page, vma))
1189 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1190 else
1191 add_page_to_unevictable_list(page);
1192}
1193
1194/**
1195 * page_add_file_rmap - add pte mapping to a file page
1196 * @page: the page to add the mapping to
1197 *
1198 * The caller needs to hold the pte lock.
1199 */
1200void page_add_file_rmap(struct page *page)
1201{
1202 bool locked;
1203 unsigned long flags;
1204
1205 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1206 if (atomic_inc_and_test(&page->_mapcount)) {
1207 __inc_zone_page_state(page, NR_FILE_MAPPED);
1208 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1209 }
1210 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1211}
1212
1213/**
1214 * page_remove_rmap - take down pte mapping from a page
1215 * @page: page to remove mapping from
1216 *
1217 * The caller needs to hold the pte lock.
1218 */
1219void page_remove_rmap(struct page *page)
1220{
1221 struct address_space *mapping = page_mapping(page);
1222 bool anon = PageAnon(page);
1223 bool locked;
1224 unsigned long flags;
1225
1226 /*
1227 * The anon case has no mem_cgroup page_stat to update; but may
1228 * uncharge_page() below, where the lock ordering can deadlock if
1229 * we hold the lock against page_stat move: so avoid it on anon.
1230 */
1231 if (!anon)
1232 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1233
1234 /* page still mapped by someone else? */
1235 if (!atomic_add_negative(-1, &page->_mapcount))
1236 goto out;
1237
1238 /*
1239 * Now that the last pte has gone, s390 must transfer dirty
1240 * flag from storage key to struct page. We can usually skip
1241 * this if the page is anon, so about to be freed; but perhaps
1242 * not if it's in swapcache - there might be another pte slot
1243 * containing the swap entry, but page not yet written to swap.
1244 *
1245 * And we can skip it on file pages, so long as the filesystem
1246 * participates in dirty tracking; but need to catch shm and tmpfs
1247 * and ramfs pages which have been modified since creation by read
1248 * fault.
1249 *
1250 * Note that mapping must be decided above, before decrementing
1251 * mapcount (which luckily provides a barrier): once page is unmapped,
1252 * it could be truncated and page->mapping reset to NULL at any moment.
1253 * Note also that we are relying on page_mapping(page) to set mapping
1254 * to &swapper_space when PageSwapCache(page).
1255 */
1256 if (mapping && !mapping_cap_account_dirty(mapping) &&
1257 page_test_and_clear_dirty(page_to_pfn(page), 1))
1258 set_page_dirty(page);
1259 /*
1260 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1261 * and not charged by memcg for now.
1262 */
1263 if (unlikely(PageHuge(page)))
1264 goto out;
1265 if (anon) {
1266 mem_cgroup_uncharge_page(page);
1267 if (!PageTransHuge(page))
1268 __dec_zone_page_state(page, NR_ANON_PAGES);
1269 else
1270 __dec_zone_page_state(page,
1271 NR_ANON_TRANSPARENT_HUGEPAGES);
1272 } else {
1273 __dec_zone_page_state(page, NR_FILE_MAPPED);
1274 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1275 }
1276 /*
1277 * It would be tidy to reset the PageAnon mapping here,
1278 * but that might overwrite a racing page_add_anon_rmap
1279 * which increments mapcount after us but sets mapping
1280 * before us: so leave the reset to free_hot_cold_page,
1281 * and remember that it's only reliable while mapped.
1282 * Leaving it set also helps swapoff to reinstate ptes
1283 * faster for those pages still in swapcache.
1284 */
1285out:
1286 if (!anon)
1287 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1288}
1289
1290/*
1291 * Subfunctions of try_to_unmap: try_to_unmap_one called
1292 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1293 */
1294int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1295 unsigned long address, enum ttu_flags flags)
1296{
1297 struct mm_struct *mm = vma->vm_mm;
1298 pte_t *pte;
1299 pte_t pteval;
1300 spinlock_t *ptl;
1301 int ret = SWAP_AGAIN;
1302
1303 pte = page_check_address(page, mm, address, &ptl, 0);
1304 if (!pte)
1305 goto out;
1306
1307 /*
1308 * If the page is mlock()d, we cannot swap it out.
