| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Convert a 'struct tm' to a time_t value. | 
 | 2 |    Copyright (C) 1993-2016 Free Software Foundation, Inc. | 
 | 3 |    This file is part of the GNU C Library. | 
 | 4 |    Contributed by Paul Eggert <eggert@twinsun.com>. | 
 | 5 |  | 
 | 6 |    The GNU C Library is free software; you can redistribute it and/or | 
 | 7 |    modify it under the terms of the GNU Lesser General Public | 
 | 8 |    License as published by the Free Software Foundation; either | 
 | 9 |    version 2.1 of the License, or (at your option) any later version. | 
 | 10 |  | 
 | 11 |    The GNU C Library is distributed in the hope that it will be useful, | 
 | 12 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 13 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 | 14 |    Lesser General Public License for more details. | 
 | 15 |  | 
 | 16 |    You should have received a copy of the GNU Lesser General Public | 
 | 17 |    License along with the GNU C Library; if not, see | 
 | 18 |    <http://www.gnu.org/licenses/>.  */ | 
 | 19 |  | 
 | 20 | /* Define this to have a standalone program to test this implementation of | 
 | 21 |    mktime.  */ | 
 | 22 | /* #define DEBUG_MKTIME 1 */ | 
 | 23 |  | 
 | 24 | #ifndef _LIBC | 
 | 25 | # include <config.h> | 
 | 26 | #endif | 
 | 27 |  | 
 | 28 | /* Assume that leap seconds are possible, unless told otherwise. | 
 | 29 |    If the host has a 'zic' command with a '-L leapsecondfilename' option, | 
 | 30 |    then it supports leap seconds; otherwise it probably doesn't.  */ | 
 | 31 | #ifndef LEAP_SECONDS_POSSIBLE | 
 | 32 | # define LEAP_SECONDS_POSSIBLE 1 | 
 | 33 | #endif | 
 | 34 |  | 
 | 35 | #include <time.h> | 
 | 36 |  | 
 | 37 | #include <limits.h> | 
 | 38 |  | 
 | 39 | #include <string.h>		/* For the real memcpy prototype.  */ | 
 | 40 |  | 
 | 41 | #if defined DEBUG_MKTIME && DEBUG_MKTIME | 
 | 42 | # include <stdio.h> | 
 | 43 | # include <stdlib.h> | 
 | 44 | /* Make it work even if the system's libc has its own mktime routine.  */ | 
 | 45 | # undef mktime | 
 | 46 | # define mktime my_mktime | 
 | 47 | #endif /* DEBUG_MKTIME */ | 
 | 48 |  | 
 | 49 | /* Some of the code in this file assumes that signed integer overflow | 
 | 50 |    silently wraps around.  This assumption can't easily be programmed | 
 | 51 |    around, nor can it be checked for portably at compile-time or | 
 | 52 |    easily eliminated at run-time. | 
 | 53 |  | 
 | 54 |    Define WRAPV to 1 if the assumption is valid and if | 
 | 55 |      #pragma GCC optimize ("wrapv") | 
 | 56 |    does not trigger GCC bug 51793 | 
 | 57 |    <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=51793>. | 
 | 58 |    Otherwise, define it to 0; this forces the use of slower code that, | 
 | 59 |    while not guaranteed by the C Standard, works on all production | 
 | 60 |    platforms that we know about.  */ | 
 | 61 | #ifndef WRAPV | 
 | 62 | # if (((__GNUC__ == 4 && 4 <= __GNUC_MINOR__) || 4 < __GNUC__) \ | 
 | 63 |       && defined __GLIBC__) | 
 | 64 | #  pragma GCC optimize ("wrapv") | 
 | 65 | #  define WRAPV 1 | 
 | 66 | # else | 
 | 67 | #  define WRAPV 0 | 
 | 68 | # endif | 
 | 69 | #endif | 
 | 70 |  | 
 | 71 | /* Verify a requirement at compile-time (unlike assert, which is runtime).  */ | 
 | 72 | #define verify(name, assertion) struct name { char a[(assertion) ? 1 : -1]; } | 
 | 73 |  | 
 | 74 | /* A signed type that is at least one bit wider than int.  */ | 
 | 75 | #if INT_MAX <= LONG_MAX / 2 | 
 | 76 | typedef long int long_int; | 
 | 77 | #else | 
 | 78 | typedef long long int long_int; | 
 | 79 | #endif | 
 | 80 | verify (long_int_is_wide_enough, INT_MAX == INT_MAX * (long_int) 2 / 2); | 
 | 81 |  | 
 | 82 | /* Shift A right by B bits portably, by dividing A by 2**B and | 
 | 83 |    truncating towards minus infinity.  A and B should be free of side | 
 | 84 |    effects, and B should be in the range 0 <= B <= INT_BITS - 2, where | 
 | 85 |    INT_BITS is the number of useful bits in an int.  GNU code can | 
