| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (c) 2006 Oracle.  All rights reserved. | 
 | 3 |  * | 
 | 4 |  * This software is available to you under a choice of one of two | 
 | 5 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 | 6 |  * General Public License (GPL) Version 2, available from the file | 
 | 7 |  * COPYING in the main directory of this source tree, or the | 
 | 8 |  * OpenIB.org BSD license below: | 
 | 9 |  * | 
 | 10 |  *     Redistribution and use in source and binary forms, with or | 
 | 11 |  *     without modification, are permitted provided that the following | 
 | 12 |  *     conditions are met: | 
 | 13 |  * | 
 | 14 |  *      - Redistributions of source code must retain the above | 
 | 15 |  *        copyright notice, this list of conditions and the following | 
 | 16 |  *        disclaimer. | 
 | 17 |  * | 
 | 18 |  *      - Redistributions in binary form must reproduce the above | 
 | 19 |  *        copyright notice, this list of conditions and the following | 
 | 20 |  *        disclaimer in the documentation and/or other materials | 
 | 21 |  *        provided with the distribution. | 
 | 22 |  * | 
 | 23 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 | 24 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 | 25 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 | 26 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 | 27 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 | 28 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 | 29 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 | 30 |  * SOFTWARE. | 
 | 31 |  * | 
 | 32 |  */ | 
 | 33 | #include <linux/kernel.h> | 
 | 34 | #include <linux/slab.h> | 
 | 35 | #include <net/sock.h> | 
 | 36 | #include <linux/in.h> | 
 | 37 | #include <linux/export.h> | 
 | 38 |  | 
 | 39 | #include "rds.h" | 
 | 40 |  | 
 | 41 | void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn, | 
 | 42 | 		  __be32 saddr) | 
 | 43 | { | 
 | 44 | 	atomic_set(&inc->i_refcount, 1); | 
 | 45 | 	INIT_LIST_HEAD(&inc->i_item); | 
 | 46 | 	inc->i_conn = conn; | 
 | 47 | 	inc->i_saddr = saddr; | 
 | 48 | 	inc->i_rdma_cookie = 0; | 
 | 49 | } | 
 | 50 | EXPORT_SYMBOL_GPL(rds_inc_init); | 
 | 51 |  | 
 | 52 | static void rds_inc_addref(struct rds_incoming *inc) | 
 | 53 | { | 
 | 54 | 	rdsdebug("addref inc %p ref %d\n", inc, atomic_read(&inc->i_refcount)); | 
 | 55 | 	atomic_inc(&inc->i_refcount); | 
 | 56 | } | 
 | 57 |  | 
 | 58 | void rds_inc_put(struct rds_incoming *inc) | 
 | 59 | { | 
 | 60 | 	rdsdebug("put inc %p ref %d\n", inc, atomic_read(&inc->i_refcount)); | 
 | 61 | 	if (atomic_dec_and_test(&inc->i_refcount)) { | 
 | 62 | 		BUG_ON(!list_empty(&inc->i_item)); | 
 | 63 |  | 
 | 64 | 		inc->i_conn->c_trans->inc_free(inc); | 
 | 65 | 	} | 
 | 66 | } | 
 | 67 | EXPORT_SYMBOL_GPL(rds_inc_put); | 
 | 68 |  | 
 | 69 | static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk, | 
 | 70 | 				  struct rds_cong_map *map, | 
 | 71 | 				  int delta, __be16 port) | 
 | 72 | { | 
 | 73 | 	int now_congested; | 
 | 74 |  | 
 | 75 | 	if (delta == 0) | 
 | 76 | 		return; | 
 | 77 |  | 
 | 78 | 	rs->rs_rcv_bytes += delta; | 
 | 79 | 	now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs); | 
 | 80 |  | 
 | 81 | 	rdsdebug("rs %p (%pI4:%u) recv bytes %d buf %d " | 
 | 82 | 	  "now_cong %d delta %d\n", | 
 | 83 | 	  rs, &rs->rs_bound_addr, | 
 | 84 | 	  ntohs(rs->rs_bound_port), rs->rs_rcv_bytes, | 
 | 85 | 	  rds_sk_rcvbuf(rs), now_congested, delta); | 
 | 86 |  | 
 | 87 | 	/* wasn't -> am congested */ | 
 | 88 | 	if (!rs->rs_congested && now_congested) { | 
 | 89 | 		rs->rs_congested = 1; | 
 | 90 | 		rds_cong_set_bit(map, port); | 
 | 91 | 		rds_cong_queue_updates(map); | 
 | 92 | 	} | 
 | 93 | 	/* was -> aren't congested */ | 
 | 94 | 	/* Require more free space before reporting uncongested to prevent | 
 | 95 | 	   bouncing cong/uncong state too often */ | 
 | 96 | 	else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) { | 
 | 97 | 		rs->rs_congested = 0; | 
