| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* Linuxthreads - a simple clone()-based implementation of Posix        */ | 
|  | 2 | /* threads for Linux.                                                   */ | 
|  | 3 | /* Copyright (C) 1998 Xavier Leroy (Xavier.Leroy@inria.fr)              */ | 
|  | 4 | /*                                                                      */ | 
|  | 5 | /* This program is free software; you can redistribute it and/or        */ | 
|  | 6 | /* modify it under the terms of the GNU Library General Public License  */ | 
|  | 7 | /* as published by the Free Software Foundation; either version 2       */ | 
|  | 8 | /* of the License, or (at your option) any later version.               */ | 
|  | 9 | /*                                                                      */ | 
|  | 10 | /* This program is distributed in the hope that it will be useful,      */ | 
|  | 11 | /* but WITHOUT ANY WARRANTY; without even the implied warranty of       */ | 
|  | 12 | /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the        */ | 
|  | 13 | /* GNU Library General Public License for more details.                 */ | 
|  | 14 |  | 
|  | 15 | /* Internal locks */ | 
|  | 16 |  | 
|  | 17 | #define __FORCE_GLIBC | 
|  | 18 | #include <features.h> | 
|  | 19 | #include <errno.h> | 
|  | 20 | #include <sched.h> | 
|  | 21 | #include <time.h> | 
|  | 22 | #include <stdlib.h> | 
|  | 23 | #include <limits.h> | 
|  | 24 | #include "pthread.h" | 
|  | 25 | #include "internals.h" | 
|  | 26 | #include "spinlock.h" | 
|  | 27 | #include "restart.h" | 
|  | 28 |  | 
|  | 29 | libpthread_hidden_proto(nanosleep) | 
|  | 30 |  | 
|  | 31 | static void __pthread_acquire(int * spinlock); | 
|  | 32 |  | 
|  | 33 | static __inline__ void __pthread_release(int * spinlock) | 
|  | 34 | { | 
|  | 35 | WRITE_MEMORY_BARRIER(); | 
|  | 36 | *spinlock = __LT_SPINLOCK_INIT; | 
|  | 37 | __asm__ __volatile__ ("" : "=m" (*spinlock) : "m" (*spinlock)); | 
|  | 38 | } | 
|  | 39 |  | 
|  | 40 |  | 
|  | 41 | /* The status field of a spinlock is a pointer whose least significant | 
|  | 42 | bit is a locked flag. | 
|  | 43 |  | 
|  | 44 | Thus the field values have the following meanings: | 
|  | 45 |  | 
|  | 46 | status == 0:       spinlock is free | 
|  | 47 | status == 1:       spinlock is taken; no thread is waiting on it | 
|  | 48 |  | 
|  | 49 | (status & 1) == 1: spinlock is taken and (status & ~1L) is a | 
|  | 50 | pointer to the first waiting thread; other | 
|  | 51 | waiting threads are linked via the p_nextlock | 
|  | 52 | field. | 
|  | 53 | (status & 1) == 0: same as above, but spinlock is not taken. | 
|  | 54 |  | 
|  | 55 | The waiting list is not sorted by priority order. | 
|  | 56 | Actually, we always insert at top of list (sole insertion mode | 
|  | 57 | that can be performed without locking). | 
|  | 58 | For __pthread_unlock, we perform a linear search in the list | 
|  | 59 | to find the highest-priority, oldest waiting thread. | 
|  | 60 | This is safe because there are no concurrent __pthread_unlock | 
|  | 61 | operations -- only the thread that locked the mutex can unlock it. */ | 
|  | 62 |  | 
|  | 63 |  | 
|  | 64 | void internal_function __pthread_lock(struct _pthread_fastlock * lock, | 
|  | 65 | pthread_descr self) | 
|  | 66 | { | 
|  | 67 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 68 | long oldstatus, newstatus; | 
|  | 69 | int successful_seizure, spurious_wakeup_count; | 
|  | 70 | int spin_count; | 
|  | 71 | #endif | 
|  | 72 |  | 
|  | 73 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 74 | if (!__pthread_has_cas) | 
|  | 75 | #endif | 