 | 86 |    assume that INT_BITS is at least 32. | 
 | 87 |  | 
 | 88 |    ISO C99 says that A >> B is implementation-defined if A < 0.  Some | 
 | 89 |    implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift | 
 | 90 |    right in the usual way when A < 0, so SHR falls back on division if | 
 | 91 |    ordinary A >> B doesn't seem to be the usual signed shift.  */ | 
 | 92 | #define SHR(a, b)                                               \ | 
 | 93 |   ((-1 >> 1 == -1                                               \ | 
 | 94 |     && (long_int) -1 >> 1 == -1                                 \ | 
 | 95 |     && ((time_t) -1 >> 1 == -1 || ! TYPE_SIGNED (time_t)))      \ | 
 | 96 |    ? (a) >> (b)                                                 \ | 
 | 97 |    : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0)) | 
 | 98 |  | 
 | 99 | /* The extra casts in the following macros work around compiler bugs, | 
 | 100 |    e.g., in Cray C 5.0.3.0.  */ | 
 | 101 |  | 
 | 102 | /* True if the arithmetic type T is an integer type.  bool counts as | 
 | 103 |    an integer.  */ | 
 | 104 | #define TYPE_IS_INTEGER(t) ((t) 1.5 == 1) | 
 | 105 |  | 
 | 106 | /* True if negative values of the signed integer type T use two's | 
 | 107 |    complement, or if T is an unsigned integer type.  */ | 
 | 108 | #define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1) | 
 | 109 |  | 
 | 110 | /* True if the arithmetic type T is signed.  */ | 
 | 111 | #define TYPE_SIGNED(t) (! ((t) 0 < (t) -1)) | 
 | 112 |  | 
 | 113 | /* The maximum and minimum values for the integer type T.  These | 
 | 114 |    macros have undefined behavior if T is signed and has padding bits. | 
 | 115 |    If this is a problem for you, please let us know how to fix it for | 
 | 116 |    your host.  */ | 
 | 117 | #define TYPE_MINIMUM(t) \ | 
 | 118 |   ((t) (! TYPE_SIGNED (t) \ | 
 | 119 | 	? (t) 0 \ | 
 | 120 | 	: ~ TYPE_MAXIMUM (t))) | 
 | 121 | #define TYPE_MAXIMUM(t) \ | 
 | 122 |   ((t) (! TYPE_SIGNED (t) \ | 
 | 123 | 	? (t) -1 \ | 
 | 124 | 	: ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1))) | 
 | 125 |  | 
 | 126 | #ifndef TIME_T_MIN | 
 | 127 | # define TIME_T_MIN TYPE_MINIMUM (time_t) | 
 | 128 | #endif | 
 | 129 | #ifndef TIME_T_MAX | 
 | 130 | # define TIME_T_MAX TYPE_MAXIMUM (time_t) | 
 | 131 | #endif | 
 | 132 | #define TIME_T_MIDPOINT (SHR (TIME_T_MIN + TIME_T_MAX, 1) + 1) | 
 | 133 |  | 
 | 134 | verify (time_t_is_integer, TYPE_IS_INTEGER (time_t)); | 
 | 135 | verify (twos_complement_arithmetic, | 
 | 136 | 	(TYPE_TWOS_COMPLEMENT (int) | 
 | 137 | 	 && TYPE_TWOS_COMPLEMENT (long_int) | 
 | 138 | 	 && TYPE_TWOS_COMPLEMENT (time_t))); | 
 | 139 |  | 
 | 140 | #define EPOCH_YEAR 1970 | 
 | 141 | #define TM_YEAR_BASE 1900 | 
 | 142 | verify (base_year_is_a_multiple_of_100, TM_YEAR_BASE % 100 == 0); | 
 | 143 |  | 
 | 144 | /* Return 1 if YEAR + TM_YEAR_BASE is a leap year.  */ | 
 | 145 | static int | 
 | 146 | leapyear (long_int year) | 
 | 147 | { | 
 | 148 |   /* Don't add YEAR to TM_YEAR_BASE, as that might overflow. | 
 | 149 |      Also, work even if YEAR is negative.  */ | 
 | 150 |   return | 
 | 151 |     ((year & 3) == 0 | 
 | 152 |      && (year % 100 != 0 | 
 | 153 | 	 || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3))); | 
 | 154 | } | 
 | 155 |  | 
 | 156 | /* How many days come before each month (0-12).  */ | 
 | 157 | #ifndef _LIBC | 
 | 158 | static | 
 | 159 | #endif | 
 | 160 | const unsigned short int __mon_yday[2][13] = | 
 | 161 |   { | 
 | 162 |     /* Normal years.  */ | 
 | 163 |     { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, | 
 | 164 |     /* Leap years.  */ | 
 | 165 |     { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } | 
 | 166 |   }; | 
 | 167 |  | 
 | 168 |  | 
 | 169 | #ifndef _LIBC | 
 | 170 | /* Portable standalone applications should supply a <time.h> that | 
 | 171 |    declares a POSIX-compliant localtime_r, for the benefit of older | 
 | 172 |    implementations that lack localtime_r or have a nonstandard one. | 
