| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/fs/ext4/inode.c | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 1992, 1993, 1994, 1995 | 
 | 5 |  * Remy Card (card@masi.ibp.fr) | 
 | 6 |  * Laboratoire MASI - Institut Blaise Pascal | 
 | 7 |  * Universite Pierre et Marie Curie (Paris VI) | 
 | 8 |  * | 
 | 9 |  *  from | 
 | 10 |  * | 
 | 11 |  *  linux/fs/minix/inode.c | 
 | 12 |  * | 
 | 13 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 | 14 |  * | 
 | 15 |  *  64-bit file support on 64-bit platforms by Jakub Jelinek | 
 | 16 |  *	(jj@sunsite.ms.mff.cuni.cz) | 
 | 17 |  * | 
 | 18 |  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 | 
 | 19 |  */ | 
 | 20 |  | 
 | 21 | #include <linux/fs.h> | 
 | 22 | #include <linux/time.h> | 
 | 23 | #include <linux/jbd2.h> | 
 | 24 | #include <linux/highuid.h> | 
 | 25 | #include <linux/pagemap.h> | 
 | 26 | #include <linux/quotaops.h> | 
 | 27 | #include <linux/string.h> | 
 | 28 | #include <linux/buffer_head.h> | 
 | 29 | #include <linux/writeback.h> | 
 | 30 | #include <linux/pagevec.h> | 
 | 31 | #include <linux/mpage.h> | 
 | 32 | #include <linux/namei.h> | 
 | 33 | #include <linux/uio.h> | 
 | 34 | #include <linux/bio.h> | 
 | 35 | #include <linux/workqueue.h> | 
 | 36 | #include <linux/kernel.h> | 
 | 37 | #include <linux/printk.h> | 
 | 38 | #include <linux/slab.h> | 
 | 39 | #include <linux/ratelimit.h> | 
 | 40 | #include <linux/bitops.h> | 
 | 41 |  | 
 | 42 | #include "ext4_jbd2.h" | 
 | 43 | #include "xattr.h" | 
 | 44 | #include "acl.h" | 
 | 45 | #include "truncate.h" | 
 | 46 |  | 
 | 47 | #include <trace/events/ext4.h> | 
 | 48 |  | 
 | 49 | #define MPAGE_DA_EXTENT_TAIL 0x01 | 
 | 50 |  | 
 | 51 | static inline int ext4_begin_ordered_truncate(struct inode *inode, | 
 | 52 | 					      loff_t new_size) | 
 | 53 | { | 
 | 54 | 	trace_ext4_begin_ordered_truncate(inode, new_size); | 
 | 55 | 	/* | 
 | 56 | 	 * If jinode is zero, then we never opened the file for | 
 | 57 | 	 * writing, so there's no need to call | 
 | 58 | 	 * jbd2_journal_begin_ordered_truncate() since there's no | 
 | 59 | 	 * outstanding writes we need to flush. | 
 | 60 | 	 */ | 
 | 61 | 	if (!EXT4_I(inode)->jinode) | 
 | 62 | 		return 0; | 
 | 63 | 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), | 
 | 64 | 						   EXT4_I(inode)->jinode, | 
 | 65 | 						   new_size); | 
 | 66 | } | 
 | 67 |  | 
 | 68 | static void ext4_invalidatepage(struct page *page, unsigned long offset); | 
 | 69 | static int noalloc_get_block_write(struct inode *inode, sector_t iblock, | 
 | 70 | 				   struct buffer_head *bh_result, int create); | 
 | 71 | static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); | 
 | 72 | static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); | 
 | 73 | static int __ext4_journalled_writepage(struct page *page, unsigned int len); | 
 | 74 | static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); | 
 | 75 | static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, | 
 | 76 | 		struct inode *inode, struct page *page, loff_t from, | 
 | 77 | 		loff_t length, int flags); | 
 | 78 |  | 
 | 79 | /* | 
 | 80 |  * Test whether an inode is a fast symlink. | 
 | 81 |  */ | 
 | 82 | static int ext4_inode_is_fast_symlink(struct inode *inode) | 
 | 83 | { | 
 | 84 | 	int ea_blocks = EXT4_I(inode)->i_file_acl ? | 
 | 85 | 		(inode->i_sb->s_blocksize >> 9) : 0; | 
 | 86 |  | 
 | 87 | 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); | 
 | 88 | } | 
 | 89 |  | 
 | 90 | /* | 
 | 91 |  * Restart the transaction associated with *handle.  This does a commit, | 
 | 92 |  * so before we call here everything must be consistently dirtied against | 
 | 93 |  * this transaction. | 
 | 94 |  */ | 
 | 95 | int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, | 
 | 96 | 				 int nblocks) | 
 | 97 | { | 
 | 98 | 	int ret; | 
 | 99 |  | 
 | 100 | 	/* | 
 | 101 | 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this | 
 | 102 | 	 * moment, get_block can be called only for blocks inside i_size since | 
 | 103 | 	 * page cache has been already dropped and writes are blocked by | 
 | 104 | 	 * i_mutex. So we can safely drop the i_data_sem here. | 
 | 105 | 	 */ | 
 | 106 | 	BUG_ON(EXT4_JOURNAL(inode) == NULL); | 
 | 107 | 	jbd_debug(2, "restarting handle %p\n", handle); | 
 | 108 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 | 109 | 	ret = ext4_journal_restart(handle, nblocks); | 
 | 110 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 | 111 | 	ext4_discard_preallocations(inode); | 
 | 112 |  | 
 | 113 | 	return ret; | 
 | 114 | } | 
 | 115 |  | 
 | 116 | /* | 
 | 117 |  * Called at the last iput() if i_nlink is zero. | 
 | 118 |  */ | 
 | 119 | void ext4_evict_inode(struct inode *inode) | 
 | 120 | { | 
 | 121 | 	handle_t *handle; | 
 | 122 | 	int err; | 
 | 123 |  | 
 | 124 | 	trace_ext4_evict_inode(inode); | 
 | 125 |  | 
 | 126 | 	ext4_ioend_wait(inode); | 
 | 127 |  | 
 | 128 | 	if (inode->i_nlink) { | 
 | 129 | 		/* | 
 | 130 | 		 * When journalling data dirty buffers are tracked only in the | 
 | 131 | 		 * journal. So although mm thinks everything is clean and | 
 | 132 | 		 * ready for reaping the inode might still have some pages to | 
 | 133 | 		 * write in the running transaction or waiting to be | 
 | 134 | 		 * checkpointed. Thus calling jbd2_journal_invalidatepage() | 
 | 135 | 		 * (via truncate_inode_pages()) to discard these buffers can | 
 | 136 | 		 * cause data loss. Also even if we did not discard these | 
 | 137 | 		 * buffers, we would have no way to find them after the inode | 
 | 138 | 		 * is reaped and thus user could see stale data if he tries to | 
 | 139 | 		 * read them before the transaction is checkpointed. So be | 
 | 140 | 		 * careful and force everything to disk here... We use | 
 | 141 | 		 * ei->i_datasync_tid to store the newest transaction | 
 | 142 | 		 * containing inode's data. | 
 | 143 | 		 * | 
 | 144 | 		 * Note that directories do not have this problem because they | 
 | 145 | 		 * don't use page cache. | 
 | 146 | 		 */ | 
 | 147 | 		if (ext4_should_journal_data(inode) && | 
 | 148 | 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && | 
 | 149 | 		    inode->i_ino != EXT4_JOURNAL_INO) { | 
 | 150 | 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; | 
 | 151 | 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; | 
 | 152 |  | 
 | 153 | 			jbd2_complete_transaction(journal, commit_tid); | 
 | 154 | 			filemap_write_and_wait(&inode->i_data); | 
 | 155 | 		} | 
 | 156 | 		truncate_inode_pages(&inode->i_data, 0); | 
 | 157 | 		goto no_delete; | 
 | 158 | 	} | 
 | 159 |  | 
 | 160 | 	if (is_bad_inode(inode)) | 
 | 161 | 		goto no_delete; | 
 | 162 | 	dquot_initialize(inode); | 
 | 163 |  | 
 | 164 | 	if (ext4_should_order_data(inode)) | 
 | 165 | 		ext4_begin_ordered_truncate(inode, 0); | 
 | 166 | 	truncate_inode_pages(&inode->i_data, 0); | 
 | 167 |  | 
 | 168 | 	handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3); | 
 | 169 | 	if (IS_ERR(handle)) { | 
 | 170 | 		ext4_std_error(inode->i_sb, PTR_ERR(handle)); | 
 | 171 | 		/* | 
 | 172 | 		 * If we're going to skip the normal cleanup, we still need to | 
 | 173 | 		 * make sure that the in-core orphan linked list is properly | 
 | 174 | 		 * cleaned up. | 
 | 175 | 		 */ | 
 | 176 | 		ext4_orphan_del(NULL, inode); | 
 | 177 | 		goto no_delete; | 
 | 178 | 	} | 
 | 179 |  | 
 | 180 | 	if (IS_SYNC(inode)) | 
 | 181 | 		ext4_handle_sync(handle); | 
 | 182 | 	inode->i_size = 0; | 
 | 183 | 	err = ext4_mark_inode_dirty(handle, inode); | 
 | 184 | 	if (err) { | 
 | 185 | 		ext4_warning(inode->i_sb, | 
 | 186 | 			     "couldn't mark inode dirty (err %d)", err); | 
 | 187 | 		goto stop_handle; | 
 | 188 | 	} | 
 | 189 | 	if (inode->i_blocks) | 
 | 190 | 		ext4_truncate(inode); | 
 | 191 |  | 
 | 192 | 	/* | 
 | 193 | 	 * ext4_ext_truncate() doesn't reserve any slop when it | 
 | 194 | 	 * restarts journal transactions; therefore there may not be | 
 | 195 | 	 * enough credits left in the handle to remove the inode from | 
 | 196 | 	 * the orphan list and set the dtime field. | 
 | 197 | 	 */ | 
 | 198 | 	if (!ext4_handle_has_enough_credits(handle, 3)) { | 
 | 199 | 		err = ext4_journal_extend(handle, 3); | 
 | 200 | 		if (err > 0) | 
 | 201 | 			err = ext4_journal_restart(handle, 3); | 
 | 202 | 		if (err != 0) { | 
 | 203 | 			ext4_warning(inode->i_sb, | 
 | 204 | 				     "couldn't extend journal (err %d)", err); | 
 | 205 | 		stop_handle: | 
 | 206 | 			ext4_journal_stop(handle); | 
 | 207 | 			ext4_orphan_del(NULL, inode); | 
 | 208 | 			goto no_delete; | 
 | 209 | 		} | 
 | 210 | 	} | 
 | 211 |  | 
 | 212 | 	/* | 
 | 213 | 	 * Kill off the orphan record which ext4_truncate created. | 
 | 214 | 	 * AKPM: I think this can be inside the above `if'. | 
 | 215 | 	 * Note that ext4_orphan_del() has to be able to cope with the | 
 | 216 | 	 * deletion of a non-existent orphan - this is because we don't | 
 | 217 | 	 * know if ext4_truncate() actually created an orphan record. | 
 | 218 | 	 * (Well, we could do this if we need to, but heck - it works) | 
 | 219 | 	 */ | 
 | 220 | 	ext4_orphan_del(handle, inode); | 
 | 221 | 	EXT4_I(inode)->i_dtime	= get_seconds(); | 
 | 222 |  | 
 | 223 | 	/* | 
 | 224 | 	 * One subtle ordering requirement: if anything has gone wrong | 
 | 225 | 	 * (transaction abort, IO errors, whatever), then we can still | 
 | 226 | 	 * do these next steps (the fs will already have been marked as | 
 | 227 | 	 * having errors), but we can't free the inode if the mark_dirty | 
 | 228 | 	 * fails. | 
 | 229 | 	 */ | 
 | 230 | 	if (ext4_mark_inode_dirty(handle, inode)) | 
 | 231 | 		/* If that failed, just do the required in-core inode clear. */ | 
 | 232 | 		ext4_clear_inode(inode); | 
 | 233 | 	else | 
 | 234 | 		ext4_free_inode(handle, inode); | 
 | 235 | 	ext4_journal_stop(handle); | 
 | 236 | 	return; | 
 | 237 | no_delete: | 
 | 238 | 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */ | 
 | 239 | } | 
 | 240 |  | 
 | 241 | #ifdef CONFIG_QUOTA | 
 | 242 | qsize_t *ext4_get_reserved_space(struct inode *inode) | 
 | 243 | { | 
 | 244 | 	return &EXT4_I(inode)->i_reserved_quota; | 
 | 245 | } | 
 | 246 | #endif | 
 | 247 |  | 
 | 248 | /* | 
 | 249 |  * Calculate the number of metadata blocks need to reserve | 
 | 250 |  * to allocate a block located at @lblock | 
 | 251 |  */ | 
 | 252 | static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) | 
 | 253 | { | 
 | 254 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 255 | 		return ext4_ext_calc_metadata_amount(inode, lblock); | 
 | 256 |  | 
 | 257 | 	return ext4_ind_calc_metadata_amount(inode, lblock); | 
 | 258 | } | 
 | 259 |  | 
 | 260 | /* | 
 | 261 |  * Called with i_data_sem down, which is important since we can call | 
 | 262 |  * ext4_discard_preallocations() from here. | 
 | 263 |  */ | 
 | 264 | void ext4_da_update_reserve_space(struct inode *inode, | 
 | 265 | 					int used, int quota_claim) | 
 | 266 | { | 
 | 267 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 268 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 269 |  | 
 | 270 | 	spin_lock(&ei->i_block_reservation_lock); | 
 | 271 | 	trace_ext4_da_update_reserve_space(inode, used, quota_claim); | 
 | 272 | 	if (unlikely(used > ei->i_reserved_data_blocks)) { | 
 | 273 | 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d " | 
 | 274 | 			 "with only %d reserved data blocks", | 
 | 275 | 			 __func__, inode->i_ino, used, | 
 | 276 | 			 ei->i_reserved_data_blocks); | 
 | 277 | 		WARN_ON(1); | 
 | 278 | 		used = ei->i_reserved_data_blocks; | 
 | 279 | 	} | 
 | 280 |  | 
 | 281 | 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { | 
 | 282 | 		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d " | 
 | 283 | 			 "with only %d reserved metadata blocks\n", __func__, | 
 | 284 | 			 inode->i_ino, ei->i_allocated_meta_blocks, | 
 | 285 | 			 ei->i_reserved_meta_blocks); | 
 | 286 | 		WARN_ON(1); | 
 | 287 | 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; | 
 | 288 | 	} | 
 | 289 |  | 
 | 290 | 	/* Update per-inode reservations */ | 
 | 291 | 	ei->i_reserved_data_blocks -= used; | 
 | 292 | 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; | 
 | 293 | 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, | 
 | 294 | 			   used + ei->i_allocated_meta_blocks); | 
 | 295 | 	ei->i_allocated_meta_blocks = 0; | 
 | 296 |  | 
 | 297 | 	if (ei->i_reserved_data_blocks == 0) { | 
 | 298 | 		/* | 
 | 299 | 		 * We can release all of the reserved metadata blocks | 
 | 300 | 		 * only when we have written all of the delayed | 
 | 301 | 		 * allocation blocks. | 
 | 302 | 		 */ | 
 | 303 | 		percpu_counter_sub(&sbi->s_dirtyclusters_counter, | 
 | 304 | 				   ei->i_reserved_meta_blocks); | 
 | 305 | 		ei->i_reserved_meta_blocks = 0; | 
 | 306 | 		ei->i_da_metadata_calc_len = 0; | 
 | 307 | 	} | 
 | 308 | 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
 | 309 |  | 
 | 310 | 	/* Update quota subsystem for data blocks */ | 
 | 311 | 	if (quota_claim) | 
 | 312 | 		dquot_claim_block(inode, EXT4_C2B(sbi, used)); | 
 | 313 | 	else { | 
 | 314 | 		/* | 
 | 315 | 		 * We did fallocate with an offset that is already delayed | 
 | 316 | 		 * allocated. So on delayed allocated writeback we should | 
 | 317 | 		 * not re-claim the quota for fallocated blocks. | 
 | 318 | 		 */ | 
 | 319 | 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); | 
 | 320 | 	} | 
 | 321 |  | 
 | 322 | 	/* | 
 | 323 | 	 * If we have done all the pending block allocations and if | 
 | 324 | 	 * there aren't any writers on the inode, we can discard the | 
 | 325 | 	 * inode's preallocations. | 
 | 326 | 	 */ | 
 | 327 | 	if ((ei->i_reserved_data_blocks == 0) && | 
 | 328 | 	    (atomic_read(&inode->i_writecount) == 0)) | 
 | 329 | 		ext4_discard_preallocations(inode); | 
 | 330 | } | 
 | 331 |  | 
 | 332 | static int __check_block_validity(struct inode *inode, const char *func, | 
 | 333 | 				unsigned int line, | 
 | 334 | 				struct ext4_map_blocks *map) | 
 | 335 | { | 
 | 336 | 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, | 
 | 337 | 				   map->m_len)) { | 
 | 338 | 		ext4_error_inode(inode, func, line, map->m_pblk, | 
 | 339 | 				 "lblock %lu mapped to illegal pblock " | 
 | 340 | 				 "(length %d)", (unsigned long) map->m_lblk, | 
 | 341 | 				 map->m_len); | 
 | 342 | 		return -EIO; | 
 | 343 | 	} | 
 | 344 | 	return 0; | 
 | 345 | } | 
 | 346 |  | 
 | 347 | #define check_block_validity(inode, map)	\ | 
 | 348 | 	__check_block_validity((inode), __func__, __LINE__, (map)) | 
 | 349 |  | 
 | 350 | /* | 
 | 351 |  * Return the number of contiguous dirty pages in a given inode | 
 | 352 |  * starting at page frame idx. | 
 | 353 |  */ | 
 | 354 | static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, | 
 | 355 | 				    unsigned int max_pages) | 
 | 356 | { | 
 | 357 | 	struct address_space *mapping = inode->i_mapping; | 
 | 358 | 	pgoff_t	index; | 
 | 359 | 	struct pagevec pvec; | 
 | 360 | 	pgoff_t num = 0; | 
 | 361 | 	int i, nr_pages, done = 0; | 
 | 362 |  | 
 | 363 | 	if (max_pages == 0) | 
 | 364 | 		return 0; | 
 | 365 | 	pagevec_init(&pvec, 0); | 
 | 366 | 	while (!done) { | 
 | 367 | 		index = idx; | 
 | 368 | 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
 | 369 | 					      PAGECACHE_TAG_DIRTY, | 
 | 370 | 					      (pgoff_t)PAGEVEC_SIZE); | 
 | 371 | 		if (nr_pages == 0) | 
 | 372 | 			break; | 
 | 373 | 		for (i = 0; i < nr_pages; i++) { | 
 | 374 | 			struct page *page = pvec.pages[i]; | 
 | 375 | 			struct buffer_head *bh, *head; | 
 | 376 |  | 
 | 377 | 			lock_page(page); | 
 | 378 | 			if (unlikely(page->mapping != mapping) || | 
 | 379 | 			    !PageDirty(page) || | 
 | 380 | 			    PageWriteback(page) || | 
 | 381 | 			    page->index != idx) { | 
 | 382 | 				done = 1; | 
 | 383 | 				unlock_page(page); | 
 | 384 | 				break; | 
 | 385 | 			} | 
 | 386 | 			if (page_has_buffers(page)) { | 
 | 387 | 				bh = head = page_buffers(page); | 
 | 388 | 				do { | 
 | 389 | 					if (!buffer_delay(bh) && | 
 | 390 | 					    !buffer_unwritten(bh)) | 
 | 391 | 						done = 1; | 
 | 392 | 					bh = bh->b_this_page; | 
 | 393 | 				} while (!done && (bh != head)); | 
 | 394 | 			} | 
 | 395 | 			unlock_page(page); | 
 | 396 | 			if (done) | 
 | 397 | 				break; | 
 | 398 | 			idx++; | 
 | 399 | 			num++; | 
 | 400 | 			if (num >= max_pages) { | 
 | 401 | 				done = 1; | 
 | 402 | 				break; | 
 | 403 | 			} | 
 | 404 | 		} | 
 | 405 | 		pagevec_release(&pvec); | 
 | 406 | 	} | 
 | 407 | 	return num; | 
 | 408 | } | 
 | 409 |  | 
 | 410 | /* | 
 | 411 |  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map. | 
 | 412 |  */ | 
 | 413 | static void set_buffers_da_mapped(struct inode *inode, | 
 | 414 | 				   struct ext4_map_blocks *map) | 
 | 415 | { | 
 | 416 | 	struct address_space *mapping = inode->i_mapping; | 
 | 417 | 	struct pagevec pvec; | 
 | 418 | 	int i, nr_pages; | 
 | 419 | 	pgoff_t index, end; | 
 | 420 |  | 
 | 421 | 	index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
 | 422 | 	end = (map->m_lblk + map->m_len - 1) >> | 
 | 423 | 		(PAGE_CACHE_SHIFT - inode->i_blkbits); | 
 | 424 |  | 
 | 425 | 	pagevec_init(&pvec, 0); | 
 | 426 | 	while (index <= end) { | 
 | 427 | 		nr_pages = pagevec_lookup(&pvec, mapping, index, | 
 | 428 | 					  min(end - index + 1, | 
 | 429 | 					      (pgoff_t)PAGEVEC_SIZE)); | 
 | 430 | 		if (nr_pages == 0) | 
 | 431 | 			break; | 
 | 432 | 		for (i = 0; i < nr_pages; i++) { | 
 | 433 | 			struct page *page = pvec.pages[i]; | 
 | 434 | 			struct buffer_head *bh, *head; | 
 | 435 |  | 
 | 436 | 			if (unlikely(page->mapping != mapping) || | 
 | 437 | 			    !PageDirty(page)) | 
 | 438 | 				break; | 
 | 439 |  | 
 | 440 | 			if (page_has_buffers(page)) { | 
 | 441 | 				bh = head = page_buffers(page); | 
 | 442 | 				do { | 
 | 443 | 					set_buffer_da_mapped(bh); | 
 | 444 | 					bh = bh->b_this_page; | 
 | 445 | 				} while (bh != head); | 
 | 446 | 			} | 
 | 447 | 			index++; | 
 | 448 | 		} | 
 | 449 | 		pagevec_release(&pvec); | 
 | 450 | 	} | 
 | 451 | } | 
 | 452 |  | 
 | 453 | /* | 
 | 454 |  * The ext4_map_blocks() function tries to look up the requested blocks, | 
 | 455 |  * and returns if the blocks are already mapped. | 
 | 456 |  * | 
 | 457 |  * Otherwise it takes the write lock of the i_data_sem and allocate blocks | 
 | 458 |  * and store the allocated blocks in the result buffer head and mark it | 
 | 459 |  * mapped. | 
 | 460 |  * | 
 | 461 |  * If file type is extents based, it will call ext4_ext_map_blocks(), | 
 | 462 |  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping | 
 | 463 |  * based files | 
 | 464 |  * | 
 | 465 |  * On success, it returns the number of blocks being mapped or allocate. | 
 | 466 |  * if create==0 and the blocks are pre-allocated and uninitialized block, | 
 | 467 |  * the result buffer head is unmapped. If the create ==1, it will make sure | 
 | 468 |  * the buffer head is mapped. | 
 | 469 |  * | 
 | 470 |  * It returns 0 if plain look up failed (blocks have not been allocated), in | 
 | 471 |  * that case, buffer head is unmapped | 
 | 472 |  * | 
 | 473 |  * It returns the error in case of allocation failure. | 
 | 474 |  */ | 
 | 475 | int ext4_map_blocks(handle_t *handle, struct inode *inode, | 
 | 476 | 		    struct ext4_map_blocks *map, int flags) | 
 | 477 | { | 
 | 478 | 	int retval; | 
 | 479 |  | 
 | 480 | 	map->m_flags = 0; | 
 | 481 | 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," | 
 | 482 | 		  "logical block %lu\n", inode->i_ino, flags, map->m_len, | 
 | 483 | 		  (unsigned long) map->m_lblk); | 
 | 484 | 	/* | 
 | 485 | 	 * Try to see if we can get the block without requesting a new | 
 | 486 | 	 * file system block. | 
 | 487 | 	 */ | 
 | 488 | 	down_read((&EXT4_I(inode)->i_data_sem)); | 
 | 489 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
 | 490 | 		retval = ext4_ext_map_blocks(handle, inode, map, flags & | 
 | 491 | 					     EXT4_GET_BLOCKS_KEEP_SIZE); | 
 | 492 | 	} else { | 
 | 493 | 		retval = ext4_ind_map_blocks(handle, inode, map, flags & | 
 | 494 | 					     EXT4_GET_BLOCKS_KEEP_SIZE); | 
 | 495 | 	} | 
 | 496 | 	up_read((&EXT4_I(inode)->i_data_sem)); | 
 | 497 |  | 
 | 498 | 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { | 
 | 499 | 		int ret = check_block_validity(inode, map); | 
 | 500 | 		if (ret != 0) | 
 | 501 | 			return ret; | 
 | 502 | 	} | 
 | 503 |  | 
 | 504 | 	/* If it is only a block(s) look up */ | 
 | 505 | 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) | 
 | 506 | 		return retval; | 
 | 507 |  | 
 | 508 | 	/* | 
 | 509 | 	 * Returns if the blocks have already allocated | 
 | 510 | 	 * | 
 | 511 | 	 * Note that if blocks have been preallocated | 
 | 512 | 	 * ext4_ext_get_block() returns the create = 0 | 
 | 513 | 	 * with buffer head unmapped. | 
 | 514 | 	 */ | 
 | 515 | 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) | 
 | 516 | 		return retval; | 
 | 517 |  | 
 | 518 | 	/* | 
 | 519 | 	 * When we call get_blocks without the create flag, the | 
 | 520 | 	 * BH_Unwritten flag could have gotten set if the blocks | 
 | 521 | 	 * requested were part of a uninitialized extent.  We need to | 
 | 522 | 	 * clear this flag now that we are committed to convert all or | 
 | 523 | 	 * part of the uninitialized extent to be an initialized | 
 | 524 | 	 * extent.  This is because we need to avoid the combination | 
 | 525 | 	 * of BH_Unwritten and BH_Mapped flags being simultaneously | 
 | 526 | 	 * set on the buffer_head. | 
 | 527 | 	 */ | 
 | 528 | 	map->m_flags &= ~EXT4_MAP_UNWRITTEN; | 
 | 529 |  | 
 | 530 | 	/* | 
 | 531 | 	 * New blocks allocate and/or writing to uninitialized extent | 
 | 532 | 	 * will possibly result in updating i_data, so we take | 
 | 533 | 	 * the write lock of i_data_sem, and call get_blocks() | 
 | 534 | 	 * with create == 1 flag. | 
 | 535 | 	 */ | 
 | 536 | 	down_write((&EXT4_I(inode)->i_data_sem)); | 
 | 537 |  | 
 | 538 | 	/* | 
 | 539 | 	 * if the caller is from delayed allocation writeout path | 
 | 540 | 	 * we have already reserved fs blocks for allocation | 
 | 541 | 	 * let the underlying get_block() function know to | 
 | 542 | 	 * avoid double accounting | 
 | 543 | 	 */ | 
 | 544 | 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) | 
 | 545 | 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); | 
 | 546 | 	/* | 
 | 547 | 	 * We need to check for EXT4 here because migrate | 
 | 548 | 	 * could have changed the inode type in between | 
 | 549 | 	 */ | 
 | 550 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
 | 551 | 		retval = ext4_ext_map_blocks(handle, inode, map, flags); | 
 | 552 | 	} else { | 
 | 553 | 		retval = ext4_ind_map_blocks(handle, inode, map, flags); | 
 | 554 |  | 
 | 555 | 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { | 
 | 556 | 			/* | 
 | 557 | 			 * We allocated new blocks which will result in | 
 | 558 | 			 * i_data's format changing.  Force the migrate | 
 | 559 | 			 * to fail by clearing migrate flags | 
 | 560 | 			 */ | 
 | 561 | 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); | 
 | 562 | 		} | 
 | 563 |  | 
 | 564 | 		/* | 
 | 565 | 		 * Update reserved blocks/metadata blocks after successful | 
 | 566 | 		 * block allocation which had been deferred till now. We don't | 
 | 567 | 		 * support fallocate for non extent files. So we can update | 
 | 568 | 		 * reserve space here. | 
 | 569 | 		 */ | 
 | 570 | 		if ((retval > 0) && | 
 | 571 | 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) | 
 | 572 | 			ext4_da_update_reserve_space(inode, retval, 1); | 
 | 573 | 	} | 
 | 574 | 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) { | 
 | 575 | 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); | 
 | 576 |  | 
 | 577 | 		/* If we have successfully mapped the delayed allocated blocks, | 
 | 578 | 		 * set the BH_Da_Mapped bit on them. Its important to do this | 
 | 579 | 		 * under the protection of i_data_sem. | 
 | 580 | 		 */ | 
 | 581 | 		if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) | 
 | 582 | 			set_buffers_da_mapped(inode, map); | 
 | 583 | 	} | 
 | 584 |  | 
 | 585 | 	up_write((&EXT4_I(inode)->i_data_sem)); | 
 | 586 | 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { | 
 | 587 | 		int ret = check_block_validity(inode, map); | 
 | 588 | 		if (ret != 0) | 
 | 589 | 			return ret; | 
 | 590 | 	} | 
 | 591 | 	return retval; | 
 | 592 | } | 
 | 593 |  | 
 | 594 | /* Maximum number of blocks we map for direct IO at once. */ | 
 | 595 | #define DIO_MAX_BLOCKS 4096 | 
 | 596 |  | 
 | 597 | static int _ext4_get_block(struct inode *inode, sector_t iblock, | 
 | 598 | 			   struct buffer_head *bh, int flags) | 
 | 599 | { | 
 | 600 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 601 | 	struct ext4_map_blocks map; | 
 | 602 | 	int ret = 0, started = 0; | 
 | 603 | 	int dio_credits; | 
 | 604 |  | 