1309 * If it's recently referenced (perhaps page_referenced
1310 * skipped over this mm) then we should reactivate it.
1311 */
1312 if (!(flags & TTU_IGNORE_MLOCK)) {
1313 if (vma->vm_flags & VM_LOCKED)
1314 goto out_mlock;
1315
1316 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1317 goto out_unmap;
1318 }
1319 if (!(flags & TTU_IGNORE_ACCESS)) {
1320 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1321 ret = SWAP_FAIL;
1322 goto out_unmap;
1323 }
1324 }
1325
1326 /* Nuke the page table entry. */
1327 flush_cache_page(vma, address, page_to_pfn(page));
1328 pteval = ptep_clear_flush_notify(vma, address, pte);
1329
1330 /* Move the dirty bit to the physical page now the pte is gone. */
1331 if (pte_dirty(pteval))
1332 set_page_dirty(page);
1333
1334 /* Update high watermark before we lower rss */
1335 update_hiwater_rss(mm);
1336
1337 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1338 if (PageAnon(page))
1339 dec_mm_counter(mm, MM_ANONPAGES);
1340 else
1341 dec_mm_counter(mm, MM_FILEPAGES);
1342 set_pte_at(mm, address, pte,
1343 swp_entry_to_pte(make_hwpoison_entry(page)));
1344 } else if (PageAnon(page)) {
1345 swp_entry_t entry = { .val = page_private(page) };
1346
1347 if (PageSwapCache(page)) {
1348 /*
1349 * Store the swap location in the pte.
1350 * See handle_pte_fault() ...
1351 */
1352 if (swap_duplicate(entry) < 0) {
1353 set_pte_at(mm, address, pte, pteval);
1354 ret = SWAP_FAIL;
1355 goto out_unmap;
1356 }
1357 if (list_empty(&mm->mmlist)) {
1358 spin_lock(&mmlist_lock);
1359 if (list_empty(&mm->mmlist))
1360 list_add(&mm->mmlist, &init_mm.mmlist);
1361 spin_unlock(&mmlist_lock);
1362 }
1363 dec_mm_counter(mm, MM_ANONPAGES);
1364 inc_mm_counter(mm, MM_SWAPENTS);
1365 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1366 /*
1367 * Store the pfn of the page in a special migration
1368 * pte. do_swap_page() will wait until the migration
1369 * pte is removed and then restart fault handling.
1370 */
1371 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1372 entry = make_migration_entry(page, pte_write(pteval));
1373 }
1374 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1375 BUG_ON(pte_file(*pte));
1376 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1377 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1378 /* Establish migration entry for a file page */
1379 swp_entry_t entry;
1380 entry = make_migration_entry(page, pte_write(pteval));
1381 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1382 } else
1383 dec_mm_counter(mm, MM_FILEPAGES);
1384
1385 page_remove_rmap(page);
1386 page_cache_release(page);
1387
1388out_unmap:
1389 pte_unmap_unlock(pte, ptl);
1390out:
1391 return ret;
1392
1393out_mlock:
1394 pte_unmap_unlock(pte, ptl);
1395
1396
1397 /*
1398 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1399 * unstable result and race. Plus, We can't wait here because
1400 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1401 * if trylock failed, the page remain in evictable lru and later
1402 * vmscan could retry to move the page to unevictable lru if the
1403 * page is actually mlocked.
1404 */
1405 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1406 if (vma->vm_flags & VM_LOCKED) {
1407 mlock_vma_page(page);
1408 ret = SWAP_MLOCK;
1409 }
1410 up_read(&vma->vm_mm->mmap_sem);
1411 }
1412 return ret;
1413}
1414
1415/*
1416 * objrmap doesn't work for nonlinear VMAs because the assumption that
1417 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1418 * Consequently, given a particular page and its ->index, we cannot locate the
1419 * ptes which are mapping that page without an exhaustive linear search.