|  | 76 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 77 | { | 
|  | 78 | __pthread_acquire(&lock->__spinlock); | 
|  | 79 | return; | 
|  | 80 | } | 
|  | 81 | #endif | 
|  | 82 |  | 
|  | 83 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 84 | /* First try it without preparation.  Maybe it's a completely | 
|  | 85 | uncontested lock.  */ | 
|  | 86 | if (lock->__status == 0 && __compare_and_swap (&lock->__status, 0, 1)) | 
|  | 87 | return; | 
|  | 88 |  | 
|  | 89 | spurious_wakeup_count = 0; | 
|  | 90 | spin_count = 0; | 
|  | 91 |  | 
|  | 92 | /* On SMP, try spinning to get the lock. */ | 
|  | 93 | #if 0 | 
|  | 94 | if (__pthread_smp_kernel) { | 
|  | 95 | int max_count = lock->__spinlock * 2 + 10; | 
|  | 96 |  | 
|  | 97 | if (max_count > MAX_ADAPTIVE_SPIN_COUNT) | 
|  | 98 | max_count = MAX_ADAPTIVE_SPIN_COUNT; | 
|  | 99 |  | 
|  | 100 | for (spin_count = 0; spin_count < max_count; spin_count++) { | 
|  | 101 | if (((oldstatus = lock->__status) & 1) == 0) { | 
|  | 102 | if(__compare_and_swap(&lock->__status, oldstatus, oldstatus | 1)) | 
|  | 103 | { | 
|  | 104 | if (spin_count) | 
|  | 105 | lock->__spinlock += (spin_count - lock->__spinlock) / 8; | 
|  | 106 | READ_MEMORY_BARRIER(); | 
|  | 107 | return; | 
|  | 108 | } | 
|  | 109 | } | 
|  | 110 | #ifdef BUSY_WAIT_NOP | 
|  | 111 | BUSY_WAIT_NOP; | 
|  | 112 | #endif | 
|  | 113 | __asm__ __volatile__ ("" : "=m" (lock->__status) : "m" (lock->__status)); | 
|  | 114 | } | 
|  | 115 |  | 
|  | 116 | lock->__spinlock += (spin_count - lock->__spinlock) / 8; | 
|  | 117 | } | 
|  | 118 | #endif | 
|  | 119 |  | 
|  | 120 | again: | 
|  | 121 |  | 
|  | 122 | /* No luck, try once more or suspend. */ | 
|  | 123 |  | 
|  | 124 | do { | 
|  | 125 | oldstatus = lock->__status; | 
|  | 126 | successful_seizure = 0; | 
|  | 127 |  | 
|  | 128 | if ((oldstatus & 1) == 0) { | 
|  | 129 | newstatus = oldstatus | 1; | 
|  | 130 | successful_seizure = 1; | 
|  | 131 | } else { | 
|  | 132 | if (self == NULL) | 
|  | 133 | self = thread_self(); | 
|  | 134 | newstatus = (long) self | 1; | 
|  | 135 | } | 
|  | 136 |  | 
|  | 137 | if (self != NULL) { | 
|  | 138 | THREAD_SETMEM(self, p_nextlock, (pthread_descr) (oldstatus)); | 
|  | 139 | /* Make sure the store in p_nextlock completes before performing | 
|  | 140 | the compare-and-swap */ | 
|  | 141 | MEMORY_BARRIER(); | 
|  | 142 | } | 
|  | 143 | } while(! __compare_and_swap(&lock->__status, oldstatus, newstatus)); | 
|  | 144 |  | 
|  | 145 | /* Suspend with guard against spurious wakeup. | 
|  | 146 | This can happen in pthread_cond_timedwait_relative, when the thread | 
|  | 147 | wakes up due to timeout and is still on the condvar queue, and then | 
|  | 148 | locks the queue to remove itself. At that point it may still be on the | 
|  | 149 | queue, and may be resumed by a condition signal. */ | 
|  | 150 |  | 
|  | 151 | if (!successful_seizure) { | 
|  | 152 | for (;;) { | 
|  | 153 | suspend(self); | 
|  | 154 | if (self->p_nextlock != NULL) { | 
|  | 155 | /* Count resumes that don't belong to us. */ | 
|  | 156 | spurious_wakeup_count++; | 
|  | 157 | continue; | 
|  | 158 | } | 
|  | 159 | break; | 
|  | 160 | } | 
|  | 161 | goto again; | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | /* Put back any resumes we caught that don't belong to us. */ | 
|  | 165 | while (spurious_wakeup_count--) | 
|  | 166 | restart(self); | 
|  | 167 |  | 
|  | 168 | READ_MEMORY_BARRIER(); | 
|  | 169 | #endif | 
|  | 170 | } | 
|  | 171 |  | 
|  | 172 | int __pthread_unlock(struct _pthread_fastlock * lock) | 
|  | 173 | { | 
|  | 174 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 175 | long oldstatus; | 