 | 605 | 	map.m_lblk = iblock; | 
 | 606 | 	map.m_len = bh->b_size >> inode->i_blkbits; | 
 | 607 |  | 
 | 608 | 	if (flags && !handle) { | 
 | 609 | 		/* Direct IO write... */ | 
 | 610 | 		if (map.m_len > DIO_MAX_BLOCKS) | 
 | 611 | 			map.m_len = DIO_MAX_BLOCKS; | 
 | 612 | 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); | 
 | 613 | 		handle = ext4_journal_start(inode, dio_credits); | 
 | 614 | 		if (IS_ERR(handle)) { | 
 | 615 | 			ret = PTR_ERR(handle); | 
 | 616 | 			return ret; | 
 | 617 | 		} | 
 | 618 | 		started = 1; | 
 | 619 | 	} | 
 | 620 |  | 
 | 621 | 	ret = ext4_map_blocks(handle, inode, &map, flags); | 
 | 622 | 	if (ret > 0) { | 
 | 623 | 		map_bh(bh, inode->i_sb, map.m_pblk); | 
 | 624 | 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; | 
 | 625 | 		bh->b_size = inode->i_sb->s_blocksize * map.m_len; | 
 | 626 | 		ret = 0; | 
 | 627 | 	} | 
 | 628 | 	if (started) | 
 | 629 | 		ext4_journal_stop(handle); | 
 | 630 | 	return ret; | 
 | 631 | } | 
 | 632 |  | 
 | 633 | int ext4_get_block(struct inode *inode, sector_t iblock, | 
 | 634 | 		   struct buffer_head *bh, int create) | 
 | 635 | { | 
 | 636 | 	return _ext4_get_block(inode, iblock, bh, | 
 | 637 | 			       create ? EXT4_GET_BLOCKS_CREATE : 0); | 
 | 638 | } | 
 | 639 |  | 
 | 640 | /* | 
 | 641 |  * `handle' can be NULL if create is zero | 
 | 642 |  */ | 
 | 643 | struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, | 
 | 644 | 				ext4_lblk_t block, int create, int *errp) | 
 | 645 | { | 
 | 646 | 	struct ext4_map_blocks map; | 
 | 647 | 	struct buffer_head *bh; | 
 | 648 | 	int fatal = 0, err; | 
 | 649 |  | 
 | 650 | 	J_ASSERT(handle != NULL || create == 0); | 
 | 651 |  | 
 | 652 | 	map.m_lblk = block; | 
 | 653 | 	map.m_len = 1; | 
 | 654 | 	err = ext4_map_blocks(handle, inode, &map, | 
 | 655 | 			      create ? EXT4_GET_BLOCKS_CREATE : 0); | 
 | 656 |  | 
 | 657 | 	if (err < 0) | 
 | 658 | 		*errp = err; | 
 | 659 | 	if (err <= 0) | 
 | 660 | 		return NULL; | 
 | 661 | 	*errp = 0; | 
 | 662 |  | 
 | 663 | 	bh = sb_getblk(inode->i_sb, map.m_pblk); | 
 | 664 | 	if (!bh) { | 
 | 665 | 		*errp = -ENOMEM; | 
 | 666 | 		return NULL; | 
 | 667 | 	} | 
 | 668 | 	if (map.m_flags & EXT4_MAP_NEW) { | 
 | 669 | 		J_ASSERT(create != 0); | 
 | 670 | 		J_ASSERT(handle != NULL); | 
 | 671 |  | 
 | 672 | 		/* | 
 | 673 | 		 * Now that we do not always journal data, we should | 
 | 674 | 		 * keep in mind whether this should always journal the | 
 | 675 | 		 * new buffer as metadata.  For now, regular file | 
 | 676 | 		 * writes use ext4_get_block instead, so it's not a | 
 | 677 | 		 * problem. | 
 | 678 | 		 */ | 
 | 679 | 		lock_buffer(bh); | 
 | 680 | 		BUFFER_TRACE(bh, "call get_create_access"); | 
 | 681 | 		fatal = ext4_journal_get_create_access(handle, bh); | 
 | 682 | 		if (!fatal && !buffer_uptodate(bh)) { | 
 | 683 | 			memset(bh->b_data, 0, inode->i_sb->s_blocksize); | 
 | 684 | 			set_buffer_uptodate(bh); | 
 | 685 | 		} | 
 | 686 | 		unlock_buffer(bh); | 
 | 687 | 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
 | 688 | 		err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 689 | 		if (!fatal) | 
 | 690 | 			fatal = err; | 
 | 691 | 	} else { | 
 | 692 | 		BUFFER_TRACE(bh, "not a new buffer"); | 
 | 693 | 	} | 
 | 694 | 	if (fatal) { | 
 | 695 | 		*errp = fatal; | 
 | 696 | 		brelse(bh); | 
 | 697 | 		bh = NULL; | 
 | 698 | 	} | 
 | 699 | 	return bh; | 
 | 700 | } | 
 | 701 |  | 
 | 702 | struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, | 
 | 703 | 			       ext4_lblk_t block, int create, int *err) | 
 | 704 | { | 
 | 705 | 	struct buffer_head *bh; | 
 | 706 |  | 
 | 707 | 	bh = ext4_getblk(handle, inode, block, create, err); | 
 | 708 | 	if (!bh) | 
 | 709 | 		return bh; | 
 | 710 | 	if (buffer_uptodate(bh)) | 
 | 711 | 		return bh; | 
 | 712 | 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); | 
 | 713 | 	wait_on_buffer(bh); | 
 | 714 | 	if (buffer_uptodate(bh)) | 
 | 715 | 		return bh; | 
 | 716 | 	put_bh(bh); | 
 | 717 | 	*err = -EIO; | 
 | 718 | 	return NULL; | 
 | 719 | } | 
 | 720 |  | 
 | 721 | static int walk_page_buffers(handle_t *handle, | 
 | 722 | 			     struct buffer_head *head, | 
 | 723 | 			     unsigned from, | 
 | 724 | 			     unsigned to, | 
 | 725 | 			     int *partial, | 
 | 726 | 			     int (*fn)(handle_t *handle, | 
 | 727 | 				       struct buffer_head *bh)) | 
 | 728 | { | 
 | 729 | 	struct buffer_head *bh; | 
 | 730 | 	unsigned block_start, block_end; | 
 | 731 | 	unsigned blocksize = head->b_size; | 
 | 732 | 	int err, ret = 0; | 
 | 733 | 	struct buffer_head *next; | 
 | 734 |  | 
 | 735 | 	for (bh = head, block_start = 0; | 
 | 736 | 	     ret == 0 && (bh != head || !block_start); | 
 | 737 | 	     block_start = block_end, bh = next) { | 
 | 738 | 		next = bh->b_this_page; | 
 | 739 | 		block_end = block_start + blocksize; | 
 | 740 | 		if (block_end <= from || block_start >= to) { | 
 | 741 | 			if (partial && !buffer_uptodate(bh)) | 
 | 742 | 				*partial = 1; | 
 | 743 | 			continue; | 
 | 744 | 		} | 
 | 745 | 		err = (*fn)(handle, bh); | 
 | 746 | 		if (!ret) | 
 | 747 | 			ret = err; | 
 | 748 | 	} | 
 | 749 | 	return ret; | 
 | 750 | } | 
 | 751 |  | 
 | 752 | /* | 
 | 753 |  * To preserve ordering, it is essential that the hole instantiation and | 
 | 754 |  * the data write be encapsulated in a single transaction.  We cannot | 
 | 755 |  * close off a transaction and start a new one between the ext4_get_block() | 
 | 756 |  * and the commit_write().  So doing the jbd2_journal_start at the start of | 
 | 757 |  * prepare_write() is the right place. | 
 | 758 |  * | 
 | 759 |  * Also, this function can nest inside ext4_writepage() -> | 
 | 760 |  * block_write_full_page(). In that case, we *know* that ext4_writepage() | 
 | 761 |  * has generated enough buffer credits to do the whole page.  So we won't | 
 | 762 |  * block on the journal in that case, which is good, because the caller may | 
 | 763 |  * be PF_MEMALLOC. | 
 | 764 |  * | 
 | 765 |  * By accident, ext4 can be reentered when a transaction is open via | 
 | 766 |  * quota file writes.  If we were to commit the transaction while thus | 
 | 767 |  * reentered, there can be a deadlock - we would be holding a quota | 
 | 768 |  * lock, and the commit would never complete if another thread had a | 
 | 769 |  * transaction open and was blocking on the quota lock - a ranking | 
 | 770 |  * violation. | 
 | 771 |  * | 
 | 772 |  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start | 
 | 773 |  * will _not_ run commit under these circumstances because handle->h_ref | 
 | 774 |  * is elevated.  We'll still have enough credits for the tiny quotafile | 
 | 775 |  * write. | 
 | 776 |  */ | 
 | 777 | static int do_journal_get_write_access(handle_t *handle, | 
 | 778 | 				       struct buffer_head *bh) | 
 | 779 | { | 
 | 780 | 	int dirty = buffer_dirty(bh); | 
 | 781 | 	int ret; | 
 | 782 |  | 
 | 783 | 	if (!buffer_mapped(bh) || buffer_freed(bh)) | 
 | 784 | 		return 0; | 
 | 785 | 	/* | 
 | 786 | 	 * __block_write_begin() could have dirtied some buffers. Clean | 
 | 787 | 	 * the dirty bit as jbd2_journal_get_write_access() could complain | 
 | 788 | 	 * otherwise about fs integrity issues. Setting of the dirty bit | 
 | 789 | 	 * by __block_write_begin() isn't a real problem here as we clear | 
 | 790 | 	 * the bit before releasing a page lock and thus writeback cannot | 
 | 791 | 	 * ever write the buffer. | 
 | 792 | 	 */ | 
 | 793 | 	if (dirty) | 
 | 794 | 		clear_buffer_dirty(bh); | 
 | 795 | 	ret = ext4_journal_get_write_access(handle, bh); | 
 | 796 | 	if (!ret && dirty) | 
 | 797 | 		ret = ext4_handle_dirty_metadata(handle, NULL, bh); | 
 | 798 | 	return ret; | 
 | 799 | } | 
 | 800 |  | 
 | 801 | static int ext4_get_block_write(struct inode *inode, sector_t iblock, | 
 | 802 | 		   struct buffer_head *bh_result, int create); | 
 | 803 | static int ext4_write_begin(struct file *file, struct address_space *mapping, | 
 | 804 | 			    loff_t pos, unsigned len, unsigned flags, | 
 | 805 | 			    struct page **pagep, void **fsdata) | 
 | 806 | { | 
 | 807 | 	struct inode *inode = mapping->host; | 
 | 808 | 	int ret, needed_blocks; | 
 | 809 | 	handle_t *handle; | 
 | 810 | 	int retries = 0; | 
 | 811 | 	struct page *page; | 
 | 812 | 	pgoff_t index; | 
 | 813 | 	unsigned from, to; | 
 | 814 |  | 
 | 815 | 	trace_ext4_write_begin(inode, pos, len, flags); | 
 | 816 | 	/* | 
 | 817 | 	 * Reserve one block more for addition to orphan list in case | 
 | 818 | 	 * we allocate blocks but write fails for some reason | 
 | 819 | 	 */ | 
 | 820 | 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1; | 
 | 821 | 	index = pos >> PAGE_CACHE_SHIFT; | 
 | 822 | 	from = pos & (PAGE_CACHE_SIZE - 1); | 
 | 823 | 	to = from + len; | 
 | 824 |  | 
 | 825 | retry: | 
 | 826 | 	handle = ext4_journal_start(inode, needed_blocks); | 
 | 827 | 	if (IS_ERR(handle)) { | 
 | 828 | 		ret = PTR_ERR(handle); | 
 | 829 | 		goto out; | 
 | 830 | 	} | 
 | 831 |  | 
 | 832 | 	/* We cannot recurse into the filesystem as the transaction is already | 
 | 833 | 	 * started */ | 
 | 834 | 	flags |= AOP_FLAG_NOFS; | 
 | 835 |  | 
 | 836 | 	page = grab_cache_page_write_begin(mapping, index, flags); | 
 | 837 | 	if (!page) { | 
 | 838 | 		ext4_journal_stop(handle); | 
 | 839 | 		ret = -ENOMEM; | 
 | 840 | 		goto out; | 
 | 841 | 	} | 
 | 842 | 	*pagep = page; | 
 | 843 |  | 
 | 844 | 	if (ext4_should_dioread_nolock(inode)) | 
 | 845 | 		ret = __block_write_begin(page, pos, len, ext4_get_block_write); | 
 | 846 | 	else | 
 | 847 | 		ret = __block_write_begin(page, pos, len, ext4_get_block); | 
 | 848 |  | 
 | 849 | 	if (!ret && ext4_should_journal_data(inode)) { | 
 | 850 | 		ret = walk_page_buffers(handle, page_buffers(page), | 
 | 851 | 				from, to, NULL, do_journal_get_write_access); | 
 | 852 | 	} | 
 | 853 |  | 
 | 854 | 	if (ret) { | 
 | 855 | 		unlock_page(page); | 
 | 856 | 		page_cache_release(page); | 
 | 857 | 		/* | 
 | 858 | 		 * __block_write_begin may have instantiated a few blocks | 
 | 859 | 		 * outside i_size.  Trim these off again. Don't need | 
 | 860 | 		 * i_size_read because we hold i_mutex. | 
 | 861 | 		 * | 
 | 862 | 		 * Add inode to orphan list in case we crash before | 
 | 863 | 		 * truncate finishes | 
 | 864 | 		 */ | 
 | 865 | 		if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
 | 866 | 			ext4_orphan_add(handle, inode); | 
 | 867 |  | 
 | 868 | 		ext4_journal_stop(handle); | 
 | 869 | 		if (pos + len > inode->i_size) { | 
 | 870 | 			ext4_truncate_failed_write(inode); | 
 | 871 | 			/* | 
 | 872 | 			 * If truncate failed early the inode might | 
 | 873 | 			 * still be on the orphan list; we need to | 
 | 874 | 			 * make sure the inode is removed from the | 
 | 875 | 			 * orphan list in that case. | 
 | 876 | 			 */ | 
 | 877 | 			if (inode->i_nlink) | 
 | 878 | 				ext4_orphan_del(NULL, inode); | 
 | 879 | 		} | 
 | 880 | 	} | 
 | 881 |  | 
 | 882 | 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
 | 883 | 		goto retry; | 
 | 884 | out: | 
 | 885 | 	return ret; | 
 | 886 | } | 
 | 887 |  | 
 | 888 | /* For write_end() in data=journal mode */ | 
 | 889 | static int write_end_fn(handle_t *handle, struct buffer_head *bh) | 
 | 890 | { | 
 | 891 | 	if (!buffer_mapped(bh) || buffer_freed(bh)) | 
 | 892 | 		return 0; | 
 | 893 | 	set_buffer_uptodate(bh); | 
 | 894 | 	return ext4_handle_dirty_metadata(handle, NULL, bh); | 
 | 895 | } | 
 | 896 |  | 
 | 897 | static int ext4_generic_write_end(struct file *file, | 
 | 898 | 				  struct address_space *mapping, | 
 | 899 | 				  loff_t pos, unsigned len, unsigned copied, | 
 | 900 | 				  struct page *page, void *fsdata) | 
 | 901 | { | 
 | 902 | 	int i_size_changed = 0; | 
 | 903 | 	struct inode *inode = mapping->host; | 
 | 904 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 905 |  | 
 | 906 | 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); | 
 | 907 |  | 
 | 908 | 	/* | 
 | 909 | 	 * No need to use i_size_read() here, the i_size | 
 | 910 | 	 * cannot change under us because we hold i_mutex. | 
 | 911 | 	 * | 
 | 912 | 	 * But it's important to update i_size while still holding page lock: | 
 | 913 | 	 * page writeout could otherwise come in and zero beyond i_size. | 
 | 914 | 	 */ | 
 | 915 | 	if (pos + copied > inode->i_size) { | 
 | 916 | 		i_size_write(inode, pos + copied); | 
 | 917 | 		i_size_changed = 1; | 
 | 918 | 	} | 
 | 919 |  | 
 | 920 | 	if (pos + copied >  EXT4_I(inode)->i_disksize) { | 
 | 921 | 		/* We need to mark inode dirty even if | 
 | 922 | 		 * new_i_size is less that inode->i_size | 
 | 923 | 		 * bu greater than i_disksize.(hint delalloc) | 
 | 924 | 		 */ | 
 | 925 | 		ext4_update_i_disksize(inode, (pos + copied)); | 
 | 926 | 		i_size_changed = 1; | 
 | 927 | 	} | 
 | 928 | 	unlock_page(page); | 
 | 929 | 	page_cache_release(page); | 
 | 930 |  | 
 | 931 | 	/* | 
 | 932 | 	 * Don't mark the inode dirty under page lock. First, it unnecessarily | 
 | 933 | 	 * makes the holding time of page lock longer. Second, it forces lock | 
 | 934 | 	 * ordering of page lock and transaction start for journaling | 
 | 935 | 	 * filesystems. | 
 | 936 | 	 */ | 
 | 937 | 	if (i_size_changed) | 
 | 938 | 		ext4_mark_inode_dirty(handle, inode); | 
 | 939 |  | 
 | 940 | 	return copied; | 
 | 941 | } | 
 | 942 |  | 
 | 943 | /* | 
 | 944 |  * We need to pick up the new inode size which generic_commit_write gave us | 
 | 945 |  * `file' can be NULL - eg, when called from page_symlink(). | 
 | 946 |  * | 
 | 947 |  * ext4 never places buffers on inode->i_mapping->private_list.  metadata | 
 | 948 |  * buffers are managed internally. | 
 | 949 |  */ | 
 | 950 | static int ext4_ordered_write_end(struct file *file, | 
 | 951 | 				  struct address_space *mapping, | 
 | 952 | 				  loff_t pos, unsigned len, unsigned copied, | 
 | 953 | 				  struct page *page, void *fsdata) | 
 | 954 | { | 
 | 955 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 956 | 	struct inode *inode = mapping->host; | 
 | 957 | 	int ret = 0, ret2; | 
 | 958 |  | 
 | 959 | 	trace_ext4_ordered_write_end(inode, pos, len, copied); | 
 | 960 | 	ret = ext4_jbd2_file_inode(handle, inode); | 
 | 961 |  | 
 | 962 | 	if (ret == 0) { | 
 | 963 | 		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, | 
 | 964 | 							page, fsdata); | 
 | 965 | 		copied = ret2; | 
 | 966 | 		if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
 | 967 | 			/* if we have allocated more blocks and copied | 
 | 968 | 			 * less. We will have blocks allocated outside | 
 | 969 | 			 * inode->i_size. So truncate them | 
 | 970 | 			 */ | 
 | 971 | 			ext4_orphan_add(handle, inode); | 
 | 972 | 		if (ret2 < 0) | 
 | 973 | 			ret = ret2; | 
 | 974 | 	} else { | 
 | 975 | 		unlock_page(page); | 
 | 976 | 		page_cache_release(page); | 
 | 977 | 	} | 
 | 978 |  | 
 | 979 | 	ret2 = ext4_journal_stop(handle); | 
 | 980 | 	if (!ret) | 
 | 981 | 		ret = ret2; | 
 | 982 |  | 
 | 983 | 	if (pos + len > inode->i_size) { | 
 | 984 | 		ext4_truncate_failed_write(inode); | 
 | 985 | 		/* | 
 | 986 | 		 * If truncate failed early the inode might still be | 
 | 987 | 		 * on the orphan list; we need to make sure the inode | 
 | 988 | 		 * is removed from the orphan list in that case. | 
 | 989 | 		 */ | 
 | 990 | 		if (inode->i_nlink) | 
 | 991 | 			ext4_orphan_del(NULL, inode); | 
 | 992 | 	} | 
 | 993 |  | 
 | 994 |  | 
 | 995 | 	return ret ? ret : copied; | 
 | 996 | } | 
 | 997 |  | 
 | 998 | static int ext4_writeback_write_end(struct file *file, | 
 | 999 | 				    struct address_space *mapping, | 
 | 1000 | 				    loff_t pos, unsigned len, unsigned copied, | 
 | 1001 | 				    struct page *page, void *fsdata) | 
 | 1002 | { | 
 | 1003 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 1004 | 	struct inode *inode = mapping->host; | 
 | 1005 | 	int ret = 0, ret2; | 
 | 1006 |  | 
 | 1007 | 	trace_ext4_writeback_write_end(inode, pos, len, copied); | 
 | 1008 | 	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied, | 
 | 1009 | 							page, fsdata); | 
 | 1010 | 	copied = ret2; | 
 | 1011 | 	if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
 | 1012 | 		/* if we have allocated more blocks and copied | 
 | 1013 | 		 * less. We will have blocks allocated outside | 
 | 1014 | 		 * inode->i_size. So truncate them | 
 | 1015 | 		 */ | 
 | 1016 | 		ext4_orphan_add(handle, inode); | 
 | 1017 |  | 
 | 1018 | 	if (ret2 < 0) | 
 | 1019 | 		ret = ret2; | 
 | 1020 |  | 
 | 1021 | 	ret2 = ext4_journal_stop(handle); | 
 | 1022 | 	if (!ret) | 
 | 1023 | 		ret = ret2; | 
 | 1024 |  | 
 | 1025 | 	if (pos + len > inode->i_size) { | 
 | 1026 | 		ext4_truncate_failed_write(inode); | 
 | 1027 | 		/* | 
 | 1028 | 		 * If truncate failed early the inode might still be | 
 | 1029 | 		 * on the orphan list; we need to make sure the inode | 
 | 1030 | 		 * is removed from the orphan list in that case. | 
 | 1031 | 		 */ | 
 | 1032 | 		if (inode->i_nlink) | 
 | 1033 | 			ext4_orphan_del(NULL, inode); | 
 | 1034 | 	} | 
 | 1035 |  | 
 | 1036 | 	return ret ? ret : copied; | 
 | 1037 | } | 
 | 1038 |  | 
 | 1039 | static int ext4_journalled_write_end(struct file *file, | 
 | 1040 | 				     struct address_space *mapping, | 
 | 1041 | 				     loff_t pos, unsigned len, unsigned copied, | 
 | 1042 | 				     struct page *page, void *fsdata) | 
 | 1043 | { | 
 | 1044 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 1045 | 	struct inode *inode = mapping->host; | 
 | 1046 | 	int ret = 0, ret2; | 
 | 1047 | 	int partial = 0; | 
 | 1048 | 	unsigned from, to; | 
 | 1049 | 	loff_t new_i_size; | 
 | 1050 |  | 
 | 1051 | 	trace_ext4_journalled_write_end(inode, pos, len, copied); | 
 | 1052 | 	from = pos & (PAGE_CACHE_SIZE - 1); | 
 | 1053 | 	to = from + len; | 
 | 1054 |  | 
 | 1055 | 	BUG_ON(!ext4_handle_valid(handle)); | 
 | 1056 |  | 
 | 1057 | 	if (copied < len) { | 
 | 1058 | 		if (!PageUptodate(page)) | 
 | 1059 | 			copied = 0; | 
 | 1060 | 		page_zero_new_buffers(page, from+copied, to); | 
 | 1061 | 	} | 
 | 1062 |  | 
 | 1063 | 	ret = walk_page_buffers(handle, page_buffers(page), from, | 
 | 1064 | 				to, &partial, write_end_fn); | 
 | 1065 | 	if (!partial) | 
 | 1066 | 		SetPageUptodate(page); | 
 | 1067 | 	new_i_size = pos + copied; | 
 | 1068 | 	if (new_i_size > inode->i_size) | 
 | 1069 | 		i_size_write(inode, pos+copied); | 
 | 1070 | 	ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
 | 1071 | 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; | 
 | 1072 | 	if (new_i_size > EXT4_I(inode)->i_disksize) { | 
 | 1073 | 		ext4_update_i_disksize(inode, new_i_size); | 
 | 1074 | 		ret2 = ext4_mark_inode_dirty(handle, inode); | 
 | 1075 | 		if (!ret) | 
 | 1076 | 			ret = ret2; | 
 | 1077 | 	} | 
 | 1078 |  | 
 | 1079 | 	unlock_page(page); | 
 | 1080 | 	page_cache_release(page); | 
 | 1081 | 	if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
 | 1082 | 		/* if we have allocated more blocks and copied | 
 | 1083 | 		 * less. We will have blocks allocated outside | 
 | 1084 | 		 * inode->i_size. So truncate them | 
 | 1085 | 		 */ | 
 | 1086 | 		ext4_orphan_add(handle, inode); | 
 | 1087 |  | 
 | 1088 | 	ret2 = ext4_journal_stop(handle); | 
 | 1089 | 	if (!ret) | 
 | 1090 | 		ret = ret2; | 
 | 1091 | 	if (pos + len > inode->i_size) { | 
 | 1092 | 		ext4_truncate_failed_write(inode); | 
 | 1093 | 		/* | 
 | 1094 | 		 * If truncate failed early the inode might still be | 
 | 1095 | 		 * on the orphan list; we need to make sure the inode | 
 | 1096 | 		 * is removed from the orphan list in that case. | 
 | 1097 | 		 */ | 
 | 1098 | 		if (inode->i_nlink) | 
 | 1099 | 			ext4_orphan_del(NULL, inode); | 
 | 1100 | 	} | 
 | 1101 |  | 
 | 1102 | 	return ret ? ret : copied; | 
 | 1103 | } | 
 | 1104 |  | 
 | 1105 | /* | 
 | 1106 |  * Reserve a single cluster located at lblock | 
 | 1107 |  */ | 
 | 1108 | static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) | 
 | 1109 | { | 
 | 1110 | 	int retries = 0; | 
 | 1111 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 1112 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 1113 | 	unsigned int md_needed; | 
 | 1114 | 	int ret; | 
 | 1115 | 	ext4_lblk_t save_last_lblock; | 
 | 1116 | 	int save_len; | 
 | 1117 |  | 
 | 1118 | 	/* | 
 | 1119 | 	 * We will charge metadata quota at writeout time; this saves | 
 | 1120 | 	 * us from metadata over-estimation, though we may go over by | 
 | 1121 | 	 * a small amount in the end.  Here we just reserve for data. | 
 | 1122 | 	 */ | 
 | 1123 | 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); | 
 | 1124 | 	if (ret) | 
 | 1125 | 		return ret; | 
 | 1126 |  | 
 | 1127 | 	/* | 
 | 1128 | 	 * recalculate the amount of metadata blocks to reserve | 
 | 1129 | 	 * in order to allocate nrblocks | 
 | 1130 | 	 * worse case is one extent per block | 
 | 1131 | 	 */ | 
 | 1132 | repeat: | 
 | 1133 | 	spin_lock(&ei->i_block_reservation_lock); | 
 | 1134 | 	/* | 
 | 1135 | 	 * ext4_calc_metadata_amount() has side effects, which we have | 
 | 1136 | 	 * to be prepared undo if we fail to claim space. | 
 | 1137 | 	 */ | 
 | 1138 | 	save_len = ei->i_da_metadata_calc_len; | 
 | 1139 | 	save_last_lblock = ei->i_da_metadata_calc_last_lblock; | 
 | 1140 | 	md_needed = EXT4_NUM_B2C(sbi, | 
 | 1141 | 				 ext4_calc_metadata_amount(inode, lblock)); | 
 | 1142 | 	trace_ext4_da_reserve_space(inode, md_needed); | 
 | 1143 |  | 
 | 1144 | 	/* | 
 | 1145 | 	 * We do still charge estimated metadata to the sb though; | 
 | 1146 | 	 * we cannot afford to run out of free blocks. | 
 | 1147 | 	 */ | 
 | 1148 | 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { | 
 | 1149 | 		ei->i_da_metadata_calc_len = save_len; | 
 | 1150 | 		ei->i_da_metadata_calc_last_lblock = save_last_lblock; | 
 | 1151 | 		spin_unlock(&ei->i_block_reservation_lock); | 
 | 1152 | 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) { | 
 | 1153 | 			yield(); | 
 | 1154 | 			goto repeat; | 
 | 1155 | 		} | 
 | 1156 | 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); | 
 | 1157 | 		return -ENOSPC; | 
 | 1158 | 	} | 
 | 1159 | 	ei->i_reserved_data_blocks++; | 
 | 1160 | 	ei->i_reserved_meta_blocks += md_needed; | 
 | 1161 | 	spin_unlock(&ei->i_block_reservation_lock); | 
 | 1162 |  | 
 | 1163 | 	return 0;       /* success */ | 
 | 1164 | } | 
 | 1165 |  | 
 | 1166 | static void ext4_da_release_space(struct inode *inode, int to_free) | 
 | 1167 | { | 
 | 1168 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 1169 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 1170 |  | 
 | 1171 | 	if (!to_free) | 
 | 1172 | 		return;		/* Nothing to release, exit */ | 
 | 1173 |  | 
 | 1174 | 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock); | 
 | 1175 |  | 
 | 1176 | 	trace_ext4_da_release_space(inode, to_free); | 
 | 1177 | 	if (unlikely(to_free > ei->i_reserved_data_blocks)) { | 
 | 1178 | 		/* | 
 | 1179 | 		 * if there aren't enough reserved blocks, then the | 
 | 1180 | 		 * counter is messed up somewhere.  Since this | 
 | 1181 | 		 * function is called from invalidate page, it's | 
 | 1182 | 		 * harmless to return without any action. | 
 | 1183 | 		 */ | 
 | 1184 | 		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: " | 
 | 1185 | 			 "ino %lu, to_free %d with only %d reserved " | 
 | 1186 | 			 "data blocks", inode->i_ino, to_free, | 
 | 1187 | 			 ei->i_reserved_data_blocks); | 
 | 1188 | 		WARN_ON(1); | 
 | 1189 | 		to_free = ei->i_reserved_data_blocks; | 
 | 1190 | 	} | 
 | 1191 | 	ei->i_reserved_data_blocks -= to_free; | 
 | 1192 |  | 
 | 1193 | 	if (ei->i_reserved_data_blocks == 0) { | 
 | 1194 | 		/* | 
 | 1195 | 		 * We can release all of the reserved metadata blocks | 
 | 1196 | 		 * only when we have written all of the delayed | 
 | 1197 | 		 * allocation blocks. | 
 | 1198 | 		 * Note that in case of bigalloc, i_reserved_meta_blocks, | 
 | 1199 | 		 * i_reserved_data_blocks, etc. refer to number of clusters. | 
 | 1200 | 		 */ | 
 | 1201 | 		percpu_counter_sub(&sbi->s_dirtyclusters_counter, | 
 | 1202 | 				   ei->i_reserved_meta_blocks); | 
 | 1203 | 		ei->i_reserved_meta_blocks = 0; | 
 | 1204 | 		ei->i_da_metadata_calc_len = 0; | 
 | 1205 | 	} | 
 | 1206 |  | 
 | 1207 | 	/* update fs dirty data blocks counter */ | 
 | 1208 | 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); | 
 | 1209 |  | 
 | 1210 | 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
 | 1211 |  | 
 | 1212 | 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); | 
 | 1213 | } | 
 | 1214 |  | 
 | 1215 | static void ext4_da_page_release_reservation(struct page *page, | 
 | 1216 | 					     unsigned long offset) | 
 | 1217 | { | 
 | 1218 | 	int to_release = 0; | 
 | 1219 | 	struct buffer_head *head, *bh; | 
 | 1220 | 	unsigned int curr_off = 0; | 
 | 1221 | 	struct inode *inode = page->mapping->host; | 
 | 1222 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 1223 | 	int num_clusters; | 
 | 1224 |  | 
