| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * DMA Pool allocator | 
 | 3 |  * | 
 | 4 |  * Copyright 2001 David Brownell | 
 | 5 |  * Copyright 2007 Intel Corporation | 
 | 6 |  *   Author: Matthew Wilcox <willy@linux.intel.com> | 
 | 7 |  * | 
 | 8 |  * This software may be redistributed and/or modified under the terms of | 
 | 9 |  * the GNU General Public License ("GPL") version 2 as published by the | 
 | 10 |  * Free Software Foundation. | 
 | 11 |  * | 
 | 12 |  * This allocator returns small blocks of a given size which are DMA-able by | 
 | 13 |  * the given device.  It uses the dma_alloc_coherent page allocator to get | 
 | 14 |  * new pages, then splits them up into blocks of the required size. | 
 | 15 |  * Many older drivers still have their own code to do this. | 
 | 16 |  * | 
 | 17 |  * The current design of this allocator is fairly simple.  The pool is | 
 | 18 |  * represented by the 'struct dma_pool' which keeps a doubly-linked list of | 
 | 19 |  * allocated pages.  Each page in the page_list is split into blocks of at | 
 | 20 |  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked | 
 | 21 |  * list of free blocks within the page.  Used blocks aren't tracked, but we | 
 | 22 |  * keep a count of how many are currently allocated from each page. | 
 | 23 |  */ | 
 | 24 |  | 
 | 25 | #include <linux/device.h> | 
 | 26 | #include <linux/dma-mapping.h> | 
 | 27 | #include <linux/dmapool.h> | 
 | 28 | #include <linux/kernel.h> | 
 | 29 | #include <linux/list.h> | 
 | 30 | #include <linux/export.h> | 
 | 31 | #include <linux/mutex.h> | 
 | 32 | #include <linux/poison.h> | 
 | 33 | #include <linux/sched.h> | 
 | 34 | #include <linux/slab.h> | 
 | 35 | #include <linux/stat.h> | 
 | 36 | #include <linux/spinlock.h> | 
 | 37 | #include <linux/string.h> | 
 | 38 | #include <linux/types.h> | 
 | 39 | #include <linux/wait.h> | 
 | 40 |  | 
 | 41 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) | 
 | 42 | #define DMAPOOL_DEBUG 1 | 
 | 43 | #endif | 
 | 44 |  | 
 | 45 | struct dma_pool {		/* the pool */ | 
 | 46 | 	struct list_head page_list; | 
 | 47 | 	spinlock_t lock; | 
 | 48 | 	size_t size; | 
 | 49 | 	struct device *dev; | 
 | 50 | 	size_t allocation; | 
 | 51 | 	size_t boundary; | 
 | 52 | 	char name[32]; | 
 | 53 | 	struct list_head pools; | 
 | 54 | }; | 
 | 55 |  | 
 | 56 | struct dma_page {		/* cacheable header for 'allocation' bytes */ | 
 | 57 | 	struct list_head page_list; | 
 | 58 | 	void *vaddr; | 
 | 59 | 	dma_addr_t dma; | 
 | 60 | 	unsigned int in_use; | 
 | 61 | 	unsigned int offset; | 
 | 62 | }; | 
 | 63 |  | 
 | 64 | static DEFINE_MUTEX(pools_lock); | 
 | 65 |  | 
 | 66 | static ssize_t | 
 | 67 | show_pools(struct device *dev, struct device_attribute *attr, char *buf) | 
 | 68 | { | 
 | 69 | 	unsigned temp; | 
 | 70 | 	unsigned size; | 
 | 71 | 	char *next; | 
 | 72 | 	struct dma_page *page; | 
 | 73 | 	struct dma_pool *pool; | 
 | 74 |  | 
 | 75 | 	next = buf; | 
 | 76 | 	size = PAGE_SIZE; | 
 | 77 |  | 
 | 78 | 	temp = scnprintf(next, size, "poolinfo - 0.1\n"); | 
 | 79 | 	size -= temp; | 