 | 173 |    See the gnulib time_r module for one way to implement this.  */ | 
 | 174 | # undef __localtime_r | 
 | 175 | # define __localtime_r localtime_r | 
 | 176 | # define __mktime_internal mktime_internal | 
 | 177 | # include "mktime-internal.h" | 
 | 178 | #endif | 
 | 179 |  | 
 | 180 | /* Return 1 if the values A and B differ according to the rules for | 
 | 181 |    tm_isdst: A and B differ if one is zero and the other positive.  */ | 
 | 182 | static int | 
 | 183 | isdst_differ (int a, int b) | 
 | 184 | { | 
 | 185 |   return (!a != !b) && (0 <= a) && (0 <= b); | 
 | 186 | } | 
 | 187 |  | 
 | 188 | /* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) - | 
 | 189 |    (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks | 
 | 190 |    were not adjusted between the time stamps. | 
 | 191 |  | 
 | 192 |    The YEAR values uses the same numbering as TP->tm_year.  Values | 
 | 193 |    need not be in the usual range.  However, YEAR1 must not be less | 
 | 194 |    than 2 * INT_MIN or greater than 2 * INT_MAX. | 
 | 195 |  | 
 | 196 |    The result may overflow.  It is the caller's responsibility to | 
 | 197 |    detect overflow.  */ | 
 | 198 |  | 
 | 199 | static time_t | 
 | 200 | ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1, | 
 | 201 | 	    int year0, int yday0, int hour0, int min0, int sec0) | 
 | 202 | { | 
 | 203 |   verify (C99_integer_division, -1 / 2 == 0); | 
 | 204 |  | 
 | 205 |   /* Compute intervening leap days correctly even if year is negative. | 
 | 206 |      Take care to avoid integer overflow here.  */ | 
 | 207 |   int a4 = SHR (year1, 2) + SHR (TM_YEAR_BASE, 2) - ! (year1 & 3); | 
 | 208 |   int b4 = SHR (year0, 2) + SHR (TM_YEAR_BASE, 2) - ! (year0 & 3); | 
 | 209 |   int a100 = a4 / 25 - (a4 % 25 < 0); | 
 | 210 |   int b100 = b4 / 25 - (b4 % 25 < 0); | 
 | 211 |   int a400 = SHR (a100, 2); | 
 | 212 |   int b400 = SHR (b100, 2); | 
 | 213 |   int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); | 
 | 214 |  | 
 | 215 |   /* Compute the desired time in time_t precision.  Overflow might | 
 | 216 |      occur here.  */ | 
 | 217 |   time_t tyear1 = year1; | 
 | 218 |   time_t years = tyear1 - year0; | 
 | 219 |   time_t days = 365 * years + yday1 - yday0 + intervening_leap_days; | 
 | 220 |   time_t hours = 24 * days + hour1 - hour0; | 
 | 221 |   time_t minutes = 60 * hours + min1 - min0; | 
 | 222 |   time_t seconds = 60 * minutes + sec1 - sec0; | 
 | 223 |   return seconds; | 
 | 224 | } | 
 | 225 |  | 
 | 226 | /* Return the average of A and B, even if A + B would overflow.  */ | 
 | 227 | static time_t | 
 | 228 | time_t_avg (time_t a, time_t b) | 
 | 229 | { | 
 | 230 |   return SHR (a, 1) + SHR (b, 1) + (a & b & 1); | 
 | 231 | } | 
 | 232 |  | 
 | 233 | /* Return 1 if A + B does not overflow.  If time_t is unsigned and if | 
 | 234 |    B's top bit is set, assume that the sum represents A - -B, and | 
 | 235 |    return 1 if the subtraction does not wrap around.  */ | 
 | 236 | static int | 
 | 237 | time_t_add_ok (time_t a, time_t b) | 
 | 238 | { | 
 | 239 |   if (! TYPE_SIGNED (time_t)) | 
 | 240 |     { | 
 | 241 |       time_t sum = a + b; | 
 | 242 |       return (sum < a) == (TIME_T_MIDPOINT <= b); | 
 | 243 |     } | 
 | 244 |   else if (WRAPV) | 
 | 245 |     { | 
 | 246 |       time_t sum = a + b; | 
 | 247 |       return (sum < a) == (b < 0); | 
 | 248 |     } | 
 | 249 |   else | 
 | 250 |     { | 
 | 251 |       time_t avg = time_t_avg (a, b); | 
 | 252 |       return TIME_T_MIN / 2 <= avg && avg <= TIME_T_MAX / 2; | 
 | 253 |     } | 
 | 254 | } | 
 | 255 |  | 
 | 256 | /* Return 1 if A + B does not overflow.  */ | 
 | 257 | static int | 
 | 258 | time_t_int_add_ok (time_t a, int b) | 
 | 259 | { | 
 | 260 |   verify (int_no_wider_than_time_t, INT_MAX <= TIME_T_MAX); | 
 | 261 |   if (WRAPV) | 
 | 262 |     { | 
 | 263 |       time_t sum = a + b; | 
 | 264 |       return (sum < a) == (b < 0); | 
 | 265 |     } | 
 | 266 |   else | 
 | 267 |     { | 
 | 268 |       int a_odd = a & 1; | 