 | 1225 | 	head = page_buffers(page); | 
 | 1226 | 	bh = head; | 
 | 1227 | 	do { | 
 | 1228 | 		unsigned int next_off = curr_off + bh->b_size; | 
 | 1229 |  | 
 | 1230 | 		if ((offset <= curr_off) && (buffer_delay(bh))) { | 
 | 1231 | 			to_release++; | 
 | 1232 | 			clear_buffer_delay(bh); | 
 | 1233 | 			clear_buffer_da_mapped(bh); | 
 | 1234 | 		} | 
 | 1235 | 		curr_off = next_off; | 
 | 1236 | 	} while ((bh = bh->b_this_page) != head); | 
 | 1237 |  | 
 | 1238 | 	/* If we have released all the blocks belonging to a cluster, then we | 
 | 1239 | 	 * need to release the reserved space for that cluster. */ | 
 | 1240 | 	num_clusters = EXT4_NUM_B2C(sbi, to_release); | 
 | 1241 | 	while (num_clusters > 0) { | 
 | 1242 | 		ext4_fsblk_t lblk; | 
 | 1243 | 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + | 
 | 1244 | 			((num_clusters - 1) << sbi->s_cluster_bits); | 
 | 1245 | 		if (sbi->s_cluster_ratio == 1 || | 
 | 1246 | 		    !ext4_find_delalloc_cluster(inode, lblk, 1)) | 
 | 1247 | 			ext4_da_release_space(inode, 1); | 
 | 1248 |  | 
 | 1249 | 		num_clusters--; | 
 | 1250 | 	} | 
 | 1251 | } | 
 | 1252 |  | 
 | 1253 | /* | 
 | 1254 |  * Delayed allocation stuff | 
 | 1255 |  */ | 
 | 1256 |  | 
 | 1257 | /* | 
 | 1258 |  * mpage_da_submit_io - walks through extent of pages and try to write | 
 | 1259 |  * them with writepage() call back | 
 | 1260 |  * | 
 | 1261 |  * @mpd->inode: inode | 
 | 1262 |  * @mpd->first_page: first page of the extent | 
 | 1263 |  * @mpd->next_page: page after the last page of the extent | 
 | 1264 |  * | 
 | 1265 |  * By the time mpage_da_submit_io() is called we expect all blocks | 
 | 1266 |  * to be allocated. this may be wrong if allocation failed. | 
 | 1267 |  * | 
 | 1268 |  * As pages are already locked by write_cache_pages(), we can't use it | 
 | 1269 |  */ | 
 | 1270 | static int mpage_da_submit_io(struct mpage_da_data *mpd, | 
 | 1271 | 			      struct ext4_map_blocks *map) | 
 | 1272 | { | 
 | 1273 | 	struct pagevec pvec; | 
 | 1274 | 	unsigned long index, end; | 
 | 1275 | 	int ret = 0, err, nr_pages, i; | 
 | 1276 | 	struct inode *inode = mpd->inode; | 
 | 1277 | 	struct address_space *mapping = inode->i_mapping; | 
 | 1278 | 	loff_t size = i_size_read(inode); | 
 | 1279 | 	unsigned int len, block_start; | 
 | 1280 | 	struct buffer_head *bh, *page_bufs = NULL; | 
 | 1281 | 	int journal_data = ext4_should_journal_data(inode); | 
 | 1282 | 	sector_t pblock = 0, cur_logical = 0; | 
 | 1283 | 	struct ext4_io_submit io_submit; | 
 | 1284 |  | 
 | 1285 | 	BUG_ON(mpd->next_page <= mpd->first_page); | 
 | 1286 | 	memset(&io_submit, 0, sizeof(io_submit)); | 
 | 1287 | 	/* | 
 | 1288 | 	 * We need to start from the first_page to the next_page - 1 | 
 | 1289 | 	 * to make sure we also write the mapped dirty buffer_heads. | 
 | 1290 | 	 * If we look at mpd->b_blocknr we would only be looking | 
 | 1291 | 	 * at the currently mapped buffer_heads. | 
 | 1292 | 	 */ | 
 | 1293 | 	index = mpd->first_page; | 
 | 1294 | 	end = mpd->next_page - 1; | 
 | 1295 |  | 
 | 1296 | 	pagevec_init(&pvec, 0); | 
 | 1297 | 	while (index <= end) { | 
 | 1298 | 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); | 
 | 1299 | 		if (nr_pages == 0) | 
 | 1300 | 			break; | 
 | 1301 | 		for (i = 0; i < nr_pages; i++) { | 
 | 1302 | 			int commit_write = 0, skip_page = 0; | 
 | 1303 | 			struct page *page = pvec.pages[i]; | 
 | 1304 |  | 
 | 1305 | 			index = page->index; | 
 | 1306 | 			if (index > end) | 
 | 1307 | 				break; | 
 | 1308 |  | 
 | 1309 | 			if (index == size >> PAGE_CACHE_SHIFT) | 
 | 1310 | 				len = size & ~PAGE_CACHE_MASK; | 
 | 1311 | 			else | 
 | 1312 | 				len = PAGE_CACHE_SIZE; | 
 | 1313 | 			if (map) { | 
 | 1314 | 				cur_logical = index << (PAGE_CACHE_SHIFT - | 
 | 1315 | 							inode->i_blkbits); | 
 | 1316 | 				pblock = map->m_pblk + (cur_logical - | 
 | 1317 | 							map->m_lblk); | 
 | 1318 | 			} | 
 | 1319 | 			index++; | 
 | 1320 |  | 
 | 1321 | 			BUG_ON(!PageLocked(page)); | 
 | 1322 | 			BUG_ON(PageWriteback(page)); | 
 | 1323 |  | 
 | 1324 | 			/* | 
 | 1325 | 			 * If the page does not have buffers (for | 
 | 1326 | 			 * whatever reason), try to create them using | 
 | 1327 | 			 * __block_write_begin.  If this fails, | 
 | 1328 | 			 * skip the page and move on. | 
 | 1329 | 			 */ | 
 | 1330 | 			if (!page_has_buffers(page)) { | 
 | 1331 | 				if (__block_write_begin(page, 0, len, | 
 | 1332 | 						noalloc_get_block_write)) { | 
 | 1333 | 				skip_page: | 
 | 1334 | 					unlock_page(page); | 
 | 1335 | 					continue; | 
 | 1336 | 				} | 
 | 1337 | 				commit_write = 1; | 
 | 1338 | 			} | 
 | 1339 |  | 
 | 1340 | 			bh = page_bufs = page_buffers(page); | 
 | 1341 | 			block_start = 0; | 
 | 1342 | 			do { | 
 | 1343 | 				if (!bh) | 
 | 1344 | 					goto skip_page; | 
 | 1345 | 				if (map && (cur_logical >= map->m_lblk) && | 
 | 1346 | 				    (cur_logical <= (map->m_lblk + | 
 | 1347 | 						     (map->m_len - 1)))) { | 
 | 1348 | 					if (buffer_delay(bh)) { | 
 | 1349 | 						clear_buffer_delay(bh); | 
 | 1350 | 						bh->b_blocknr = pblock; | 
 | 1351 | 					} | 
 | 1352 | 					if (buffer_da_mapped(bh)) | 
 | 1353 | 						clear_buffer_da_mapped(bh); | 
 | 1354 | 					if (buffer_unwritten(bh) || | 
 | 1355 | 					    buffer_mapped(bh)) | 
 | 1356 | 						BUG_ON(bh->b_blocknr != pblock); | 
 | 1357 | 					if (map->m_flags & EXT4_MAP_UNINIT) | 
 | 1358 | 						set_buffer_uninit(bh); | 
 | 1359 | 					clear_buffer_unwritten(bh); | 
 | 1360 | 				} | 
 | 1361 |  | 
 | 1362 | 				/* | 
 | 1363 | 				 * skip page if block allocation undone and | 
 | 1364 | 				 * block is dirty | 
 | 1365 | 				 */ | 
 | 1366 | 				if (ext4_bh_delay_or_unwritten(NULL, bh)) | 
 | 1367 | 					skip_page = 1; | 
 | 1368 | 				bh = bh->b_this_page; | 
 | 1369 | 				block_start += bh->b_size; | 
 | 1370 | 				cur_logical++; | 
 | 1371 | 				pblock++; | 
 | 1372 | 			} while (bh != page_bufs); | 
 | 1373 |  | 
 | 1374 | 			if (skip_page) | 
 | 1375 | 				goto skip_page; | 
 | 1376 |  | 
 | 1377 | 			if (commit_write) | 
 | 1378 | 				/* mark the buffer_heads as dirty & uptodate */ | 
 | 1379 | 				block_commit_write(page, 0, len); | 
 | 1380 |  | 
 | 1381 | 			clear_page_dirty_for_io(page); | 
 | 1382 | 			/* | 
 | 1383 | 			 * Delalloc doesn't support data journalling, | 
 | 1384 | 			 * but eventually maybe we'll lift this | 
 | 1385 | 			 * restriction. | 
 | 1386 | 			 */ | 
 | 1387 | 			if (unlikely(journal_data && PageChecked(page))) | 
 | 1388 | 				err = __ext4_journalled_writepage(page, len); | 
 | 1389 | 			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT)) | 
 | 1390 | 				err = ext4_bio_write_page(&io_submit, page, | 
 | 1391 | 							  len, mpd->wbc); | 
 | 1392 | 			else if (buffer_uninit(page_bufs)) { | 
 | 1393 | 				ext4_set_bh_endio(page_bufs, inode); | 
 | 1394 | 				err = block_write_full_page_endio(page, | 
 | 1395 | 					noalloc_get_block_write, | 
 | 1396 | 					mpd->wbc, ext4_end_io_buffer_write); | 
 | 1397 | 			} else | 
 | 1398 | 				err = block_write_full_page(page, | 
 | 1399 | 					noalloc_get_block_write, mpd->wbc); | 
 | 1400 |  | 
 | 1401 | 			if (!err) | 
 | 1402 | 				mpd->pages_written++; | 
 | 1403 | 			/* | 
 | 1404 | 			 * In error case, we have to continue because | 
 | 1405 | 			 * remaining pages are still locked | 
 | 1406 | 			 */ | 
 | 1407 | 			if (ret == 0) | 
 | 1408 | 				ret = err; | 
 | 1409 | 		} | 
 | 1410 | 		pagevec_release(&pvec); | 
 | 1411 | 	} | 
 | 1412 | 	ext4_io_submit(&io_submit); | 
 | 1413 | 	return ret; | 
 | 1414 | } | 
 | 1415 |  | 
 | 1416 | static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) | 
 | 1417 | { | 
 | 1418 | 	int nr_pages, i; | 
 | 1419 | 	pgoff_t index, end; | 
 | 1420 | 	struct pagevec pvec; | 
 | 1421 | 	struct inode *inode = mpd->inode; | 
 | 1422 | 	struct address_space *mapping = inode->i_mapping; | 
 | 1423 |  | 
 | 1424 | 	index = mpd->first_page; | 
 | 1425 | 	end   = mpd->next_page - 1; | 
 | 1426 |  | 
 | 1427 | 	pagevec_init(&pvec, 0); | 
 | 1428 | 	while (index <= end) { | 
 | 1429 | 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); | 
 | 1430 | 		if (nr_pages == 0) | 
 | 1431 | 			break; | 
 | 1432 | 		for (i = 0; i < nr_pages; i++) { | 
 | 1433 | 			struct page *page = pvec.pages[i]; | 
 | 1434 | 			if (page->index > end) | 
 | 1435 | 				break; | 
 | 1436 | 			BUG_ON(!PageLocked(page)); | 
 | 1437 | 			BUG_ON(PageWriteback(page)); | 
 | 1438 | 			block_invalidatepage(page, 0); | 
 | 1439 | 			ClearPageUptodate(page); | 
 | 1440 | 			unlock_page(page); | 
 | 1441 | 		} | 
 | 1442 | 		index = pvec.pages[nr_pages - 1]->index + 1; | 
 | 1443 | 		pagevec_release(&pvec); | 
 | 1444 | 	} | 
 | 1445 | 	return; | 
 | 1446 | } | 
 | 1447 |  | 
 | 1448 | static void ext4_print_free_blocks(struct inode *inode) | 
 | 1449 | { | 
 | 1450 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 1451 | 	struct super_block *sb = inode->i_sb; | 
 | 1452 |  | 
 | 1453 | 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", | 
 | 1454 | 	       EXT4_C2B(EXT4_SB(inode->i_sb), | 
 | 1455 | 			ext4_count_free_clusters(inode->i_sb))); | 
 | 1456 | 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); | 
 | 1457 | 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", | 
 | 1458 | 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb), | 
 | 1459 | 		percpu_counter_sum(&sbi->s_freeclusters_counter))); | 
 | 1460 | 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", | 
 | 1461 | 	       (long long) EXT4_C2B(EXT4_SB(inode->i_sb), | 
 | 1462 | 		percpu_counter_sum(&sbi->s_dirtyclusters_counter))); | 
 | 1463 | 	ext4_msg(sb, KERN_CRIT, "Block reservation details"); | 
 | 1464 | 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", | 
 | 1465 | 		 EXT4_I(inode)->i_reserved_data_blocks); | 
 | 1466 | 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", | 
 | 1467 | 	       EXT4_I(inode)->i_reserved_meta_blocks); | 
 | 1468 | 	return; | 
 | 1469 | } | 
 | 1470 |  | 
 | 1471 | /* | 
 | 1472 |  * mpage_da_map_and_submit - go through given space, map them | 
 | 1473 |  *       if necessary, and then submit them for I/O | 
 | 1474 |  * | 
 | 1475 |  * @mpd - bh describing space | 
 | 1476 |  * | 
 | 1477 |  * The function skips space we know is already mapped to disk blocks. | 
 | 1478 |  * | 
 | 1479 |  */ | 
 | 1480 | static void mpage_da_map_and_submit(struct mpage_da_data *mpd) | 
 | 1481 | { | 
 | 1482 | 	int err, blks, get_blocks_flags; | 
 | 1483 | 	struct ext4_map_blocks map, *mapp = NULL; | 
 | 1484 | 	sector_t next = mpd->b_blocknr; | 
 | 1485 | 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; | 
 | 1486 | 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize; | 
 | 1487 | 	handle_t *handle = NULL; | 
 | 1488 |  | 
 | 1489 | 	/* | 
 | 1490 | 	 * If the blocks are mapped already, or we couldn't accumulate | 
 | 1491 | 	 * any blocks, then proceed immediately to the submission stage. | 
 | 1492 | 	 */ | 
 | 1493 | 	if ((mpd->b_size == 0) || | 
 | 1494 | 	    ((mpd->b_state  & (1 << BH_Mapped)) && | 
 | 1495 | 	     !(mpd->b_state & (1 << BH_Delay)) && | 
 | 1496 | 	     !(mpd->b_state & (1 << BH_Unwritten)))) | 
 | 1497 | 		goto submit_io; | 
 | 1498 |  | 
 | 1499 | 	handle = ext4_journal_current_handle(); | 
 | 1500 | 	BUG_ON(!handle); | 
 | 1501 |  | 
 | 1502 | 	/* | 
 | 1503 | 	 * Call ext4_map_blocks() to allocate any delayed allocation | 
 | 1504 | 	 * blocks, or to convert an uninitialized extent to be | 
 | 1505 | 	 * initialized (in the case where we have written into | 
 | 1506 | 	 * one or more preallocated blocks). | 
 | 1507 | 	 * | 
 | 1508 | 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to | 
 | 1509 | 	 * indicate that we are on the delayed allocation path.  This | 
 | 1510 | 	 * affects functions in many different parts of the allocation | 
 | 1511 | 	 * call path.  This flag exists primarily because we don't | 
 | 1512 | 	 * want to change *many* call functions, so ext4_map_blocks() | 
 | 1513 | 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the | 
 | 1514 | 	 * inode's allocation semaphore is taken. | 
 | 1515 | 	 * | 
 | 1516 | 	 * If the blocks in questions were delalloc blocks, set | 
 | 1517 | 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting | 
 | 1518 | 	 * variables are updated after the blocks have been allocated. | 
 | 1519 | 	 */ | 
 | 1520 | 	map.m_lblk = next; | 
 | 1521 | 	map.m_len = max_blocks; | 
 | 1522 | 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE; | 
 | 1523 | 	if (ext4_should_dioread_nolock(mpd->inode)) | 
 | 1524 | 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; | 
 | 1525 | 	if (mpd->b_state & (1 << BH_Delay)) | 
 | 1526 | 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; | 
 | 1527 |  | 
 | 1528 | 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); | 
 | 1529 | 	if (blks < 0) { | 
 | 1530 | 		struct super_block *sb = mpd->inode->i_sb; | 
 | 1531 |  | 
 | 1532 | 		err = blks; | 
 | 1533 | 		/* | 
 | 1534 | 		 * If get block returns EAGAIN or ENOSPC and there | 
 | 1535 | 		 * appears to be free blocks we will just let | 
 | 1536 | 		 * mpage_da_submit_io() unlock all of the pages. | 
 | 1537 | 		 */ | 
 | 1538 | 		if (err == -EAGAIN) | 
 | 1539 | 			goto submit_io; | 
 | 1540 |  | 
 | 1541 | 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) { | 
 | 1542 | 			mpd->retval = err; | 
 | 1543 | 			goto submit_io; | 
 | 1544 | 		} | 
 | 1545 |  | 
 | 1546 | 		/* | 
 | 1547 | 		 * get block failure will cause us to loop in | 
 | 1548 | 		 * writepages, because a_ops->writepage won't be able | 
 | 1549 | 		 * to make progress. The page will be redirtied by | 
 | 1550 | 		 * writepage and writepages will again try to write | 
 | 1551 | 		 * the same. | 
 | 1552 | 		 */ | 
 | 1553 | 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { | 
 | 1554 | 			ext4_msg(sb, KERN_CRIT, | 
 | 1555 | 				 "delayed block allocation failed for inode %lu " | 
 | 1556 | 				 "at logical offset %llu with max blocks %zd " | 
 | 1557 | 				 "with error %d", mpd->inode->i_ino, | 
 | 1558 | 				 (unsigned long long) next, | 
 | 1559 | 				 mpd->b_size >> mpd->inode->i_blkbits, err); | 
 | 1560 | 			ext4_msg(sb, KERN_CRIT, | 
 | 1561 | 				"This should not happen!! Data will be lost\n"); | 
 | 1562 | 			if (err == -ENOSPC) | 
 | 1563 | 				ext4_print_free_blocks(mpd->inode); | 
 | 1564 | 		} | 
 | 1565 | 		/* invalidate all the pages */ | 
 | 1566 | 		ext4_da_block_invalidatepages(mpd); | 
 | 1567 |  | 
 | 1568 | 		/* Mark this page range as having been completed */ | 
 | 1569 | 		mpd->io_done = 1; | 
 | 1570 | 		return; | 
 | 1571 | 	} | 
 | 1572 | 	BUG_ON(blks == 0); | 
 | 1573 |  | 
 | 1574 | 	mapp = ↦ | 
 | 1575 | 	if (map.m_flags & EXT4_MAP_NEW) { | 
 | 1576 | 		struct block_device *bdev = mpd->inode->i_sb->s_bdev; | 
 | 1577 | 		int i; | 
 | 1578 |  | 
 | 1579 | 		for (i = 0; i < map.m_len; i++) | 
 | 1580 | 			unmap_underlying_metadata(bdev, map.m_pblk + i); | 
 | 1581 |  | 
 | 1582 | 		if (ext4_should_order_data(mpd->inode)) { | 
 | 1583 | 			err = ext4_jbd2_file_inode(handle, mpd->inode); | 
 | 1584 | 			if (err) { | 
 | 1585 | 				/* Only if the journal is aborted */ | 
 | 1586 | 				mpd->retval = err; | 
 | 1587 | 				goto submit_io; | 
 | 1588 | 			} | 
 | 1589 | 		} | 
 | 1590 | 	} | 
 | 1591 |  | 
 | 1592 | 	/* | 
 | 1593 | 	 * Update on-disk size along with block allocation. | 
 | 1594 | 	 */ | 
 | 1595 | 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; | 
 | 1596 | 	if (disksize > i_size_read(mpd->inode)) | 
 | 1597 | 		disksize = i_size_read(mpd->inode); | 
 | 1598 | 	if (disksize > EXT4_I(mpd->inode)->i_disksize) { | 
 | 1599 | 		ext4_update_i_disksize(mpd->inode, disksize); | 
 | 1600 | 		err = ext4_mark_inode_dirty(handle, mpd->inode); | 
 | 1601 | 		if (err) | 
 | 1602 | 			ext4_error(mpd->inode->i_sb, | 
 | 1603 | 				   "Failed to mark inode %lu dirty", | 
 | 1604 | 				   mpd->inode->i_ino); | 
 | 1605 | 	} | 
 | 1606 |  | 
 | 1607 | submit_io: | 
 | 1608 | 	mpage_da_submit_io(mpd, mapp); | 
 | 1609 | 	mpd->io_done = 1; | 
 | 1610 | } | 
 | 1611 |  | 
 | 1612 | #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ | 
 | 1613 | 		(1 << BH_Delay) | (1 << BH_Unwritten)) | 
 | 1614 |  | 
 | 1615 | /* | 
 | 1616 |  * mpage_add_bh_to_extent - try to add one more block to extent of blocks | 
 | 1617 |  * | 
 | 1618 |  * @mpd->lbh - extent of blocks | 
 | 1619 |  * @logical - logical number of the block in the file | 
 | 1620 |  * @bh - bh of the block (used to access block's state) | 
 | 1621 |  * | 
 | 1622 |  * the function is used to collect contig. blocks in same state | 
 | 1623 |  */ | 
 | 1624 | static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, | 
 | 1625 | 				   sector_t logical, size_t b_size, | 
 | 1626 | 				   unsigned long b_state) | 
 | 1627 | { | 
 | 1628 | 	sector_t next; | 
 | 1629 | 	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits; | 
 | 1630 |  | 
 | 1631 | 	/* | 
 | 1632 | 	 * XXX Don't go larger than mballoc is willing to allocate | 
 | 1633 | 	 * This is a stopgap solution.  We eventually need to fold | 
 | 1634 | 	 * mpage_da_submit_io() into this function and then call | 
 | 1635 | 	 * ext4_map_blocks() multiple times in a loop | 
 | 1636 | 	 */ | 
 | 1637 | 	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize) | 
 | 1638 | 		goto flush_it; | 
 | 1639 |  | 
 | 1640 | 	/* check if thereserved journal credits might overflow */ | 
 | 1641 | 	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) { | 
 | 1642 | 		if (nrblocks >= EXT4_MAX_TRANS_DATA) { | 
 | 1643 | 			/* | 
 | 1644 | 			 * With non-extent format we are limited by the journal | 
 | 1645 | 			 * credit available.  Total credit needed to insert | 
 | 1646 | 			 * nrblocks contiguous blocks is dependent on the | 
 | 1647 | 			 * nrblocks.  So limit nrblocks. | 
 | 1648 | 			 */ | 
 | 1649 | 			goto flush_it; | 
 | 1650 | 		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) > | 
 | 1651 | 				EXT4_MAX_TRANS_DATA) { | 
 | 1652 | 			/* | 
 | 1653 | 			 * Adding the new buffer_head would make it cross the | 
 | 1654 | 			 * allowed limit for which we have journal credit | 
 | 1655 | 			 * reserved. So limit the new bh->b_size | 
 | 1656 | 			 */ | 
 | 1657 | 			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) << | 
 | 1658 | 						mpd->inode->i_blkbits; | 
 | 1659 | 			/* we will do mpage_da_submit_io in the next loop */ | 
 | 1660 | 		} | 
 | 1661 | 	} | 
 | 1662 | 	/* | 
 | 1663 | 	 * First block in the extent | 
 | 1664 | 	 */ | 
 | 1665 | 	if (mpd->b_size == 0) { | 
 | 1666 | 		mpd->b_blocknr = logical; | 
 | 1667 | 		mpd->b_size = b_size; | 
 | 1668 | 		mpd->b_state = b_state & BH_FLAGS; | 
 | 1669 | 		return; | 
 | 1670 | 	} | 
 | 1671 |  | 
 | 1672 | 	next = mpd->b_blocknr + nrblocks; | 
 | 1673 | 	/* | 
 | 1674 | 	 * Can we merge the block to our big extent? | 
 | 1675 | 	 */ | 
 | 1676 | 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { | 
 | 1677 | 		mpd->b_size += b_size; | 
 | 1678 | 		return; | 
 | 1679 | 	} | 
 | 1680 |  | 
 | 1681 | flush_it: | 
 | 1682 | 	/* | 
 | 1683 | 	 * We couldn't merge the block to our extent, so we | 
 | 1684 | 	 * need to flush current  extent and start new one | 
 | 1685 | 	 */ | 
 | 1686 | 	mpage_da_map_and_submit(mpd); | 
 | 1687 | 	return; | 
 | 1688 | } | 
 | 1689 |  | 
 | 1690 | static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) | 
 | 1691 | { | 
 | 1692 | 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); | 
 | 1693 | } | 
 | 1694 |  | 
 | 1695 | /* | 
 | 1696 |  * This function is grabs code from the very beginning of | 
 | 1697 |  * ext4_map_blocks, but assumes that the caller is from delayed write | 
 | 1698 |  * time. This function looks up the requested blocks and sets the | 
 | 1699 |  * buffer delay bit under the protection of i_data_sem. | 
 | 1700 |  */ | 
 | 1701 | static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, | 
 | 1702 | 			      struct ext4_map_blocks *map, | 
 | 1703 | 			      struct buffer_head *bh) | 
 | 1704 | { | 
 | 1705 | 	int retval; | 
 | 1706 | 	sector_t invalid_block = ~((sector_t) 0xffff); | 
 | 1707 |  | 
 | 1708 | 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) | 
 | 1709 | 		invalid_block = ~0; | 
 | 1710 |  | 
 | 1711 | 	map->m_flags = 0; | 
 | 1712 | 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," | 
 | 1713 | 		  "logical block %lu\n", inode->i_ino, map->m_len, | 
 | 1714 | 		  (unsigned long) map->m_lblk); | 
 | 1715 | 	/* | 
 | 1716 | 	 * Try to see if we can get the block without requesting a new | 
 | 1717 | 	 * file system block. | 
 | 1718 | 	 */ | 
 | 1719 | 	down_read((&EXT4_I(inode)->i_data_sem)); | 
 | 1720 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 1721 | 		retval = ext4_ext_map_blocks(NULL, inode, map, 0); | 
 | 1722 | 	else | 
 | 1723 | 		retval = ext4_ind_map_blocks(NULL, inode, map, 0); | 
 | 1724 |  | 
 | 1725 | 	if (retval == 0) { | 
 | 1726 | 		/* | 
 | 1727 | 		 * XXX: __block_prepare_write() unmaps passed block, | 
 | 1728 | 		 * is it OK? | 
 | 1729 | 		 */ | 
 | 1730 | 		/* If the block was allocated from previously allocated cluster, | 
 | 1731 | 		 * then we dont need to reserve it again. */ | 
 | 1732 | 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { | 
 | 1733 | 			retval = ext4_da_reserve_space(inode, iblock); | 
 | 1734 | 			if (retval) | 
 | 1735 | 				/* not enough space to reserve */ | 
 | 1736 | 				goto out_unlock; | 
 | 1737 | 		} | 
 | 1738 |  | 
 | 1739 | 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served | 
 | 1740 | 		 * and it should not appear on the bh->b_state. | 
 | 1741 | 		 */ | 
 | 1742 | 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; | 
 | 1743 |  | 
 | 1744 | 		map_bh(bh, inode->i_sb, invalid_block); | 
 | 1745 | 		set_buffer_new(bh); | 
 | 1746 | 		set_buffer_delay(bh); | 
 | 1747 | 	} | 
 | 1748 |  | 
 | 1749 | out_unlock: | 
 | 1750 | 	up_read((&EXT4_I(inode)->i_data_sem)); | 
 | 1751 |  | 
 | 1752 | 	return retval; | 
 | 1753 | } | 
 | 1754 |  | 
 | 1755 | /* | 
 | 1756 |  * This is a special get_blocks_t callback which is used by | 
 | 1757 |  * ext4_da_write_begin().  It will either return mapped block or | 
 | 1758 |  * reserve space for a single block. | 
 | 1759 |  * | 
 | 1760 |  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. | 
 | 1761 |  * We also have b_blocknr = -1 and b_bdev initialized properly | 
 | 1762 |  * | 
 | 1763 |  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. | 
 | 1764 |  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev | 
 | 1765 |  * initialized properly. | 
 | 1766 |  */ | 
 | 1767 | static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, | 
 | 1768 | 				  struct buffer_head *bh, int create) | 
 | 1769 | { | 
 | 1770 | 	struct ext4_map_blocks map; | 
 | 1771 | 	int ret = 0; | 
 | 1772 |  | 
 | 1773 | 	BUG_ON(create == 0); | 
 | 1774 | 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize); | 
 | 1775 |  | 
 | 1776 | 	map.m_lblk = iblock; | 
 | 1777 | 	map.m_len = 1; | 
 | 1778 |  | 
 | 1779 | 	/* | 
 | 1780 | 	 * first, we need to know whether the block is allocated already | 
 | 1781 | 	 * preallocated blocks are unmapped but should treated | 
 | 1782 | 	 * the same as allocated blocks. | 
 | 1783 | 	 */ | 
 | 1784 | 	ret = ext4_da_map_blocks(inode, iblock, &map, bh); | 
 | 1785 | 	if (ret <= 0) | 
 | 1786 | 		return ret; | 
 | 1787 |  | 
 | 1788 | 	map_bh(bh, inode->i_sb, map.m_pblk); | 
 | 1789 | 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; | 
 | 1790 |  | 
 | 1791 | 	if (buffer_unwritten(bh)) { | 
 | 1792 | 		/* A delayed write to unwritten bh should be marked | 
 | 1793 | 		 * new and mapped.  Mapped ensures that we don't do | 
 | 1794 | 		 * get_block multiple times when we write to the same | 
 | 1795 | 		 * offset and new ensures that we do proper zero out | 
 | 1796 | 		 * for partial write. | 
 | 1797 | 		 */ | 
 | 1798 | 		set_buffer_new(bh); | 
 | 1799 | 		set_buffer_mapped(bh); | 
 | 1800 | 	} | 
 | 1801 | 	return 0; | 
 | 1802 | } | 
 | 1803 |  | 
 | 1804 | /* | 
 | 1805 |  * This function is used as a standard get_block_t calback function | 
 | 1806 |  * when there is no desire to allocate any blocks.  It is used as a | 
 | 1807 |  * callback function for block_write_begin() and block_write_full_page(). | 
 | 1808 |  * These functions should only try to map a single block at a time. | 
 | 1809 |  * | 
 | 1810 |  * Since this function doesn't do block allocations even if the caller | 
 | 1811 |  * requests it by passing in create=1, it is critically important that | 
 | 1812 |  * any caller checks to make sure that any buffer heads are returned | 
 | 1813 |  * by this function are either all already mapped or marked for | 
 | 1814 |  * delayed allocation before calling  block_write_full_page().  Otherwise, | 
 | 1815 |  * b_blocknr could be left unitialized, and the page write functions will | 
 | 1816 |  * be taken by surprise. | 