 | 80 | 	next += temp; | 
 | 81 |  | 
 | 82 | 	mutex_lock(&pools_lock); | 
 | 83 | 	list_for_each_entry(pool, &dev->dma_pools, pools) { | 
 | 84 | 		unsigned pages = 0; | 
 | 85 | 		unsigned blocks = 0; | 
 | 86 |  | 
 | 87 | 		spin_lock_irq(&pool->lock); | 
 | 88 | 		list_for_each_entry(page, &pool->page_list, page_list) { | 
 | 89 | 			pages++; | 
 | 90 | 			blocks += page->in_use; | 
 | 91 | 		} | 
 | 92 | 		spin_unlock_irq(&pool->lock); | 
 | 93 |  | 
 | 94 | 		/* per-pool info, no real statistics yet */ | 
 | 95 | 		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n", | 
 | 96 | 				 pool->name, blocks, | 
 | 97 | 				 pages * (pool->allocation / pool->size), | 
 | 98 | 				 pool->size, pages); | 
 | 99 | 		size -= temp; | 
 | 100 | 		next += temp; | 
 | 101 | 	} | 
 | 102 | 	mutex_unlock(&pools_lock); | 
 | 103 |  | 
 | 104 | 	return PAGE_SIZE - size; | 
 | 105 | } | 
 | 106 |  | 
 | 107 | static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL); | 
 | 108 |  | 
 | 109 | /** | 
 | 110 |  * dma_pool_create - Creates a pool of consistent memory blocks, for dma. | 
 | 111 |  * @name: name of pool, for diagnostics | 
 | 112 |  * @dev: device that will be doing the DMA | 
 | 113 |  * @size: size of the blocks in this pool. | 
 | 114 |  * @align: alignment requirement for blocks; must be a power of two | 
 | 115 |  * @boundary: returned blocks won't cross this power of two boundary | 
 | 116 |  * Context: !in_interrupt() | 
 | 117 |  * | 
 | 118 |  * Returns a dma allocation pool with the requested characteristics, or | 
 | 119 |  * null if one can't be created.  Given one of these pools, dma_pool_alloc() | 
 | 120 |  * may be used to allocate memory.  Such memory will all have "consistent" | 
 | 121 |  * DMA mappings, accessible by the device and its driver without using | 
 | 122 |  * cache flushing primitives.  The actual size of blocks allocated may be | 
 | 123 |  * larger than requested because of alignment. | 
 | 124 |  * | 
 | 125 |  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't | 
 | 126 |  * cross that size boundary.  This is useful for devices which have | 
 | 127 |  * addressing restrictions on individual DMA transfers, such as not crossing | 
 | 128 |  * boundaries of 4KBytes. | 
 | 129 |  */ | 
 | 130 | struct dma_pool *dma_pool_create(const char *name, struct device *dev, | 
 | 131 | 				 size_t size, size_t align, size_t boundary) | 
 | 132 | { | 
 | 133 | 	struct dma_pool *retval; | 
 | 134 | 	size_t allocation; | 
 | 135 |  | 
 | 136 | 	if (align == 0) { | 
 | 137 | 		align = 1; | 
 | 138 | 	} else if (align & (align - 1)) { | 
 | 139 | 		return NULL; | 
 | 140 | 	} | 
 | 141 |  | 
 | 142 | 	if (size == 0) { | 
 | 143 | 		return NULL; | 
 | 144 | 	} else if (size < 4) { | 
 | 145 | 		size = 4; | 
 | 146 | 	} | 
 | 147 |  | 
 | 148 | 	if ((size % align) != 0) | 
 | 149 | 		size = ALIGN(size, align); | 
 | 150 |  | 
 | 151 | 	allocation = max_t(size_t, size, PAGE_SIZE); | 
 | 152 |  | 
 | 153 | 	if (!boundary) { | 
 | 154 | 		boundary = allocation; | 