|  | 176 | pthread_descr thr, * ptr, * maxptr; | 
|  | 177 | int maxprio; | 
|  | 178 | #endif | 
|  | 179 |  | 
|  | 180 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 181 | if (!__pthread_has_cas) | 
|  | 182 | #endif | 
|  | 183 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 184 | { | 
|  | 185 | __pthread_release(&lock->__spinlock); | 
|  | 186 | return 0; | 
|  | 187 | } | 
|  | 188 | #endif | 
|  | 189 |  | 
|  | 190 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 191 | WRITE_MEMORY_BARRIER(); | 
|  | 192 |  | 
|  | 193 | again: | 
|  | 194 | while ((oldstatus = lock->__status) == 1) { | 
|  | 195 | if (__compare_and_swap_with_release_semantics(&lock->__status, | 
|  | 196 | oldstatus, 0)) | 
|  | 197 | return 0; | 
|  | 198 | } | 
|  | 199 |  | 
|  | 200 | /* Find thread in waiting queue with maximal priority */ | 
|  | 201 | ptr = (pthread_descr *) &lock->__status; | 
|  | 202 | thr = (pthread_descr) (oldstatus & ~1L); | 
|  | 203 | maxprio = 0; | 
|  | 204 | maxptr = ptr; | 
|  | 205 |  | 
|  | 206 | /* Before we iterate over the wait queue, we need to execute | 
|  | 207 | a read barrier, otherwise we may read stale contents of nodes that may | 
|  | 208 | just have been inserted by other processors. One read barrier is enough to | 
|  | 209 | ensure we have a stable list; we don't need one for each pointer chase | 
|  | 210 | through the list, because we are the owner of the lock; other threads | 
|  | 211 | can only add nodes at the front; if a front node is consistent, | 
|  | 212 | the ones behind it must also be. */ | 
|  | 213 |  | 
|  | 214 | READ_MEMORY_BARRIER(); | 
|  | 215 |  | 
|  | 216 | while (thr != 0) { | 
|  | 217 | if (thr->p_priority >= maxprio) { | 
|  | 218 | maxptr = ptr; | 
|  | 219 | maxprio = thr->p_priority; | 
|  | 220 | } | 
|  | 221 | ptr = &(thr->p_nextlock); | 
|  | 222 | thr = (pthread_descr)((long)(thr->p_nextlock) & ~1L); | 
|  | 223 | } | 
|  | 224 |  | 
|  | 225 | /* Remove max prio thread from waiting list. */ | 
|  | 226 | if (maxptr == (pthread_descr *) &lock->__status) { | 
|  | 227 | /* If max prio thread is at head, remove it with compare-and-swap | 
|  | 228 | to guard against concurrent lock operation. This removal | 
|  | 229 | also has the side effect of marking the lock as released | 
|  | 230 | because the new status comes from thr->p_nextlock whose | 
|  | 231 | least significant bit is clear. */ | 
|  | 232 | thr = (pthread_descr) (oldstatus & ~1L); | 
|  | 233 | if (! __compare_and_swap_with_release_semantics | 
|  | 234 | (&lock->__status, oldstatus, (long)(thr->p_nextlock) & ~1L)) | 
|  | 235 | goto again; | 
|  | 236 | } else { | 
|  | 237 | /* No risk of concurrent access, remove max prio thread normally. | 
|  | 238 | But in this case we must also flip the least significant bit | 
|  | 239 | of the status to mark the lock as released. */ | 
|  | 240 | thr = (pthread_descr)((long)*maxptr & ~1L); | 
|  | 241 | *maxptr = thr->p_nextlock; | 
|  | 242 |  | 
|  | 243 | /* Ensure deletion from linked list completes before we | 
|  | 244 | release the lock. */ | 
|  | 245 | WRITE_MEMORY_BARRIER(); | 
|  | 246 |  | 
|  | 247 | do { | 
|  | 248 | oldstatus = lock->__status; | 
|  | 249 | } while (!__compare_and_swap_with_release_semantics(&lock->__status, | 
|  | 250 | oldstatus, oldstatus & ~1L)); | 
|  | 251 | } | 
|  | 252 |  | 
|  | 253 | /* Wake up the selected waiting thread. Woken thread can check | 
|  | 254 | its own p_nextlock field for NULL to detect that it has been removed. No | 
|  | 255 | barrier is needed here, since restart() and suspend() take | 
|  | 256 | care of memory synchronization. */ | 
|  | 257 |  | 
|  | 258 | thr->p_nextlock = NULL; | 