 | 1817 |  */ | 
 | 1818 | static int noalloc_get_block_write(struct inode *inode, sector_t iblock, | 
 | 1819 | 				   struct buffer_head *bh_result, int create) | 
 | 1820 | { | 
 | 1821 | 	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize); | 
 | 1822 | 	return _ext4_get_block(inode, iblock, bh_result, 0); | 
 | 1823 | } | 
 | 1824 |  | 
 | 1825 | static int bget_one(handle_t *handle, struct buffer_head *bh) | 
 | 1826 | { | 
 | 1827 | 	get_bh(bh); | 
 | 1828 | 	return 0; | 
 | 1829 | } | 
 | 1830 |  | 
 | 1831 | static int bput_one(handle_t *handle, struct buffer_head *bh) | 
 | 1832 | { | 
 | 1833 | 	put_bh(bh); | 
 | 1834 | 	return 0; | 
 | 1835 | } | 
 | 1836 |  | 
 | 1837 | static int __ext4_journalled_writepage(struct page *page, | 
 | 1838 | 				       unsigned int len) | 
 | 1839 | { | 
 | 1840 | 	struct address_space *mapping = page->mapping; | 
 | 1841 | 	struct inode *inode = mapping->host; | 
 | 1842 | 	struct buffer_head *page_bufs; | 
 | 1843 | 	handle_t *handle = NULL; | 
 | 1844 | 	int ret = 0; | 
 | 1845 | 	int err; | 
 | 1846 |  | 
 | 1847 | 	ClearPageChecked(page); | 
 | 1848 | 	page_bufs = page_buffers(page); | 
 | 1849 | 	BUG_ON(!page_bufs); | 
 | 1850 | 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one); | 
 | 1851 | 	/* | 
 | 1852 | 	 * We need to release the page lock before we start the | 
 | 1853 | 	 * journal, so grab a reference so the page won't disappear | 
 | 1854 | 	 * out from under us. | 
 | 1855 | 	 */ | 
 | 1856 | 	get_page(page); | 
 | 1857 | 	unlock_page(page); | 
 | 1858 |  | 
 | 1859 | 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); | 
 | 1860 | 	if (IS_ERR(handle)) { | 
 | 1861 | 		ret = PTR_ERR(handle); | 
 | 1862 | 		put_page(page); | 
 | 1863 | 		goto out_no_pagelock; | 
 | 1864 | 	} | 
 | 1865 |  | 
 | 1866 | 	BUG_ON(!ext4_handle_valid(handle)); | 
 | 1867 |  | 
 | 1868 | 	lock_page(page); | 
 | 1869 | 	put_page(page); | 
 | 1870 | 	if (page->mapping != mapping) { | 
 | 1871 | 		/* The page got truncated from under us */ | 
 | 1872 | 		ext4_journal_stop(handle); | 
 | 1873 | 		ret = 0; | 
 | 1874 | 		goto out; | 
 | 1875 | 	} | 
 | 1876 |  | 
 | 1877 | 	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL, | 
 | 1878 | 				do_journal_get_write_access); | 
 | 1879 |  | 
 | 1880 | 	err = walk_page_buffers(handle, page_bufs, 0, len, NULL, | 
 | 1881 | 				write_end_fn); | 
 | 1882 | 	if (ret == 0) | 
 | 1883 | 		ret = err; | 
 | 1884 | 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; | 
 | 1885 | 	err = ext4_journal_stop(handle); | 
 | 1886 | 	if (!ret) | 
 | 1887 | 		ret = err; | 
 | 1888 |  | 
 | 1889 | 	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one); | 
 | 1890 | 	ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
 | 1891 | out: | 
 | 1892 | 	unlock_page(page); | 
 | 1893 | out_no_pagelock: | 
 | 1894 | 	return ret; | 
 | 1895 | } | 
 | 1896 |  | 
 | 1897 | static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode); | 
 | 1898 | static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate); | 
 | 1899 |  | 
 | 1900 | /* | 
 | 1901 |  * Note that we don't need to start a transaction unless we're journaling data | 
 | 1902 |  * because we should have holes filled from ext4_page_mkwrite(). We even don't | 
 | 1903 |  * need to file the inode to the transaction's list in ordered mode because if | 
 | 1904 |  * we are writing back data added by write(), the inode is already there and if | 
 | 1905 |  * we are writing back data modified via mmap(), no one guarantees in which | 
 | 1906 |  * transaction the data will hit the disk. In case we are journaling data, we | 
 | 1907 |  * cannot start transaction directly because transaction start ranks above page | 
 | 1908 |  * lock so we have to do some magic. | 
 | 1909 |  * | 
 | 1910 |  * This function can get called via... | 
 | 1911 |  *   - ext4_da_writepages after taking page lock (have journal handle) | 
 | 1912 |  *   - journal_submit_inode_data_buffers (no journal handle) | 
 | 1913 |  *   - shrink_page_list via pdflush (no journal handle) | 
 | 1914 |  *   - grab_page_cache when doing write_begin (have journal handle) | 
 | 1915 |  * | 
 | 1916 |  * We don't do any block allocation in this function. If we have page with | 
 | 1917 |  * multiple blocks we need to write those buffer_heads that are mapped. This | 
 | 1918 |  * is important for mmaped based write. So if we do with blocksize 1K | 
 | 1919 |  * truncate(f, 1024); | 
 | 1920 |  * a = mmap(f, 0, 4096); | 
 | 1921 |  * a[0] = 'a'; | 
 | 1922 |  * truncate(f, 4096); | 
 | 1923 |  * we have in the page first buffer_head mapped via page_mkwrite call back | 
 | 1924 |  * but other buffer_heads would be unmapped but dirty (dirty done via the | 
 | 1925 |  * do_wp_page). So writepage should write the first block. If we modify | 
 | 1926 |  * the mmap area beyond 1024 we will again get a page_fault and the | 
 | 1927 |  * page_mkwrite callback will do the block allocation and mark the | 
 | 1928 |  * buffer_heads mapped. | 
 | 1929 |  * | 
 | 1930 |  * We redirty the page if we have any buffer_heads that is either delay or | 
 | 1931 |  * unwritten in the page. | 
 | 1932 |  * | 
 | 1933 |  * We can get recursively called as show below. | 
 | 1934 |  * | 
 | 1935 |  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> | 
 | 1936 |  *		ext4_writepage() | 
 | 1937 |  * | 
 | 1938 |  * But since we don't do any block allocation we should not deadlock. | 
 | 1939 |  * Page also have the dirty flag cleared so we don't get recurive page_lock. | 
 | 1940 |  */ | 
 | 1941 | static int ext4_writepage(struct page *page, | 
 | 1942 | 			  struct writeback_control *wbc) | 
 | 1943 | { | 
 | 1944 | 	int ret = 0, commit_write = 0; | 
 | 1945 | 	loff_t size; | 
 | 1946 | 	unsigned int len; | 
 | 1947 | 	struct buffer_head *page_bufs = NULL; | 
 | 1948 | 	struct inode *inode = page->mapping->host; | 
 | 1949 |  | 
 | 1950 | 	trace_ext4_writepage(page); | 
 | 1951 | 	size = i_size_read(inode); | 
 | 1952 | 	if (page->index == size >> PAGE_CACHE_SHIFT) | 
 | 1953 | 		len = size & ~PAGE_CACHE_MASK; | 
 | 1954 | 	else | 
 | 1955 | 		len = PAGE_CACHE_SIZE; | 
 | 1956 |  | 
 | 1957 | 	/* | 
 | 1958 | 	 * If the page does not have buffers (for whatever reason), | 
 | 1959 | 	 * try to create them using __block_write_begin.  If this | 
 | 1960 | 	 * fails, redirty the page and move on. | 
 | 1961 | 	 */ | 
 | 1962 | 	if (!page_has_buffers(page)) { | 
 | 1963 | 		if (__block_write_begin(page, 0, len, | 
 | 1964 | 					noalloc_get_block_write)) { | 
 | 1965 | 		redirty_page: | 
 | 1966 | 			redirty_page_for_writepage(wbc, page); | 
 | 1967 | 			unlock_page(page); | 
 | 1968 | 			return 0; | 
 | 1969 | 		} | 
 | 1970 | 		commit_write = 1; | 
 | 1971 | 	} | 
 | 1972 | 	page_bufs = page_buffers(page); | 
 | 1973 | 	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL, | 
 | 1974 | 			      ext4_bh_delay_or_unwritten)) { | 
 | 1975 | 		/* | 
 | 1976 | 		 * We don't want to do block allocation, so redirty | 
 | 1977 | 		 * the page and return.  We may reach here when we do | 
 | 1978 | 		 * a journal commit via journal_submit_inode_data_buffers. | 
 | 1979 | 		 * We can also reach here via shrink_page_list but it | 
 | 1980 | 		 * should never be for direct reclaim so warn if that | 
 | 1981 | 		 * happens | 
 | 1982 | 		 */ | 
 | 1983 | 		WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == | 
 | 1984 | 								PF_MEMALLOC); | 
 | 1985 | 		goto redirty_page; | 
 | 1986 | 	} | 
 | 1987 | 	if (commit_write) | 
 | 1988 | 		/* now mark the buffer_heads as dirty and uptodate */ | 
 | 1989 | 		block_commit_write(page, 0, len); | 
 | 1990 |  | 
 | 1991 | 	if (PageChecked(page) && ext4_should_journal_data(inode)) | 
 | 1992 | 		/* | 
 | 1993 | 		 * It's mmapped pagecache.  Add buffers and journal it.  There | 
 | 1994 | 		 * doesn't seem much point in redirtying the page here. | 
 | 1995 | 		 */ | 
 | 1996 | 		return __ext4_journalled_writepage(page, len); | 
 | 1997 |  | 
 | 1998 | 	if (buffer_uninit(page_bufs)) { | 
 | 1999 | 		ext4_set_bh_endio(page_bufs, inode); | 
 | 2000 | 		ret = block_write_full_page_endio(page, noalloc_get_block_write, | 
 | 2001 | 					    wbc, ext4_end_io_buffer_write); | 
 | 2002 | 	} else | 
 | 2003 | 		ret = block_write_full_page(page, noalloc_get_block_write, | 
 | 2004 | 					    wbc); | 
 | 2005 |  | 
 | 2006 | 	return ret; | 
 | 2007 | } | 
 | 2008 |  | 
 | 2009 | /* | 
 | 2010 |  * This is called via ext4_da_writepages() to | 
 | 2011 |  * calculate the total number of credits to reserve to fit | 
 | 2012 |  * a single extent allocation into a single transaction, | 
 | 2013 |  * ext4_da_writpeages() will loop calling this before | 
 | 2014 |  * the block allocation. | 
 | 2015 |  */ | 
 | 2016 |  | 
 | 2017 | static int ext4_da_writepages_trans_blocks(struct inode *inode) | 
 | 2018 | { | 
 | 2019 | 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; | 
 | 2020 |  | 
 | 2021 | 	/* | 
 | 2022 | 	 * With non-extent format the journal credit needed to | 
 | 2023 | 	 * insert nrblocks contiguous block is dependent on | 
 | 2024 | 	 * number of contiguous block. So we will limit | 
 | 2025 | 	 * number of contiguous block to a sane value | 
 | 2026 | 	 */ | 
 | 2027 | 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && | 
 | 2028 | 	    (max_blocks > EXT4_MAX_TRANS_DATA)) | 
 | 2029 | 		max_blocks = EXT4_MAX_TRANS_DATA; | 
 | 2030 |  | 
 | 2031 | 	return ext4_chunk_trans_blocks(inode, max_blocks); | 
 | 2032 | } | 
 | 2033 |  | 
 | 2034 | /* | 
 | 2035 |  * write_cache_pages_da - walk the list of dirty pages of the given | 
 | 2036 |  * address space and accumulate pages that need writing, and call | 
 | 2037 |  * mpage_da_map_and_submit to map a single contiguous memory region | 
 | 2038 |  * and then write them. | 
 | 2039 |  */ | 
 | 2040 | static int write_cache_pages_da(struct address_space *mapping, | 
 | 2041 | 				struct writeback_control *wbc, | 
 | 2042 | 				struct mpage_da_data *mpd, | 
 | 2043 | 				pgoff_t *done_index) | 
 | 2044 | { | 
 | 2045 | 	struct buffer_head	*bh, *head; | 
 | 2046 | 	struct inode		*inode = mapping->host; | 
 | 2047 | 	struct pagevec		pvec; | 
 | 2048 | 	unsigned int		nr_pages; | 
 | 2049 | 	sector_t		logical; | 
 | 2050 | 	pgoff_t			index, end; | 
 | 2051 | 	long			nr_to_write = wbc->nr_to_write; | 
 | 2052 | 	int			i, tag, ret = 0; | 
 | 2053 |  | 
 | 2054 | 	memset(mpd, 0, sizeof(struct mpage_da_data)); | 
 | 2055 | 	mpd->wbc = wbc; | 
 | 2056 | 	mpd->inode = inode; | 
 | 2057 | 	pagevec_init(&pvec, 0); | 
 | 2058 | 	index = wbc->range_start >> PAGE_CACHE_SHIFT; | 
 | 2059 | 	end = wbc->range_end >> PAGE_CACHE_SHIFT; | 
 | 2060 |  | 
 | 2061 | 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
 | 2062 | 		tag = PAGECACHE_TAG_TOWRITE; | 
 | 2063 | 	else | 
 | 2064 | 		tag = PAGECACHE_TAG_DIRTY; | 
 | 2065 |  | 
 | 2066 | 	*done_index = index; | 
 | 2067 | 	while (index <= end) { | 
 | 2068 | 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, | 
 | 2069 | 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 
 | 2070 | 		if (nr_pages == 0) | 
 | 2071 | 			return 0; | 
 | 2072 |  | 
 | 2073 | 		for (i = 0; i < nr_pages; i++) { | 
 | 2074 | 			struct page *page = pvec.pages[i]; | 
 | 2075 |  | 
 | 2076 | 			/* | 
 | 2077 | 			 * At this point, the page may be truncated or | 
 | 2078 | 			 * invalidated (changing page->mapping to NULL), or | 
 | 2079 | 			 * even swizzled back from swapper_space to tmpfs file | 
 | 2080 | 			 * mapping. However, page->index will not change | 
 | 2081 | 			 * because we have a reference on the page. | 
 | 2082 | 			 */ | 
 | 2083 | 			if (page->index > end) | 
 | 2084 | 				goto out; | 
 | 2085 |  | 
 | 2086 | 			*done_index = page->index + 1; | 
 | 2087 |  | 
 | 2088 | 			/* | 
 | 2089 | 			 * If we can't merge this page, and we have | 
 | 2090 | 			 * accumulated an contiguous region, write it | 
 | 2091 | 			 */ | 
 | 2092 | 			if ((mpd->next_page != page->index) && | 
 | 2093 | 			    (mpd->next_page != mpd->first_page)) { | 
 | 2094 | 				mpage_da_map_and_submit(mpd); | 
 | 2095 | 				goto ret_extent_tail; | 
 | 2096 | 			} | 
 | 2097 |  | 
 | 2098 | 			lock_page(page); | 
 | 2099 |  | 
 | 2100 | 			/* | 
 | 2101 | 			 * If the page is no longer dirty, or its | 
 | 2102 | 			 * mapping no longer corresponds to inode we | 
 | 2103 | 			 * are writing (which means it has been | 
 | 2104 | 			 * truncated or invalidated), or the page is | 
 | 2105 | 			 * already under writeback and we are not | 
 | 2106 | 			 * doing a data integrity writeback, skip the page | 
 | 2107 | 			 */ | 
 | 2108 | 			if (!PageDirty(page) || | 
 | 2109 | 			    (PageWriteback(page) && | 
 | 2110 | 			     (wbc->sync_mode == WB_SYNC_NONE)) || | 
 | 2111 | 			    unlikely(page->mapping != mapping)) { | 
 | 2112 | 				unlock_page(page); | 
 | 2113 | 				continue; | 
 | 2114 | 			} | 
 | 2115 |  | 
 | 2116 | 			wait_on_page_writeback(page); | 
 | 2117 | 			BUG_ON(PageWriteback(page)); | 
 | 2118 |  | 
 | 2119 | 			if (mpd->next_page != page->index) | 
 | 2120 | 				mpd->first_page = page->index; | 
 | 2121 | 			mpd->next_page = page->index + 1; | 
 | 2122 | 			logical = (sector_t) page->index << | 
 | 2123 | 				(PAGE_CACHE_SHIFT - inode->i_blkbits); | 
 | 2124 |  | 
 | 2125 | 			if (!page_has_buffers(page)) { | 
 | 2126 | 				mpage_add_bh_to_extent(mpd, logical, | 
 | 2127 | 						       PAGE_CACHE_SIZE, | 
 | 2128 | 						       (1 << BH_Dirty) | (1 << BH_Uptodate)); | 
 | 2129 | 				if (mpd->io_done) | 
 | 2130 | 					goto ret_extent_tail; | 
 | 2131 | 			} else { | 
 | 2132 | 				/* | 
 | 2133 | 				 * Page with regular buffer heads, | 
 | 2134 | 				 * just add all dirty ones | 
 | 2135 | 				 */ | 
 | 2136 | 				head = page_buffers(page); | 
 | 2137 | 				bh = head; | 
 | 2138 | 				do { | 
 | 2139 | 					BUG_ON(buffer_locked(bh)); | 
 | 2140 | 					/* | 
 | 2141 | 					 * We need to try to allocate | 
 | 2142 | 					 * unmapped blocks in the same page. | 
 | 2143 | 					 * Otherwise we won't make progress | 
 | 2144 | 					 * with the page in ext4_writepage | 
 | 2145 | 					 */ | 
 | 2146 | 					if (ext4_bh_delay_or_unwritten(NULL, bh)) { | 
 | 2147 | 						mpage_add_bh_to_extent(mpd, logical, | 
 | 2148 | 								       bh->b_size, | 
 | 2149 | 								       bh->b_state); | 
 | 2150 | 						if (mpd->io_done) | 
 | 2151 | 							goto ret_extent_tail; | 
 | 2152 | 					} else if (buffer_dirty(bh) && (buffer_mapped(bh))) { | 
 | 2153 | 						/* | 
 | 2154 | 						 * mapped dirty buffer. We need | 
 | 2155 | 						 * to update the b_state | 
 | 2156 | 						 * because we look at b_state | 
 | 2157 | 						 * in mpage_da_map_blocks.  We | 
 | 2158 | 						 * don't update b_size because | 
 | 2159 | 						 * if we find an unmapped | 
 | 2160 | 						 * buffer_head later we need to | 
 | 2161 | 						 * use the b_state flag of that | 
 | 2162 | 						 * buffer_head. | 
 | 2163 | 						 */ | 
 | 2164 | 						if (mpd->b_size == 0) | 
 | 2165 | 							mpd->b_state = bh->b_state & BH_FLAGS; | 
 | 2166 | 					} | 
 | 2167 | 					logical++; | 
 | 2168 | 				} while ((bh = bh->b_this_page) != head); | 
 | 2169 | 			} | 
 | 2170 |  | 
 | 2171 | 			if (nr_to_write > 0) { | 
 | 2172 | 				nr_to_write--; | 
 | 2173 | 				if (nr_to_write == 0 && | 
 | 2174 | 				    wbc->sync_mode == WB_SYNC_NONE) | 
 | 2175 | 					/* | 
 | 2176 | 					 * We stop writing back only if we are | 
 | 2177 | 					 * not doing integrity sync. In case of | 
 | 2178 | 					 * integrity sync we have to keep going | 
 | 2179 | 					 * because someone may be concurrently | 
 | 2180 | 					 * dirtying pages, and we might have | 
 | 2181 | 					 * synced a lot of newly appeared dirty | 
 | 2182 | 					 * pages, but have not synced all of the | 
 | 2183 | 					 * old dirty pages. | 
 | 2184 | 					 */ | 
 | 2185 | 					goto out; | 
 | 2186 | 			} | 
 | 2187 | 		} | 
 | 2188 | 		pagevec_release(&pvec); | 
 | 2189 | 		cond_resched(); | 
 | 2190 | 	} | 
 | 2191 | 	return 0; | 
 | 2192 | ret_extent_tail: | 
 | 2193 | 	ret = MPAGE_DA_EXTENT_TAIL; | 
 | 2194 | out: | 
 | 2195 | 	pagevec_release(&pvec); | 
 | 2196 | 	cond_resched(); | 
 | 2197 | 	return ret; | 
 | 2198 | } | 
 | 2199 |  | 
 | 2200 |  | 
 | 2201 | static int ext4_da_writepages(struct address_space *mapping, | 
 | 2202 | 			      struct writeback_control *wbc) | 
 | 2203 | { | 
 | 2204 | 	pgoff_t	index; | 
 | 2205 | 	int range_whole = 0; | 
 | 2206 | 	handle_t *handle = NULL; | 
 | 2207 | 	struct mpage_da_data mpd; | 
 | 2208 | 	struct inode *inode = mapping->host; | 
 | 2209 | 	int pages_written = 0; | 
 | 2210 | 	unsigned int max_pages; | 
 | 2211 | 	int range_cyclic, cycled = 1, io_done = 0; | 
 | 2212 | 	int needed_blocks, ret = 0; | 
 | 2213 | 	long desired_nr_to_write, nr_to_writebump = 0; | 
 | 2214 | 	loff_t range_start = wbc->range_start; | 
 | 2215 | 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); | 
 | 2216 | 	pgoff_t done_index = 0; | 
 | 2217 | 	pgoff_t end; | 
 | 2218 | 	struct blk_plug plug; | 
 | 2219 |  | 
 | 2220 | 	trace_ext4_da_writepages(inode, wbc); | 
 | 2221 |  | 
 | 2222 | 	/* | 
 | 2223 | 	 * No pages to write? This is mainly a kludge to avoid starting | 
 | 2224 | 	 * a transaction for special inodes like journal inode on last iput() | 
 | 2225 | 	 * because that could violate lock ordering on umount | 
 | 2226 | 	 */ | 
 | 2227 | 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | 
 | 2228 | 		return 0; | 
 | 2229 |  | 
 | 2230 | 	/* | 
 | 2231 | 	 * If the filesystem has aborted, it is read-only, so return | 
 | 2232 | 	 * right away instead of dumping stack traces later on that | 
 | 2233 | 	 * will obscure the real source of the problem.  We test | 
 | 2234 | 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because | 
 | 2235 | 	 * the latter could be true if the filesystem is mounted | 
 | 2236 | 	 * read-only, and in that case, ext4_da_writepages should | 
 | 2237 | 	 * *never* be called, so if that ever happens, we would want | 
 | 2238 | 	 * the stack trace. | 
 | 2239 | 	 */ | 
 | 2240 | 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) | 
 | 2241 | 		return -EROFS; | 
 | 2242 |  | 
 | 2243 | 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
 | 2244 | 		range_whole = 1; | 
 | 2245 |  | 
 | 2246 | 	range_cyclic = wbc->range_cyclic; | 
 | 2247 | 	if (wbc->range_cyclic) { | 
 | 2248 | 		index = mapping->writeback_index; | 
 | 2249 | 		if (index) | 
 | 2250 | 			cycled = 0; | 
 | 2251 | 		wbc->range_start = index << PAGE_CACHE_SHIFT; | 
 | 2252 | 		wbc->range_end  = LLONG_MAX; | 
 | 2253 | 		wbc->range_cyclic = 0; | 
 | 2254 | 		end = -1; | 
 | 2255 | 	} else { | 
 | 2256 | 		index = wbc->range_start >> PAGE_CACHE_SHIFT; | 
 | 2257 | 		end = wbc->range_end >> PAGE_CACHE_SHIFT; | 
 | 2258 | 	} | 
 | 2259 |  | 
 | 2260 | 	/* | 
 | 2261 | 	 * This works around two forms of stupidity.  The first is in | 
 | 2262 | 	 * the writeback code, which caps the maximum number of pages | 
 | 2263 | 	 * written to be 1024 pages.  This is wrong on multiple | 
 | 2264 | 	 * levels; different architectues have a different page size, | 
 | 2265 | 	 * which changes the maximum amount of data which gets | 
 | 2266 | 	 * written.  Secondly, 4 megabytes is way too small.  XFS | 
 | 2267 | 	 * forces this value to be 16 megabytes by multiplying | 
 | 2268 | 	 * nr_to_write parameter by four, and then relies on its | 
 | 2269 | 	 * allocator to allocate larger extents to make them | 
 | 2270 | 	 * contiguous.  Unfortunately this brings us to the second | 
 | 2271 | 	 * stupidity, which is that ext4's mballoc code only allocates | 
 | 2272 | 	 * at most 2048 blocks.  So we force contiguous writes up to | 
 | 2273 | 	 * the number of dirty blocks in the inode, or | 
 | 2274 | 	 * sbi->max_writeback_mb_bump whichever is smaller. | 
 | 2275 | 	 */ | 
 | 2276 | 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); | 
 | 2277 | 	if (!range_cyclic && range_whole) { | 
 | 2278 | 		if (wbc->nr_to_write == LONG_MAX) | 
 | 2279 | 			desired_nr_to_write = wbc->nr_to_write; | 
 | 2280 | 		else | 
 | 2281 | 			desired_nr_to_write = wbc->nr_to_write * 8; | 
 | 2282 | 	} else | 
 | 2283 | 		desired_nr_to_write = ext4_num_dirty_pages(inode, index, | 
 | 2284 | 							   max_pages); | 
 | 2285 | 	if (desired_nr_to_write > max_pages) | 
 | 2286 | 		desired_nr_to_write = max_pages; | 
 | 2287 |  | 
 | 2288 | 	if (wbc->nr_to_write < desired_nr_to_write) { | 
 | 2289 | 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; | 
 | 2290 | 		wbc->nr_to_write = desired_nr_to_write; | 
 | 2291 | 	} | 
 | 2292 |  | 
 | 2293 | retry: | 
 | 2294 | 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
 | 2295 | 		tag_pages_for_writeback(mapping, index, end); | 
 | 2296 |  | 
 | 2297 | 	blk_start_plug(&plug); | 
 | 2298 | 	while (!ret && wbc->nr_to_write > 0) { | 
 | 2299 |  | 
 | 2300 | 		/* | 
 | 2301 | 		 * we  insert one extent at a time. So we need | 
 | 2302 | 		 * credit needed for single extent allocation. | 
 | 2303 | 		 * journalled mode is currently not supported | 
 | 2304 | 		 * by delalloc | 
 | 2305 | 		 */ | 
 | 2306 | 		BUG_ON(ext4_should_journal_data(inode)); | 
 | 2307 | 		needed_blocks = ext4_da_writepages_trans_blocks(inode); | 
 | 2308 |  | 
 | 2309 | 		/* start a new transaction*/ | 
 | 2310 | 		handle = ext4_journal_start(inode, needed_blocks); | 
 | 2311 | 		if (IS_ERR(handle)) { | 
 | 2312 | 			ret = PTR_ERR(handle); | 
 | 2313 | 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " | 
 | 2314 | 			       "%ld pages, ino %lu; err %d", __func__, | 
 | 2315 | 				wbc->nr_to_write, inode->i_ino, ret); | 
 | 2316 | 			blk_finish_plug(&plug); | 
 | 2317 | 			goto out_writepages; | 
 | 2318 | 		} | 
 | 2319 |  | 
 | 2320 | 		/* | 
 | 2321 | 		 * Now call write_cache_pages_da() to find the next | 
 | 2322 | 		 * contiguous region of logical blocks that need | 
 | 2323 | 		 * blocks to be allocated by ext4 and submit them. | 
 | 2324 | 		 */ | 
 | 2325 | 		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index); | 
 | 2326 | 		/* | 
 | 2327 | 		 * If we have a contiguous extent of pages and we | 
 | 2328 | 		 * haven't done the I/O yet, map the blocks and submit | 
 | 2329 | 		 * them for I/O. | 
 | 2330 | 		 */ | 
 | 2331 | 		if (!mpd.io_done && mpd.next_page != mpd.first_page) { | 
 | 2332 | 			mpage_da_map_and_submit(&mpd); | 
 | 2333 | 			ret = MPAGE_DA_EXTENT_TAIL; | 
 | 2334 | 		} | 
 | 2335 | 		trace_ext4_da_write_pages(inode, &mpd); | 
 | 2336 | 		wbc->nr_to_write -= mpd.pages_written; | 
 | 2337 |  | 
 | 2338 | 		ext4_journal_stop(handle); | 
 | 2339 |  | 
 | 2340 | 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) { | 
 | 2341 | 			/* commit the transaction which would | 
 | 2342 | 			 * free blocks released in the transaction | 
 | 2343 | 			 * and try again | 
 | 2344 | 			 */ | 
 | 2345 | 			jbd2_journal_force_commit_nested(sbi->s_journal); | 
 | 2346 | 			ret = 0; | 
 | 2347 | 		} else if (ret == MPAGE_DA_EXTENT_TAIL) { | 
 | 2348 | 			/* | 
 | 2349 | 			 * Got one extent now try with rest of the pages. | 
 | 2350 | 			 * If mpd.retval is set -EIO, journal is aborted. | 
 | 2351 | 			 * So we don't need to write any more. | 
 | 2352 | 			 */ | 
 | 2353 | 			pages_written += mpd.pages_written; | 
 | 2354 | 			ret = mpd.retval; | 
 | 2355 | 			io_done = 1; | 
 | 2356 | 		} else if (wbc->nr_to_write) | 
 | 2357 | 			/* | 
 | 2358 | 			 * There is no more writeout needed | 
 | 2359 | 			 * or we requested for a noblocking writeout | 
 | 2360 | 			 * and we found the device congested | 
 | 2361 | 			 */ | 
 | 2362 | 			break; | 
 | 2363 | 	} | 
 | 2364 | 	blk_finish_plug(&plug); | 
 | 2365 | 	if (!io_done && !cycled) { | 
 | 2366 | 		cycled = 1; | 
 | 2367 | 		index = 0; | 
 | 2368 | 		wbc->range_start = index << PAGE_CACHE_SHIFT; | 
 | 2369 | 		wbc->range_end  = mapping->writeback_index - 1; | 
 | 2370 | 		goto retry; | 
 | 2371 | 	} | 
 | 2372 |  | 
 | 2373 | 	/* Update index */ | 
 | 2374 | 	wbc->range_cyclic = range_cyclic; | 
 | 2375 | 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) | 
 | 2376 | 		/* | 
 | 2377 | 		 * set the writeback_index so that range_cyclic | 
 | 2378 | 		 * mode will write it back later | 
 | 2379 | 		 */ | 
 | 2380 | 		mapping->writeback_index = done_index; | 
 | 2381 |  | 
 | 2382 | out_writepages: | 
 | 2383 | 	wbc->nr_to_write -= nr_to_writebump; | 
 | 2384 | 	wbc->range_start = range_start; | 
 | 2385 | 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); | 
 | 2386 | 	return ret; | 
 | 2387 | } | 
 | 2388 |  | 
 | 2389 | #define FALL_BACK_TO_NONDELALLOC 1 | 
 | 2390 | static int ext4_nonda_switch(struct super_block *sb) | 
 | 2391 | { | 
 | 2392 | 	s64 free_blocks, dirty_blocks; | 
 | 2393 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 2394 |  | 
 | 2395 | 	/* | 
 | 2396 | 	 * switch to non delalloc mode if we are running low | 
 | 2397 | 	 * on free block. The free block accounting via percpu | 