1420 *
1421 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1422 * maps the file to which the target page belongs. The ->vm_private_data field
1423 * holds the current cursor into that scan. Successive searches will circulate
1424 * around the vma's virtual address space.
1425 *
1426 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1427 * more scanning pressure is placed against them as well. Eventually pages
1428 * will become fully unmapped and are eligible for eviction.
1429 *
1430 * For very sparsely populated VMAs this is a little inefficient - chances are
1431 * there there won't be many ptes located within the scan cluster. In this case
1432 * maybe we could scan further - to the end of the pte page, perhaps.
1433 *
1434 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1435 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1436 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1437 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1438 */
1439#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1440#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1441
1442static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1443 struct vm_area_struct *vma, struct page *check_page)
1444{
1445 struct mm_struct *mm = vma->vm_mm;
1446 pgd_t *pgd;
1447 pud_t *pud;
1448 pmd_t *pmd;
1449 pte_t *pte;
1450 pte_t pteval;
1451 spinlock_t *ptl;
1452 struct page *page;
1453 unsigned long address;
1454 unsigned long end;
1455 int ret = SWAP_AGAIN;
1456 int locked_vma = 0;
1457
1458 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1459 end = address + CLUSTER_SIZE;
1460 if (address < vma->vm_start)
1461 address = vma->vm_start;
1462 if (end > vma->vm_end)
1463 end = vma->vm_end;
1464
1465 pgd = pgd_offset(mm, address);
1466 if (!pgd_present(*pgd))
1467 return ret;
1468
1469 pud = pud_offset(pgd, address);
1470 if (!pud_present(*pud))
1471 return ret;
1472
1473 pmd = pmd_offset(pud, address);
1474 if (!pmd_present(*pmd))
1475 return ret;
1476
1477 /*
1478 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1479 * keep the sem while scanning the cluster for mlocking pages.
1480 */
1481 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1482 locked_vma = (vma->vm_flags & VM_LOCKED);
1483 if (!locked_vma)
1484 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1485 }
1486
1487 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1488
1489 /* Update high watermark before we lower rss */
1490 update_hiwater_rss(mm);
1491
1492 for (; address < end; pte++, address += PAGE_SIZE) {
1493 if (!pte_present(*pte))
1494 continue;
1495 page = vm_normal_page(vma, address, *pte);
1496 BUG_ON(!page || PageAnon(page));
1497
1498 if (locked_vma) {
1499 if (page == check_page) {
1500 /* we know we have check_page locked */
1501 mlock_vma_page(page);
1502 ret = SWAP_MLOCK;
1503 } else if (trylock_page(page)) {
1504 /*
1505 * If we can lock the page, perform mlock.
1506 * Otherwise leave the page alone, it will be
1507 * eventually encountered again later.
1508 */
1509 mlock_vma_page(page);
1510 unlock_page(page);
1511 }
1512 continue; /* don't unmap */
1513 }
1514
1515 if (ptep_clear_flush_young_notify(vma, address, pte))
1516 continue;
1517
1518 /* Nuke the page table entry. */
1519 flush_cache_page(vma, address, pte_pfn(*pte));
1520 pteval = ptep_clear_flush_notify(vma, address, pte);
1521
1522 /* If nonlinear, store the file page offset in the pte. */
1523 if (page->index != linear_page_index(vma, address))
1524 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1525
1526 /* Move the dirty bit to the physical page now the pte is gone. */
1527 if (pte_dirty(pteval))
1528 set_page_dirty(page);
1529
1530 page_remove_rmap(page);
1531 page_cache_release(page);
1532 dec_mm_counter(mm, MM_FILEPAGES);
1533 (*mapcount)--;
1534 }
1535 pte_unmap_unlock(pte - 1, ptl);
1536 if (locked_vma)
1537 up_read(&vma->vm_mm->mmap_sem);
1538 return ret;
1539}
1540
1541bool is_vma_temporary_stack(struct vm_area_struct *vma)
1542{
1543 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1544
1545 if (!maybe_stack)
1546 return false;
1547
1548 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1549 VM_STACK_INCOMPLETE_SETUP)
1550 return true;
1551
1552 return false;
1553}
1554
1555/**
1556 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1557 * rmap method
1558 * @page: the page to unmap/unlock
1559 * @flags: action and flags
1560 *
1561 * Find all the mappings of a page using the mapping pointer and the vma chains
1562 * contained in the anon_vma struct it points to.