|  | 259 | restart(thr); | 
|  | 260 |  | 
|  | 261 | return 0; | 
|  | 262 | #endif | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | /* | 
|  | 266 | * Alternate fastlocks do not queue threads directly. Instead, they queue | 
|  | 267 | * these wait queue node structures. When a timed wait wakes up due to | 
|  | 268 | * a timeout, it can leave its wait node in the queue (because there | 
|  | 269 | * is no safe way to remove from the quue). Some other thread will | 
|  | 270 | * deallocate the abandoned node. | 
|  | 271 | */ | 
|  | 272 |  | 
|  | 273 |  | 
|  | 274 | struct wait_node { | 
|  | 275 | struct wait_node *next;	/* Next node in null terminated linked list */ | 
|  | 276 | pthread_descr thr;		/* The thread waiting with this node */ | 
|  | 277 | int abandoned;		/* Atomic flag */ | 
|  | 278 | }; | 
|  | 279 |  | 
|  | 280 | static long wait_node_free_list; | 
|  | 281 | static int wait_node_free_list_spinlock; | 
|  | 282 |  | 
|  | 283 | /* Allocate a new node from the head of the free list using an atomic | 
|  | 284 | operation, or else using malloc if that list is empty.  A fundamental | 
|  | 285 | assumption here is that we can safely access wait_node_free_list->next. | 
|  | 286 | That's because we never free nodes once we allocate them, so a pointer to a | 
|  | 287 | node remains valid indefinitely. */ | 
|  | 288 |  | 
|  | 289 | static struct wait_node *wait_node_alloc(void) | 
|  | 290 | { | 
|  | 291 | struct wait_node *new_node = 0; | 
|  | 292 |  | 
|  | 293 | __pthread_acquire(&wait_node_free_list_spinlock); | 
|  | 294 | if (wait_node_free_list != 0) { | 
|  | 295 | new_node = (struct wait_node *) wait_node_free_list; | 
|  | 296 | wait_node_free_list = (long) new_node->next; | 
|  | 297 | } | 
|  | 298 | WRITE_MEMORY_BARRIER(); | 
|  | 299 | __pthread_release(&wait_node_free_list_spinlock); | 
|  | 300 |  | 
|  | 301 | if (new_node == 0) | 
|  | 302 | return malloc(sizeof *wait_node_alloc()); | 
|  | 303 |  | 
|  | 304 | return new_node; | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | /* Return a node to the head of the free list using an atomic | 
|  | 308 | operation. */ | 
|  | 309 |  | 
|  | 310 | static void wait_node_free(struct wait_node *wn) | 
|  | 311 | { | 
|  | 312 | __pthread_acquire(&wait_node_free_list_spinlock); | 
|  | 313 | wn->next = (struct wait_node *) wait_node_free_list; | 
|  | 314 | wait_node_free_list = (long) wn; | 
|  | 315 | WRITE_MEMORY_BARRIER(); | 
|  | 316 | __pthread_release(&wait_node_free_list_spinlock); | 
|  | 317 | return; | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 321 |  | 
|  | 322 | /* Remove a wait node from the specified queue.  It is assumed | 
|  | 323 | that the removal takes place concurrently with only atomic insertions at the | 
|  | 324 | head of the queue. */ | 
|  | 325 |  | 
|  | 326 | static void wait_node_dequeue(struct wait_node **pp_head, | 
|  | 327 | struct wait_node **pp_node, | 
|  | 328 | struct wait_node *p_node) | 
|  | 329 | { | 
|  | 330 | /* If the node is being deleted from the head of the | 
|  | 331 | list, it must be deleted using atomic compare-and-swap. | 
|  | 332 | Otherwise it can be deleted in the straightforward way. */ | 
|  | 333 |  | 
|  | 334 | if (pp_node == pp_head) { | 
|  | 335 | /* We don't need a read barrier between these next two loads, | 
|  | 336 | because it is assumed that the caller has already ensured | 
|  | 337 | the stability of *p_node with respect to p_node. */ | 
|  | 338 |  | 
|  | 339 | long oldvalue = (long) p_node; | 
|  | 340 | long newvalue = (long) p_node->next; | 
|  | 341 |  | 
|  | 342 | if (__compare_and_swap((long *) pp_node, oldvalue, newvalue)) | 