 | 98 | 		rds_cong_clear_bit(map, port); | 
 | 99 | 		rds_cong_queue_updates(map); | 
 | 100 | 	} | 
 | 101 |  | 
 | 102 | 	/* do nothing if no change in cong state */ | 
 | 103 | } | 
 | 104 |  | 
 | 105 | /* | 
 | 106 |  * Process all extension headers that come with this message. | 
 | 107 |  */ | 
 | 108 | static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs) | 
 | 109 | { | 
 | 110 | 	struct rds_header *hdr = &inc->i_hdr; | 
 | 111 | 	unsigned int pos = 0, type, len; | 
 | 112 | 	union { | 
 | 113 | 		struct rds_ext_header_version version; | 
 | 114 | 		struct rds_ext_header_rdma rdma; | 
 | 115 | 		struct rds_ext_header_rdma_dest rdma_dest; | 
 | 116 | 	} buffer; | 
 | 117 |  | 
 | 118 | 	while (1) { | 
 | 119 | 		len = sizeof(buffer); | 
 | 120 | 		type = rds_message_next_extension(hdr, &pos, &buffer, &len); | 
 | 121 | 		if (type == RDS_EXTHDR_NONE) | 
 | 122 | 			break; | 
 | 123 | 		/* Process extension header here */ | 
 | 124 | 		switch (type) { | 
 | 125 | 		case RDS_EXTHDR_RDMA: | 
 | 126 | 			rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0); | 
 | 127 | 			break; | 
 | 128 |  | 
 | 129 | 		case RDS_EXTHDR_RDMA_DEST: | 
 | 130 | 			/* We ignore the size for now. We could stash it | 
 | 131 | 			 * somewhere and use it for error checking. */ | 
 | 132 | 			inc->i_rdma_cookie = rds_rdma_make_cookie( | 
 | 133 | 					be32_to_cpu(buffer.rdma_dest.h_rdma_rkey), | 
 | 134 | 					be32_to_cpu(buffer.rdma_dest.h_rdma_offset)); | 
 | 135 |  | 
 | 136 | 			break; | 
 | 137 | 		} | 
 | 138 | 	} | 
 | 139 | } | 
 | 140 |  | 
 | 141 | /* | 
 | 142 |  * The transport must make sure that this is serialized against other | 
 | 143 |  * rx and conn reset on this specific conn. | 
 | 144 |  * | 
 | 145 |  * We currently assert that only one fragmented message will be sent | 
 | 146 |  * down a connection at a time.  This lets us reassemble in the conn | 
 | 147 |  * instead of per-flow which means that we don't have to go digging through | 
 | 148 |  * flows to tear down partial reassembly progress on conn failure and | 
 | 149 |  * we save flow lookup and locking for each frag arrival.  It does mean | 
 | 150 |  * that small messages will wait behind large ones.  Fragmenting at all | 
 | 151 |  * is only to reduce the memory consumption of pre-posted buffers. | 
 | 152 |  * | 
 | 153 |  * The caller passes in saddr and daddr instead of us getting it from the | 
 | 154 |  * conn.  This lets loopback, who only has one conn for both directions, | 
 | 155 |  * tell us which roles the addrs in the conn are playing for this message. | 
 | 156 |  */ | 
 | 157 | void rds_recv_incoming(struct rds_connection *conn, __be32 saddr, __be32 daddr, | 
 | 158 | 		       struct rds_incoming *inc, gfp_t gfp) | 
 | 159 | { | 
 | 160 | 	struct rds_sock *rs = NULL; | 
 | 161 | 	struct sock *sk; | 
 | 162 | 	unsigned long flags; | 
 | 163 |  | 
 | 164 | 	inc->i_conn = conn; | 
 | 165 | 	inc->i_rx_jiffies = jiffies; | 
 | 166 |  | 
 | 167 | 	rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u " | 
 | 168 | 		 "flags 0x%x rx_jiffies %lu\n", conn, | 
 | 169 | 		 (unsigned long long)conn->c_next_rx_seq, | 
 | 170 | 		 inc, | 
 | 171 | 		 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence), | 
 | 172 | 		 be32_to_cpu(inc->i_hdr.h_len), | 
 | 173 | 		 be16_to_cpu(inc->i_hdr.h_sport), | 
 | 174 | 		 be16_to_cpu(inc->i_hdr.h_dport), | 
 | 175 | 		 inc->i_hdr.h_flags, | 
 | 176 | 		 inc->i_rx_jiffies); | 
 | 177 |  | 
 | 178 | 	/* | 
 | 179 | 	 * Sequence numbers should only increase.  Messages get their | 
 | 180 | 	 * sequence number as they're queued in a sending conn.  They | 
 | 181 | 	 * can be dropped, though, if the sending socket is closed before | 
 | 182 | 	 * they hit the wire.  So sequence numbers can skip forward | 
 | 183 | 	 * under normal operation.  They can also drop back in the conn | 
 | 184 | 	 * failover case as previously sent messages are resent down the | 
 | 185 | 	 * new instance of a conn.  We drop those, otherwise we have | 