 | 2398 | 	 * counters can get slightly wrong with percpu_counter_batch getting | 
 | 2399 | 	 * accumulated on each CPU without updating global counters | 
 | 2400 | 	 * Delalloc need an accurate free block accounting. So switch | 
 | 2401 | 	 * to non delalloc when we are near to error range. | 
 | 2402 | 	 */ | 
 | 2403 | 	free_blocks  = EXT4_C2B(sbi, | 
 | 2404 | 		percpu_counter_read_positive(&sbi->s_freeclusters_counter)); | 
 | 2405 | 	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); | 
 | 2406 | 	/* | 
 | 2407 | 	 * Start pushing delalloc when 1/2 of free blocks are dirty. | 
 | 2408 | 	 */ | 
 | 2409 | 	if (dirty_blocks && (free_blocks < 2 * dirty_blocks) && | 
 | 2410 | 	    !writeback_in_progress(sb->s_bdi) && | 
 | 2411 | 	    down_read_trylock(&sb->s_umount)) { | 
 | 2412 | 		writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); | 
 | 2413 | 		up_read(&sb->s_umount); | 
 | 2414 | 	} | 
 | 2415 |  | 
 | 2416 | 	if (2 * free_blocks < 3 * dirty_blocks || | 
 | 2417 | 		free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) { | 
 | 2418 | 		/* | 
 | 2419 | 		 * free block count is less than 150% of dirty blocks | 
 | 2420 | 		 * or free blocks is less than watermark | 
 | 2421 | 		 */ | 
 | 2422 | 		return 1; | 
 | 2423 | 	} | 
 | 2424 | 	return 0; | 
 | 2425 | } | 
 | 2426 |  | 
 | 2427 | /* We always reserve for an inode update; the superblock could be there too */ | 
 | 2428 | static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) | 
 | 2429 | { | 
 | 2430 | 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, | 
 | 2431 | 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) | 
 | 2432 | 		return 1; | 
 | 2433 |  | 
 | 2434 | 	if (pos + len <= 0x7fffffffULL) | 
 | 2435 | 		return 1; | 
 | 2436 |  | 
 | 2437 | 	/* We might need to update the superblock to set LARGE_FILE */ | 
 | 2438 | 	return 2; | 
 | 2439 | } | 
 | 2440 |  | 
 | 2441 | static int ext4_da_write_begin(struct file *file, struct address_space *mapping, | 
 | 2442 | 			       loff_t pos, unsigned len, unsigned flags, | 
 | 2443 | 			       struct page **pagep, void **fsdata) | 
 | 2444 | { | 
 | 2445 | 	int ret, retries = 0; | 
 | 2446 | 	struct page *page; | 
 | 2447 | 	pgoff_t index; | 
 | 2448 | 	struct inode *inode = mapping->host; | 
 | 2449 | 	handle_t *handle; | 
 | 2450 |  | 
 | 2451 | 	index = pos >> PAGE_CACHE_SHIFT; | 
 | 2452 |  | 
 | 2453 | 	if (ext4_nonda_switch(inode->i_sb)) { | 
 | 2454 | 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC; | 
 | 2455 | 		return ext4_write_begin(file, mapping, pos, | 
 | 2456 | 					len, flags, pagep, fsdata); | 
 | 2457 | 	} | 
 | 2458 | 	*fsdata = (void *)0; | 
 | 2459 | 	trace_ext4_da_write_begin(inode, pos, len, flags); | 
 | 2460 | retry: | 
 | 2461 | 	/* | 
 | 2462 | 	 * With delayed allocation, we don't log the i_disksize update | 
 | 2463 | 	 * if there is delayed block allocation. But we still need | 
 | 2464 | 	 * to journalling the i_disksize update if writes to the end | 
 | 2465 | 	 * of file which has an already mapped buffer. | 
 | 2466 | 	 */ | 
 | 2467 | 	handle = ext4_journal_start(inode, | 
 | 2468 | 				ext4_da_write_credits(inode, pos, len)); | 
 | 2469 | 	if (IS_ERR(handle)) { | 
 | 2470 | 		ret = PTR_ERR(handle); | 
 | 2471 | 		goto out; | 
 | 2472 | 	} | 
 | 2473 | 	/* We cannot recurse into the filesystem as the transaction is already | 
 | 2474 | 	 * started */ | 
 | 2475 | 	flags |= AOP_FLAG_NOFS; | 
 | 2476 |  | 
 | 2477 | 	page = grab_cache_page_write_begin(mapping, index, flags); | 
 | 2478 | 	if (!page) { | 
 | 2479 | 		ext4_journal_stop(handle); | 
 | 2480 | 		ret = -ENOMEM; | 
 | 2481 | 		goto out; | 
 | 2482 | 	} | 
 | 2483 | 	*pagep = page; | 
 | 2484 |  | 
 | 2485 | 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); | 
 | 2486 | 	if (ret < 0) { | 
 | 2487 | 		unlock_page(page); | 
 | 2488 | 		ext4_journal_stop(handle); | 
 | 2489 | 		page_cache_release(page); | 
 | 2490 | 		/* | 
 | 2491 | 		 * block_write_begin may have instantiated a few blocks | 
 | 2492 | 		 * outside i_size.  Trim these off again. Don't need | 
 | 2493 | 		 * i_size_read because we hold i_mutex. | 
 | 2494 | 		 */ | 
 | 2495 | 		if (pos + len > inode->i_size) | 
 | 2496 | 			ext4_truncate_failed_write(inode); | 
 | 2497 | 	} | 
 | 2498 |  | 
 | 2499 | 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
 | 2500 | 		goto retry; | 
 | 2501 | out: | 
 | 2502 | 	return ret; | 
 | 2503 | } | 
 | 2504 |  | 
 | 2505 | /* | 
 | 2506 |  * Check if we should update i_disksize | 
 | 2507 |  * when write to the end of file but not require block allocation | 
 | 2508 |  */ | 
 | 2509 | static int ext4_da_should_update_i_disksize(struct page *page, | 
 | 2510 | 					    unsigned long offset) | 
 | 2511 | { | 
 | 2512 | 	struct buffer_head *bh; | 
 | 2513 | 	struct inode *inode = page->mapping->host; | 
 | 2514 | 	unsigned int idx; | 
 | 2515 | 	int i; | 
 | 2516 |  | 
 | 2517 | 	bh = page_buffers(page); | 
 | 2518 | 	idx = offset >> inode->i_blkbits; | 
 | 2519 |  | 
 | 2520 | 	for (i = 0; i < idx; i++) | 
 | 2521 | 		bh = bh->b_this_page; | 
 | 2522 |  | 
 | 2523 | 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) | 
 | 2524 | 		return 0; | 
 | 2525 | 	return 1; | 
 | 2526 | } | 
 | 2527 |  | 
 | 2528 | static int ext4_da_write_end(struct file *file, | 
 | 2529 | 			     struct address_space *mapping, | 
 | 2530 | 			     loff_t pos, unsigned len, unsigned copied, | 
 | 2531 | 			     struct page *page, void *fsdata) | 
 | 2532 | { | 
 | 2533 | 	struct inode *inode = mapping->host; | 
 | 2534 | 	int ret = 0, ret2; | 
 | 2535 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 2536 | 	loff_t new_i_size; | 
 | 2537 | 	unsigned long start, end; | 
 | 2538 | 	int write_mode = (int)(unsigned long)fsdata; | 
 | 2539 |  | 
 | 2540 | 	if (write_mode == FALL_BACK_TO_NONDELALLOC) { | 
 | 2541 | 		switch (ext4_inode_journal_mode(inode)) { | 
 | 2542 | 		case EXT4_INODE_ORDERED_DATA_MODE: | 
 | 2543 | 			return ext4_ordered_write_end(file, mapping, pos, | 
 | 2544 | 					len, copied, page, fsdata); | 
 | 2545 | 		case EXT4_INODE_WRITEBACK_DATA_MODE: | 
 | 2546 | 			return ext4_writeback_write_end(file, mapping, pos, | 
 | 2547 | 					len, copied, page, fsdata); | 
 | 2548 | 		default: | 
 | 2549 | 			BUG(); | 
 | 2550 | 		} | 
 | 2551 | 	} | 
 | 2552 |  | 
 | 2553 | 	trace_ext4_da_write_end(inode, pos, len, copied); | 
 | 2554 | 	start = pos & (PAGE_CACHE_SIZE - 1); | 
 | 2555 | 	end = start + copied - 1; | 
 | 2556 |  | 
 | 2557 | 	/* | 
 | 2558 | 	 * generic_write_end() will run mark_inode_dirty() if i_size | 
 | 2559 | 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty | 
 | 2560 | 	 * into that. | 
 | 2561 | 	 */ | 
 | 2562 |  | 
 | 2563 | 	new_i_size = pos + copied; | 
 | 2564 | 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) { | 
 | 2565 | 		if (ext4_da_should_update_i_disksize(page, end)) { | 
 | 2566 | 			down_write(&EXT4_I(inode)->i_data_sem); | 
 | 2567 | 			if (new_i_size > EXT4_I(inode)->i_disksize) { | 
 | 2568 | 				/* | 
 | 2569 | 				 * Updating i_disksize when extending file | 
 | 2570 | 				 * without needing block allocation | 
 | 2571 | 				 */ | 
 | 2572 | 				if (ext4_should_order_data(inode)) | 
 | 2573 | 					ret = ext4_jbd2_file_inode(handle, | 
 | 2574 | 								   inode); | 
 | 2575 |  | 
 | 2576 | 				EXT4_I(inode)->i_disksize = new_i_size; | 
 | 2577 | 			} | 
 | 2578 | 			up_write(&EXT4_I(inode)->i_data_sem); | 
 | 2579 | 			/* We need to mark inode dirty even if | 
 | 2580 | 			 * new_i_size is less that inode->i_size | 
 | 2581 | 			 * bu greater than i_disksize.(hint delalloc) | 
 | 2582 | 			 */ | 
 | 2583 | 			ext4_mark_inode_dirty(handle, inode); | 
 | 2584 | 		} | 
 | 2585 | 	} | 
 | 2586 | 	ret2 = generic_write_end(file, mapping, pos, len, copied, | 
 | 2587 | 							page, fsdata); | 
 | 2588 | 	copied = ret2; | 
 | 2589 | 	if (ret2 < 0) | 
 | 2590 | 		ret = ret2; | 
 | 2591 | 	ret2 = ext4_journal_stop(handle); | 
 | 2592 | 	if (!ret) | 
 | 2593 | 		ret = ret2; | 
 | 2594 |  | 
 | 2595 | 	return ret ? ret : copied; | 
 | 2596 | } | 
 | 2597 |  | 
 | 2598 | static void ext4_da_invalidatepage(struct page *page, unsigned long offset) | 
 | 2599 | { | 
 | 2600 | 	/* | 
 | 2601 | 	 * Drop reserved blocks | 
 | 2602 | 	 */ | 
 | 2603 | 	BUG_ON(!PageLocked(page)); | 
 | 2604 | 	if (!page_has_buffers(page)) | 
 | 2605 | 		goto out; | 
 | 2606 |  | 
 | 2607 | 	ext4_da_page_release_reservation(page, offset); | 
 | 2608 |  | 
 | 2609 | out: | 
 | 2610 | 	ext4_invalidatepage(page, offset); | 
 | 2611 |  | 
 | 2612 | 	return; | 
 | 2613 | } | 
 | 2614 |  | 
 | 2615 | /* | 
 | 2616 |  * Force all delayed allocation blocks to be allocated for a given inode. | 
 | 2617 |  */ | 
 | 2618 | int ext4_alloc_da_blocks(struct inode *inode) | 
 | 2619 | { | 
 | 2620 | 	trace_ext4_alloc_da_blocks(inode); | 
 | 2621 |  | 
 | 2622 | 	if (!EXT4_I(inode)->i_reserved_data_blocks && | 
 | 2623 | 	    !EXT4_I(inode)->i_reserved_meta_blocks) | 
 | 2624 | 		return 0; | 
 | 2625 |  | 
 | 2626 | 	/* | 
 | 2627 | 	 * We do something simple for now.  The filemap_flush() will | 
 | 2628 | 	 * also start triggering a write of the data blocks, which is | 
 | 2629 | 	 * not strictly speaking necessary (and for users of | 
 | 2630 | 	 * laptop_mode, not even desirable).  However, to do otherwise | 
 | 2631 | 	 * would require replicating code paths in: | 
 | 2632 | 	 * | 
 | 2633 | 	 * ext4_da_writepages() -> | 
 | 2634 | 	 *    write_cache_pages() ---> (via passed in callback function) | 
 | 2635 | 	 *        __mpage_da_writepage() --> | 
 | 2636 | 	 *           mpage_add_bh_to_extent() | 
 | 2637 | 	 *           mpage_da_map_blocks() | 
 | 2638 | 	 * | 
 | 2639 | 	 * The problem is that write_cache_pages(), located in | 
 | 2640 | 	 * mm/page-writeback.c, marks pages clean in preparation for | 
 | 2641 | 	 * doing I/O, which is not desirable if we're not planning on | 
 | 2642 | 	 * doing I/O at all. | 
 | 2643 | 	 * | 
 | 2644 | 	 * We could call write_cache_pages(), and then redirty all of | 
 | 2645 | 	 * the pages by calling redirty_page_for_writepage() but that | 
 | 2646 | 	 * would be ugly in the extreme.  So instead we would need to | 
 | 2647 | 	 * replicate parts of the code in the above functions, | 
 | 2648 | 	 * simplifying them because we wouldn't actually intend to | 
 | 2649 | 	 * write out the pages, but rather only collect contiguous | 
 | 2650 | 	 * logical block extents, call the multi-block allocator, and | 
 | 2651 | 	 * then update the buffer heads with the block allocations. | 
 | 2652 | 	 * | 
 | 2653 | 	 * For now, though, we'll cheat by calling filemap_flush(), | 
 | 2654 | 	 * which will map the blocks, and start the I/O, but not | 
 | 2655 | 	 * actually wait for the I/O to complete. | 
 | 2656 | 	 */ | 
 | 2657 | 	return filemap_flush(inode->i_mapping); | 
 | 2658 | } | 
 | 2659 |  | 
 | 2660 | /* | 
 | 2661 |  * bmap() is special.  It gets used by applications such as lilo and by | 
 | 2662 |  * the swapper to find the on-disk block of a specific piece of data. | 
 | 2663 |  * | 
 | 2664 |  * Naturally, this is dangerous if the block concerned is still in the | 
 | 2665 |  * journal.  If somebody makes a swapfile on an ext4 data-journaling | 
 | 2666 |  * filesystem and enables swap, then they may get a nasty shock when the | 
 | 2667 |  * data getting swapped to that swapfile suddenly gets overwritten by | 
 | 2668 |  * the original zero's written out previously to the journal and | 
 | 2669 |  * awaiting writeback in the kernel's buffer cache. | 
 | 2670 |  * | 
 | 2671 |  * So, if we see any bmap calls here on a modified, data-journaled file, | 
 | 2672 |  * take extra steps to flush any blocks which might be in the cache. | 
 | 2673 |  */ | 
 | 2674 | static sector_t ext4_bmap(struct address_space *mapping, sector_t block) | 
 | 2675 | { | 
 | 2676 | 	struct inode *inode = mapping->host; | 
 | 2677 | 	journal_t *journal; | 
 | 2678 | 	int err; | 
 | 2679 |  | 
 | 2680 | 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && | 
 | 2681 | 			test_opt(inode->i_sb, DELALLOC)) { | 
 | 2682 | 		/* | 
 | 2683 | 		 * With delalloc we want to sync the file | 
 | 2684 | 		 * so that we can make sure we allocate | 
 | 2685 | 		 * blocks for file | 
 | 2686 | 		 */ | 
 | 2687 | 		filemap_write_and_wait(mapping); | 
 | 2688 | 	} | 
 | 2689 |  | 
 | 2690 | 	if (EXT4_JOURNAL(inode) && | 
 | 2691 | 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { | 
 | 2692 | 		/* | 
 | 2693 | 		 * This is a REALLY heavyweight approach, but the use of | 
 | 2694 | 		 * bmap on dirty files is expected to be extremely rare: | 
 | 2695 | 		 * only if we run lilo or swapon on a freshly made file | 
 | 2696 | 		 * do we expect this to happen. | 
 | 2697 | 		 * | 
 | 2698 | 		 * (bmap requires CAP_SYS_RAWIO so this does not | 
 | 2699 | 		 * represent an unprivileged user DOS attack --- we'd be | 
 | 2700 | 		 * in trouble if mortal users could trigger this path at | 
 | 2701 | 		 * will.) | 
 | 2702 | 		 * | 
 | 2703 | 		 * NB. EXT4_STATE_JDATA is not set on files other than | 
 | 2704 | 		 * regular files.  If somebody wants to bmap a directory | 
 | 2705 | 		 * or symlink and gets confused because the buffer | 
 | 2706 | 		 * hasn't yet been flushed to disk, they deserve | 
 | 2707 | 		 * everything they get. | 
 | 2708 | 		 */ | 
 | 2709 |  | 
 | 2710 | 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA); | 
 | 2711 | 		journal = EXT4_JOURNAL(inode); | 
 | 2712 | 		jbd2_journal_lock_updates(journal); | 
 | 2713 | 		err = jbd2_journal_flush(journal); | 
 | 2714 | 		jbd2_journal_unlock_updates(journal); | 
 | 2715 |  | 
 | 2716 | 		if (err) | 
 | 2717 | 			return 0; | 
 | 2718 | 	} | 
 | 2719 |  | 
 | 2720 | 	return generic_block_bmap(mapping, block, ext4_get_block); | 
 | 2721 | } | 
 | 2722 |  | 
 | 2723 | static int ext4_readpage(struct file *file, struct page *page) | 
 | 2724 | { | 
 | 2725 | 	trace_ext4_readpage(page); | 
 | 2726 | 	return mpage_readpage(page, ext4_get_block); | 
 | 2727 | } | 
 | 2728 |  | 
 | 2729 | static int | 
 | 2730 | ext4_readpages(struct file *file, struct address_space *mapping, | 
 | 2731 | 		struct list_head *pages, unsigned nr_pages) | 
 | 2732 | { | 
 | 2733 | 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); | 
 | 2734 | } | 
 | 2735 |  | 
 | 2736 | static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset) | 
 | 2737 | { | 
 | 2738 | 	struct buffer_head *head, *bh; | 
 | 2739 | 	unsigned int curr_off = 0; | 
 | 2740 |  | 
 | 2741 | 	if (!page_has_buffers(page)) | 
 | 2742 | 		return; | 
 | 2743 | 	head = bh = page_buffers(page); | 
 | 2744 | 	do { | 
 | 2745 | 		if (offset <= curr_off && test_clear_buffer_uninit(bh) | 
 | 2746 | 					&& bh->b_private) { | 
 | 2747 | 			ext4_free_io_end(bh->b_private); | 
 | 2748 | 			bh->b_private = NULL; | 
 | 2749 | 			bh->b_end_io = NULL; | 
 | 2750 | 		} | 
 | 2751 | 		curr_off = curr_off + bh->b_size; | 
 | 2752 | 		bh = bh->b_this_page; | 
 | 2753 | 	} while (bh != head); | 
 | 2754 | } | 
 | 2755 |  | 
 | 2756 | static void ext4_invalidatepage(struct page *page, unsigned long offset) | 
 | 2757 | { | 
 | 2758 | 	journal_t *journal = EXT4_JOURNAL(page->mapping->host); | 
 | 2759 |  | 
 | 2760 | 	trace_ext4_invalidatepage(page, offset); | 
 | 2761 |  | 
 | 2762 | 	/* | 
 | 2763 | 	 * free any io_end structure allocated for buffers to be discarded | 
 | 2764 | 	 */ | 
 | 2765 | 	if (ext4_should_dioread_nolock(page->mapping->host)) | 
 | 2766 | 		ext4_invalidatepage_free_endio(page, offset); | 
 | 2767 | 	/* | 
 | 2768 | 	 * If it's a full truncate we just forget about the pending dirtying | 
 | 2769 | 	 */ | 
 | 2770 | 	if (offset == 0) | 
 | 2771 | 		ClearPageChecked(page); | 
 | 2772 |  | 
 | 2773 | 	if (journal) | 
 | 2774 | 		jbd2_journal_invalidatepage(journal, page, offset); | 
 | 2775 | 	else | 
 | 2776 | 		block_invalidatepage(page, offset); | 
 | 2777 | } | 
 | 2778 |  | 
 | 2779 | static int ext4_releasepage(struct page *page, gfp_t wait) | 
 | 2780 | { | 
 | 2781 | 	journal_t *journal = EXT4_JOURNAL(page->mapping->host); | 
 | 2782 |  | 
 | 2783 | 	trace_ext4_releasepage(page); | 
 | 2784 |  | 
 | 2785 | 	WARN_ON(PageChecked(page)); | 
 | 2786 | 	if (!page_has_buffers(page)) | 
 | 2787 | 		return 0; | 
 | 2788 | 	if (journal) | 
 | 2789 | 		return jbd2_journal_try_to_free_buffers(journal, page, wait); | 
 | 2790 | 	else | 
 | 2791 | 		return try_to_free_buffers(page); | 
 | 2792 | } | 
 | 2793 |  | 
 | 2794 | /* | 
 | 2795 |  * ext4_get_block used when preparing for a DIO write or buffer write. | 
 | 2796 |  * We allocate an uinitialized extent if blocks haven't been allocated. | 
 | 2797 |  * The extent will be converted to initialized after the IO is complete. | 
 | 2798 |  */ | 
 | 2799 | static int ext4_get_block_write(struct inode *inode, sector_t iblock, | 
 | 2800 | 		   struct buffer_head *bh_result, int create) | 
 | 2801 | { | 
 | 2802 | 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", | 
 | 2803 | 		   inode->i_ino, create); | 
 | 2804 | 	return _ext4_get_block(inode, iblock, bh_result, | 
 | 2805 | 			       EXT4_GET_BLOCKS_IO_CREATE_EXT); | 
 | 2806 | } | 
 | 2807 |  | 
 | 2808 | static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, | 
 | 2809 | 			    ssize_t size, void *private, int ret, | 
 | 2810 | 			    bool is_async) | 
 | 2811 | { | 
 | 2812 | 	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode; | 
 | 2813 |         ext4_io_end_t *io_end = iocb->private; | 
 | 2814 | 	struct workqueue_struct *wq; | 
 | 2815 | 	unsigned long flags; | 
 | 2816 | 	struct ext4_inode_info *ei; | 
 | 2817 |  | 
 | 2818 | 	/* if not async direct IO or dio with 0 bytes write, just return */ | 
 | 2819 | 	if (!io_end || !size) | 
 | 2820 | 		goto out; | 
 | 2821 |  | 
 | 2822 | 	ext_debug("ext4_end_io_dio(): io_end 0x%p " | 
 | 2823 | 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", | 
 | 2824 |  		  iocb->private, io_end->inode->i_ino, iocb, offset, | 
 | 2825 | 		  size); | 
 | 2826 |  | 
 | 2827 | 	iocb->private = NULL; | 
 | 2828 |  | 
 | 2829 | 	/* if not aio dio with unwritten extents, just free io and return */ | 
 | 2830 | 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { | 
 | 2831 | 		ext4_free_io_end(io_end); | 
 | 2832 | out: | 
 | 2833 | 		inode_dio_done(inode); | 
 | 2834 | 		if (is_async) | 
 | 2835 | 			aio_complete(iocb, ret, 0); | 
 | 2836 | 		return; | 
 | 2837 | 	} | 
 | 2838 |  | 
 | 2839 | 	io_end->offset = offset; | 
 | 2840 | 	io_end->size = size; | 
 | 2841 | 	if (is_async) { | 
 | 2842 | 		io_end->iocb = iocb; | 
 | 2843 | 		io_end->result = ret; | 
 | 2844 | 	} | 
 | 2845 | 	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; | 
 | 2846 |  | 
 | 2847 | 	/* Add the io_end to per-inode completed aio dio list*/ | 
 | 2848 | 	ei = EXT4_I(io_end->inode); | 
 | 2849 | 	spin_lock_irqsave(&ei->i_completed_io_lock, flags); | 
 | 2850 | 	list_add_tail(&io_end->list, &ei->i_completed_io_list); | 
 | 2851 | 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); | 
 | 2852 |  | 
 | 2853 | 	/* queue the work to convert unwritten extents to written */ | 
 | 2854 | 	queue_work(wq, &io_end->work); | 
 | 2855 | } | 
 | 2856 |  | 
 | 2857 | static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate) | 
 | 2858 | { | 
 | 2859 | 	ext4_io_end_t *io_end = bh->b_private; | 
 | 2860 | 	struct workqueue_struct *wq; | 
 | 2861 | 	struct inode *inode; | 
 | 2862 | 	unsigned long flags; | 
 | 2863 |  | 
 | 2864 | 	if (!test_clear_buffer_uninit(bh) || !io_end) | 
 | 2865 | 		goto out; | 
 | 2866 |  | 
 | 2867 | 	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) { | 
 | 2868 | 		ext4_msg(io_end->inode->i_sb, KERN_INFO, | 
 | 2869 | 			 "sb umounted, discard end_io request for inode %lu", | 
 | 2870 | 			 io_end->inode->i_ino); | 
 | 2871 | 		ext4_free_io_end(io_end); | 
 | 2872 | 		goto out; | 
 | 2873 | 	} | 
 | 2874 |  | 
 | 2875 | 	/* | 
 | 2876 | 	 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now, | 
 | 2877 | 	 * but being more careful is always safe for the future change. | 
 | 2878 | 	 */ | 
 | 2879 | 	inode = io_end->inode; | 
 | 2880 | 	ext4_set_io_unwritten_flag(inode, io_end); | 
 | 2881 |  | 
 | 2882 | 	/* Add the io_end to per-inode completed io list*/ | 
 | 2883 | 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags); | 
 | 2884 | 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list); | 
 | 2885 | 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags); | 
 | 2886 |  | 
 | 2887 | 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq; | 
 | 2888 | 	/* queue the work to convert unwritten extents to written */ | 
 | 2889 | 	queue_work(wq, &io_end->work); | 
 | 2890 | out: | 
 | 2891 | 	bh->b_private = NULL; | 
 | 2892 | 	bh->b_end_io = NULL; | 
 | 2893 | 	clear_buffer_uninit(bh); | 
 | 2894 | 	end_buffer_async_write(bh, uptodate); | 
 | 2895 | } | 
 | 2896 |  | 
 | 2897 | static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode) | 
 | 2898 | { | 
 | 2899 | 	ext4_io_end_t *io_end; | 
 | 2900 | 	struct page *page = bh->b_page; | 
 | 2901 | 	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT; | 
 | 2902 | 	size_t size = bh->b_size; | 
 | 2903 |  | 
 | 2904 | retry: | 
 | 2905 | 	io_end = ext4_init_io_end(inode, GFP_ATOMIC); | 
 | 2906 | 	if (!io_end) { | 
 | 2907 | 		pr_warn_ratelimited("%s: allocation fail\n", __func__); | 
 | 2908 | 		schedule(); | 
 | 2909 | 		goto retry; | 
 | 2910 | 	} | 
 | 2911 | 	io_end->offset = offset; | 
 | 2912 | 	io_end->size = size; | 
 | 2913 | 	/* | 
 | 2914 | 	 * We need to hold a reference to the page to make sure it | 
 | 2915 | 	 * doesn't get evicted before ext4_end_io_work() has a chance | 
 | 2916 | 	 * to convert the extent from written to unwritten. | 
 | 2917 | 	 */ | 
 | 2918 | 	io_end->page = page; | 
 | 2919 | 	get_page(io_end->page); | 
 | 2920 |  | 
 | 2921 | 	bh->b_private = io_end; | 
 | 2922 | 	bh->b_end_io = ext4_end_io_buffer_write; | 
 | 2923 | 	return 0; | 
 | 2924 | } | 
 | 2925 |  | 
 | 2926 | /* | 
 | 2927 |  * For ext4 extent files, ext4 will do direct-io write to holes, | 
 | 2928 |  * preallocated extents, and those write extend the file, no need to | 
 | 2929 |  * fall back to buffered IO. | 
 | 2930 |  * | 
 | 2931 |  * For holes, we fallocate those blocks, mark them as uninitialized | 
 | 2932 |  * If those blocks were preallocated, we mark sure they are splited, but | 
 | 2933 |  * still keep the range to write as uninitialized. | 
 | 2934 |  * | 
 | 2935 |  * The unwrritten extents will be converted to written when DIO is completed. | 
 | 2936 |  * For async direct IO, since the IO may still pending when return, we | 
 | 2937 |  * set up an end_io call back function, which will do the conversion | 
 | 2938 |  * when async direct IO completed. | 
 | 2939 |  * | 
 | 2940 |  * If the O_DIRECT write will extend the file then add this inode to the | 
 | 2941 |  * orphan list.  So recovery will truncate it back to the original size | 
 | 2942 |  * if the machine crashes during the write. | 
 | 2943 |  * | 
 | 2944 |  */ | 
 | 2945 | static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, | 
 | 2946 | 			      const struct iovec *iov, loff_t offset, | 
 | 2947 | 			      unsigned long nr_segs) | 
 | 2948 | { | 
 | 2949 | 	struct file *file = iocb->ki_filp; | 
 | 2950 | 	struct inode *inode = file->f_mapping->host; | 
 | 2951 | 	ssize_t ret; | 
 | 2952 | 	size_t count = iov_length(iov, nr_segs); | 
 | 2953 |  | 
 | 2954 | 	loff_t final_size = offset + count; | 
 | 2955 | 	if (rw == WRITE && final_size <= inode->i_size) { | 
 | 2956 | 		/* | 
 | 2957 |  		 * We could direct write to holes and fallocate. | 
 | 2958 | 		 * | 
 | 2959 |  		 * Allocated blocks to fill the hole are marked as uninitialized | 
 | 2960 |  		 * to prevent parallel buffered read to expose the stale data | 
 | 2961 |  		 * before DIO complete the data IO. | 
 | 2962 | 		 * | 
 | 2963 |  		 * As to previously fallocated extents, ext4 get_block | 
 | 2964 |  		 * will just simply mark the buffer mapped but still | 
 | 2965 |  		 * keep the extents uninitialized. | 
 | 2966 |  		 * | 
 | 2967 | 		 * for non AIO case, we will convert those unwritten extents | 
 | 2968 | 		 * to written after return back from blockdev_direct_IO. | 
 | 2969 | 		 * | 
 | 2970 | 		 * for async DIO, the conversion needs to be defered when | 
 | 2971 | 		 * the IO is completed. The ext4 end_io callback function | 
 | 2972 | 		 * will be called to take care of the conversion work. | 
 | 2973 | 		 * Here for async case, we allocate an io_end structure to | 
 | 2974 | 		 * hook to the iocb. | 
 | 2975 |  		 */ | 
 | 2976 | 		iocb->private = NULL; | 
 | 2977 | 		EXT4_I(inode)->cur_aio_dio = NULL; | 
 | 2978 | 		if (!is_sync_kiocb(iocb)) { | 
 | 2979 | 			ext4_io_end_t *io_end = | 
 | 2980 | 				ext4_init_io_end(inode, GFP_NOFS); | 
 | 2981 | 			if (!io_end) | 
 | 2982 | 				return -ENOMEM; | 
 | 2983 | 			io_end->flag |= EXT4_IO_END_DIRECT; | 