 | 155 | 	} else if ((boundary < size) || (boundary & (boundary - 1))) { | 
 | 156 | 		return NULL; | 
 | 157 | 	} | 
 | 158 |  | 
 | 159 | 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); | 
 | 160 | 	if (!retval) | 
 | 161 | 		return retval; | 
 | 162 |  | 
 | 163 | 	strlcpy(retval->name, name, sizeof(retval->name)); | 
 | 164 |  | 
 | 165 | 	retval->dev = dev; | 
 | 166 |  | 
 | 167 | 	INIT_LIST_HEAD(&retval->page_list); | 
 | 168 | 	spin_lock_init(&retval->lock); | 
 | 169 | 	retval->size = size; | 
 | 170 | 	retval->boundary = boundary; | 
 | 171 | 	retval->allocation = allocation; | 
 | 172 |  | 
 | 173 | 	if (dev) { | 
 | 174 | 		int ret; | 
 | 175 |  | 
 | 176 | 		mutex_lock(&pools_lock); | 
 | 177 | 		if (list_empty(&dev->dma_pools)) | 
 | 178 | 			ret = device_create_file(dev, &dev_attr_pools); | 
 | 179 | 		else | 
 | 180 | 			ret = 0; | 
 | 181 | 		/* note:  not currently insisting "name" be unique */ | 
 | 182 | 		if (!ret) | 
 | 183 | 			list_add(&retval->pools, &dev->dma_pools); | 
 | 184 | 		else { | 
 | 185 | 			kfree(retval); | 
 | 186 | 			retval = NULL; | 
 | 187 | 		} | 
 | 188 | 		mutex_unlock(&pools_lock); | 
 | 189 | 	} else | 
 | 190 | 		INIT_LIST_HEAD(&retval->pools); | 
 | 191 |  | 
 | 192 | 	return retval; | 
 | 193 | } | 
 | 194 | EXPORT_SYMBOL(dma_pool_create); | 
 | 195 |  | 
 | 196 | static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) | 
 | 197 | { | 
 | 198 | 	unsigned int offset = 0; | 
 | 199 | 	unsigned int next_boundary = pool->boundary; | 
 | 200 |  | 
 | 201 | 	do { | 
 | 202 | 		unsigned int next = offset + pool->size; | 
 | 203 | 		if (unlikely((next + pool->size) >= next_boundary)) { | 
 | 204 | 			next = next_boundary; | 
 | 205 | 			next_boundary += pool->boundary; | 
 | 206 | 		} | 
 | 207 | 		*(int *)(page->vaddr + offset) = next; | 
 | 208 | 		offset = next; | 
 | 209 | 	} while (offset < pool->allocation); | 
 | 210 | } | 
 | 211 |  | 
 | 212 | static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) | 
 | 213 | { | 
 | 214 | 	struct dma_page *page; | 
 | 215 |  | 
 | 216 | 	page = kmalloc(sizeof(*page), mem_flags); | 
 | 217 | 	if (!page) | 
 | 218 | 		return NULL; | 
 | 219 | 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, | 
 | 220 | 					 &page->dma, mem_flags); | 
 | 221 | 	if (page->vaddr) { | 
 | 222 | #ifdef	DMAPOOL_DEBUG | 
 | 223 | 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation); | 
 | 224 | #endif | 
 | 225 | 		pool_initialise_page(pool, page); | 
 | 226 | 		page->in_use = 0; | 
 | 227 | 		page->offset = 0; | 
 | 228 | 	} else { | 
 | 229 | 		kfree(page); | 
 | 230 | 		page = NULL; | 
 | 231 | 	} | 
 | 232 | 	return page; | 
 | 233 | } | 
 | 234 |  | 
 | 235 | static inline int is_page_busy(struct dma_page *page) | 
 | 236 | { | 
 | 237 | 	return page->in_use != 0; | 
 | 238 | } | 
 | 239 |  | 
 | 240 | static void pool_free_page(struct dma_pool *pool, struct dma_page *page) | 
 | 241 | { | 
 | 242 | 	dma_addr_t dma = page->dma; | 
 | 243 |  | 
 | 244 | #ifdef	DMAPOOL_DEBUG | 
 | 245 | 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation); | 
 | 246 | #endif | 