 | 269 |       time_t avg = SHR (a, 1) + (SHR (b, 1) + (a_odd & b)); | 
 | 270 |       return TIME_T_MIN / 2 <= avg && avg <= TIME_T_MAX / 2; | 
 | 271 |     } | 
 | 272 | } | 
 | 273 |  | 
 | 274 | /* Return a time_t value corresponding to (YEAR-YDAY HOUR:MIN:SEC), | 
 | 275 |    assuming that *T corresponds to *TP and that no clock adjustments | 
 | 276 |    occurred between *TP and the desired time. | 
 | 277 |    If TP is null, return a value not equal to *T; this avoids false matches. | 
 | 278 |    If overflow occurs, yield the minimal or maximal value, except do not | 
 | 279 |    yield a value equal to *T.  */ | 
 | 280 | static time_t | 
 | 281 | guess_time_tm (long_int year, long_int yday, int hour, int min, int sec, | 
 | 282 | 	       const time_t *t, const struct tm *tp) | 
 | 283 | { | 
 | 284 |   if (tp) | 
 | 285 |     { | 
 | 286 |       time_t d = ydhms_diff (year, yday, hour, min, sec, | 
 | 287 | 			     tp->tm_year, tp->tm_yday, | 
 | 288 | 			     tp->tm_hour, tp->tm_min, tp->tm_sec); | 
 | 289 |       if (time_t_add_ok (*t, d)) | 
 | 290 | 	return *t + d; | 
 | 291 |     } | 
 | 292 |  | 
 | 293 |   /* Overflow occurred one way or another.  Return the nearest result | 
 | 294 |      that is actually in range, except don't report a zero difference | 
 | 295 |      if the actual difference is nonzero, as that would cause a false | 
 | 296 |      match; and don't oscillate between two values, as that would | 
 | 297 |      confuse the spring-forward gap detector.  */ | 
 | 298 |   return (*t < TIME_T_MIDPOINT | 
 | 299 | 	  ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN) | 
 | 300 | 	  : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX)); | 
 | 301 | } | 
 | 302 |  | 
 | 303 | /* Use CONVERT to convert *T to a broken down time in *TP. | 
 | 304 |    If *T is out of range for conversion, adjust it so that | 
 | 305 |    it is the nearest in-range value and then convert that.  */ | 
 | 306 | static struct tm * | 
 | 307 | ranged_convert (struct tm *(*convert) (const time_t *, struct tm *), | 
 | 308 | 		time_t *t, struct tm *tp) | 
 | 309 | { | 
 | 310 |   struct tm *r = convert (t, tp); | 
 | 311 |  | 
 | 312 |   if (!r && *t) | 
 | 313 |     { | 
 | 314 |       time_t bad = *t; | 
 | 315 |       time_t ok = 0; | 
 | 316 |  | 
 | 317 |       /* BAD is a known unconvertible time_t, and OK is a known good one. | 
 | 318 | 	 Use binary search to narrow the range between BAD and OK until | 
 | 319 | 	 they differ by 1.  */ | 
 | 320 |       while (bad != ok + (bad < 0 ? -1 : 1)) | 
 | 321 | 	{ | 
 | 322 | 	  time_t mid = *t = time_t_avg (ok, bad); | 
 | 323 | 	  r = convert (t, tp); | 
 | 324 | 	  if (r) | 
 | 325 | 	    ok = mid; | 
 | 326 | 	  else | 
 | 327 | 	    bad = mid; | 
 | 328 | 	} | 
 | 329 |  | 
 | 330 |       if (!r && ok) | 
 | 331 | 	{ | 
 | 332 | 	  /* The last conversion attempt failed; | 
 | 333 | 	     revert to the most recent successful attempt.  */ | 
 | 334 | 	  *t = ok; | 
 | 335 | 	  r = convert (t, tp); | 
 | 336 | 	} | 
 | 337 |     } | 
 | 338 |  | 
 | 339 |   return r; | 
 | 340 | } | 
 | 341 |  | 
 | 342 |  | 
 | 343 | /* Convert *TP to a time_t value, inverting | 
 | 344 |    the monotonic and mostly-unit-linear conversion function CONVERT. | 
 | 345 |    Use *OFFSET to keep track of a guess at the offset of the result, | 
 | 346 |    compared to what the result would be for UTC without leap seconds. | 
 | 347 |    If *OFFSET's guess is correct, only one CONVERT call is needed. | 
 | 348 |    This function is external because it is used also by timegm.c.  */ | 
 | 349 | time_t | 
 | 350 | __mktime_internal (struct tm *tp, | 
 | 351 | 		   struct tm *(*convert) (const time_t *, struct tm *), | 
 | 352 | 		   time_t *offset) | 
 | 353 | { | 
 | 354 |   time_t t, gt, t0, t1, t2; | 
 | 355 |   struct tm tm; | 
 | 356 |  | 
 | 357 |   /* The maximum number of probes (calls to CONVERT) should be enough | 
 | 358 |      to handle any combinations of time zone rule changes, solar time, | 