 | 2984 | 			iocb->private = io_end; | 
 | 2985 | 			/* | 
 | 2986 | 			 * we save the io structure for current async | 
 | 2987 | 			 * direct IO, so that later ext4_map_blocks() | 
 | 2988 | 			 * could flag the io structure whether there | 
 | 2989 | 			 * is a unwritten extents needs to be converted | 
 | 2990 | 			 * when IO is completed. | 
 | 2991 | 			 */ | 
 | 2992 | 			EXT4_I(inode)->cur_aio_dio = iocb->private; | 
 | 2993 | 		} | 
 | 2994 |  | 
 | 2995 | 		ret = __blockdev_direct_IO(rw, iocb, inode, | 
 | 2996 | 					 inode->i_sb->s_bdev, iov, | 
 | 2997 | 					 offset, nr_segs, | 
 | 2998 | 					 ext4_get_block_write, | 
 | 2999 | 					 ext4_end_io_dio, | 
 | 3000 | 					 NULL, | 
 | 3001 | 					 DIO_LOCKING); | 
 | 3002 | 		if (iocb->private) | 
 | 3003 | 			EXT4_I(inode)->cur_aio_dio = NULL; | 
 | 3004 | 		/* | 
 | 3005 | 		 * The io_end structure takes a reference to the inode, | 
 | 3006 | 		 * that structure needs to be destroyed and the | 
 | 3007 | 		 * reference to the inode need to be dropped, when IO is | 
 | 3008 | 		 * complete, even with 0 byte write, or failed. | 
 | 3009 | 		 * | 
 | 3010 | 		 * In the successful AIO DIO case, the io_end structure will be | 
 | 3011 | 		 * desctroyed and the reference to the inode will be dropped | 
 | 3012 | 		 * after the end_io call back function is called. | 
 | 3013 | 		 * | 
 | 3014 | 		 * In the case there is 0 byte write, or error case, since | 
 | 3015 | 		 * VFS direct IO won't invoke the end_io call back function, | 
 | 3016 | 		 * we need to free the end_io structure here. | 
 | 3017 | 		 */ | 
 | 3018 | 		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) { | 
 | 3019 | 			ext4_free_io_end(iocb->private); | 
 | 3020 | 			iocb->private = NULL; | 
 | 3021 | 		} else if (ret > 0 && ext4_test_inode_state(inode, | 
 | 3022 | 						EXT4_STATE_DIO_UNWRITTEN)) { | 
 | 3023 | 			int err; | 
 | 3024 | 			/* | 
 | 3025 | 			 * for non AIO case, since the IO is already | 
 | 3026 | 			 * completed, we could do the conversion right here | 
 | 3027 | 			 */ | 
 | 3028 | 			err = ext4_convert_unwritten_extents(inode, | 
 | 3029 | 							     offset, ret); | 
 | 3030 | 			if (err < 0) | 
 | 3031 | 				ret = err; | 
 | 3032 | 			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); | 
 | 3033 | 		} | 
 | 3034 | 		return ret; | 
 | 3035 | 	} | 
 | 3036 |  | 
 | 3037 | 	/* for write the the end of file case, we fall back to old way */ | 
 | 3038 | 	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); | 
 | 3039 | } | 
 | 3040 |  | 
 | 3041 | static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, | 
 | 3042 | 			      const struct iovec *iov, loff_t offset, | 
 | 3043 | 			      unsigned long nr_segs) | 
 | 3044 | { | 
 | 3045 | 	struct file *file = iocb->ki_filp; | 
 | 3046 | 	struct inode *inode = file->f_mapping->host; | 
 | 3047 | 	ssize_t ret; | 
 | 3048 |  | 
 | 3049 | 	/* | 
 | 3050 | 	 * If we are doing data journalling we don't support O_DIRECT | 
 | 3051 | 	 */ | 
 | 3052 | 	if (ext4_should_journal_data(inode)) | 
 | 3053 | 		return 0; | 
 | 3054 |  | 
 | 3055 | 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); | 
 | 3056 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 3057 | 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); | 
 | 3058 | 	else | 
 | 3059 | 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); | 
 | 3060 | 	trace_ext4_direct_IO_exit(inode, offset, | 
 | 3061 | 				iov_length(iov, nr_segs), rw, ret); | 
 | 3062 | 	return ret; | 
 | 3063 | } | 
 | 3064 |  | 
 | 3065 | /* | 
 | 3066 |  * Pages can be marked dirty completely asynchronously from ext4's journalling | 
 | 3067 |  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do | 
 | 3068 |  * much here because ->set_page_dirty is called under VFS locks.  The page is | 
 | 3069 |  * not necessarily locked. | 
 | 3070 |  * | 
 | 3071 |  * We cannot just dirty the page and leave attached buffers clean, because the | 
 | 3072 |  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty | 
 | 3073 |  * or jbddirty because all the journalling code will explode. | 
 | 3074 |  * | 
 | 3075 |  * So what we do is to mark the page "pending dirty" and next time writepage | 
 | 3076 |  * is called, propagate that into the buffers appropriately. | 
 | 3077 |  */ | 
 | 3078 | static int ext4_journalled_set_page_dirty(struct page *page) | 
 | 3079 | { | 
 | 3080 | 	SetPageChecked(page); | 
 | 3081 | 	return __set_page_dirty_nobuffers(page); | 
 | 3082 | } | 
 | 3083 |  | 
 | 3084 | static const struct address_space_operations ext4_ordered_aops = { | 
 | 3085 | 	.readpage		= ext4_readpage, | 
 | 3086 | 	.readpages		= ext4_readpages, | 
 | 3087 | 	.writepage		= ext4_writepage, | 
 | 3088 | 	.write_begin		= ext4_write_begin, | 
 | 3089 | 	.write_end		= ext4_ordered_write_end, | 
 | 3090 | 	.bmap			= ext4_bmap, | 
 | 3091 | 	.invalidatepage		= ext4_invalidatepage, | 
 | 3092 | 	.releasepage		= ext4_releasepage, | 
 | 3093 | 	.direct_IO		= ext4_direct_IO, | 
 | 3094 | 	.migratepage		= buffer_migrate_page, | 
 | 3095 | 	.is_partially_uptodate  = block_is_partially_uptodate, | 
 | 3096 | 	.error_remove_page	= generic_error_remove_page, | 
 | 3097 | }; | 
 | 3098 |  | 
 | 3099 | static const struct address_space_operations ext4_writeback_aops = { | 
 | 3100 | 	.readpage		= ext4_readpage, | 
 | 3101 | 	.readpages		= ext4_readpages, | 
 | 3102 | 	.writepage		= ext4_writepage, | 
 | 3103 | 	.write_begin		= ext4_write_begin, | 
 | 3104 | 	.write_end		= ext4_writeback_write_end, | 
 | 3105 | 	.bmap			= ext4_bmap, | 
 | 3106 | 	.invalidatepage		= ext4_invalidatepage, | 
 | 3107 | 	.releasepage		= ext4_releasepage, | 
 | 3108 | 	.direct_IO		= ext4_direct_IO, | 
 | 3109 | 	.migratepage		= buffer_migrate_page, | 
 | 3110 | 	.is_partially_uptodate  = block_is_partially_uptodate, | 
 | 3111 | 	.error_remove_page	= generic_error_remove_page, | 
 | 3112 | }; | 
 | 3113 |  | 
 | 3114 | static const struct address_space_operations ext4_journalled_aops = { | 
 | 3115 | 	.readpage		= ext4_readpage, | 
 | 3116 | 	.readpages		= ext4_readpages, | 
 | 3117 | 	.writepage		= ext4_writepage, | 
 | 3118 | 	.write_begin		= ext4_write_begin, | 
 | 3119 | 	.write_end		= ext4_journalled_write_end, | 
 | 3120 | 	.set_page_dirty		= ext4_journalled_set_page_dirty, | 
 | 3121 | 	.bmap			= ext4_bmap, | 
 | 3122 | 	.invalidatepage		= ext4_invalidatepage, | 
 | 3123 | 	.releasepage		= ext4_releasepage, | 
 | 3124 | 	.direct_IO		= ext4_direct_IO, | 
 | 3125 | 	.is_partially_uptodate  = block_is_partially_uptodate, | 
 | 3126 | 	.error_remove_page	= generic_error_remove_page, | 
 | 3127 | }; | 
 | 3128 |  | 
 | 3129 | static const struct address_space_operations ext4_da_aops = { | 
 | 3130 | 	.readpage		= ext4_readpage, | 
 | 3131 | 	.readpages		= ext4_readpages, | 
 | 3132 | 	.writepage		= ext4_writepage, | 
 | 3133 | 	.writepages		= ext4_da_writepages, | 
 | 3134 | 	.write_begin		= ext4_da_write_begin, | 
 | 3135 | 	.write_end		= ext4_da_write_end, | 
 | 3136 | 	.bmap			= ext4_bmap, | 
 | 3137 | 	.invalidatepage		= ext4_da_invalidatepage, | 
 | 3138 | 	.releasepage		= ext4_releasepage, | 
 | 3139 | 	.direct_IO		= ext4_direct_IO, | 
 | 3140 | 	.migratepage		= buffer_migrate_page, | 
 | 3141 | 	.is_partially_uptodate  = block_is_partially_uptodate, | 
 | 3142 | 	.error_remove_page	= generic_error_remove_page, | 
 | 3143 | }; | 
 | 3144 |  | 
 | 3145 | void ext4_set_aops(struct inode *inode) | 
 | 3146 | { | 
 | 3147 | 	switch (ext4_inode_journal_mode(inode)) { | 
 | 3148 | 	case EXT4_INODE_ORDERED_DATA_MODE: | 
 | 3149 | 		if (test_opt(inode->i_sb, DELALLOC)) | 
 | 3150 | 			inode->i_mapping->a_ops = &ext4_da_aops; | 
 | 3151 | 		else | 
 | 3152 | 			inode->i_mapping->a_ops = &ext4_ordered_aops; | 
 | 3153 | 		break; | 
 | 3154 | 	case EXT4_INODE_WRITEBACK_DATA_MODE: | 
 | 3155 | 		if (test_opt(inode->i_sb, DELALLOC)) | 
 | 3156 | 			inode->i_mapping->a_ops = &ext4_da_aops; | 
 | 3157 | 		else | 
 | 3158 | 			inode->i_mapping->a_ops = &ext4_writeback_aops; | 
 | 3159 | 		break; | 
 | 3160 | 	case EXT4_INODE_JOURNAL_DATA_MODE: | 
 | 3161 | 		inode->i_mapping->a_ops = &ext4_journalled_aops; | 
 | 3162 | 		break; | 
 | 3163 | 	default: | 
 | 3164 | 		BUG(); | 
 | 3165 | 	} | 
 | 3166 | } | 
 | 3167 |  | 
 | 3168 |  | 
 | 3169 | /* | 
 | 3170 |  * ext4_discard_partial_page_buffers() | 
 | 3171 |  * Wrapper function for ext4_discard_partial_page_buffers_no_lock. | 
 | 3172 |  * This function finds and locks the page containing the offset | 
 | 3173 |  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. | 
 | 3174 |  * Calling functions that already have the page locked should call | 
 | 3175 |  * ext4_discard_partial_page_buffers_no_lock directly. | 
 | 3176 |  */ | 
 | 3177 | int ext4_discard_partial_page_buffers(handle_t *handle, | 
 | 3178 | 		struct address_space *mapping, loff_t from, | 
 | 3179 | 		loff_t length, int flags) | 
 | 3180 | { | 
 | 3181 | 	struct inode *inode = mapping->host; | 
 | 3182 | 	struct page *page; | 
 | 3183 | 	int err = 0; | 
 | 3184 |  | 
 | 3185 | 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, | 
 | 3186 | 				   mapping_gfp_mask(mapping) & ~__GFP_FS); | 
 | 3187 | 	if (!page) | 
 | 3188 | 		return -ENOMEM; | 
 | 3189 |  | 
 | 3190 | 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, | 
 | 3191 | 		from, length, flags); | 
 | 3192 |  | 
 | 3193 | 	unlock_page(page); | 
 | 3194 | 	page_cache_release(page); | 
 | 3195 | 	return err; | 
 | 3196 | } | 
 | 3197 |  | 
 | 3198 | /* | 
 | 3199 |  * ext4_discard_partial_page_buffers_no_lock() | 
 | 3200 |  * Zeros a page range of length 'length' starting from offset 'from'. | 
 | 3201 |  * Buffer heads that correspond to the block aligned regions of the | 
 | 3202 |  * zeroed range will be unmapped.  Unblock aligned regions | 
 | 3203 |  * will have the corresponding buffer head mapped if needed so that | 
 | 3204 |  * that region of the page can be updated with the partial zero out. | 
 | 3205 |  * | 
 | 3206 |  * This function assumes that the page has already been  locked.  The | 
 | 3207 |  * The range to be discarded must be contained with in the given page. | 
 | 3208 |  * If the specified range exceeds the end of the page it will be shortened | 
 | 3209 |  * to the end of the page that corresponds to 'from'.  This function is | 
 | 3210 |  * appropriate for updating a page and it buffer heads to be unmapped and | 
 | 3211 |  * zeroed for blocks that have been either released, or are going to be | 
 | 3212 |  * released. | 
 | 3213 |  * | 
 | 3214 |  * handle: The journal handle | 
 | 3215 |  * inode:  The files inode | 
 | 3216 |  * page:   A locked page that contains the offset "from" | 
 | 3217 |  * from:   The starting byte offset (from the begining of the file) | 
 | 3218 |  *         to begin discarding | 
 | 3219 |  * len:    The length of bytes to discard | 
 | 3220 |  * flags:  Optional flags that may be used: | 
 | 3221 |  * | 
 | 3222 |  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED | 
 | 3223 |  *         Only zero the regions of the page whose buffer heads | 
 | 3224 |  *         have already been unmapped.  This flag is appropriate | 
 | 3225 |  *         for updateing the contents of a page whose blocks may | 
 | 3226 |  *         have already been released, and we only want to zero | 
 | 3227 |  *         out the regions that correspond to those released blocks. | 
 | 3228 |  * | 
 | 3229 |  * Returns zero on sucess or negative on failure. | 
 | 3230 |  */ | 
 | 3231 | static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, | 
 | 3232 | 		struct inode *inode, struct page *page, loff_t from, | 
 | 3233 | 		loff_t length, int flags) | 
 | 3234 | { | 
 | 3235 | 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; | 
 | 3236 | 	unsigned int offset = from & (PAGE_CACHE_SIZE-1); | 
 | 3237 | 	unsigned int blocksize, max, pos; | 
 | 3238 | 	ext4_lblk_t iblock; | 
 | 3239 | 	struct buffer_head *bh; | 
 | 3240 | 	int err = 0; | 
 | 3241 |  | 
 | 3242 | 	blocksize = inode->i_sb->s_blocksize; | 
 | 3243 | 	max = PAGE_CACHE_SIZE - offset; | 
 | 3244 |  | 
 | 3245 | 	if (index != page->index) | 
 | 3246 | 		return -EINVAL; | 
 | 3247 |  | 
 | 3248 | 	/* | 
 | 3249 | 	 * correct length if it does not fall between | 
 | 3250 | 	 * 'from' and the end of the page | 
 | 3251 | 	 */ | 
 | 3252 | 	if (length > max || length < 0) | 
 | 3253 | 		length = max; | 
 | 3254 |  | 
 | 3255 | 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); | 
 | 3256 |  | 
 | 3257 | 	if (!page_has_buffers(page)) | 
 | 3258 | 		create_empty_buffers(page, blocksize, 0); | 
 | 3259 |  | 
 | 3260 | 	/* Find the buffer that contains "offset" */ | 
 | 3261 | 	bh = page_buffers(page); | 
 | 3262 | 	pos = blocksize; | 
 | 3263 | 	while (offset >= pos) { | 
 | 3264 | 		bh = bh->b_this_page; | 
 | 3265 | 		iblock++; | 
 | 3266 | 		pos += blocksize; | 
 | 3267 | 	} | 
 | 3268 |  | 
 | 3269 | 	pos = offset; | 
 | 3270 | 	while (pos < offset + length) { | 
 | 3271 | 		unsigned int end_of_block, range_to_discard; | 
 | 3272 |  | 
 | 3273 | 		err = 0; | 
 | 3274 |  | 
 | 3275 | 		/* The length of space left to zero and unmap */ | 
 | 3276 | 		range_to_discard = offset + length - pos; | 
 | 3277 |  | 
 | 3278 | 		/* The length of space until the end of the block */ | 
 | 3279 | 		end_of_block = blocksize - (pos & (blocksize-1)); | 
 | 3280 |  | 
 | 3281 | 		/* | 
 | 3282 | 		 * Do not unmap or zero past end of block | 
 | 3283 | 		 * for this buffer head | 
 | 3284 | 		 */ | 
 | 3285 | 		if (range_to_discard > end_of_block) | 
 | 3286 | 			range_to_discard = end_of_block; | 
 | 3287 |  | 
 | 3288 |  | 
 | 3289 | 		/* | 
 | 3290 | 		 * Skip this buffer head if we are only zeroing unampped | 
 | 3291 | 		 * regions of the page | 
 | 3292 | 		 */ | 
 | 3293 | 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && | 
 | 3294 | 			buffer_mapped(bh)) | 
 | 3295 | 				goto next; | 
 | 3296 |  | 
 | 3297 | 		/* If the range is block aligned, unmap */ | 
 | 3298 | 		if (range_to_discard == blocksize) { | 
 | 3299 | 			clear_buffer_dirty(bh); | 
 | 3300 | 			bh->b_bdev = NULL; | 
 | 3301 | 			clear_buffer_mapped(bh); | 
 | 3302 | 			clear_buffer_req(bh); | 
 | 3303 | 			clear_buffer_new(bh); | 
 | 3304 | 			clear_buffer_delay(bh); | 
 | 3305 | 			clear_buffer_unwritten(bh); | 
 | 3306 | 			clear_buffer_uptodate(bh); | 
 | 3307 | 			zero_user(page, pos, range_to_discard); | 
 | 3308 | 			BUFFER_TRACE(bh, "Buffer discarded"); | 
 | 3309 | 			goto next; | 
 | 3310 | 		} | 
 | 3311 |  | 
 | 3312 | 		/* | 
 | 3313 | 		 * If this block is not completely contained in the range | 
 | 3314 | 		 * to be discarded, then it is not going to be released. Because | 
 | 3315 | 		 * we need to keep this block, we need to make sure this part | 
 | 3316 | 		 * of the page is uptodate before we modify it by writeing | 
 | 3317 | 		 * partial zeros on it. | 
 | 3318 | 		 */ | 
 | 3319 | 		if (!buffer_mapped(bh)) { | 
 | 3320 | 			/* | 
 | 3321 | 			 * Buffer head must be mapped before we can read | 
 | 3322 | 			 * from the block | 
 | 3323 | 			 */ | 
 | 3324 | 			BUFFER_TRACE(bh, "unmapped"); | 
 | 3325 | 			ext4_get_block(inode, iblock, bh, 0); | 
 | 3326 | 			/* unmapped? It's a hole - nothing to do */ | 
 | 3327 | 			if (!buffer_mapped(bh)) { | 
 | 3328 | 				BUFFER_TRACE(bh, "still unmapped"); | 
 | 3329 | 				goto next; | 
 | 3330 | 			} | 
 | 3331 | 		} | 
 | 3332 |  | 
 | 3333 | 		/* Ok, it's mapped. Make sure it's up-to-date */ | 
 | 3334 | 		if (PageUptodate(page)) | 
 | 3335 | 			set_buffer_uptodate(bh); | 
 | 3336 |  | 
 | 3337 | 		if (!buffer_uptodate(bh)) { | 
 | 3338 | 			err = -EIO; | 
 | 3339 | 			ll_rw_block(READ, 1, &bh); | 
 | 3340 | 			wait_on_buffer(bh); | 
 | 3341 | 			/* Uhhuh. Read error. Complain and punt.*/ | 
 | 3342 | 			if (!buffer_uptodate(bh)) | 
 | 3343 | 				goto next; | 
 | 3344 | 		} | 
 | 3345 |  | 
 | 3346 | 		if (ext4_should_journal_data(inode)) { | 
 | 3347 | 			BUFFER_TRACE(bh, "get write access"); | 
 | 3348 | 			err = ext4_journal_get_write_access(handle, bh); | 
 | 3349 | 			if (err) | 
 | 3350 | 				goto next; | 
 | 3351 | 		} | 
 | 3352 |  | 
 | 3353 | 		zero_user(page, pos, range_to_discard); | 
 | 3354 |  | 
 | 3355 | 		err = 0; | 
 | 3356 | 		if (ext4_should_journal_data(inode)) { | 
 | 3357 | 			err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 3358 | 		} else | 
 | 3359 | 			mark_buffer_dirty(bh); | 
 | 3360 |  | 
 | 3361 | 		BUFFER_TRACE(bh, "Partial buffer zeroed"); | 
 | 3362 | next: | 
 | 3363 | 		bh = bh->b_this_page; | 
 | 3364 | 		iblock++; | 
 | 3365 | 		pos += range_to_discard; | 
 | 3366 | 	} | 
 | 3367 |  | 
 | 3368 | 	return err; | 
 | 3369 | } | 
 | 3370 |  | 
 | 3371 | int ext4_can_truncate(struct inode *inode) | 
 | 3372 | { | 
 | 3373 | 	if (S_ISREG(inode->i_mode)) | 
 | 3374 | 		return 1; | 
 | 3375 | 	if (S_ISDIR(inode->i_mode)) | 
 | 3376 | 		return 1; | 
 | 3377 | 	if (S_ISLNK(inode->i_mode)) | 
 | 3378 | 		return !ext4_inode_is_fast_symlink(inode); | 
 | 3379 | 	return 0; | 
 | 3380 | } | 
 | 3381 |  | 
 | 3382 | /* | 
 | 3383 |  * ext4_punch_hole: punches a hole in a file by releaseing the blocks | 
 | 3384 |  * associated with the given offset and length | 
 | 3385 |  * | 
 | 3386 |  * @inode:  File inode | 
 | 3387 |  * @offset: The offset where the hole will begin | 
 | 3388 |  * @len:    The length of the hole | 
 | 3389 |  * | 
 | 3390 |  * Returns: 0 on sucess or negative on failure | 
 | 3391 |  */ | 
 | 3392 |  | 
 | 3393 | int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) | 
 | 3394 | { | 
 | 3395 | 	struct inode *inode = file->f_path.dentry->d_inode; | 
 | 3396 | 	if (!S_ISREG(inode->i_mode)) | 
 | 3397 | 		return -EOPNOTSUPP; | 
 | 3398 |  | 
 | 3399 | 	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
 | 3400 | 		/* TODO: Add support for non extent hole punching */ | 
 | 3401 | 		return -EOPNOTSUPP; | 
 | 3402 | 	} | 
 | 3403 |  | 
 | 3404 | 	if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) { | 
 | 3405 | 		/* TODO: Add support for bigalloc file systems */ | 
 | 3406 | 		return -EOPNOTSUPP; | 
 | 3407 | 	} | 
 | 3408 |  | 
 | 3409 | 	return ext4_ext_punch_hole(file, offset, length); | 
 | 3410 | } | 
 | 3411 |  | 
 | 3412 | /* | 
 | 3413 |  * ext4_truncate() | 
 | 3414 |  * | 
 | 3415 |  * We block out ext4_get_block() block instantiations across the entire | 
 | 3416 |  * transaction, and VFS/VM ensures that ext4_truncate() cannot run | 
 | 3417 |  * simultaneously on behalf of the same inode. | 
 | 3418 |  * | 
 | 3419 |  * As we work through the truncate and commit bits of it to the journal there | 
 | 3420 |  * is one core, guiding principle: the file's tree must always be consistent on | 
 | 3421 |  * disk.  We must be able to restart the truncate after a crash. | 
 | 3422 |  * | 
 | 3423 |  * The file's tree may be transiently inconsistent in memory (although it | 
 | 3424 |  * probably isn't), but whenever we close off and commit a journal transaction, | 
 | 3425 |  * the contents of (the filesystem + the journal) must be consistent and | 
 | 3426 |  * restartable.  It's pretty simple, really: bottom up, right to left (although | 
 | 3427 |  * left-to-right works OK too). | 
 | 3428 |  * | 
 | 3429 |  * Note that at recovery time, journal replay occurs *before* the restart of | 
 | 3430 |  * truncate against the orphan inode list. | 
 | 3431 |  * | 
 | 3432 |  * The committed inode has the new, desired i_size (which is the same as | 
 | 3433 |  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see | 
 | 3434 |  * that this inode's truncate did not complete and it will again call | 
 | 3435 |  * ext4_truncate() to have another go.  So there will be instantiated blocks | 
 | 3436 |  * to the right of the truncation point in a crashed ext4 filesystem.  But | 
 | 3437 |  * that's fine - as long as they are linked from the inode, the post-crash | 
 | 3438 |  * ext4_truncate() run will find them and release them. | 
 | 3439 |  */ | 
 | 3440 | void ext4_truncate(struct inode *inode) | 
 | 3441 | { | 
 | 3442 | 	trace_ext4_truncate_enter(inode); | 
 | 3443 |  | 
 | 3444 | 	if (!ext4_can_truncate(inode)) | 
 | 3445 | 		return; | 
 | 3446 |  | 
 | 3447 | 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); | 
 | 3448 |  | 
 | 3449 | 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) | 
 | 3450 | 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); | 
 | 3451 |  | 
 | 3452 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 3453 | 		ext4_ext_truncate(inode); | 
 | 3454 | 	else | 
 | 3455 | 		ext4_ind_truncate(inode); | 
 | 3456 |  | 
 | 3457 | 	trace_ext4_truncate_exit(inode); | 
 | 3458 | } | 
 | 3459 |  | 
 | 3460 | /* | 
 | 3461 |  * ext4_get_inode_loc returns with an extra refcount against the inode's | 
 | 3462 |  * underlying buffer_head on success. If 'in_mem' is true, we have all | 
 | 3463 |  * data in memory that is needed to recreate the on-disk version of this | 
 | 3464 |  * inode. | 
 | 3465 |  */ | 
 | 3466 | static int __ext4_get_inode_loc(struct inode *inode, | 
 | 3467 | 				struct ext4_iloc *iloc, int in_mem) | 
 | 3468 | { | 
 | 3469 | 	struct ext4_group_desc	*gdp; | 
 | 3470 | 	struct buffer_head	*bh; | 
 | 3471 | 	struct super_block	*sb = inode->i_sb; | 
 | 3472 | 	ext4_fsblk_t		block; | 
 | 3473 | 	int			inodes_per_block, inode_offset; | 
 | 3474 |  | 
 | 3475 | 	iloc->bh = NULL; | 
 | 3476 | 	if (!ext4_valid_inum(sb, inode->i_ino)) | 
 | 3477 | 		return -EIO; | 
 | 3478 |  | 
 | 3479 | 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); | 
 | 3480 | 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); | 
 | 3481 | 	if (!gdp) | 
 | 3482 | 		return -EIO; | 
 | 3483 |  | 
 | 3484 | 	/* | 
 | 3485 | 	 * Figure out the offset within the block group inode table | 
 | 3486 | 	 */ | 
 | 3487 | 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; | 
 | 3488 | 	inode_offset = ((inode->i_ino - 1) % | 
 | 3489 | 			EXT4_INODES_PER_GROUP(sb)); | 
 | 3490 | 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); | 
 | 3491 | 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); | 
 | 3492 |  | 
 | 3493 | 	bh = sb_getblk(sb, block); | 
 | 3494 | 	if (!bh) | 
 | 3495 | 		return -ENOMEM; | 
 | 3496 | 	if (!buffer_uptodate(bh)) { | 
 | 3497 | 		lock_buffer(bh); | 
 | 3498 |  | 
 | 3499 | 		/* | 
 | 3500 | 		 * If the buffer has the write error flag, we have failed | 
 | 3501 | 		 * to write out another inode in the same block.  In this | 
 | 3502 | 		 * case, we don't have to read the block because we may | 
 | 3503 | 		 * read the old inode data successfully. | 
 | 3504 | 		 */ | 
 | 3505 | 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) | 
 | 3506 | 			set_buffer_uptodate(bh); | 
 | 3507 |  | 
 | 3508 | 		if (buffer_uptodate(bh)) { | 
 | 3509 | 			/* someone brought it uptodate while we waited */ | 
 | 3510 | 			unlock_buffer(bh); | 
 | 3511 | 			goto has_buffer; | 
 | 3512 | 		} | 
 | 3513 |  | 
 | 3514 | 		/* | 
 | 3515 | 		 * If we have all information of the inode in memory and this | 
 | 3516 | 		 * is the only valid inode in the block, we need not read the | 
 | 3517 | 		 * block. | 
 | 3518 | 		 */ | 
 | 3519 | 		if (in_mem) { | 
 | 3520 | 			struct buffer_head *bitmap_bh; | 
 | 3521 | 			int i, start; | 
 | 3522 |  | 
 | 3523 | 			start = inode_offset & ~(inodes_per_block - 1); | 
 | 3524 |  | 
 | 3525 | 			/* Is the inode bitmap in cache? */ | 
 | 3526 | 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); | 
 | 3527 | 			if (!bitmap_bh) | 
 | 3528 | 				goto make_io; | 
 | 3529 |  | 
 | 3530 | 			/* | 
 | 3531 | 			 * If the inode bitmap isn't in cache then the | 
 | 3532 | 			 * optimisation may end up performing two reads instead | 
 | 3533 | 			 * of one, so skip it. | 
 | 3534 | 			 */ | 
 | 3535 | 			if (!buffer_uptodate(bitmap_bh)) { | 
 | 3536 | 				brelse(bitmap_bh); | 
 | 3537 | 				goto make_io; | 
 | 3538 | 			} | 
 | 3539 | 			for (i = start; i < start + inodes_per_block; i++) { | 
 | 3540 | 				if (i == inode_offset) | 
 | 3541 | 					continue; | 
 | 3542 | 				if (ext4_test_bit(i, bitmap_bh->b_data)) | 
 | 3543 | 					break; | 
 | 3544 | 			} | 
 | 3545 | 			brelse(bitmap_bh); | 
 | 3546 | 			if (i == start + inodes_per_block) { | 
 | 3547 | 				/* all other inodes are free, so skip I/O */ | 
 | 3548 | 				memset(bh->b_data, 0, bh->b_size); | 
 | 3549 | 				set_buffer_uptodate(bh); | 
 | 3550 | 				unlock_buffer(bh); | 
 | 3551 | 				goto has_buffer; | 
 | 3552 | 			} | 
 | 3553 | 		} | 
 | 3554 |  | 
 | 3555 | make_io: | 
 | 3556 | 		/* | 
 | 3557 | 		 * If we need to do any I/O, try to pre-readahead extra | 
 | 3558 | 		 * blocks from the inode table. | 
 | 3559 | 		 */ | 
 | 3560 | 		if (EXT4_SB(sb)->s_inode_readahead_blks) { | 
 | 3561 | 			ext4_fsblk_t b, end, table; | 
 | 3562 | 			unsigned num; | 
 | 3563 |  | 
 | 3564 | 			table = ext4_inode_table(sb, gdp); | 
 | 3565 | 			/* s_inode_readahead_blks is always a power of 2 */ | 