|  | 343 | return; | 
|  | 344 |  | 
|  | 345 | /* Oops! Compare and swap failed, which means the node is | 
|  | 346 | no longer first. We delete it using the ordinary method.  But we don't | 
|  | 347 | know the identity of the node which now holds the pointer to the node | 
|  | 348 | being deleted, so we must search from the beginning. */ | 
|  | 349 |  | 
|  | 350 | for (pp_node = pp_head; p_node != *pp_node; ) { | 
|  | 351 | pp_node = &(*pp_node)->next; | 
|  | 352 | READ_MEMORY_BARRIER(); /* Stabilize *pp_node for next iteration. */ | 
|  | 353 | } | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | *pp_node = p_node->next; | 
|  | 357 | return; | 
|  | 358 | } | 
|  | 359 |  | 
|  | 360 | #endif | 
|  | 361 |  | 
|  | 362 | void __pthread_alt_lock(struct _pthread_fastlock * lock, | 
|  | 363 | pthread_descr self) | 
|  | 364 | { | 
|  | 365 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 366 | long oldstatus, newstatus; | 
|  | 367 | #endif | 
|  | 368 | struct wait_node wait_node; | 
|  | 369 |  | 
|  | 370 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 371 | if (!__pthread_has_cas) | 
|  | 372 | #endif | 
|  | 373 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 374 | { | 
|  | 375 | int suspend_needed = 0; | 
|  | 376 | __pthread_acquire(&lock->__spinlock); | 
|  | 377 |  | 
|  | 378 | if (lock->__status == 0) | 
|  | 379 | lock->__status = 1; | 
|  | 380 | else { | 
|  | 381 | if (self == NULL) | 
|  | 382 | self = thread_self(); | 
|  | 383 |  | 
|  | 384 | wait_node.abandoned = 0; | 
|  | 385 | wait_node.next = (struct wait_node *) lock->__status; | 
|  | 386 | wait_node.thr = self; | 
|  | 387 | lock->__status = (long) &wait_node; | 
|  | 388 | suspend_needed = 1; | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 | __pthread_release(&lock->__spinlock); | 
|  | 392 |  | 
|  | 393 | if (suspend_needed) | 
|  | 394 | suspend (self); | 
|  | 395 | return; | 
|  | 396 | } | 
|  | 397 | #endif | 
|  | 398 |  | 
|  | 399 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 400 | do { | 
|  | 401 | oldstatus = lock->__status; | 
|  | 402 | if (oldstatus == 0) { | 
|  | 403 | newstatus = 1; | 
|  | 404 | } else { | 
|  | 405 | if (self == NULL) | 
|  | 406 | self = thread_self(); | 
|  | 407 | wait_node.thr = self; | 
|  | 408 | newstatus = (long) &wait_node; | 
|  | 409 | } | 
|  | 410 | wait_node.abandoned = 0; | 
|  | 411 | wait_node.next = (struct wait_node *) oldstatus; | 
|  | 412 | /* Make sure the store in wait_node.next completes before performing | 
|  | 413 | the compare-and-swap */ | 
|  | 414 | MEMORY_BARRIER(); | 
|  | 415 | } while(! __compare_and_swap(&lock->__status, oldstatus, newstatus)); | 
|  | 416 |  | 
|  | 417 | /* Suspend. Note that unlike in __pthread_lock, we don't worry | 
|  | 418 | here about spurious wakeup. That's because this lock is not | 
|  | 419 | used in situations where that can happen; the restart can | 
|  | 420 | only come from the previous lock owner. */ | 
|  | 421 |  | 
|  | 422 | if (oldstatus != 0) | 
|  | 423 | suspend(self); | 
|  | 424 |  | 
|  | 425 | READ_MEMORY_BARRIER(); | 
|  | 426 | #endif | 
|  | 427 | } | 
|  | 428 |  | 
|  | 429 | /* Timed-out lock operation; returns 0 to indicate timeout. */ | 
|  | 430 |  | 
|  | 431 | int __pthread_alt_timedlock(struct _pthread_fastlock * lock, | 
|  | 432 | pthread_descr self, const struct timespec *abstime) | 
|  | 433 | { | 
|  | 434 | long oldstatus = 0; | 
|  | 435 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 436 | long newstatus; | 
|  | 437 | #endif | 
|  | 438 | struct wait_node *p_wait_node = wait_node_alloc(); | 
|  | 439 |  | 