1563 *
1564 * This function is only called from try_to_unmap/try_to_munlock for
1565 * anonymous pages.
1566 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1567 * where the page was found will be held for write. So, we won't recheck
1568 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1569 * 'LOCKED.
1570 */
1571static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1572{
1573 struct anon_vma *anon_vma;
1574 struct anon_vma_chain *avc;
1575 int ret = SWAP_AGAIN;
1576
1577 anon_vma = page_lock_anon_vma(page);
1578 if (!anon_vma)
1579 return ret;
1580
1581 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1582 struct vm_area_struct *vma = avc->vma;
1583 unsigned long address;
1584
1585 /*
1586 * During exec, a temporary VMA is setup and later moved.
1587 * The VMA is moved under the anon_vma lock but not the
1588 * page tables leading to a race where migration cannot
1589 * find the migration ptes. Rather than increasing the
1590 * locking requirements of exec(), migration skips
1591 * temporary VMAs until after exec() completes.
1592 */
1593 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1594 is_vma_temporary_stack(vma))
1595 continue;
1596
1597 address = vma_address(page, vma);
1598 if (address == -EFAULT)
1599 continue;
1600 ret = try_to_unmap_one(page, vma, address, flags);
1601 if (ret != SWAP_AGAIN || !page_mapped(page))
1602 break;
1603 }
1604
1605 page_unlock_anon_vma(anon_vma);
1606 return ret;
1607}
1608
1609/**
1610 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1611 * @page: the page to unmap/unlock
1612 * @flags: action and flags
1613 *
1614 * Find all the mappings of a page using the mapping pointer and the vma chains
1615 * contained in the address_space struct it points to.
1616 *
1617 * This function is only called from try_to_unmap/try_to_munlock for
1618 * object-based pages.
1619 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1620 * where the page was found will be held for write. So, we won't recheck
1621 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1622 * 'LOCKED.
1623 */
1624static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1625{
1626 struct address_space *mapping = page->mapping;
1627 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1628 struct vm_area_struct *vma;
1629 struct prio_tree_iter iter;
1630 int ret = SWAP_AGAIN;
1631 unsigned long cursor;
1632 unsigned long max_nl_cursor = 0;
1633 unsigned long max_nl_size = 0;
1634 unsigned int mapcount;
1635
1636 mutex_lock(&mapping->i_mmap_mutex);
1637 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1638 unsigned long address = vma_address(page, vma);
1639 if (address == -EFAULT)
1640 continue;
1641 ret = try_to_unmap_one(page, vma, address, flags);
1642 if (ret != SWAP_AGAIN || !page_mapped(page))
1643 goto out;
1644 }
1645
1646 if (list_empty(&mapping->i_mmap_nonlinear))
1647 goto out;
1648
1649 /*
1650 * We don't bother to try to find the munlocked page in nonlinears.
1651 * It's costly. Instead, later, page reclaim logic may call
1652 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1653 */
1654 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1655 goto out;
1656
1657 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1658 shared.vm_set.list) {
1659 cursor = (unsigned long) vma->vm_private_data;
1660 if (cursor > max_nl_cursor)
1661 max_nl_cursor = cursor;
1662 cursor = vma->vm_end - vma->vm_start;
1663 if (cursor > max_nl_size)
1664 max_nl_size = cursor;
1665 }
1666
1667 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1668 ret = SWAP_FAIL;
1669 goto out;
1670 }
1671
1672 /*
1673 * We don't try to search for this page in the nonlinear vmas,
1674 * and page_referenced wouldn't have found it anyway. Instead
1675 * just walk the nonlinear vmas trying to age and unmap some.
1676 * The mapcount of the page we came in with is irrelevant,
1677 * but even so use it as a guide to how hard we should try?