 | 359 |      leap seconds, and oscillations around a spring-forward gap. | 
 | 360 |      POSIX.1 prohibits leap seconds, but some hosts have them anyway.  */ | 
 | 361 |   int remaining_probes = 6; | 
 | 362 |  | 
 | 363 |   /* Time requested.  Copy it in case CONVERT modifies *TP; this can | 
 | 364 |      occur if TP is localtime's returned value and CONVERT is localtime.  */ | 
 | 365 |   int sec = tp->tm_sec; | 
 | 366 |   int min = tp->tm_min; | 
 | 367 |   int hour = tp->tm_hour; | 
 | 368 |   int mday = tp->tm_mday; | 
 | 369 |   int mon = tp->tm_mon; | 
 | 370 |   int year_requested = tp->tm_year; | 
 | 371 |   int isdst = tp->tm_isdst; | 
 | 372 |  | 
 | 373 |   /* 1 if the previous probe was DST.  */ | 
 | 374 |   int dst2; | 
 | 375 |  | 
 | 376 |   /* Ensure that mon is in range, and set year accordingly.  */ | 
 | 377 |   int mon_remainder = mon % 12; | 
 | 378 |   int negative_mon_remainder = mon_remainder < 0; | 
 | 379 |   int mon_years = mon / 12 - negative_mon_remainder; | 
 | 380 |   long_int lyear_requested = year_requested; | 
 | 381 |   long_int year = lyear_requested + mon_years; | 
 | 382 |  | 
 | 383 |   /* The other values need not be in range: | 
 | 384 |      the remaining code handles minor overflows correctly, | 
 | 385 |      assuming int and time_t arithmetic wraps around. | 
 | 386 |      Major overflows are caught at the end.  */ | 
 | 387 |  | 
 | 388 |   /* Calculate day of year from year, month, and day of month. | 
 | 389 |      The result need not be in range.  */ | 
 | 390 |   int mon_yday = ((__mon_yday[leapyear (year)] | 
 | 391 | 		   [mon_remainder + 12 * negative_mon_remainder]) | 
 | 392 | 		  - 1); | 
 | 393 |   long_int lmday = mday; | 
 | 394 |   long_int yday = mon_yday + lmday; | 
 | 395 |  | 
 | 396 |   time_t guessed_offset = *offset; | 
 | 397 |  | 
 | 398 |   int sec_requested = sec; | 
 | 399 |  | 
 | 400 |   if (LEAP_SECONDS_POSSIBLE) | 
 | 401 |     { | 
 | 402 |       /* Handle out-of-range seconds specially, | 
 | 403 | 	 since ydhms_tm_diff assumes every minute has 60 seconds.  */ | 
 | 404 |       if (sec < 0) | 
 | 405 | 	sec = 0; | 
 | 406 |       if (59 < sec) | 
 | 407 | 	sec = 59; | 
 | 408 |     } | 
 | 409 |  | 
 | 410 |   /* Invert CONVERT by probing.  First assume the same offset as last | 
 | 411 |      time.  */ | 
 | 412 |  | 
 | 413 |   t0 = ydhms_diff (year, yday, hour, min, sec, | 
 | 414 | 		   EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset); | 
 | 415 |  | 
 | 416 |   if (TIME_T_MAX / INT_MAX / 366 / 24 / 60 / 60 < 3) | 
 | 417 |     { | 
 | 418 |       /* time_t isn't large enough to rule out overflows, so check | 
 | 419 | 	 for major overflows.  A gross check suffices, since if t0 | 
 | 420 | 	 has overflowed, it is off by a multiple of TIME_T_MAX - | 
 | 421 | 	 TIME_T_MIN + 1.  So ignore any component of the difference | 
 | 422 | 	 that is bounded by a small value.  */ | 
 | 423 |  | 
 | 424 |       /* Approximate log base 2 of the number of time units per | 
 | 425 | 	 biennium.  A biennium is 2 years; use this unit instead of | 
 | 426 | 	 years to avoid integer overflow.  For example, 2 average | 
 | 427 | 	 Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds, | 
 | 428 | 	 which is 63113904 seconds, and rint (log2 (63113904)) is | 
 | 429 | 	 26.  */ | 
 | 430 |       int ALOG2_SECONDS_PER_BIENNIUM = 26; | 
 | 431 |       int ALOG2_MINUTES_PER_BIENNIUM = 20; | 
 | 432 |       int ALOG2_HOURS_PER_BIENNIUM = 14; | 
 | 433 |       int ALOG2_DAYS_PER_BIENNIUM = 10; | 
 | 434 |       int LOG2_YEARS_PER_BIENNIUM = 1; | 
 | 435 |  | 
 | 436 |       int approx_requested_biennia = | 
 | 437 | 	(SHR (year_requested, LOG2_YEARS_PER_BIENNIUM) | 
 | 438 | 	 - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM) | 
 | 439 | 	 + SHR (mday, ALOG2_DAYS_PER_BIENNIUM) | 
 | 440 | 	 + SHR (hour, ALOG2_HOURS_PER_BIENNIUM) | 
 | 441 | 	 + SHR (min, ALOG2_MINUTES_PER_BIENNIUM) | 
 | 442 | 	 + (LEAP_SECONDS_POSSIBLE | 
 | 443 | 	    ? 0 | 
 | 444 | 	    : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM))); | 
 | 445 |  | 