|  | 440 | /* Out of memory, just give up and do ordinary lock. */ | 
|  | 441 | if (p_wait_node == 0) { | 
|  | 442 | __pthread_alt_lock(lock, self); | 
|  | 443 | return 1; | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 447 | if (!__pthread_has_cas) | 
|  | 448 | #endif | 
|  | 449 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 450 | { | 
|  | 451 | __pthread_acquire(&lock->__spinlock); | 
|  | 452 |  | 
|  | 453 | if (lock->__status == 0) | 
|  | 454 | lock->__status = 1; | 
|  | 455 | else { | 
|  | 456 | if (self == NULL) | 
|  | 457 | self = thread_self(); | 
|  | 458 |  | 
|  | 459 | p_wait_node->abandoned = 0; | 
|  | 460 | p_wait_node->next = (struct wait_node *) lock->__status; | 
|  | 461 | p_wait_node->thr = self; | 
|  | 462 | lock->__status = (long) p_wait_node; | 
|  | 463 | oldstatus = 1; /* force suspend */ | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | __pthread_release(&lock->__spinlock); | 
|  | 467 | goto suspend; | 
|  | 468 | } | 
|  | 469 | #endif | 
|  | 470 |  | 
|  | 471 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 472 | do { | 
|  | 473 | oldstatus = lock->__status; | 
|  | 474 | if (oldstatus == 0) { | 
|  | 475 | newstatus = 1; | 
|  | 476 | } else { | 
|  | 477 | if (self == NULL) | 
|  | 478 | self = thread_self(); | 
|  | 479 | p_wait_node->thr = self; | 
|  | 480 | newstatus = (long) p_wait_node; | 
|  | 481 | } | 
|  | 482 | p_wait_node->abandoned = 0; | 
|  | 483 | p_wait_node->next = (struct wait_node *) oldstatus; | 
|  | 484 | /* Make sure the store in wait_node.next completes before performing | 
|  | 485 | the compare-and-swap */ | 
|  | 486 | MEMORY_BARRIER(); | 
|  | 487 | } while(! __compare_and_swap(&lock->__status, oldstatus, newstatus)); | 
|  | 488 | #endif | 
|  | 489 |  | 
|  | 490 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 491 | suspend: | 
|  | 492 | #endif | 
|  | 493 |  | 
|  | 494 | /* If we did not get the lock, do a timed suspend. If we wake up due | 
|  | 495 | to a timeout, then there is a race; the old lock owner may try | 
|  | 496 | to remove us from the queue. This race is resolved by us and the owner | 
|  | 497 | doing an atomic testandset() to change the state of the wait node from 0 | 
|  | 498 | to 1. If we succeed, then it's a timeout and we abandon the node in the | 
|  | 499 | queue. If we fail, it means the owner gave us the lock. */ | 
|  | 500 |  | 
|  | 501 | if (oldstatus != 0) { | 
|  | 502 | if (timedsuspend(self, abstime) == 0) { | 
|  | 503 | if (!testandset(&p_wait_node->abandoned)) | 
|  | 504 | return 0; /* Timeout! */ | 
|  | 505 |  | 
|  | 506 | /* Eat oustanding resume from owner, otherwise wait_node_free() below | 
|  | 507 | will race with owner's wait_node_dequeue(). */ | 
|  | 508 | suspend(self); | 
|  | 509 | } | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | wait_node_free(p_wait_node); | 
|  | 513 |  | 
|  | 514 | READ_MEMORY_BARRIER(); | 
|  | 515 |  | 
|  | 516 | return 1; /* Got the lock! */ | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | void __pthread_alt_unlock(struct _pthread_fastlock *lock) | 
|  | 520 | { | 
|  | 521 | struct wait_node *p_node, **pp_node, *p_max_prio, **pp_max_prio; | 
|  | 522 | struct wait_node ** const pp_head = (struct wait_node **) &lock->__status; | 
|  | 523 | int maxprio; | 
|  | 524 |  | 
|  | 525 | WRITE_MEMORY_BARRIER(); | 
|  | 526 |  | 
|  | 527 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 528 | if (!__pthread_has_cas) | 
|  | 529 | #endif | 
|  | 530 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 531 | { | 
|  | 532 | __pthread_acquire(&lock->__spinlock); | 
|  | 533 | } | 
|  | 534 | #endif | 
|  | 535 |  | 
|  | 536 | while (1) { | 