 | 247 | 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); | 
 | 248 | 	list_del(&page->page_list); | 
 | 249 | 	kfree(page); | 
 | 250 | } | 
 | 251 |  | 
 | 252 | /** | 
 | 253 |  * dma_pool_destroy - destroys a pool of dma memory blocks. | 
 | 254 |  * @pool: dma pool that will be destroyed | 
 | 255 |  * Context: !in_interrupt() | 
 | 256 |  * | 
 | 257 |  * Caller guarantees that no more memory from the pool is in use, | 
 | 258 |  * and that nothing will try to use the pool after this call. | 
 | 259 |  */ | 
 | 260 | void dma_pool_destroy(struct dma_pool *pool) | 
 | 261 | { | 
 | 262 | 	mutex_lock(&pools_lock); | 
 | 263 | 	list_del(&pool->pools); | 
 | 264 | 	if (pool->dev && list_empty(&pool->dev->dma_pools)) | 
 | 265 | 		device_remove_file(pool->dev, &dev_attr_pools); | 
 | 266 | 	mutex_unlock(&pools_lock); | 
 | 267 |  | 
 | 268 | 	while (!list_empty(&pool->page_list)) { | 
 | 269 | 		struct dma_page *page; | 
 | 270 | 		page = list_entry(pool->page_list.next, | 
 | 271 | 				  struct dma_page, page_list); | 
 | 272 | 		if (is_page_busy(page)) { | 
 | 273 | 			if (pool->dev) | 
 | 274 | 				dev_err(pool->dev, | 
 | 275 | 					"dma_pool_destroy %s, %p busy\n", | 
 | 276 | 					pool->name, page->vaddr); | 
 | 277 | 			else | 
 | 278 | 				printk(KERN_ERR | 
 | 279 | 				       "dma_pool_destroy %s, %p busy\n", | 
 | 280 | 				       pool->name, page->vaddr); | 
 | 281 | 			/* leak the still-in-use consistent memory */ | 
 | 282 | 			list_del(&page->page_list); | 
 | 283 | 			kfree(page); | 
 | 284 | 		} else | 
 | 285 | 			pool_free_page(pool, page); | 
 | 286 | 	} | 
 | 287 |  | 
 | 288 | 	kfree(pool); | 
 | 289 | } | 
 | 290 | EXPORT_SYMBOL(dma_pool_destroy); | 
 | 291 |  | 
 | 292 | /** | 
 | 293 |  * dma_pool_alloc - get a block of consistent memory | 
 | 294 |  * @pool: dma pool that will produce the block | 
 | 295 |  * @mem_flags: GFP_* bitmask | 
 | 296 |  * @handle: pointer to dma address of block | 
 | 297 |  * | 
 | 298 |  * This returns the kernel virtual address of a currently unused block, | 
 | 299 |  * and reports its dma address through the handle. | 
 | 300 |  * If such a memory block can't be allocated, %NULL is returned. | 
 | 301 |  */ | 
 | 302 | void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, | 
 | 303 | 		     dma_addr_t *handle) | 
 | 304 | { | 
 | 305 | 	unsigned long flags; | 
 | 306 | 	struct dma_page *page; | 
 | 307 | 	size_t offset; | 
 | 308 | 	void *retval; | 
 | 309 |  | 
 | 310 | 	might_sleep_if(mem_flags & __GFP_WAIT); | 
 | 311 |  | 
 | 312 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 313 | 	list_for_each_entry(page, &pool->page_list, page_list) { | 
 | 314 | 		if (page->offset < pool->allocation) | 
 | 315 | 			goto ready; | 
 | 316 | 	} | 
 | 317 |  | 
 | 318 | 	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */ | 
 | 319 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 320 |  | 
 | 321 | 	page = pool_alloc_page(pool, mem_flags); | 
 | 322 | 	if (!page) | 
 | 323 | 		return NULL; | 
 | 324 |  | 
 | 325 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 326 |  | 