 | 446 |       int approx_biennia = SHR (t0, ALOG2_SECONDS_PER_BIENNIUM); | 
 | 447 |       int diff = approx_biennia - approx_requested_biennia; | 
 | 448 |       int approx_abs_diff = diff < 0 ? -1 - diff : diff; | 
 | 449 |  | 
 | 450 |       /* IRIX 4.0.5 cc miscalculates TIME_T_MIN / 3: it erroneously | 
 | 451 | 	 gives a positive value of 715827882.  Setting a variable | 
 | 452 | 	 first then doing math on it seems to work. | 
 | 453 | 	 (ghazi@caip.rutgers.edu) */ | 
 | 454 |       time_t time_t_max = TIME_T_MAX; | 
 | 455 |       time_t time_t_min = TIME_T_MIN; | 
 | 456 |       time_t overflow_threshold = | 
 | 457 | 	(time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM; | 
 | 458 |  | 
 | 459 |       if (overflow_threshold < approx_abs_diff) | 
 | 460 | 	{ | 
 | 461 | 	  /* Overflow occurred.  Try repairing it; this might work if | 
 | 462 | 	     the time zone offset is enough to undo the overflow.  */ | 
 | 463 | 	  time_t repaired_t0 = -1 - t0; | 
 | 464 | 	  approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM); | 
 | 465 | 	  diff = approx_biennia - approx_requested_biennia; | 
 | 466 | 	  approx_abs_diff = diff < 0 ? -1 - diff : diff; | 
 | 467 | 	  if (overflow_threshold < approx_abs_diff) | 
 | 468 | 	    return -1; | 
 | 469 | 	  guessed_offset += repaired_t0 - t0; | 
 | 470 | 	  t0 = repaired_t0; | 
 | 471 | 	} | 
 | 472 |     } | 
 | 473 |  | 
 | 474 |   /* Repeatedly use the error to improve the guess.  */ | 
 | 475 |  | 
 | 476 |   for (t = t1 = t2 = t0, dst2 = 0; | 
 | 477 |        (gt = guess_time_tm (year, yday, hour, min, sec, &t, | 
 | 478 | 			    ranged_convert (convert, &t, &tm)), | 
 | 479 | 	t != gt); | 
 | 480 |        t1 = t2, t2 = t, t = gt, dst2 = tm.tm_isdst != 0) | 
 | 481 |     if (t == t1 && t != t2 | 
 | 482 | 	&& (tm.tm_isdst < 0 | 
 | 483 | 	    || (isdst < 0 | 
 | 484 | 		? dst2 <= (tm.tm_isdst != 0) | 
 | 485 | 		: (isdst != 0) != (tm.tm_isdst != 0)))) | 
 | 486 |       /* We can't possibly find a match, as we are oscillating | 
 | 487 | 	 between two values.  The requested time probably falls | 
 | 488 | 	 within a spring-forward gap of size GT - T.  Follow the common | 
 | 489 | 	 practice in this case, which is to return a time that is GT - T | 
 | 490 | 	 away from the requested time, preferring a time whose | 
 | 491 | 	 tm_isdst differs from the requested value.  (If no tm_isdst | 
 | 492 | 	 was requested and only one of the two values has a nonzero | 
 | 493 | 	 tm_isdst, prefer that value.)  In practice, this is more | 
 | 494 | 	 useful than returning -1.  */ | 
 | 495 |       goto offset_found; | 
 | 496 |     else if (--remaining_probes == 0) | 
 | 497 |       return -1; | 
 | 498 |  | 
 | 499 |   /* We have a match.  Check whether tm.tm_isdst has the requested | 
 | 500 |      value, if any.  */ | 
 | 501 |   if (isdst_differ (isdst, tm.tm_isdst)) | 
 | 502 |     { | 
 | 503 |       /* tm.tm_isdst has the wrong value.  Look for a neighboring | 
 | 504 | 	 time with the right value, and use its UTC offset. | 
 | 505 |  | 
 | 506 | 	 Heuristic: probe the adjacent timestamps in both directions, | 
 | 507 | 	 looking for the desired isdst.  This should work for all real | 
 | 508 | 	 time zone histories in the tz database.  */ | 
 | 509 |  | 
 | 510 |       /* Distance between probes when looking for a DST boundary.  In | 
 | 511 | 	 tzdata2003a, the shortest period of DST is 601200 seconds | 
 | 512 | 	 (e.g., America/Recife starting 2000-10-08 01:00), and the | 
 | 513 | 	 shortest period of non-DST surrounded by DST is 694800 | 
 | 514 | 	 seconds (Africa/Tunis starting 1943-04-17 01:00).  Use the | 
 | 515 | 	 minimum of these two values, so we don't miss these short | 
 | 516 | 	 periods when probing.  */ | 
 | 517 |       int stride = 601200; | 
 | 518 |  | 
 | 519 |       /* The longest period of DST in tzdata2003a is 536454000 seconds | 
 | 520 | 	 (e.g., America/Jujuy starting 1946-10-01 01:00).  The longest | 
 | 521 | 	 period of non-DST is much longer, but it makes no real sense | 