1678 */
1679 mapcount = page_mapcount(page);
1680 if (!mapcount)
1681 goto out;
1682 cond_resched();
1683
1684 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1685 if (max_nl_cursor == 0)
1686 max_nl_cursor = CLUSTER_SIZE;
1687
1688 do {
1689 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1690 shared.vm_set.list) {
1691 cursor = (unsigned long) vma->vm_private_data;
1692 while ( cursor < max_nl_cursor &&
1693 cursor < vma->vm_end - vma->vm_start) {
1694 if (try_to_unmap_cluster(cursor, &mapcount,
1695 vma, page) == SWAP_MLOCK)
1696 ret = SWAP_MLOCK;
1697 cursor += CLUSTER_SIZE;
1698 vma->vm_private_data = (void *) cursor;
1699 if ((int)mapcount <= 0)
1700 goto out;
1701 }
1702 vma->vm_private_data = (void *) max_nl_cursor;
1703 }
1704 cond_resched();
1705 max_nl_cursor += CLUSTER_SIZE;
1706 } while (max_nl_cursor <= max_nl_size);
1707
1708 /*
1709 * Don't loop forever (perhaps all the remaining pages are
1710 * in locked vmas). Reset cursor on all unreserved nonlinear
1711 * vmas, now forgetting on which ones it had fallen behind.
1712 */
1713 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1714 vma->vm_private_data = NULL;
1715out:
1716 mutex_unlock(&mapping->i_mmap_mutex);
1717 return ret;
1718}
1719
1720/**
1721 * try_to_unmap - try to remove all page table mappings to a page
1722 * @page: the page to get unmapped
1723 * @flags: action and flags
1724 *
1725 * Tries to remove all the page table entries which are mapping this
1726 * page, used in the pageout path. Caller must hold the page lock.
1727 * Return values are:
1728 *
1729 * SWAP_SUCCESS - we succeeded in removing all mappings
1730 * SWAP_AGAIN - we missed a mapping, try again later
1731 * SWAP_FAIL - the page is unswappable
1732 * SWAP_MLOCK - page is mlocked.
1733 */
1734int try_to_unmap(struct page *page, enum ttu_flags flags)
1735{
1736 int ret;
1737
1738 BUG_ON(!PageLocked(page));
1739 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1740
1741 if (unlikely(PageKsm(page)))
1742 ret = try_to_unmap_ksm(page, flags);
1743 else if (PageAnon(page))
1744 ret = try_to_unmap_anon(page, flags);
1745 else
1746 ret = try_to_unmap_file(page, flags);
1747 if (ret != SWAP_MLOCK && !page_mapped(page))
1748 ret = SWAP_SUCCESS;
1749 return ret;
1750}
1751
1752/**
1753 * try_to_munlock - try to munlock a page
1754 * @page: the page to be munlocked
1755 *
1756 * Called from munlock code. Checks all of the VMAs mapping the page
1757 * to make sure nobody else has this page mlocked. The page will be
1758 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1759 *
1760 * Return values are:
1761 *
1762 * SWAP_AGAIN - no vma is holding page mlocked, or,
1763 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1764 * SWAP_FAIL - page cannot be located at present
1765 * SWAP_MLOCK - page is now mlocked.
1766 */
1767int try_to_munlock(struct page *page)
1768{
1769 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1770
1771 if (unlikely(PageKsm(page)))
1772 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1773 else if (PageAnon(page))
1774 return try_to_unmap_anon(page, TTU_MUNLOCK);
1775 else
1776 return try_to_unmap_file(page, TTU_MUNLOCK);
1777}
1778
1779void __put_anon_vma(struct anon_vma *anon_vma)
1780{
1781 struct anon_vma *root = anon_vma->root;
1782
1783 anon_vma_free(anon_vma);
1784 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1785 anon_vma_free(root);
1786}
1787
1788#ifdef CONFIG_MIGRATION
1789/*
1790 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1791 * Called by migrate.c to remove migration ptes, but might be used more later.
