lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* __ieee754_exp(x) |
| 13 | * Returns the exponential of x. |
| 14 | * |
| 15 | * Method |
| 16 | * 1. Argument reduction: |
| 17 | * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
| 18 | * Given x, find r and integer k such that |
| 19 | * |
| 20 | * x = k*ln2 + r, |r| <= 0.5*ln2. |
| 21 | * |
| 22 | * Here r will be represented as r = hi-lo for better |
| 23 | * accuracy. |
| 24 | * |
| 25 | * 2. Approximation of exp(r) by a special rational function on |
| 26 | * the interval [0,0.34658]: |
| 27 | * Write |
| 28 | * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
| 29 | * We use a special Reme algorithm on [0,0.34658] to generate |
| 30 | * a polynomial of degree 5 to approximate R. The maximum error |
| 31 | * of this polynomial approximation is bounded by 2**-59. In |
| 32 | * other words, |
| 33 | * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
| 34 | * (where z=r*r, and the values of P1 to P5 are listed below) |
| 35 | * and |
| 36 | * | 5 | -59 |
| 37 | * | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
| 38 | * | | |
| 39 | * The computation of exp(r) thus becomes |
| 40 | * 2*r |
| 41 | * exp(r) = 1 + ------- |
| 42 | * R - r |
| 43 | * r*R1(r) |
| 44 | * = 1 + r + ----------- (for better accuracy) |
| 45 | * 2 - R1(r) |
| 46 | * where |
| 47 | * 2 4 10 |
| 48 | * R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
| 49 | * |
| 50 | * 3. Scale back to obtain exp(x): |
| 51 | * From step 1, we have |
| 52 | * exp(x) = 2^k * exp(r) |
| 53 | * |
| 54 | * Special cases: |
| 55 | * exp(INF) is INF, exp(NaN) is NaN; |
| 56 | * exp(-INF) is 0, and |
| 57 | * for finite argument, only exp(0)=1 is exact. |
| 58 | * |
| 59 | * Accuracy: |
| 60 | * according to an error analysis, the error is always less than |
| 61 | * 1 ulp (unit in the last place). |
| 62 | * |
| 63 | * Misc. info. |
| 64 | * For IEEE double |
| 65 | * if x > 7.09782712893383973096e+02 then exp(x) overflow |
| 66 | * if x < -7.45133219101941108420e+02 then exp(x) underflow |
| 67 | * |
| 68 | * Constants: |
| 69 | * The hexadecimal values are the intended ones for the following |
| 70 | * constants. The decimal values may be used, provided that the |
| 71 | * compiler will convert from decimal to binary accurately enough |
| 72 | * to produce the hexadecimal values shown. |
| 73 | */ |
| 74 | |
| 75 | #include "math.h" |
| 76 | #include "math_private.h" |
| 77 | |
| 78 | static const double |
| 79 | one = 1.0, |
| 80 | halF[2] = {0.5,-0.5,}, |
| 81 | huge = 1.0e+300, |
| 82 | twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ |
| 83 | o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
| 84 | u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ |
| 85 | ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
| 86 | -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ |
| 87 | ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
| 88 | -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ |
| 89 | invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
| 90 | P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
| 91 | P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
| 92 | P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
| 93 | P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
| 94 | P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
| 95 | |
| 96 | double attribute_hidden __ieee754_exp(double x) /* default IEEE double exp */ |
| 97 | { |
| 98 | double y; |
| 99 | double hi = 0.0; |
| 100 | double lo = 0.0; |
| 101 | double c; |
| 102 | double t; |
| 103 | int32_t k=0; |
| 104 | int32_t xsb; |
| 105 | u_int32_t hx; |
| 106 | |
| 107 | GET_HIGH_WORD(hx,x); |
| 108 | xsb = (hx>>31)&1; /* sign bit of x */ |
| 109 | hx &= 0x7fffffff; /* high word of |x| */ |
| 110 | |
| 111 | /* filter out non-finite argument */ |
| 112 | if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
| 113 | if(hx>=0x7ff00000) { |
| 114 | u_int32_t lx; |
| 115 | GET_LOW_WORD(lx,x); |
| 116 | if(((hx&0xfffff)|lx)!=0) |
| 117 | return x+x; /* NaN */ |
| 118 | else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ |
| 119 | } |
| 120 | if(x > o_threshold) return huge*huge; /* overflow */ |
| 121 | if(x < u_threshold) return twom1000*twom1000; /* underflow */ |
| 122 | } |
| 123 | |
| 124 | /* argument reduction */ |
| 125 | if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
| 126 | if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
| 127 | hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; |
| 128 | } else { |
| 129 | k = invln2*x+halF[xsb]; |
| 130 | t = k; |
| 131 | hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ |
| 132 | lo = t*ln2LO[0]; |
| 133 | } |
| 134 | x = hi - lo; |
| 135 | } |
| 136 | else if(hx < 0x3e300000) { /* when |x|<2**-28 */ |
| 137 | if(huge+x>one) return one+x;/* trigger inexact */ |
| 138 | } |
| 139 | else k = 0; |
| 140 | |
| 141 | /* x is now in primary range */ |
| 142 | t = x*x; |
| 143 | c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
| 144 | if(k==0) return one-((x*c)/(c-2.0)-x); |
| 145 | else y = one-((lo-(x*c)/(2.0-c))-hi); |
| 146 | if(k >= -1021) { |
| 147 | u_int32_t hy; |
| 148 | GET_HIGH_WORD(hy,y); |
| 149 | SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ |
| 150 | return y; |
| 151 | } else { |
| 152 | u_int32_t hy; |
| 153 | GET_HIGH_WORD(hy,y); |
| 154 | SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ |
| 155 | return y*twom1000; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * wrapper exp(x) |
| 161 | */ |
| 162 | #ifndef _IEEE_LIBM |
| 163 | double exp(double x) |
| 164 | { |
| 165 | static const double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ |
| 166 | static const double u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ |
| 167 | |
| 168 | double z = __ieee754_exp(x); |
| 169 | if (_LIB_VERSION == _IEEE_) |
| 170 | return z; |
| 171 | if (isfinite(x)) { |
| 172 | if (x > o_threshold) |
| 173 | return __kernel_standard(x, x, 6); /* exp overflow */ |
| 174 | if (x < u_threshold) |
| 175 | return __kernel_standard(x, x, 7); /* exp underflow */ |
| 176 | } |
| 177 | return z; |
| 178 | } |
| 179 | #else |
| 180 | strong_alias(__ieee754_exp, exp) |
| 181 | #endif |
| 182 | libm_hidden_def(exp) |