| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Complex square root of long double value. | 
|  | 2 | Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
|  | 3 | This file is part of the GNU C Library. | 
|  | 4 | Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>. | 
|  | 5 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | 
|  | 6 |  | 
|  | 7 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 8 | modify it under the terms of the GNU Lesser General Public | 
|  | 9 | License as published by the Free Software Foundation; either | 
|  | 10 | version 2.1 of the License, or (at your option) any later version. | 
|  | 11 |  | 
|  | 12 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 15 | Lesser General Public License for more details. | 
|  | 16 |  | 
|  | 17 | You should have received a copy of the GNU Lesser General Public | 
|  | 18 | License along with the GNU C Library; if not, see | 
|  | 19 | <http://www.gnu.org/licenses/>.  */ | 
|  | 20 |  | 
|  | 21 | #include <complex.h> | 
|  | 22 | #include <math.h> | 
|  | 23 | #include <math_private.h> | 
|  | 24 | #include <float.h> | 
|  | 25 |  | 
|  | 26 | __complex__ long double | 
|  | 27 | __csqrtl (__complex__ long double x) | 
|  | 28 | { | 
|  | 29 | __complex__ long double res; | 
|  | 30 | int rcls = fpclassify (__real__ x); | 
|  | 31 | int icls = fpclassify (__imag__ x); | 
|  | 32 |  | 
|  | 33 | if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE)) | 
|  | 34 | { | 
|  | 35 | if (icls == FP_INFINITE) | 
|  | 36 | { | 
|  | 37 | __real__ res = HUGE_VALL; | 
|  | 38 | __imag__ res = __imag__ x; | 
|  | 39 | } | 
|  | 40 | else if (rcls == FP_INFINITE) | 
|  | 41 | { | 
|  | 42 | if (__real__ x < 0.0) | 
|  | 43 | { | 
|  | 44 | __real__ res = icls == FP_NAN ? __nanl ("") : 0; | 
|  | 45 | __imag__ res = __copysignl (HUGE_VALL, __imag__ x); | 
|  | 46 | } | 
|  | 47 | else | 
|  | 48 | { | 
|  | 49 | __real__ res = __real__ x; | 
|  | 50 | __imag__ res = (icls == FP_NAN | 
|  | 51 | ? __nanl ("") : __copysignl (0.0, __imag__ x)); | 
|  | 52 | } | 
|  | 53 | } | 
|  | 54 | else | 
|  | 55 | { | 
|  | 56 | __real__ res = __nanl (""); | 
|  | 57 | __imag__ res = __nanl (""); | 
|  | 58 | } | 
|  | 59 | } | 
|  | 60 | else | 
|  | 61 | { | 
|  | 62 | if (__glibc_unlikely (icls == FP_ZERO)) | 
|  | 63 | { | 
|  | 64 | if (__real__ x < 0.0) | 
|  | 65 | { | 
|  | 66 | __real__ res = 0.0; | 
|  | 67 | __imag__ res = __copysignl (__ieee754_sqrtl (-__real__ x), | 
|  | 68 | __imag__ x); | 
|  | 69 | } | 
|  | 70 | else | 
|  | 71 | { | 
|  | 72 | __real__ res = fabsl (__ieee754_sqrtl (__real__ x)); | 
|  | 73 | __imag__ res = __copysignl (0.0, __imag__ x); | 
|  | 74 | } | 
|  | 75 | } | 
|  | 76 | else if (__glibc_unlikely (rcls == FP_ZERO)) | 
|  | 77 | { | 
|  | 78 | long double r; | 
|  | 79 | if (fabsl (__imag__ x) >= 2.0L * LDBL_MIN) | 