|  | 537 |  | 
|  | 538 | /* If no threads are waiting for this lock, try to just | 
|  | 539 | atomically release it. */ | 
|  | 540 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 541 | if (!__pthread_has_cas) | 
|  | 542 | #endif | 
|  | 543 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 544 | { | 
|  | 545 | if (lock->__status == 0 || lock->__status == 1) { | 
|  | 546 | lock->__status = 0; | 
|  | 547 | break; | 
|  | 548 | } | 
|  | 549 | } | 
|  | 550 | #endif | 
|  | 551 |  | 
|  | 552 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 553 | else | 
|  | 554 | #endif | 
|  | 555 |  | 
|  | 556 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 557 | { | 
|  | 558 | long oldstatus = lock->__status; | 
|  | 559 | if (oldstatus == 0 || oldstatus == 1) { | 
|  | 560 | if (__compare_and_swap_with_release_semantics (&lock->__status, oldstatus, 0)) | 
|  | 561 | break; | 
|  | 562 | else | 
|  | 563 | continue; | 
|  | 564 | } | 
|  | 565 | } | 
|  | 566 | #endif | 
|  | 567 |  | 
|  | 568 | /* Process the entire queue of wait nodes. Remove all abandoned | 
|  | 569 | wait nodes and put them into the global free queue, and | 
|  | 570 | remember the one unabandoned node which refers to the thread | 
|  | 571 | having the highest priority. */ | 
|  | 572 |  | 
|  | 573 | pp_max_prio = pp_node = pp_head; | 
|  | 574 | p_max_prio = p_node = *pp_head; | 
|  | 575 | maxprio = INT_MIN; | 
|  | 576 |  | 
|  | 577 | READ_MEMORY_BARRIER(); /* Prevent access to stale data through p_node */ | 
|  | 578 |  | 
|  | 579 | while (p_node != (struct wait_node *) 1) { | 
|  | 580 | int prio; | 
|  | 581 |  | 
|  | 582 | if (p_node->abandoned) { | 
|  | 583 | /* Remove abandoned node. */ | 
|  | 584 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 585 | if (!__pthread_has_cas) | 
|  | 586 | #endif | 
|  | 587 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 588 | *pp_node = p_node->next; | 
|  | 589 | #endif | 
|  | 590 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 591 | else | 
|  | 592 | #endif | 
|  | 593 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 594 | wait_node_dequeue(pp_head, pp_node, p_node); | 
|  | 595 | #endif | 
|  | 596 | wait_node_free(p_node); | 
|  | 597 | /* Note that the next assignment may take us to the beginning | 
|  | 598 | of the queue, to newly inserted nodes, if pp_node == pp_head. | 
|  | 599 | In that case we need a memory barrier to stabilize the first of | 
|  | 600 | these new nodes. */ | 
|  | 601 | p_node = *pp_node; | 
|  | 602 | if (pp_node == pp_head) | 
|  | 603 | READ_MEMORY_BARRIER(); /* No stale reads through p_node */ | 
|  | 604 | continue; | 
|  | 605 | } else if ((prio = p_node->thr->p_priority) >= maxprio) { | 
|  | 606 | /* Otherwise remember it if its thread has a higher or equal priority | 
|  | 607 | compared to that of any node seen thus far. */ | 
|  | 608 | maxprio = prio; | 
|  | 609 | pp_max_prio = pp_node; | 
|  | 610 | p_max_prio = p_node; | 
|  | 611 | } | 
|  | 612 |  | 
|  | 613 | /* This canno6 jump backward in the list, so no further read | 
|  | 614 | barrier is needed. */ | 
|  | 615 | pp_node = &p_node->next; | 
|  | 616 | p_node = *pp_node; | 
|  | 617 | } | 
|  | 618 |  | 
|  | 619 | /* If all threads abandoned, go back to top */ | 
|  | 620 | if (maxprio == INT_MIN) | 
|  | 621 | continue; | 
|  | 622 |  | 
|  | 623 | /* Now we want to to remove the max priority thread's wait node from | 
|  | 624 | the list. Before we can do this, we must atomically try to change the | 
|  | 625 | node's abandon state from zero to nonzero. If we succeed, that means we | 
|  | 626 | have the node that we will wake up. If we failed, then it means the | 