1792 */
1793static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1794 struct vm_area_struct *, unsigned long, void *), void *arg)
1795{
1796 struct anon_vma *anon_vma;
1797 struct anon_vma_chain *avc;
1798 int ret = SWAP_AGAIN;
1799
1800 /*
1801 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1802 * because that depends on page_mapped(); but not all its usages
1803 * are holding mmap_sem. Users without mmap_sem are required to
1804 * take a reference count to prevent the anon_vma disappearing
1805 */
1806 anon_vma = page_anon_vma(page);
1807 if (!anon_vma)
1808 return ret;
1809 anon_vma_lock(anon_vma);
1810 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1811 struct vm_area_struct *vma = avc->vma;
1812 unsigned long address = vma_address(page, vma);
1813 if (address == -EFAULT)
1814 continue;
1815 ret = rmap_one(page, vma, address, arg);
1816 if (ret != SWAP_AGAIN)
1817 break;
1818 }
1819 anon_vma_unlock(anon_vma);
1820 return ret;
1821}
1822
1823static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1824 struct vm_area_struct *, unsigned long, void *), void *arg)
1825{
1826 struct address_space *mapping = page->mapping;
1827 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1828 struct vm_area_struct *vma;
1829 struct prio_tree_iter iter;
1830 int ret = SWAP_AGAIN;
1831
1832 if (!mapping)
1833 return ret;
1834 mutex_lock(&mapping->i_mmap_mutex);
1835 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1836 unsigned long address = vma_address(page, vma);
1837 if (address == -EFAULT)
1838 continue;
1839 ret = rmap_one(page, vma, address, arg);
1840 if (ret != SWAP_AGAIN)
1841 break;
1842 }
1843 /*
1844 * No nonlinear handling: being always shared, nonlinear vmas
1845 * never contain migration ptes. Decide what to do about this
1846 * limitation to linear when we need rmap_walk() on nonlinear.
1847 */
1848 mutex_unlock(&mapping->i_mmap_mutex);
1849 return ret;
1850}
1851
1852int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1853 struct vm_area_struct *, unsigned long, void *), void *arg)
1854{
1855 VM_BUG_ON(!PageLocked(page));
1856
1857 if (unlikely(PageKsm(page)))
1858 return rmap_walk_ksm(page, rmap_one, arg);
1859 else if (PageAnon(page))
1860 return rmap_walk_anon(page, rmap_one, arg);
1861 else
1862 return rmap_walk_file(page, rmap_one, arg);
1863}
1864#endif /* CONFIG_MIGRATION */
1865
1866#ifdef CONFIG_HUGETLB_PAGE
1867/*
1868 * The following three functions are for anonymous (private mapped) hugepages.
1869 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1870 * and no lru code, because we handle hugepages differently from common pages.
1871 */
1872static void __hugepage_set_anon_rmap(struct page *page,
1873 struct vm_area_struct *vma, unsigned long address, int exclusive)
1874{
1875 struct anon_vma *anon_vma = vma->anon_vma;
1876
1877 BUG_ON(!anon_vma);
1878
1879 if (PageAnon(page))
1880 return;
1881 if (!exclusive)
1882 anon_vma = anon_vma->root;
1883
1884 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1885 page->mapping = (struct address_space *) anon_vma;
1886 page->index = linear_page_index(vma, address);
1887}
1888
1889void hugepage_add_anon_rmap(struct page *page,
1890 struct vm_area_struct *vma, unsigned long address)
1891{
1892 struct anon_vma *anon_vma = vma->anon_vma;
1893 int first;
1894
1895 BUG_ON(!PageLocked(page));
1896 BUG_ON(!anon_vma);
1897 /* address might be in next vma when migration races vma_adjust */
1898 first = atomic_inc_and_test(&page->_mapcount);
1899 if (first)
1900 __hugepage_set_anon_rmap(page, vma, address, 0);
1901}
1902
1903void hugepage_add_new_anon_rmap(struct page *page,
1904 struct vm_area_struct *vma, unsigned long address)
1905{
1906 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1907 atomic_set(&page->_mapcount, 0);
1908 __hugepage_set_anon_rmap(page, vma, address, 1);
1909}
1910#endif /* CONFIG_HUGETLB_PAGE */