 | 3566 | 			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1); | 
 | 3567 | 			if (table > b) | 
 | 3568 | 				b = table; | 
 | 3569 | 			end = b + EXT4_SB(sb)->s_inode_readahead_blks; | 
 | 3570 | 			num = EXT4_INODES_PER_GROUP(sb); | 
 | 3571 | 			if (EXT4_HAS_RO_COMPAT_FEATURE(sb, | 
 | 3572 | 				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) | 
 | 3573 | 				num -= ext4_itable_unused_count(sb, gdp); | 
 | 3574 | 			table += num / inodes_per_block; | 
 | 3575 | 			if (end > table) | 
 | 3576 | 				end = table; | 
 | 3577 | 			while (b <= end) | 
 | 3578 | 				sb_breadahead(sb, b++); | 
 | 3579 | 		} | 
 | 3580 |  | 
 | 3581 | 		/* | 
 | 3582 | 		 * There are other valid inodes in the buffer, this inode | 
 | 3583 | 		 * has in-inode xattrs, or we don't have this inode in memory. | 
 | 3584 | 		 * Read the block from disk. | 
 | 3585 | 		 */ | 
 | 3586 | 		trace_ext4_load_inode(inode); | 
 | 3587 | 		get_bh(bh); | 
 | 3588 | 		bh->b_end_io = end_buffer_read_sync; | 
 | 3589 | 		submit_bh(READ | REQ_META | REQ_PRIO, bh); | 
 | 3590 | 		wait_on_buffer(bh); | 
 | 3591 | 		if (!buffer_uptodate(bh)) { | 
 | 3592 | 			EXT4_ERROR_INODE_BLOCK(inode, block, | 
 | 3593 | 					       "unable to read itable block"); | 
 | 3594 | 			brelse(bh); | 
 | 3595 | 			return -EIO; | 
 | 3596 | 		} | 
 | 3597 | 	} | 
 | 3598 | has_buffer: | 
 | 3599 | 	iloc->bh = bh; | 
 | 3600 | 	return 0; | 
 | 3601 | } | 
 | 3602 |  | 
 | 3603 | int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) | 
 | 3604 | { | 
 | 3605 | 	/* We have all inode data except xattrs in memory here. */ | 
 | 3606 | 	return __ext4_get_inode_loc(inode, iloc, | 
 | 3607 | 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR)); | 
 | 3608 | } | 
 | 3609 |  | 
 | 3610 | void ext4_set_inode_flags(struct inode *inode) | 
 | 3611 | { | 
 | 3612 | 	unsigned int flags = EXT4_I(inode)->i_flags; | 
 | 3613 | 	unsigned int new_fl = 0; | 
 | 3614 |  | 
 | 3615 | 	if (flags & EXT4_SYNC_FL) | 
 | 3616 | 		new_fl |= S_SYNC; | 
 | 3617 | 	if (flags & EXT4_APPEND_FL) | 
 | 3618 | 		new_fl |= S_APPEND; | 
 | 3619 | 	if (flags & EXT4_IMMUTABLE_FL) | 
 | 3620 | 		new_fl |= S_IMMUTABLE; | 
 | 3621 | 	if (flags & EXT4_NOATIME_FL) | 
 | 3622 | 		new_fl |= S_NOATIME; | 
 | 3623 | 	if (flags & EXT4_DIRSYNC_FL) | 
 | 3624 | 		new_fl |= S_DIRSYNC; | 
 | 3625 | 	set_mask_bits(&inode->i_flags, | 
 | 3626 | 		      S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl); | 
 | 3627 | } | 
 | 3628 |  | 
 | 3629 | /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ | 
 | 3630 | void ext4_get_inode_flags(struct ext4_inode_info *ei) | 
 | 3631 | { | 
 | 3632 | 	unsigned int vfs_fl; | 
 | 3633 | 	unsigned long old_fl, new_fl; | 
 | 3634 |  | 
 | 3635 | 	do { | 
 | 3636 | 		vfs_fl = ei->vfs_inode.i_flags; | 
 | 3637 | 		old_fl = ei->i_flags; | 
 | 3638 | 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| | 
 | 3639 | 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| | 
 | 3640 | 				EXT4_DIRSYNC_FL); | 
 | 3641 | 		if (vfs_fl & S_SYNC) | 
 | 3642 | 			new_fl |= EXT4_SYNC_FL; | 
 | 3643 | 		if (vfs_fl & S_APPEND) | 
 | 3644 | 			new_fl |= EXT4_APPEND_FL; | 
 | 3645 | 		if (vfs_fl & S_IMMUTABLE) | 
 | 3646 | 			new_fl |= EXT4_IMMUTABLE_FL; | 
 | 3647 | 		if (vfs_fl & S_NOATIME) | 
 | 3648 | 			new_fl |= EXT4_NOATIME_FL; | 
 | 3649 | 		if (vfs_fl & S_DIRSYNC) | 
 | 3650 | 			new_fl |= EXT4_DIRSYNC_FL; | 
 | 3651 | 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); | 
 | 3652 | } | 
 | 3653 |  | 
 | 3654 | static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, | 
 | 3655 | 				  struct ext4_inode_info *ei) | 
 | 3656 | { | 
 | 3657 | 	blkcnt_t i_blocks ; | 
 | 3658 | 	struct inode *inode = &(ei->vfs_inode); | 
 | 3659 | 	struct super_block *sb = inode->i_sb; | 
 | 3660 |  | 
 | 3661 | 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, | 
 | 3662 | 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { | 
 | 3663 | 		/* we are using combined 48 bit field */ | 
 | 3664 | 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | | 
 | 3665 | 					le32_to_cpu(raw_inode->i_blocks_lo); | 
 | 3666 | 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { | 
 | 3667 | 			/* i_blocks represent file system block size */ | 
 | 3668 | 			return i_blocks  << (inode->i_blkbits - 9); | 
 | 3669 | 		} else { | 
 | 3670 | 			return i_blocks; | 
 | 3671 | 		} | 
 | 3672 | 	} else { | 
 | 3673 | 		return le32_to_cpu(raw_inode->i_blocks_lo); | 
 | 3674 | 	} | 
 | 3675 | } | 
 | 3676 |  | 
 | 3677 | struct inode *ext4_iget(struct super_block *sb, unsigned long ino) | 
 | 3678 | { | 
 | 3679 | 	struct ext4_iloc iloc; | 
 | 3680 | 	struct ext4_inode *raw_inode; | 
 | 3681 | 	struct ext4_inode_info *ei; | 
 | 3682 | 	struct inode *inode; | 
 | 3683 | 	journal_t *journal = EXT4_SB(sb)->s_journal; | 
 | 3684 | 	long ret; | 
 | 3685 | 	int block; | 
 | 3686 |  | 
 | 3687 | 	inode = iget_locked(sb, ino); | 
 | 3688 | 	if (!inode) | 
 | 3689 | 		return ERR_PTR(-ENOMEM); | 
 | 3690 | 	if (!(inode->i_state & I_NEW)) | 
 | 3691 | 		return inode; | 
 | 3692 |  | 
 | 3693 | 	ei = EXT4_I(inode); | 
 | 3694 | 	iloc.bh = NULL; | 
 | 3695 |  | 
 | 3696 | 	ret = __ext4_get_inode_loc(inode, &iloc, 0); | 
 | 3697 | 	if (ret < 0) | 
 | 3698 | 		goto bad_inode; | 
 | 3699 | 	raw_inode = ext4_raw_inode(&iloc); | 
 | 3700 | 	inode->i_mode = le16_to_cpu(raw_inode->i_mode); | 
 | 3701 | 	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); | 
 | 3702 | 	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); | 
 | 3703 | 	if (!(test_opt(inode->i_sb, NO_UID32))) { | 
 | 3704 | 		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; | 
 | 3705 | 		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; | 
 | 3706 | 	} | 
 | 3707 | 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); | 
 | 3708 |  | 
 | 3709 | 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */ | 
 | 3710 | 	ei->i_dir_start_lookup = 0; | 
 | 3711 | 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); | 
 | 3712 | 	/* We now have enough fields to check if the inode was active or not. | 
 | 3713 | 	 * This is needed because nfsd might try to access dead inodes | 
 | 3714 | 	 * the test is that same one that e2fsck uses | 
 | 3715 | 	 * NeilBrown 1999oct15 | 
 | 3716 | 	 */ | 
 | 3717 | 	if (inode->i_nlink == 0) { | 
 | 3718 | 		if (inode->i_mode == 0 || | 
 | 3719 | 		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) { | 
 | 3720 | 			/* this inode is deleted */ | 
 | 3721 | 			ret = -ESTALE; | 
 | 3722 | 			goto bad_inode; | 
 | 3723 | 		} | 
 | 3724 | 		/* The only unlinked inodes we let through here have | 
 | 3725 | 		 * valid i_mode and are being read by the orphan | 
 | 3726 | 		 * recovery code: that's fine, we're about to complete | 
 | 3727 | 		 * the process of deleting those. */ | 
 | 3728 | 	} | 
 | 3729 | 	ei->i_flags = le32_to_cpu(raw_inode->i_flags); | 
 | 3730 | 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei); | 
 | 3731 | 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); | 
 | 3732 | 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) | 
 | 3733 | 		ei->i_file_acl |= | 
 | 3734 | 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; | 
 | 3735 | 	inode->i_size = ext4_isize(raw_inode); | 
 | 3736 | 	ei->i_disksize = inode->i_size; | 
 | 3737 | #ifdef CONFIG_QUOTA | 
 | 3738 | 	ei->i_reserved_quota = 0; | 
 | 3739 | #endif | 
 | 3740 | 	inode->i_generation = le32_to_cpu(raw_inode->i_generation); | 
 | 3741 | 	ei->i_block_group = iloc.block_group; | 
 | 3742 | 	ei->i_last_alloc_group = ~0; | 
 | 3743 | 	/* | 
 | 3744 | 	 * NOTE! The in-memory inode i_data array is in little-endian order | 
 | 3745 | 	 * even on big-endian machines: we do NOT byteswap the block numbers! | 
 | 3746 | 	 */ | 
 | 3747 | 	for (block = 0; block < EXT4_N_BLOCKS; block++) | 
 | 3748 | 		ei->i_data[block] = raw_inode->i_block[block]; | 
 | 3749 | 	INIT_LIST_HEAD(&ei->i_orphan); | 
 | 3750 |  | 
 | 3751 | 	/* | 
 | 3752 | 	 * Set transaction id's of transactions that have to be committed | 
 | 3753 | 	 * to finish f[data]sync. We set them to currently running transaction | 
 | 3754 | 	 * as we cannot be sure that the inode or some of its metadata isn't | 
 | 3755 | 	 * part of the transaction - the inode could have been reclaimed and | 
 | 3756 | 	 * now it is reread from disk. | 
 | 3757 | 	 */ | 
 | 3758 | 	if (journal) { | 
 | 3759 | 		transaction_t *transaction; | 
 | 3760 | 		tid_t tid; | 
 | 3761 |  | 
 | 3762 | 		read_lock(&journal->j_state_lock); | 
 | 3763 | 		if (journal->j_running_transaction) | 
 | 3764 | 			transaction = journal->j_running_transaction; | 
 | 3765 | 		else | 
 | 3766 | 			transaction = journal->j_committing_transaction; | 
 | 3767 | 		if (transaction) | 
 | 3768 | 			tid = transaction->t_tid; | 
 | 3769 | 		else | 
 | 3770 | 			tid = journal->j_commit_sequence; | 
 | 3771 | 		read_unlock(&journal->j_state_lock); | 
 | 3772 | 		ei->i_sync_tid = tid; | 
 | 3773 | 		ei->i_datasync_tid = tid; | 
 | 3774 | 	} | 
 | 3775 |  | 
 | 3776 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
 | 3777 | 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); | 
 | 3778 | 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > | 
 | 3779 | 		    EXT4_INODE_SIZE(inode->i_sb)) { | 
 | 3780 | 			ret = -EIO; | 
 | 3781 | 			goto bad_inode; | 
 | 3782 | 		} | 
 | 3783 | 		if (ei->i_extra_isize == 0) { | 
 | 3784 | 			/* The extra space is currently unused. Use it. */ | 
 | 3785 | 			ei->i_extra_isize = sizeof(struct ext4_inode) - | 
 | 3786 | 					    EXT4_GOOD_OLD_INODE_SIZE; | 
 | 3787 | 		} else { | 
 | 3788 | 			__le32 *magic = (void *)raw_inode + | 
 | 3789 | 					EXT4_GOOD_OLD_INODE_SIZE + | 
 | 3790 | 					ei->i_extra_isize; | 
 | 3791 | 			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) | 
 | 3792 | 				ext4_set_inode_state(inode, EXT4_STATE_XATTR); | 
 | 3793 | 		} | 
 | 3794 | 	} else | 
 | 3795 | 		ei->i_extra_isize = 0; | 
 | 3796 |  | 
 | 3797 | 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); | 
 | 3798 | 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); | 
 | 3799 | 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); | 
 | 3800 | 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); | 
 | 3801 |  | 
 | 3802 | 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version); | 
 | 3803 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
 | 3804 | 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) | 
 | 3805 | 			inode->i_version |= | 
 | 3806 | 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; | 
 | 3807 | 	} | 
 | 3808 |  | 
 | 3809 | 	ret = 0; | 
 | 3810 | 	if (ei->i_file_acl && | 
 | 3811 | 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { | 
 | 3812 | 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", | 
 | 3813 | 				 ei->i_file_acl); | 
 | 3814 | 		ret = -EIO; | 
 | 3815 | 		goto bad_inode; | 
 | 3816 | 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
 | 3817 | 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
 | 3818 | 		    (S_ISLNK(inode->i_mode) && | 
 | 3819 | 		     !ext4_inode_is_fast_symlink(inode))) | 
 | 3820 | 			/* Validate extent which is part of inode */ | 
 | 3821 | 			ret = ext4_ext_check_inode(inode); | 
 | 3822 | 	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
 | 3823 | 		   (S_ISLNK(inode->i_mode) && | 
 | 3824 | 		    !ext4_inode_is_fast_symlink(inode))) { | 
 | 3825 | 		/* Validate block references which are part of inode */ | 
 | 3826 | 		ret = ext4_ind_check_inode(inode); | 
 | 3827 | 	} | 
 | 3828 | 	if (ret) | 
 | 3829 | 		goto bad_inode; | 
 | 3830 |  | 
 | 3831 | 	if (S_ISREG(inode->i_mode)) { | 
 | 3832 | 		inode->i_op = &ext4_file_inode_operations; | 
 | 3833 | 		inode->i_fop = &ext4_file_operations; | 
 | 3834 | 		ext4_set_aops(inode); | 
 | 3835 | 	} else if (S_ISDIR(inode->i_mode)) { | 
 | 3836 | 		inode->i_op = &ext4_dir_inode_operations; | 
 | 3837 | 		inode->i_fop = &ext4_dir_operations; | 
 | 3838 | 	} else if (S_ISLNK(inode->i_mode)) { | 
 | 3839 | 		if (ext4_inode_is_fast_symlink(inode)) { | 
 | 3840 | 			inode->i_op = &ext4_fast_symlink_inode_operations; | 
 | 3841 | 			nd_terminate_link(ei->i_data, inode->i_size, | 
 | 3842 | 				sizeof(ei->i_data) - 1); | 
 | 3843 | 		} else { | 
 | 3844 | 			inode->i_op = &ext4_symlink_inode_operations; | 
 | 3845 | 			ext4_set_aops(inode); | 
 | 3846 | 		} | 
 | 3847 | 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || | 
 | 3848 | 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { | 
 | 3849 | 		inode->i_op = &ext4_special_inode_operations; | 
 | 3850 | 		if (raw_inode->i_block[0]) | 
 | 3851 | 			init_special_inode(inode, inode->i_mode, | 
 | 3852 | 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); | 
 | 3853 | 		else | 
 | 3854 | 			init_special_inode(inode, inode->i_mode, | 
 | 3855 | 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); | 
 | 3856 | 	} else { | 
 | 3857 | 		ret = -EIO; | 
 | 3858 | 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); | 
 | 3859 | 		goto bad_inode; | 
 | 3860 | 	} | 
 | 3861 | 	brelse(iloc.bh); | 
 | 3862 | 	ext4_set_inode_flags(inode); | 
 | 3863 | 	unlock_new_inode(inode); | 
 | 3864 | 	return inode; | 
 | 3865 |  | 
 | 3866 | bad_inode: | 
 | 3867 | 	brelse(iloc.bh); | 
 | 3868 | 	iget_failed(inode); | 
 | 3869 | 	return ERR_PTR(ret); | 
 | 3870 | } | 
 | 3871 |  | 
 | 3872 | struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) | 
 | 3873 | { | 
 | 3874 | 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) | 
 | 3875 | 		return ERR_PTR(-EIO); | 
 | 3876 | 	return ext4_iget(sb, ino); | 
 | 3877 | } | 
 | 3878 |  | 
 | 3879 | static int ext4_inode_blocks_set(handle_t *handle, | 
 | 3880 | 				struct ext4_inode *raw_inode, | 
 | 3881 | 				struct ext4_inode_info *ei) | 
 | 3882 | { | 
 | 3883 | 	struct inode *inode = &(ei->vfs_inode); | 
 | 3884 | 	u64 i_blocks = inode->i_blocks; | 
 | 3885 | 	struct super_block *sb = inode->i_sb; | 
 | 3886 |  | 
 | 3887 | 	if (i_blocks <= ~0U) { | 
 | 3888 | 		/* | 
 | 3889 | 		 * i_blocks can be represnted in a 32 bit variable | 
 | 3890 | 		 * as multiple of 512 bytes | 
 | 3891 | 		 */ | 
 | 3892 | 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
 | 3893 | 		raw_inode->i_blocks_high = 0; | 
 | 3894 | 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
 | 3895 | 		return 0; | 
 | 3896 | 	} | 
 | 3897 | 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) | 
 | 3898 | 		return -EFBIG; | 
 | 3899 |  | 
 | 3900 | 	if (i_blocks <= 0xffffffffffffULL) { | 
 | 3901 | 		/* | 
 | 3902 | 		 * i_blocks can be represented in a 48 bit variable | 
 | 3903 | 		 * as multiple of 512 bytes | 
 | 3904 | 		 */ | 
 | 3905 | 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
 | 3906 | 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); | 
 | 3907 | 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
 | 3908 | 	} else { | 
 | 3909 | 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
 | 3910 | 		/* i_block is stored in file system block size */ | 
 | 3911 | 		i_blocks = i_blocks >> (inode->i_blkbits - 9); | 
 | 3912 | 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
 | 3913 | 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); | 
 | 3914 | 	} | 
 | 3915 | 	return 0; | 
 | 3916 | } | 
 | 3917 |  | 
 | 3918 | /* | 
 | 3919 |  * Post the struct inode info into an on-disk inode location in the | 
 | 3920 |  * buffer-cache.  This gobbles the caller's reference to the | 
 | 3921 |  * buffer_head in the inode location struct. | 
 | 3922 |  * | 
 | 3923 |  * The caller must have write access to iloc->bh. | 
 | 3924 |  */ | 
 | 3925 | static int ext4_do_update_inode(handle_t *handle, | 
 | 3926 | 				struct inode *inode, | 
 | 3927 | 				struct ext4_iloc *iloc) | 
 | 3928 | { | 
 | 3929 | 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc); | 
 | 3930 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 3931 | 	struct buffer_head *bh = iloc->bh; | 
 | 3932 | 	int err = 0, rc, block; | 
 | 3933 | 	int need_datasync = 0; | 
 | 3934 |  | 
 | 3935 | 	/* For fields not not tracking in the in-memory inode, | 
 | 3936 | 	 * initialise them to zero for new inodes. */ | 
 | 3937 | 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) | 
 | 3938 | 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); | 
 | 3939 |  | 
 | 3940 | 	ext4_get_inode_flags(ei); | 
 | 3941 | 	raw_inode->i_mode = cpu_to_le16(inode->i_mode); | 
 | 3942 | 	if (!(test_opt(inode->i_sb, NO_UID32))) { | 
 | 3943 | 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid)); | 
 | 3944 | 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid)); | 
 | 3945 | /* | 
 | 3946 |  * Fix up interoperability with old kernels. Otherwise, old inodes get | 
 | 3947 |  * re-used with the upper 16 bits of the uid/gid intact | 
 | 3948 |  */ | 
 | 3949 | 		if (!ei->i_dtime) { | 
 | 3950 | 			raw_inode->i_uid_high = | 
 | 3951 | 				cpu_to_le16(high_16_bits(inode->i_uid)); | 
 | 3952 | 			raw_inode->i_gid_high = | 
 | 3953 | 				cpu_to_le16(high_16_bits(inode->i_gid)); | 
 | 3954 | 		} else { | 
 | 3955 | 			raw_inode->i_uid_high = 0; | 
 | 3956 | 			raw_inode->i_gid_high = 0; | 
 | 3957 | 		} | 
 | 3958 | 	} else { | 
 | 3959 | 		raw_inode->i_uid_low = | 
 | 3960 | 			cpu_to_le16(fs_high2lowuid(inode->i_uid)); | 
 | 3961 | 		raw_inode->i_gid_low = | 
 | 3962 | 			cpu_to_le16(fs_high2lowgid(inode->i_gid)); | 
 | 3963 | 		raw_inode->i_uid_high = 0; | 
 | 3964 | 		raw_inode->i_gid_high = 0; | 
 | 3965 | 	} | 
 | 3966 | 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); | 
 | 3967 |  | 
 | 3968 | 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); | 
 | 3969 | 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); | 
 | 3970 | 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); | 
 | 3971 | 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); | 
 | 3972 |  | 
 | 3973 | 	if (ext4_inode_blocks_set(handle, raw_inode, ei)) | 
 | 3974 | 		goto out_brelse; | 
 | 3975 | 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); | 
 | 3976 | 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); | 
 | 3977 | 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != | 
 | 3978 | 	    cpu_to_le32(EXT4_OS_HURD)) | 
 | 3979 | 		raw_inode->i_file_acl_high = | 
 | 3980 | 			cpu_to_le16(ei->i_file_acl >> 32); | 
 | 3981 | 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); | 
 | 3982 | 	if (ei->i_disksize != ext4_isize(raw_inode)) { | 
 | 3983 | 		ext4_isize_set(raw_inode, ei->i_disksize); | 
 | 3984 | 		need_datasync = 1; | 
 | 3985 | 	} | 
 | 3986 | 	if (ei->i_disksize > 0x7fffffffULL) { | 
 | 3987 | 		struct super_block *sb = inode->i_sb; | 
 | 3988 | 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, | 
 | 3989 | 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || | 
 | 3990 | 				EXT4_SB(sb)->s_es->s_rev_level == | 
 | 3991 | 				cpu_to_le32(EXT4_GOOD_OLD_REV)) { | 
 | 3992 | 			/* If this is the first large file | 
 | 3993 | 			 * created, add a flag to the superblock. | 
 | 3994 | 			 */ | 
 | 3995 | 			err = ext4_journal_get_write_access(handle, | 
 | 3996 | 					EXT4_SB(sb)->s_sbh); | 
 | 3997 | 			if (err) | 
 | 3998 | 				goto out_brelse; | 
 | 3999 | 			ext4_update_dynamic_rev(sb); | 
 | 4000 | 			EXT4_SET_RO_COMPAT_FEATURE(sb, | 
 | 4001 | 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE); | 
 | 4002 | 			ext4_handle_sync(handle); | 
 | 4003 | 			err = ext4_handle_dirty_super(handle, sb); | 
 | 4004 | 		} | 
 | 4005 | 	} | 
 | 4006 | 	raw_inode->i_generation = cpu_to_le32(inode->i_generation); | 
 | 4007 | 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { | 
 | 4008 | 		if (old_valid_dev(inode->i_rdev)) { | 
 | 4009 | 			raw_inode->i_block[0] = | 
 | 4010 | 				cpu_to_le32(old_encode_dev(inode->i_rdev)); | 
 | 4011 | 			raw_inode->i_block[1] = 0; | 
 | 4012 | 		} else { | 
 | 4013 | 			raw_inode->i_block[0] = 0; | 
 | 4014 | 			raw_inode->i_block[1] = | 
 | 4015 | 				cpu_to_le32(new_encode_dev(inode->i_rdev)); | 
 | 4016 | 			raw_inode->i_block[2] = 0; | 
 | 4017 | 		} | 
 | 4018 | 	} else | 
 | 4019 | 		for (block = 0; block < EXT4_N_BLOCKS; block++) | 
 | 4020 | 			raw_inode->i_block[block] = ei->i_data[block]; | 
 | 4021 |  | 
 | 4022 | 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version); | 
 | 4023 | 	if (ei->i_extra_isize) { | 
 | 4024 | 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) | 
 | 4025 | 			raw_inode->i_version_hi = | 
 | 4026 | 			cpu_to_le32(inode->i_version >> 32); | 
 | 4027 | 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); | 
 | 4028 | 	} | 
 | 4029 |  | 
 | 4030 | 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
 | 4031 | 	rc = ext4_handle_dirty_metadata(handle, NULL, bh); | 
 | 4032 | 	if (!err) | 
 | 4033 | 		err = rc; | 
 | 4034 | 	ext4_clear_inode_state(inode, EXT4_STATE_NEW); | 
 | 4035 |  | 
 | 4036 | 	ext4_update_inode_fsync_trans(handle, inode, need_datasync); | 
 | 4037 | out_brelse: | 
 | 4038 | 	brelse(bh); | 
 | 4039 | 	ext4_std_error(inode->i_sb, err); | 
 | 4040 | 	return err; | 
 | 4041 | } | 
 | 4042 |  | 
 | 4043 | /* | 
 | 4044 |  * ext4_write_inode() | 
 | 4045 |  * | 
 | 4046 |  * We are called from a few places: | 
 | 4047 |  * | 
 | 4048 |  * - Within generic_file_write() for O_SYNC files. | 
 | 4049 |  *   Here, there will be no transaction running. We wait for any running | 
 | 4050 |  *   trasnaction to commit. | 
 | 4051 |  * | 
 | 4052 |  * - Within sys_sync(), kupdate and such. | 
 | 4053 |  *   We wait on commit, if tol to. | 
 | 4054 |  * | 
 | 4055 |  * - Within prune_icache() (PF_MEMALLOC == true) | 
 | 4056 |  *   Here we simply return.  We can't afford to block kswapd on the | 
 | 4057 |  *   journal commit. | 
 | 4058 |  * | 
 | 4059 |  * In all cases it is actually safe for us to return without doing anything, | 
 | 4060 |  * because the inode has been copied into a raw inode buffer in | 
 | 4061 |  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for | 
 | 4062 |  * knfsd. | 
 | 4063 |  * | 
 | 4064 |  * Note that we are absolutely dependent upon all inode dirtiers doing the | 
 | 4065 |  * right thing: they *must* call mark_inode_dirty() after dirtying info in | 
 | 4066 |  * which we are interested. | 
 | 4067 |  * | 
 | 4068 |  * It would be a bug for them to not do this.  The code: | 
 | 4069 |  * | 
 | 4070 |  *	mark_inode_dirty(inode) | 
 | 4071 |  *	stuff(); | 
 | 4072 |  *	inode->i_size = expr; | 
 | 4073 |  * | 
 | 4074 |  * is in error because a kswapd-driven write_inode() could occur while | 
 | 4075 |  * `stuff()' is running, and the new i_size will be lost.  Plus the inode | 
 | 4076 |  * will no longer be on the superblock's dirty inode list. | 
 | 4077 |  */ | 
 | 4078 | int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) | 
 | 4079 | { | 
 | 4080 | 	int err; | 
 | 4081 |  | 
 | 4082 | 	if (current->flags & PF_MEMALLOC) | 
 | 4083 | 		return 0; | 
 | 4084 |  | 
 | 4085 | 	if (EXT4_SB(inode->i_sb)->s_journal) { | 
 | 4086 | 		if (ext4_journal_current_handle()) { | 
 | 4087 | 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); | 
 | 4088 | 			dump_stack(); | 
 | 4089 | 			return -EIO; | 
 | 4090 | 		} | 
 | 4091 |  | 
 | 4092 | 		if (wbc->sync_mode != WB_SYNC_ALL) | 
 | 4093 | 			return 0; | 
 | 4094 |  | 
 | 4095 | 		err = ext4_force_commit(inode->i_sb); | 
 | 4096 | 	} else { | 
 | 4097 | 		struct ext4_iloc iloc; | 
 | 4098 |  | 
 | 4099 | 		err = __ext4_get_inode_loc(inode, &iloc, 0); | 
 | 4100 | 		if (err) | 
 | 4101 | 			return err; | 
 | 4102 | 		if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 4103 | 			sync_dirty_buffer(iloc.bh); | 
 | 4104 | 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { | 
 | 4105 | 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, | 
 | 4106 | 					 "IO error syncing inode"); | 
 | 4107 | 			err = -EIO; | 
 | 4108 | 		} | 
 | 4109 | 		brelse(iloc.bh); | 
 | 4110 | 	} | 
 | 4111 | 	return err; | 
 | 4112 | } | 
 | 4113 |  | 
 | 4114 | /* | 
 | 4115 |  * ext4_setattr() | 
 | 4116 |  * | 
 | 4117 |  * Called from notify_change. | 
 | 4118 |  * | 
 | 4119 |  * We want to trap VFS attempts to truncate the file as soon as | 
 | 4120 |  * possible.  In particular, we want to make sure that when the VFS | 
 | 4121 |  * shrinks i_size, we put the inode on the orphan list and modify | 
 | 4122 |  * i_disksize immediately, so that during the subsequent flushing of | 
 | 4123 |  * dirty pages and freeing of disk blocks, we can guarantee that any | 
 | 4124 |  * commit will leave the blocks being flushed in an unused state on | 
 | 4125 |  * disk.  (On recovery, the inode will get truncated and the blocks will | 
 | 4126 |  * be freed, so we have a strong guarantee that no future commit will | 
 | 4127 |  * leave these blocks visible to the user.) | 
 | 4128 |  * | 
 | 4129 |  * Another thing we have to assure is that if we are in ordered mode | 
 | 4130 |  * and inode is still attached to the committing transaction, we must | 
 | 4131 |  * we start writeout of all the dirty pages which are being truncated. | 