 | 522 | 	 to search for more than a year of non-DST, so use the DST | 
 | 523 | 	 max.  */ | 
 | 524 |       int duration_max = 536454000; | 
 | 525 |  | 
 | 526 |       /* Search in both directions, so the maximum distance is half | 
 | 527 | 	 the duration; add the stride to avoid off-by-1 problems.  */ | 
 | 528 |       int delta_bound = duration_max / 2 + stride; | 
 | 529 |  | 
 | 530 |       int delta, direction; | 
 | 531 |  | 
 | 532 |       for (delta = stride; delta < delta_bound; delta += stride) | 
 | 533 | 	for (direction = -1; direction <= 1; direction += 2) | 
 | 534 | 	  if (time_t_int_add_ok (t, delta * direction)) | 
 | 535 | 	    { | 
 | 536 | 	      time_t ot = t + delta * direction; | 
 | 537 | 	      struct tm otm; | 
 | 538 | 	      ranged_convert (convert, &ot, &otm); | 
 | 539 | 	      if (! isdst_differ (isdst, otm.tm_isdst)) | 
 | 540 | 		{ | 
 | 541 | 		  /* We found the desired tm_isdst. | 
 | 542 | 		     Extrapolate back to the desired time.  */ | 
 | 543 | 		  t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm); | 
 | 544 | 		  ranged_convert (convert, &t, &tm); | 
 | 545 | 		  goto offset_found; | 
 | 546 | 		} | 
 | 547 | 	    } | 
 | 548 |     } | 
 | 549 |  | 
 | 550 |  offset_found: | 
 | 551 |   *offset = guessed_offset + t - t0; | 
 | 552 |  | 
 | 553 |   if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec) | 
 | 554 |     { | 
 | 555 |       /* Adjust time to reflect the tm_sec requested, not the normalized value. | 
 | 556 | 	 Also, repair any damage from a false match due to a leap second.  */ | 
 | 557 |       int sec_adjustment = (sec == 0 && tm.tm_sec == 60) - sec; | 
 | 558 |       if (! time_t_int_add_ok (t, sec_requested)) | 
 | 559 | 	return -1; | 
 | 560 |       t1 = t + sec_requested; | 
 | 561 |       if (! time_t_int_add_ok (t1, sec_adjustment)) | 
 | 562 | 	return -1; | 
 | 563 |       t2 = t1 + sec_adjustment; | 
 | 564 |       if (! convert (&t2, &tm)) | 
 | 565 | 	return -1; | 
 | 566 |       t = t2; | 
 | 567 |     } | 
 | 568 |  | 
 | 569 |   *tp = tm; | 
 | 570 |   return t; | 
 | 571 | } | 
 | 572 |  | 
 | 573 |  | 
 | 574 | /* FIXME: This should use a signed type wide enough to hold any UTC | 
 | 575 |    offset in seconds.  'int' should be good enough for GNU code.  We | 
 | 576 |    can't fix this unilaterally though, as other modules invoke | 
 | 577 |    __mktime_internal.  */ | 
 | 578 | static time_t localtime_offset; | 
 | 579 |  | 
 | 580 | /* Convert *TP to a time_t value.  */ | 
 | 581 | time_t | 
 | 582 | mktime (struct tm *tp) | 
 | 583 | { | 
 | 584 | #ifdef _LIBC | 
 | 585 |   /* POSIX.1 8.1.1 requires that whenever mktime() is called, the | 
 | 586 |      time zone names contained in the external variable 'tzname' shall | 
 | 587 |      be set as if the tzset() function had been called.  */ | 
 | 588 |   __tzset (); | 
 | 589 | #endif | 
 | 590 |  | 
 | 591 |   return __mktime_internal (tp, __localtime_r, &localtime_offset); | 
 | 592 | } | 
 | 593 |  | 
 | 594 | #ifdef weak_alias | 
 | 595 | weak_alias (mktime, timelocal) | 
 | 596 | #endif | 
 | 597 |  | 
 | 598 | #ifdef _LIBC | 
 | 599 | libc_hidden_def (mktime) | 
 | 600 | libc_hidden_weak (timelocal) | 
 | 601 | #endif | 
 | 602 |  | 
 | 603 | #if defined DEBUG_MKTIME && DEBUG_MKTIME | 
 | 604 |  | 
 | 605 | static int | 
 | 606 | not_equal_tm (const struct tm *a, const struct tm *b) | 
 | 607 | { | 
 | 608 |   return ((a->tm_sec ^ b->tm_sec) | 
 | 609 | 	  | (a->tm_min ^ b->tm_min) | 
 | 610 | 	  | (a->tm_hour ^ b->tm_hour) | 
 | 611 | 	  | (a->tm_mday ^ b->tm_mday) | 
 | 612 | 	  | (a->tm_mon ^ b->tm_mon) | 
 | 613 | 	  | (a->tm_year ^ b->tm_year) | 
 | 614 | 	  | (a->tm_yday ^ b->tm_yday) | 
 | 615 | 	  | isdst_differ (a->tm_isdst, b->tm_isdst)); | 
 | 616 | } | 
 | 617 |  | 
 | 618 | static void | 
 | 619 | print_tm (const struct tm *tp) | 
 | 620 | { | 
 | 621 |   if (tp) | 
 | 622 |     printf ("%04d-%02d-%02d %02d:%02d:%02d yday %03d wday %d isdst %d", | 
 | 623 | 	    tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday, | 