|  | 80 | r = __ieee754_sqrtl (0.5L * fabsl (__imag__ x)); | 
|  | 81 | else | 
|  | 82 | r = 0.5L * __ieee754_sqrtl (2.0L * fabsl (__imag__ x)); | 
|  | 83 |  | 
|  | 84 | __real__ res = r; | 
|  | 85 | __imag__ res = __copysignl (r, __imag__ x); | 
|  | 86 | } | 
|  | 87 | else | 
|  | 88 | { | 
|  | 89 | long double d, r, s; | 
|  | 90 | int scale = 0; | 
|  | 91 |  | 
|  | 92 | if (fabsl (__real__ x) > LDBL_MAX / 4.0L) | 
|  | 93 | { | 
|  | 94 | scale = 1; | 
|  | 95 | __real__ x = __scalbnl (__real__ x, -2 * scale); | 
|  | 96 | __imag__ x = __scalbnl (__imag__ x, -2 * scale); | 
|  | 97 | } | 
|  | 98 | else if (fabsl (__imag__ x) > LDBL_MAX / 4.0L) | 
|  | 99 | { | 
|  | 100 | scale = 1; | 
|  | 101 | if (fabsl (__real__ x) >= 4.0L * LDBL_MIN) | 
|  | 102 | __real__ x = __scalbnl (__real__ x, -2 * scale); | 
|  | 103 | else | 
|  | 104 | __real__ x = 0.0L; | 
|  | 105 | __imag__ x = __scalbnl (__imag__ x, -2 * scale); | 
|  | 106 | } | 
|  | 107 | else if (fabsl (__real__ x) < 2.0L * LDBL_MIN | 
|  | 108 | && fabsl (__imag__ x) < 2.0L * LDBL_MIN) | 
|  | 109 | { | 
|  | 110 | scale = -((LDBL_MANT_DIG + 1) / 2); | 
|  | 111 | __real__ x = __scalbnl (__real__ x, -2 * scale); | 
|  | 112 | __imag__ x = __scalbnl (__imag__ x, -2 * scale); | 
|  | 113 | } | 
|  | 114 |  | 
|  | 115 | d = __ieee754_hypotl (__real__ x, __imag__ x); | 
|  | 116 | /* Use the identity   2  Re res  Im res = Im x | 
|  | 117 | to avoid cancellation error in  d +/- Re x.  */ | 
|  | 118 | if (__real__ x > 0) | 
|  | 119 | { | 
|  | 120 | r = __ieee754_sqrtl (0.5L * (d + __real__ x)); | 
|  | 121 | if (scale == 1 && fabsl (__imag__ x) < 1.0L) | 
|  | 122 | { | 
|  | 123 | /* Avoid possible intermediate underflow.  */ | 
|  | 124 | s = __imag__ x / r; | 
|  | 125 | r = __scalbnl (r, scale); | 
|  | 126 | scale = 0; | 
|  | 127 | } | 
|  | 128 | else | 
|  | 129 | s = 0.5L * (__imag__ x / r); | 
|  | 130 | } | 
|  | 131 | else | 
|  | 132 | { | 
|  | 133 | s = __ieee754_sqrtl (0.5L * (d - __real__ x)); | 
|  | 134 | if (scale == 1 && fabsl (__imag__ x) < 1.0L) | 
|  | 135 | { | 
|  | 136 | /* Avoid possible intermediate underflow.  */ | 
|  | 137 | r = fabsl (__imag__ x / s); | 
|  | 138 | s = __scalbnl (s, scale); | 
|  | 139 | scale = 0; | 
|  | 140 | } | 
|  | 141 | else | 
|  | 142 | r = fabsl (0.5L * (__imag__ x / s)); | 
|  | 143 | } | 
|  | 144 |  | 
|  | 145 | if (scale) | 
|  | 146 | { | 
|  | 147 | r = __scalbnl (r, scale); | 
|  | 148 | s = __scalbnl (s, scale); | 
|  | 149 | } | 
|  | 150 |  | 
|  | 151 | math_check_force_underflow (r); | 
|  | 152 | math_check_force_underflow (s); | 
|  | 153 |  | 
|  | 154 | __real__ res = r; | 
|  | 155 | __imag__ res = __copysignl (s, __imag__ x); | 
|  | 156 | } | 
|  | 157 | } | 
|  | 158 |  | 
|  | 159 | return res; | 
|  | 160 | } | 
|  | 161 | weak_alias (__csqrtl, csqrtl) |