|  | 627 | thread timed out and abandoned the node in which case we repeat the | 
|  | 628 | whole unlock operation. */ | 
|  | 629 |  | 
|  | 630 | if (!testandset(&p_max_prio->abandoned)) { | 
|  | 631 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 632 | if (!__pthread_has_cas) | 
|  | 633 | #endif | 
|  | 634 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 635 | *pp_max_prio = p_max_prio->next; | 
|  | 636 | #endif | 
|  | 637 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 638 | else | 
|  | 639 | #endif | 
|  | 640 | #if defined HAS_COMPARE_AND_SWAP | 
|  | 641 | wait_node_dequeue(pp_head, pp_max_prio, p_max_prio); | 
|  | 642 | #endif | 
|  | 643 | restart(p_max_prio->thr); | 
|  | 644 | break; | 
|  | 645 | } | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | #if defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 649 | if (!__pthread_has_cas) | 
|  | 650 | #endif | 
|  | 651 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 652 | { | 
|  | 653 | __pthread_release(&lock->__spinlock); | 
|  | 654 | } | 
|  | 655 | #endif | 
|  | 656 | } | 
|  | 657 |  | 
|  | 658 |  | 
|  | 659 | /* Compare-and-swap emulation with a spinlock */ | 
|  | 660 |  | 
|  | 661 | #ifdef TEST_FOR_COMPARE_AND_SWAP | 
|  | 662 | int __pthread_has_cas = 0; | 
|  | 663 | #endif | 
|  | 664 |  | 
|  | 665 | #if !defined HAS_COMPARE_AND_SWAP || defined TEST_FOR_COMPARE_AND_SWAP | 
|  | 666 |  | 
|  | 667 | int __pthread_compare_and_swap(long * ptr, long oldval, long newval, | 
|  | 668 | int * spinlock) | 
|  | 669 | { | 
|  | 670 | int res; | 
|  | 671 |  | 
|  | 672 | __pthread_acquire(spinlock); | 
|  | 673 |  | 
|  | 674 | if (*ptr == oldval) { | 
|  | 675 | *ptr = newval; res = 1; | 
|  | 676 | } else { | 
|  | 677 | res = 0; | 
|  | 678 | } | 
|  | 679 |  | 
|  | 680 | __pthread_release(spinlock); | 
|  | 681 |  | 
|  | 682 | return res; | 
|  | 683 | } | 
|  | 684 |  | 
|  | 685 | #endif | 
|  | 686 |  | 
|  | 687 | /* The retry strategy is as follows: | 
|  | 688 | - We test and set the spinlock MAX_SPIN_COUNT times, calling | 
|  | 689 | sched_yield() each time.  This gives ample opportunity for other | 
|  | 690 | threads with priority >= our priority to make progress and | 
|  | 691 | release the spinlock. | 
|  | 692 | - If a thread with priority < our priority owns the spinlock, | 
|  | 693 | calling sched_yield() repeatedly is useless, since we're preventing | 
|  | 694 | the owning thread from making progress and releasing the spinlock. | 
|  | 695 | So, after MAX_SPIN_LOCK attemps, we suspend the calling thread | 
|  | 696 | using nanosleep().  This again should give time to the owning thread | 
|  | 697 | for releasing the spinlock. | 
|  | 698 | Notice that the nanosleep() interval must not be too small, | 
|  | 699 | since the kernel does busy-waiting for short intervals in a realtime | 
|  | 700 | process (!).  The smallest duration that guarantees thread | 
|  | 701 | suspension is currently 2ms. | 
|  | 702 | - When nanosleep() returns, we try again, doing MAX_SPIN_COUNT | 
|  | 703 | sched_yield(), then sleeping again if needed. */ | 
|  | 704 |  | 
|  | 705 | static void __pthread_acquire(int * spinlock) | 
|  | 706 | { | 
|  | 707 | int cnt = 0; | 
|  | 708 | struct timespec tm; | 
|  | 709 |  | 
|  | 710 | READ_MEMORY_BARRIER(); | 
|  | 711 |  | 
|  | 712 | while (testandset(spinlock)) { | 
|  | 713 | if (cnt < MAX_SPIN_COUNT) { | 
|  | 714 | sched_yield(); | 
|  | 715 | cnt++; | 
|  | 716 | } else { | 
|  | 717 | tm.tv_sec = 0; | 
|  | 718 | tm.tv_nsec = SPIN_SLEEP_DURATION; | 
|  | 719 | nanosleep(&tm, NULL); | 
|  | 720 | cnt = 0; | 
|  | 721 | } | 
|  | 722 | } | 
|  | 723 | } |