 | 4132 |  * This way we are sure that all the data written in the previous | 
 | 4133 |  * transaction are already on disk (truncate waits for pages under | 
 | 4134 |  * writeback). | 
 | 4135 |  * | 
 | 4136 |  * Called with inode->i_mutex down. | 
 | 4137 |  */ | 
 | 4138 | int ext4_setattr(struct dentry *dentry, struct iattr *attr) | 
 | 4139 | { | 
 | 4140 | 	struct inode *inode = dentry->d_inode; | 
 | 4141 | 	int error, rc = 0; | 
 | 4142 | 	int orphan = 0; | 
 | 4143 | 	const unsigned int ia_valid = attr->ia_valid; | 
 | 4144 |  | 
 | 4145 | 	error = inode_change_ok(inode, attr); | 
 | 4146 | 	if (error) | 
 | 4147 | 		return error; | 
 | 4148 |  | 
 | 4149 | 	if (is_quota_modification(inode, attr)) | 
 | 4150 | 		dquot_initialize(inode); | 
 | 4151 | 	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || | 
 | 4152 | 		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { | 
 | 4153 | 		handle_t *handle; | 
 | 4154 |  | 
 | 4155 | 		/* (user+group)*(old+new) structure, inode write (sb, | 
 | 4156 | 		 * inode block, ? - but truncate inode update has it) */ | 
 | 4157 | 		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+ | 
 | 4158 | 					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3); | 
 | 4159 | 		if (IS_ERR(handle)) { | 
 | 4160 | 			error = PTR_ERR(handle); | 
 | 4161 | 			goto err_out; | 
 | 4162 | 		} | 
 | 4163 | 		error = dquot_transfer(inode, attr); | 
 | 4164 | 		if (error) { | 
 | 4165 | 			ext4_journal_stop(handle); | 
 | 4166 | 			return error; | 
 | 4167 | 		} | 
 | 4168 | 		/* Update corresponding info in inode so that everything is in | 
 | 4169 | 		 * one transaction */ | 
 | 4170 | 		if (attr->ia_valid & ATTR_UID) | 
 | 4171 | 			inode->i_uid = attr->ia_uid; | 
 | 4172 | 		if (attr->ia_valid & ATTR_GID) | 
 | 4173 | 			inode->i_gid = attr->ia_gid; | 
 | 4174 | 		error = ext4_mark_inode_dirty(handle, inode); | 
 | 4175 | 		ext4_journal_stop(handle); | 
 | 4176 | 	} | 
 | 4177 |  | 
 | 4178 | 	if (attr->ia_valid & ATTR_SIZE) { | 
 | 4179 | 		inode_dio_wait(inode); | 
 | 4180 |  | 
 | 4181 | 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { | 
 | 4182 | 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 4183 |  | 
 | 4184 | 			if (attr->ia_size > sbi->s_bitmap_maxbytes) | 
 | 4185 | 				return -EFBIG; | 
 | 4186 | 		} | 
 | 4187 | 	} | 
 | 4188 |  | 
 | 4189 | 	if (S_ISREG(inode->i_mode) && | 
 | 4190 | 	    attr->ia_valid & ATTR_SIZE && | 
 | 4191 | 	    (attr->ia_size < inode->i_size)) { | 
 | 4192 | 		handle_t *handle; | 
 | 4193 |  | 
 | 4194 | 		handle = ext4_journal_start(inode, 3); | 
 | 4195 | 		if (IS_ERR(handle)) { | 
 | 4196 | 			error = PTR_ERR(handle); | 
 | 4197 | 			goto err_out; | 
 | 4198 | 		} | 
 | 4199 | 		if (ext4_handle_valid(handle)) { | 
 | 4200 | 			error = ext4_orphan_add(handle, inode); | 
 | 4201 | 			orphan = 1; | 
 | 4202 | 		} | 
 | 4203 | 		EXT4_I(inode)->i_disksize = attr->ia_size; | 
 | 4204 | 		rc = ext4_mark_inode_dirty(handle, inode); | 
 | 4205 | 		if (!error) | 
 | 4206 | 			error = rc; | 
 | 4207 | 		ext4_journal_stop(handle); | 
 | 4208 |  | 
 | 4209 | 		if (ext4_should_order_data(inode)) { | 
 | 4210 | 			error = ext4_begin_ordered_truncate(inode, | 
 | 4211 | 							    attr->ia_size); | 
 | 4212 | 			if (error) { | 
 | 4213 | 				/* Do as much error cleanup as possible */ | 
 | 4214 | 				handle = ext4_journal_start(inode, 3); | 
 | 4215 | 				if (IS_ERR(handle)) { | 
 | 4216 | 					ext4_orphan_del(NULL, inode); | 
 | 4217 | 					goto err_out; | 
 | 4218 | 				} | 
 | 4219 | 				ext4_orphan_del(handle, inode); | 
 | 4220 | 				orphan = 0; | 
 | 4221 | 				ext4_journal_stop(handle); | 
 | 4222 | 				goto err_out; | 
 | 4223 | 			} | 
 | 4224 | 		} | 
 | 4225 | 	} | 
 | 4226 |  | 
 | 4227 | 	if (attr->ia_valid & ATTR_SIZE) { | 
 | 4228 | 		if (attr->ia_size != i_size_read(inode)) | 
 | 4229 | 			truncate_setsize(inode, attr->ia_size); | 
 | 4230 | 		ext4_truncate(inode); | 
 | 4231 | 	} | 
 | 4232 |  | 
 | 4233 | 	if (!rc) { | 
 | 4234 | 		setattr_copy(inode, attr); | 
 | 4235 | 		mark_inode_dirty(inode); | 
 | 4236 | 	} | 
 | 4237 |  | 
 | 4238 | 	/* | 
 | 4239 | 	 * If the call to ext4_truncate failed to get a transaction handle at | 
 | 4240 | 	 * all, we need to clean up the in-core orphan list manually. | 
 | 4241 | 	 */ | 
 | 4242 | 	if (orphan && inode->i_nlink) | 
 | 4243 | 		ext4_orphan_del(NULL, inode); | 
 | 4244 |  | 
 | 4245 | 	if (!rc && (ia_valid & ATTR_MODE)) | 
 | 4246 | 		rc = ext4_acl_chmod(inode); | 
 | 4247 |  | 
 | 4248 | err_out: | 
 | 4249 | 	ext4_std_error(inode->i_sb, error); | 
 | 4250 | 	if (!error) | 
 | 4251 | 		error = rc; | 
 | 4252 | 	return error; | 
 | 4253 | } | 
 | 4254 |  | 
 | 4255 | int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, | 
 | 4256 | 		 struct kstat *stat) | 
 | 4257 | { | 
 | 4258 | 	struct inode *inode; | 
 | 4259 | 	unsigned long long delalloc_blocks; | 
 | 4260 |  | 
 | 4261 | 	inode = dentry->d_inode; | 
 | 4262 | 	generic_fillattr(inode, stat); | 
 | 4263 |  | 
 | 4264 | 	/* | 
 | 4265 | 	 * We can't update i_blocks if the block allocation is delayed | 
 | 4266 | 	 * otherwise in the case of system crash before the real block | 
 | 4267 | 	 * allocation is done, we will have i_blocks inconsistent with | 
 | 4268 | 	 * on-disk file blocks. | 
 | 4269 | 	 * We always keep i_blocks updated together with real | 
 | 4270 | 	 * allocation. But to not confuse with user, stat | 
 | 4271 | 	 * will return the blocks that include the delayed allocation | 
 | 4272 | 	 * blocks for this file. | 
 | 4273 | 	 */ | 
 | 4274 | 	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks; | 
 | 4275 |  | 
 | 4276 | 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9); | 
 | 4277 | 	return 0; | 
 | 4278 | } | 
 | 4279 |  | 
 | 4280 | static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) | 
 | 4281 | { | 
 | 4282 | 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
 | 4283 | 		return ext4_ind_trans_blocks(inode, nrblocks, chunk); | 
 | 4284 | 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); | 
 | 4285 | } | 
 | 4286 |  | 
 | 4287 | /* | 
 | 4288 |  * Account for index blocks, block groups bitmaps and block group | 
 | 4289 |  * descriptor blocks if modify datablocks and index blocks | 
 | 4290 |  * worse case, the indexs blocks spread over different block groups | 
 | 4291 |  * | 
 | 4292 |  * If datablocks are discontiguous, they are possible to spread over | 
 | 4293 |  * different block groups too. If they are contiuguous, with flexbg, | 
 | 4294 |  * they could still across block group boundary. | 
 | 4295 |  * | 
 | 4296 |  * Also account for superblock, inode, quota and xattr blocks | 
 | 4297 |  */ | 
 | 4298 | static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) | 
 | 4299 | { | 
 | 4300 | 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); | 
 | 4301 | 	int gdpblocks; | 
 | 4302 | 	int idxblocks; | 
 | 4303 | 	int ret = 0; | 
 | 4304 |  | 
 | 4305 | 	/* | 
 | 4306 | 	 * How many index blocks need to touch to modify nrblocks? | 
 | 4307 | 	 * The "Chunk" flag indicating whether the nrblocks is | 
 | 4308 | 	 * physically contiguous on disk | 
 | 4309 | 	 * | 
 | 4310 | 	 * For Direct IO and fallocate, they calls get_block to allocate | 
 | 4311 | 	 * one single extent at a time, so they could set the "Chunk" flag | 
 | 4312 | 	 */ | 
 | 4313 | 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); | 
 | 4314 |  | 
 | 4315 | 	ret = idxblocks; | 
 | 4316 |  | 
 | 4317 | 	/* | 
 | 4318 | 	 * Now let's see how many group bitmaps and group descriptors need | 
 | 4319 | 	 * to account | 
 | 4320 | 	 */ | 
 | 4321 | 	groups = idxblocks; | 
 | 4322 | 	if (chunk) | 
 | 4323 | 		groups += 1; | 
 | 4324 | 	else | 
 | 4325 | 		groups += nrblocks; | 
 | 4326 |  | 
 | 4327 | 	gdpblocks = groups; | 
 | 4328 | 	if (groups > ngroups) | 
 | 4329 | 		groups = ngroups; | 
 | 4330 | 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) | 
 | 4331 | 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; | 
 | 4332 |  | 
 | 4333 | 	/* bitmaps and block group descriptor blocks */ | 
 | 4334 | 	ret += groups + gdpblocks; | 
 | 4335 |  | 
 | 4336 | 	/* Blocks for super block, inode, quota and xattr blocks */ | 
 | 4337 | 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); | 
 | 4338 |  | 
 | 4339 | 	return ret; | 
 | 4340 | } | 
 | 4341 |  | 
 | 4342 | /* | 
 | 4343 |  * Calculate the total number of credits to reserve to fit | 
 | 4344 |  * the modification of a single pages into a single transaction, | 
 | 4345 |  * which may include multiple chunks of block allocations. | 
 | 4346 |  * | 
 | 4347 |  * This could be called via ext4_write_begin() | 
 | 4348 |  * | 
 | 4349 |  * We need to consider the worse case, when | 
 | 4350 |  * one new block per extent. | 
 | 4351 |  */ | 
 | 4352 | int ext4_writepage_trans_blocks(struct inode *inode) | 
 | 4353 | { | 
 | 4354 | 	int bpp = ext4_journal_blocks_per_page(inode); | 
 | 4355 | 	int ret; | 
 | 4356 |  | 
 | 4357 | 	ret = ext4_meta_trans_blocks(inode, bpp, 0); | 
 | 4358 |  | 
 | 4359 | 	/* Account for data blocks for journalled mode */ | 
 | 4360 | 	if (ext4_should_journal_data(inode)) | 
 | 4361 | 		ret += bpp; | 
 | 4362 | 	return ret; | 
 | 4363 | } | 
 | 4364 |  | 
 | 4365 | /* | 
 | 4366 |  * Calculate the journal credits for a chunk of data modification. | 
 | 4367 |  * | 
 | 4368 |  * This is called from DIO, fallocate or whoever calling | 
 | 4369 |  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. | 
 | 4370 |  * | 
 | 4371 |  * journal buffers for data blocks are not included here, as DIO | 
 | 4372 |  * and fallocate do no need to journal data buffers. | 
 | 4373 |  */ | 
 | 4374 | int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) | 
 | 4375 | { | 
 | 4376 | 	return ext4_meta_trans_blocks(inode, nrblocks, 1); | 
 | 4377 | } | 
 | 4378 |  | 
 | 4379 | /* | 
 | 4380 |  * The caller must have previously called ext4_reserve_inode_write(). | 
 | 4381 |  * Give this, we know that the caller already has write access to iloc->bh. | 
 | 4382 |  */ | 
 | 4383 | int ext4_mark_iloc_dirty(handle_t *handle, | 
 | 4384 | 			 struct inode *inode, struct ext4_iloc *iloc) | 
 | 4385 | { | 
 | 4386 | 	int err = 0; | 
 | 4387 |  | 
 | 4388 | 	if (IS_I_VERSION(inode)) | 
 | 4389 | 		inode_inc_iversion(inode); | 
 | 4390 |  | 
 | 4391 | 	/* the do_update_inode consumes one bh->b_count */ | 
 | 4392 | 	get_bh(iloc->bh); | 
 | 4393 |  | 
 | 4394 | 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ | 
 | 4395 | 	err = ext4_do_update_inode(handle, inode, iloc); | 
 | 4396 | 	put_bh(iloc->bh); | 
 | 4397 | 	return err; | 
 | 4398 | } | 
 | 4399 |  | 
 | 4400 | /* | 
 | 4401 |  * On success, We end up with an outstanding reference count against | 
 | 4402 |  * iloc->bh.  This _must_ be cleaned up later. | 
 | 4403 |  */ | 
 | 4404 |  | 
 | 4405 | int | 
 | 4406 | ext4_reserve_inode_write(handle_t *handle, struct inode *inode, | 
 | 4407 | 			 struct ext4_iloc *iloc) | 
 | 4408 | { | 
 | 4409 | 	int err; | 
 | 4410 |  | 
 | 4411 | 	err = ext4_get_inode_loc(inode, iloc); | 
 | 4412 | 	if (!err) { | 
 | 4413 | 		BUFFER_TRACE(iloc->bh, "get_write_access"); | 
 | 4414 | 		err = ext4_journal_get_write_access(handle, iloc->bh); | 
 | 4415 | 		if (err) { | 
 | 4416 | 			brelse(iloc->bh); | 
 | 4417 | 			iloc->bh = NULL; | 
 | 4418 | 		} | 
 | 4419 | 	} | 
 | 4420 | 	ext4_std_error(inode->i_sb, err); | 
 | 4421 | 	return err; | 
 | 4422 | } | 
 | 4423 |  | 
 | 4424 | /* | 
 | 4425 |  * Expand an inode by new_extra_isize bytes. | 
 | 4426 |  * Returns 0 on success or negative error number on failure. | 
 | 4427 |  */ | 
 | 4428 | static int ext4_expand_extra_isize(struct inode *inode, | 
 | 4429 | 				   unsigned int new_extra_isize, | 
 | 4430 | 				   struct ext4_iloc iloc, | 
 | 4431 | 				   handle_t *handle) | 
 | 4432 | { | 
 | 4433 | 	struct ext4_inode *raw_inode; | 
 | 4434 | 	struct ext4_xattr_ibody_header *header; | 
 | 4435 |  | 
 | 4436 | 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) | 
 | 4437 | 		return 0; | 
 | 4438 |  | 
 | 4439 | 	raw_inode = ext4_raw_inode(&iloc); | 
 | 4440 |  | 
 | 4441 | 	header = IHDR(inode, raw_inode); | 
 | 4442 |  | 
 | 4443 | 	/* No extended attributes present */ | 
 | 4444 | 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || | 
 | 4445 | 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { | 
 | 4446 | 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, | 
 | 4447 | 			new_extra_isize); | 
 | 4448 | 		EXT4_I(inode)->i_extra_isize = new_extra_isize; | 
 | 4449 | 		return 0; | 
 | 4450 | 	} | 
 | 4451 |  | 
 | 4452 | 	/* try to expand with EAs present */ | 
 | 4453 | 	return ext4_expand_extra_isize_ea(inode, new_extra_isize, | 
 | 4454 | 					  raw_inode, handle); | 
 | 4455 | } | 
 | 4456 |  | 
 | 4457 | /* | 
 | 4458 |  * What we do here is to mark the in-core inode as clean with respect to inode | 
 | 4459 |  * dirtiness (it may still be data-dirty). | 
 | 4460 |  * This means that the in-core inode may be reaped by prune_icache | 
 | 4461 |  * without having to perform any I/O.  This is a very good thing, | 
 | 4462 |  * because *any* task may call prune_icache - even ones which | 
 | 4463 |  * have a transaction open against a different journal. | 
 | 4464 |  * | 
 | 4465 |  * Is this cheating?  Not really.  Sure, we haven't written the | 
 | 4466 |  * inode out, but prune_icache isn't a user-visible syncing function. | 
 | 4467 |  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) | 
 | 4468 |  * we start and wait on commits. | 
 | 4469 |  * | 
 | 4470 |  * Is this efficient/effective?  Well, we're being nice to the system | 
 | 4471 |  * by cleaning up our inodes proactively so they can be reaped | 
 | 4472 |  * without I/O.  But we are potentially leaving up to five seconds' | 
 | 4473 |  * worth of inodes floating about which prune_icache wants us to | 
 | 4474 |  * write out.  One way to fix that would be to get prune_icache() | 
 | 4475 |  * to do a write_super() to free up some memory.  It has the desired | 
 | 4476 |  * effect. | 
 | 4477 |  */ | 
 | 4478 | int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) | 
 | 4479 | { | 
 | 4480 | 	struct ext4_iloc iloc; | 
 | 4481 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 4482 | 	static unsigned int mnt_count; | 
 | 4483 | 	int err, ret; | 
 | 4484 |  | 
 | 4485 | 	might_sleep(); | 
 | 4486 | 	trace_ext4_mark_inode_dirty(inode, _RET_IP_); | 
 | 4487 | 	err = ext4_reserve_inode_write(handle, inode, &iloc); | 
 | 4488 | 	if (ext4_handle_valid(handle) && | 
 | 4489 | 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && | 
 | 4490 | 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { | 
 | 4491 | 		/* | 
 | 4492 | 		 * We need extra buffer credits since we may write into EA block | 
 | 4493 | 		 * with this same handle. If journal_extend fails, then it will | 
 | 4494 | 		 * only result in a minor loss of functionality for that inode. | 
 | 4495 | 		 * If this is felt to be critical, then e2fsck should be run to | 
 | 4496 | 		 * force a large enough s_min_extra_isize. | 
 | 4497 | 		 */ | 
 | 4498 | 		if ((jbd2_journal_extend(handle, | 
 | 4499 | 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { | 
 | 4500 | 			ret = ext4_expand_extra_isize(inode, | 
 | 4501 | 						      sbi->s_want_extra_isize, | 
 | 4502 | 						      iloc, handle); | 
 | 4503 | 			if (ret) { | 
 | 4504 | 				ext4_set_inode_state(inode, | 
 | 4505 | 						     EXT4_STATE_NO_EXPAND); | 
 | 4506 | 				if (mnt_count != | 
 | 4507 | 					le16_to_cpu(sbi->s_es->s_mnt_count)) { | 
 | 4508 | 					ext4_warning(inode->i_sb, | 
 | 4509 | 					"Unable to expand inode %lu. Delete" | 
 | 4510 | 					" some EAs or run e2fsck.", | 
 | 4511 | 					inode->i_ino); | 
 | 4512 | 					mnt_count = | 
 | 4513 | 					  le16_to_cpu(sbi->s_es->s_mnt_count); | 
 | 4514 | 				} | 
 | 4515 | 			} | 
 | 4516 | 		} | 
 | 4517 | 	} | 
 | 4518 | 	if (!err) | 
 | 4519 | 		err = ext4_mark_iloc_dirty(handle, inode, &iloc); | 
 | 4520 | 	return err; | 
 | 4521 | } | 
 | 4522 |  | 
 | 4523 | /* | 
 | 4524 |  * ext4_dirty_inode() is called from __mark_inode_dirty() | 
 | 4525 |  * | 
 | 4526 |  * We're really interested in the case where a file is being extended. | 
 | 4527 |  * i_size has been changed by generic_commit_write() and we thus need | 
 | 4528 |  * to include the updated inode in the current transaction. | 
 | 4529 |  * | 
 | 4530 |  * Also, dquot_alloc_block() will always dirty the inode when blocks | 
 | 4531 |  * are allocated to the file. | 
 | 4532 |  * | 
 | 4533 |  * If the inode is marked synchronous, we don't honour that here - doing | 
 | 4534 |  * so would cause a commit on atime updates, which we don't bother doing. | 
 | 4535 |  * We handle synchronous inodes at the highest possible level. | 
 | 4536 |  */ | 
 | 4537 | void ext4_dirty_inode(struct inode *inode, int flags) | 
 | 4538 | { | 
 | 4539 | 	handle_t *handle; | 
 | 4540 |  | 
 | 4541 | 	handle = ext4_journal_start(inode, 2); | 
 | 4542 | 	if (IS_ERR(handle)) | 
 | 4543 | 		goto out; | 
 | 4544 |  | 
 | 4545 | 	ext4_mark_inode_dirty(handle, inode); | 
 | 4546 |  | 
 | 4547 | 	ext4_journal_stop(handle); | 
 | 4548 | out: | 
 | 4549 | 	return; | 
 | 4550 | } | 
 | 4551 |  | 
 | 4552 | #if 0 | 
 | 4553 | /* | 
 | 4554 |  * Bind an inode's backing buffer_head into this transaction, to prevent | 
 | 4555 |  * it from being flushed to disk early.  Unlike | 
 | 4556 |  * ext4_reserve_inode_write, this leaves behind no bh reference and | 
 | 4557 |  * returns no iloc structure, so the caller needs to repeat the iloc | 
 | 4558 |  * lookup to mark the inode dirty later. | 
 | 4559 |  */ | 
 | 4560 | static int ext4_pin_inode(handle_t *handle, struct inode *inode) | 
 | 4561 | { | 
 | 4562 | 	struct ext4_iloc iloc; | 
 | 4563 |  | 
 | 4564 | 	int err = 0; | 
 | 4565 | 	if (handle) { | 
 | 4566 | 		err = ext4_get_inode_loc(inode, &iloc); | 
 | 4567 | 		if (!err) { | 
 | 4568 | 			BUFFER_TRACE(iloc.bh, "get_write_access"); | 
 | 4569 | 			err = jbd2_journal_get_write_access(handle, iloc.bh); | 
 | 4570 | 			if (!err) | 
 | 4571 | 				err = ext4_handle_dirty_metadata(handle, | 
 | 4572 | 								 NULL, | 
 | 4573 | 								 iloc.bh); | 
 | 4574 | 			brelse(iloc.bh); | 
 | 4575 | 		} | 
 | 4576 | 	} | 
 | 4577 | 	ext4_std_error(inode->i_sb, err); | 
 | 4578 | 	return err; | 
 | 4579 | } | 
 | 4580 | #endif | 
 | 4581 |  | 
 | 4582 | int ext4_change_inode_journal_flag(struct inode *inode, int val) | 
 | 4583 | { | 
 | 4584 | 	journal_t *journal; | 
 | 4585 | 	handle_t *handle; | 
 | 4586 | 	int err; | 
 | 4587 |  | 
 | 4588 | 	/* | 
 | 4589 | 	 * We have to be very careful here: changing a data block's | 
 | 4590 | 	 * journaling status dynamically is dangerous.  If we write a | 
 | 4591 | 	 * data block to the journal, change the status and then delete | 
 | 4592 | 	 * that block, we risk forgetting to revoke the old log record | 
 | 4593 | 	 * from the journal and so a subsequent replay can corrupt data. | 
 | 4594 | 	 * So, first we make sure that the journal is empty and that | 
 | 4595 | 	 * nobody is changing anything. | 
 | 4596 | 	 */ | 
 | 4597 |  | 
 | 4598 | 	journal = EXT4_JOURNAL(inode); | 
 | 4599 | 	if (!journal) | 
 | 4600 | 		return 0; | 
 | 4601 | 	if (is_journal_aborted(journal)) | 
 | 4602 | 		return -EROFS; | 
 | 4603 | 	/* We have to allocate physical blocks for delalloc blocks | 
 | 4604 | 	 * before flushing journal. otherwise delalloc blocks can not | 
 | 4605 | 	 * be allocated any more. even more truncate on delalloc blocks | 
 | 4606 | 	 * could trigger BUG by flushing delalloc blocks in journal. | 
 | 4607 | 	 * There is no delalloc block in non-journal data mode. | 
 | 4608 | 	 */ | 
 | 4609 | 	if (val && test_opt(inode->i_sb, DELALLOC)) { | 
 | 4610 | 		err = ext4_alloc_da_blocks(inode); | 
 | 4611 | 		if (err < 0) | 
 | 4612 | 			return err; | 
 | 4613 | 	} | 
 | 4614 |  | 
 | 4615 | 	jbd2_journal_lock_updates(journal); | 
 | 4616 |  | 
 | 4617 | 	/* | 
 | 4618 | 	 * OK, there are no updates running now, and all cached data is | 
 | 4619 | 	 * synced to disk.  We are now in a completely consistent state | 
 | 4620 | 	 * which doesn't have anything in the journal, and we know that | 
 | 4621 | 	 * no filesystem updates are running, so it is safe to modify | 
 | 4622 | 	 * the inode's in-core data-journaling state flag now. | 
 | 4623 | 	 */ | 
 | 4624 |  | 
 | 4625 | 	if (val) | 
 | 4626 | 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); | 
 | 4627 | 	else { | 
 | 4628 | 		jbd2_journal_flush(journal); | 
 | 4629 | 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); | 
 | 4630 | 	} | 
 | 4631 | 	ext4_set_aops(inode); | 
 | 4632 |  | 
 | 4633 | 	jbd2_journal_unlock_updates(journal); | 
 | 4634 |  | 
 | 4635 | 	/* Finally we can mark the inode as dirty. */ | 
 | 4636 |  | 
 | 4637 | 	handle = ext4_journal_start(inode, 1); | 
 | 4638 | 	if (IS_ERR(handle)) | 
 | 4639 | 		return PTR_ERR(handle); | 
 | 4640 |  | 
 | 4641 | 	err = ext4_mark_inode_dirty(handle, inode); | 
 | 4642 | 	ext4_handle_sync(handle); | 
 | 4643 | 	ext4_journal_stop(handle); | 
 | 4644 | 	ext4_std_error(inode->i_sb, err); | 
 | 4645 |  | 
 | 4646 | 	return err; | 
 | 4647 | } | 
 | 4648 |  | 
 | 4649 | static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) | 
 | 4650 | { | 
 | 4651 | 	return !buffer_mapped(bh); | 
 | 4652 | } | 
 | 4653 |  | 
 | 4654 | int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) | 
 | 4655 | { | 
 | 4656 | 	struct page *page = vmf->page; | 
 | 4657 | 	loff_t size; | 
 | 4658 | 	unsigned long len; | 
 | 4659 | 	int ret; | 
 | 4660 | 	struct file *file = vma->vm_file; | 
 | 4661 | 	struct inode *inode = file->f_path.dentry->d_inode; | 
 | 4662 | 	struct address_space *mapping = inode->i_mapping; | 
 | 4663 | 	handle_t *handle; | 
 | 4664 | 	get_block_t *get_block; | 
 | 4665 | 	int retries = 0; | 
 | 4666 |  | 
 | 4667 | 	/* | 
 | 4668 | 	 * This check is racy but catches the common case. We rely on | 
 | 4669 | 	 * __block_page_mkwrite() to do a reliable check. | 
 | 4670 | 	 */ | 
 | 4671 | 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | 
 | 4672 | 	/* Delalloc case is easy... */ | 
 | 4673 | 	if (test_opt(inode->i_sb, DELALLOC) && | 
 | 4674 | 	    !ext4_should_journal_data(inode) && | 
 | 4675 | 	    !ext4_nonda_switch(inode->i_sb)) { | 
 | 4676 | 		do { | 
 | 4677 | 			ret = __block_page_mkwrite(vma, vmf, | 
 | 4678 | 						   ext4_da_get_block_prep); | 
 | 4679 | 		} while (ret == -ENOSPC && | 
 | 4680 | 		       ext4_should_retry_alloc(inode->i_sb, &retries)); | 
 | 4681 | 		goto out_ret; | 
 | 4682 | 	} | 
 | 4683 |  | 
 | 4684 | 	lock_page(page); | 
 | 4685 | 	size = i_size_read(inode); | 
 | 4686 | 	/* Page got truncated from under us? */ | 
 | 4687 | 	if (page->mapping != mapping || page_offset(page) > size) { | 
 | 4688 | 		unlock_page(page); | 
 | 4689 | 		ret = VM_FAULT_NOPAGE; | 
 | 4690 | 		goto out; | 
 | 4691 | 	} | 
 | 4692 |  | 
 | 4693 | 	if (page->index == size >> PAGE_CACHE_SHIFT) | 
 | 4694 | 		len = size & ~PAGE_CACHE_MASK; | 
 | 4695 | 	else | 
 | 4696 | 		len = PAGE_CACHE_SIZE; | 
 | 4697 | 	/* | 
 | 4698 | 	 * Return if we have all the buffers mapped. This avoids the need to do | 
 | 4699 | 	 * journal_start/journal_stop which can block and take a long time | 
 | 4700 | 	 */ | 
 | 4701 | 	if (page_has_buffers(page)) { | 
 | 4702 | 		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL, | 
 | 4703 | 					ext4_bh_unmapped)) { | 
 | 4704 | 			/* Wait so that we don't change page under IO */ | 
 | 4705 | 			wait_on_page_writeback(page); | 
 | 4706 | 			ret = VM_FAULT_LOCKED; | 
 | 4707 | 			goto out; | 
 | 4708 | 		} | 
 | 4709 | 	} | 
 | 4710 | 	unlock_page(page); | 
 | 4711 | 	/* OK, we need to fill the hole... */ | 
 | 4712 | 	if (ext4_should_dioread_nolock(inode)) | 
 | 4713 | 		get_block = ext4_get_block_write; | 
 | 4714 | 	else | 
 | 4715 | 		get_block = ext4_get_block; | 
 | 4716 | retry_alloc: | 
 | 4717 | 	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode)); | 
 | 4718 | 	if (IS_ERR(handle)) { | 
 | 4719 | 		ret = VM_FAULT_SIGBUS; | 
 | 4720 | 		goto out; | 
 | 4721 | 	} | 
 | 4722 | 	ret = __block_page_mkwrite(vma, vmf, get_block); | 
 | 4723 | 	if (!ret && ext4_should_journal_data(inode)) { | 
 | 4724 | 		if (walk_page_buffers(handle, page_buffers(page), 0, | 
 | 4725 | 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { | 
 | 4726 | 			unlock_page(page); | 
 | 4727 | 			ret = VM_FAULT_SIGBUS; | 
 | 4728 | 			ext4_journal_stop(handle); | 
 | 4729 | 			goto out; | 
 | 4730 | 		} | 
 | 4731 | 		ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
 | 4732 | 	} | 
 | 4733 | 	ext4_journal_stop(handle); | 
 | 4734 | 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
 | 4735 | 		goto retry_alloc; | 
 | 4736 | out_ret: | 
 | 4737 | 	ret = block_page_mkwrite_return(ret); | 
 | 4738 | out: | 
 | 4739 | 	return ret; | 
 | 4740 | } |