 | 327 | 	list_add(&page->page_list, &pool->page_list); | 
 | 328 |  ready: | 
 | 329 | 	page->in_use++; | 
 | 330 | 	offset = page->offset; | 
 | 331 | 	page->offset = *(int *)(page->vaddr + offset); | 
 | 332 | 	retval = offset + page->vaddr; | 
 | 333 | 	*handle = offset + page->dma; | 
 | 334 | #ifdef	DMAPOOL_DEBUG | 
 | 335 | 	memset(retval, POOL_POISON_ALLOCATED, pool->size); | 
 | 336 | #endif | 
 | 337 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 338 | 	return retval; | 
 | 339 | } | 
 | 340 | EXPORT_SYMBOL(dma_pool_alloc); | 
 | 341 |  | 
 | 342 | static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) | 
 | 343 | { | 
 | 344 | 	struct dma_page *page; | 
 | 345 |  | 
 | 346 | 	list_for_each_entry(page, &pool->page_list, page_list) { | 
 | 347 | 		if (dma < page->dma) | 
 | 348 | 			continue; | 
 | 349 | 		if (dma < (page->dma + pool->allocation)) | 
 | 350 | 			return page; | 
 | 351 | 	} | 
 | 352 | 	return NULL; | 
 | 353 | } | 
 | 354 |  | 
 | 355 | /** | 
 | 356 |  * dma_pool_free - put block back into dma pool | 
 | 357 |  * @pool: the dma pool holding the block | 
 | 358 |  * @vaddr: virtual address of block | 
 | 359 |  * @dma: dma address of block | 
 | 360 |  * | 
 | 361 |  * Caller promises neither device nor driver will again touch this block | 
 | 362 |  * unless it is first re-allocated. | 
 | 363 |  */ | 
 | 364 | void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) | 
 | 365 | { | 
 | 366 | 	struct dma_page *page; | 
 | 367 | 	unsigned long flags; | 
 | 368 | 	unsigned int offset; | 
 | 369 |  | 
 | 370 | 	spin_lock_irqsave(&pool->lock, flags); | 
 | 371 | 	page = pool_find_page(pool, dma); | 
 | 372 | 	if (!page) { | 
 | 373 | 		spin_unlock_irqrestore(&pool->lock, flags); | 
 | 374 | 		if (pool->dev) | 
 | 375 | 			dev_err(pool->dev, | 
 | 376 | 				"dma_pool_free %s, %p/%lx (bad dma)\n", | 
 | 377 | 				pool->name, vaddr, (unsigned long)dma); | 
 | 378 | 		else | 
 | 379 | 			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n", | 
 | 380 | 			       pool->name, vaddr, (unsigned long)dma); | 
 | 381 | 		return; | 
 | 382 | 	} | 
 | 383 |  | 
 | 384 | 	offset = vaddr - page->vaddr; | 
 | 385 | #ifdef	DMAPOOL_DEBUG | 
 | 386 | 	if ((dma - page->dma) != offset) { | 
 | 387 | 		spin_unlock_irqrestore(&pool->lock, flags); | 
 | 388 | 		if (pool->dev) | 
 | 389 | 			dev_err(pool->dev, | 
 | 390 | 				"dma_pool_free %s, %p (bad vaddr)/%Lx\n", | 
 | 391 | 				pool->name, vaddr, (unsigned long long)dma); | 
 | 392 | 		else | 
 | 393 | 			printk(KERN_ERR | 
 | 394 | 			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n", | 
 | 395 | 			       pool->name, vaddr, (unsigned long long)dma); | 
 | 396 | 		return; | 
 | 397 | 	} | 
 | 398 | 	{ | 
 | 399 | 		unsigned int chain = page->offset; | 
 | 400 | 		while (chain < pool->allocation) { | 
 | 401 | 			if (chain != offset) { | 
 | 402 | 				chain = *(int *)(page->vaddr + chain); | 
 | 403 | 				continue; | 
 | 404 | 			} | 
 | 405 | 			spin_unlock_irqrestore(&pool->lock, flags); | 
 | 406 | 			if (pool->dev) | 