 | 624 | 	    tp->tm_hour, tp->tm_min, tp->tm_sec, | 
 | 625 | 	    tp->tm_yday, tp->tm_wday, tp->tm_isdst); | 
 | 626 |   else | 
 | 627 |     printf ("0"); | 
 | 628 | } | 
 | 629 |  | 
 | 630 | static int | 
 | 631 | check_result (time_t tk, struct tm tmk, time_t tl, const struct tm *lt) | 
 | 632 | { | 
 | 633 |   if (tk != tl || !lt || not_equal_tm (&tmk, lt)) | 
 | 634 |     { | 
 | 635 |       printf ("mktime ("); | 
 | 636 |       print_tm (lt); | 
 | 637 |       printf (")\nyields ("); | 
 | 638 |       print_tm (&tmk); | 
 | 639 |       printf (") == %ld, should be %ld\n", (long int) tk, (long int) tl); | 
 | 640 |       return 1; | 
 | 641 |     } | 
 | 642 |  | 
 | 643 |   return 0; | 
 | 644 | } | 
 | 645 |  | 
 | 646 | int | 
 | 647 | main (int argc, char **argv) | 
 | 648 | { | 
 | 649 |   int status = 0; | 
 | 650 |   struct tm tm, tmk, tml; | 
 | 651 |   struct tm *lt; | 
 | 652 |   time_t tk, tl, tl1; | 
 | 653 |   char trailer; | 
 | 654 |  | 
 | 655 |   if ((argc == 3 || argc == 4) | 
 | 656 |       && (sscanf (argv[1], "%d-%d-%d%c", | 
 | 657 | 		  &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer) | 
 | 658 | 	  == 3) | 
 | 659 |       && (sscanf (argv[2], "%d:%d:%d%c", | 
 | 660 | 		  &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer) | 
 | 661 | 	  == 3)) | 
 | 662 |     { | 
 | 663 |       tm.tm_year -= TM_YEAR_BASE; | 
 | 664 |       tm.tm_mon--; | 
 | 665 |       tm.tm_isdst = argc == 3 ? -1 : atoi (argv[3]); | 
 | 666 |       tmk = tm; | 
 | 667 |       tl = mktime (&tmk); | 
 | 668 |       lt = localtime (&tl); | 
 | 669 |       if (lt) | 
 | 670 | 	{ | 
 | 671 | 	  tml = *lt; | 
 | 672 | 	  lt = &tml; | 
 | 673 | 	} | 
 | 674 |       printf ("mktime returns %ld == ", (long int) tl); | 
 | 675 |       print_tm (&tmk); | 
 | 676 |       printf ("\n"); | 
 | 677 |       status = check_result (tl, tmk, tl, lt); | 
 | 678 |     } | 
 | 679 |   else if (argc == 4 || (argc == 5 && strcmp (argv[4], "-") == 0)) | 
 | 680 |     { | 
 | 681 |       time_t from = atol (argv[1]); | 
 | 682 |       time_t by = atol (argv[2]); | 
 | 683 |       time_t to = atol (argv[3]); | 
 | 684 |  | 
 | 685 |       if (argc == 4) | 
 | 686 | 	for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1) | 
 | 687 | 	  { | 
 | 688 | 	    lt = localtime (&tl); | 
 | 689 | 	    if (lt) | 
 | 690 | 	      { | 
 | 691 | 		tmk = tml = *lt; | 
 | 692 | 		tk = mktime (&tmk); | 
 | 693 | 		status |= check_result (tk, tmk, tl, &tml); | 
 | 694 | 	      } | 
 | 695 | 	    else | 
 | 696 | 	      { | 
 | 697 | 		printf ("localtime (%ld) yields 0\n", (long int) tl); | 
 | 698 | 		status = 1; | 
 | 699 | 	      } | 
 | 700 | 	    tl1 = tl + by; | 
 | 701 | 	    if ((tl1 < tl) != (by < 0)) | 
 | 702 | 	      break; | 
 | 703 | 	  } | 
 | 704 |       else | 
 | 705 | 	for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1) | 
 | 706 | 	  { | 
 | 707 | 	    /* Null benchmark.  */ | 
 | 708 | 	    lt = localtime (&tl); | 
 | 709 | 	    if (lt) | 
 | 710 | 	      { | 
 | 711 | 		tmk = tml = *lt; | 
 | 712 | 		tk = tl; | 
 | 713 | 		status |= check_result (tk, tmk, tl, &tml); | 
 | 714 | 	      } | 
 | 715 | 	    else | 
 | 716 | 	      { | 
 | 717 | 		printf ("localtime (%ld) yields 0\n", (long int) tl); | 
 | 718 | 		status = 1; | 
 | 719 | 	      } | 
 | 720 | 	    tl1 = tl + by; | 
 | 721 | 	    if ((tl1 < tl) != (by < 0)) | 
 | 722 | 	      break; | 
 | 723 | 	  } | 
 | 724 |     } | 
 | 725 |   else | 
 | 726 |     printf ("Usage:\ | 
 | 727 | \t%s YYYY-MM-DD HH:MM:SS [ISDST] # Test given time.\n\ | 
 | 728 | \t%s FROM BY TO # Test values FROM, FROM+BY, ..., TO.\n\ | 
 | 729 | \t%s FROM BY TO - # Do not test those values (for benchmark).\n", | 
 | 730 | 	    argv[0], argv[0], argv[0]); | 
 | 731 |  | 
 | 732 |   return status; | 
 | 733 | } | 
 | 734 |  | 
 | 735 | #endif /* DEBUG_MKTIME */ | 
 | 736 |  | 
 | 737 | /* | 
 | 738 | Local Variables: | 
 | 739 | compile-command: "gcc -DDEBUG_MKTIME -I. -Wall -W -O2 -g mktime.c -o mktime" | 
 | 740 | End: | 
 | 741 | */ |