 | 407 | 				dev_err(pool->dev, "dma_pool_free %s, dma %Lx " | 
 | 408 | 					"already free\n", pool->name, | 
 | 409 | 					(unsigned long long)dma); | 
 | 410 | 			else | 
 | 411 | 				printk(KERN_ERR "dma_pool_free %s, dma %Lx " | 
 | 412 | 					"already free\n", pool->name, | 
 | 413 | 					(unsigned long long)dma); | 
 | 414 | 			return; | 
 | 415 | 		} | 
 | 416 | 	} | 
 | 417 | 	memset(vaddr, POOL_POISON_FREED, pool->size); | 
 | 418 | #endif | 
 | 419 |  | 
 | 420 | 	page->in_use--; | 
 | 421 | 	*(int *)vaddr = page->offset; | 
 | 422 | 	page->offset = offset; | 
 | 423 | 	/* | 
 | 424 | 	 * Resist a temptation to do | 
 | 425 | 	 *    if (!is_page_busy(page)) pool_free_page(pool, page); | 
 | 426 | 	 * Better have a few empty pages hang around. | 
 | 427 | 	 */ | 
 | 428 | 	spin_unlock_irqrestore(&pool->lock, flags); | 
 | 429 | } | 
 | 430 | EXPORT_SYMBOL(dma_pool_free); | 
 | 431 |  | 
 | 432 | /* | 
 | 433 |  * Managed DMA pool | 
 | 434 |  */ | 
 | 435 | static void dmam_pool_release(struct device *dev, void *res) | 
 | 436 | { | 
 | 437 | 	struct dma_pool *pool = *(struct dma_pool **)res; | 
 | 438 |  | 
 | 439 | 	dma_pool_destroy(pool); | 
 | 440 | } | 
 | 441 |  | 
 | 442 | static int dmam_pool_match(struct device *dev, void *res, void *match_data) | 
 | 443 | { | 
 | 444 | 	return *(struct dma_pool **)res == match_data; | 
 | 445 | } | 
 | 446 |  | 
 | 447 | /** | 
 | 448 |  * dmam_pool_create - Managed dma_pool_create() | 
 | 449 |  * @name: name of pool, for diagnostics | 
 | 450 |  * @dev: device that will be doing the DMA | 
 | 451 |  * @size: size of the blocks in this pool. | 
 | 452 |  * @align: alignment requirement for blocks; must be a power of two | 
 | 453 |  * @allocation: returned blocks won't cross this boundary (or zero) | 
 | 454 |  * | 
 | 455 |  * Managed dma_pool_create().  DMA pool created with this function is | 
 | 456 |  * automatically destroyed on driver detach. | 
 | 457 |  */ | 
 | 458 | struct dma_pool *dmam_pool_create(const char *name, struct device *dev, | 
 | 459 | 				  size_t size, size_t align, size_t allocation) | 
 | 460 | { | 
 | 461 | 	struct dma_pool **ptr, *pool; | 
 | 462 |  | 
 | 463 | 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); | 
 | 464 | 	if (!ptr) | 
 | 465 | 		return NULL; | 
 | 466 |  | 
 | 467 | 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation); | 
 | 468 | 	if (pool) | 
 | 469 | 		devres_add(dev, ptr); | 
 | 470 | 	else | 
 | 471 | 		devres_free(ptr); | 
 | 472 |  | 
 | 473 | 	return pool; | 
 | 474 | } | 
 | 475 | EXPORT_SYMBOL(dmam_pool_create); | 
 | 476 |  | 
 | 477 | /** | 
 | 478 |  * dmam_pool_destroy - Managed dma_pool_destroy() | 
 | 479 |  * @pool: dma pool that will be destroyed | 
 | 480 |  * | 
 | 481 |  * Managed dma_pool_destroy(). | 
 | 482 |  */ | 
 | 483 | void dmam_pool_destroy(struct dma_pool *pool) | 
 | 484 | { | 
 | 485 | 	struct device *dev = pool->dev; | 
 | 486 |  | 
 | 487 | 	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool)); | 
 | 488 | 	dma_pool_destroy(pool); | 
 | 489 | } | 
 | 490 | EXPORT_SYMBOL(dmam_pool_destroy); |