 | 186 | 	 * to assume that the next valid seq does not come after a | 
 | 187 | 	 * hole in the fragment stream. | 
 | 188 | 	 * | 
 | 189 | 	 * The headers don't give us a way to realize if fragments of | 
 | 190 | 	 * a message have been dropped.  We assume that frags that arrive | 
 | 191 | 	 * to a flow are part of the current message on the flow that is | 
 | 192 | 	 * being reassembled.  This means that senders can't drop messages | 
 | 193 | 	 * from the sending conn until all their frags are sent. | 
 | 194 | 	 * | 
 | 195 | 	 * XXX we could spend more on the wire to get more robust failure | 
 | 196 | 	 * detection, arguably worth it to avoid data corruption. | 
 | 197 | 	 */ | 
 | 198 | 	if (be64_to_cpu(inc->i_hdr.h_sequence) < conn->c_next_rx_seq && | 
 | 199 | 	    (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) { | 
 | 200 | 		rds_stats_inc(s_recv_drop_old_seq); | 
 | 201 | 		goto out; | 
 | 202 | 	} | 
 | 203 | 	conn->c_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1; | 
 | 204 |  | 
 | 205 | 	if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) { | 
 | 206 | 		rds_stats_inc(s_recv_ping); | 
 | 207 | 		rds_send_pong(conn, inc->i_hdr.h_sport); | 
 | 208 | 		goto out; | 
 | 209 | 	} | 
 | 210 |  | 
 | 211 | 	rs = rds_find_bound(daddr, inc->i_hdr.h_dport); | 
 | 212 | 	if (!rs) { | 
 | 213 | 		rds_stats_inc(s_recv_drop_no_sock); | 
 | 214 | 		goto out; | 
 | 215 | 	} | 
 | 216 |  | 
 | 217 | 	/* Process extension headers */ | 
 | 218 | 	rds_recv_incoming_exthdrs(inc, rs); | 
 | 219 |  | 
 | 220 | 	/* We can be racing with rds_release() which marks the socket dead. */ | 
 | 221 | 	sk = rds_rs_to_sk(rs); | 
 | 222 |  | 
 | 223 | 	/* serialize with rds_release -> sock_orphan */ | 
 | 224 | 	write_lock_irqsave(&rs->rs_recv_lock, flags); | 
 | 225 | 	if (!sock_flag(sk, SOCK_DEAD)) { | 
 | 226 | 		rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs); | 
 | 227 | 		rds_stats_inc(s_recv_queued); | 
 | 228 | 		rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, | 
 | 229 | 				      be32_to_cpu(inc->i_hdr.h_len), | 
 | 230 | 				      inc->i_hdr.h_dport); | 
 | 231 | 		rds_inc_addref(inc); | 
 | 232 | 		list_add_tail(&inc->i_item, &rs->rs_recv_queue); | 
 | 233 | 		__rds_wake_sk_sleep(sk); | 
 | 234 | 	} else { | 
 | 235 | 		rds_stats_inc(s_recv_drop_dead_sock); | 
 | 236 | 	} | 
 | 237 | 	write_unlock_irqrestore(&rs->rs_recv_lock, flags); | 
 | 238 |  | 
 | 239 | out: | 
 | 240 | 	if (rs) | 
 | 241 | 		rds_sock_put(rs); | 
 | 242 | } | 
 | 243 | EXPORT_SYMBOL_GPL(rds_recv_incoming); | 
 | 244 |  | 
 | 245 | /* | 
 | 246 |  * be very careful here.  This is being called as the condition in | 
 | 247 |  * wait_event_*() needs to cope with being called many times. | 
 | 248 |  */ | 
 | 249 | static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc) | 
 | 250 | { | 
 | 251 | 	unsigned long flags; | 
 | 252 |  | 
 | 253 | 	if (!*inc) { | 
 | 254 | 		read_lock_irqsave(&rs->rs_recv_lock, flags); | 
 | 255 | 		if (!list_empty(&rs->rs_recv_queue)) { | 
 | 256 | 			*inc = list_entry(rs->rs_recv_queue.next, | 
 | 257 | 					  struct rds_incoming, | 
 | 258 | 					  i_item); | 
 | 259 | 			rds_inc_addref(*inc); | 
 | 260 | 		} | 
 | 261 | 		read_unlock_irqrestore(&rs->rs_recv_lock, flags); | 
 | 262 | 	} | 
 | 263 |  | 
 | 264 | 	return *inc != NULL; | 
 | 265 | } | 
 | 266 |  | 
 | 267 | static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc, | 
 | 268 | 			    int drop) | 
 | 269 | { | 
 | 270 | 	struct sock *sk = rds_rs_to_sk(rs); | 
 | 271 | 	int ret = 0; | 
 | 272 | 	unsigned long flags; | 
 | 273 |  | 
 | 274 | 	write_lock_irqsave(&rs->rs_recv_lock, flags); | 
 | 275 | 	if (!list_empty(&inc->i_item)) { | 
 | 276 | 		ret = 1; | 
 | 277 | 		if (drop) { | 
 | 278 | 			/* XXX make sure this i_conn is reliable */ | 
 | 279 | 			rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, | 
 | 280 | 					      -be32_to_cpu(inc->i_hdr.h_len), | 
 | 281 | 					      inc->i_hdr.h_dport); | 
 | 282 | 			list_del_init(&inc->i_item); | 
 | 283 | 			rds_inc_put(inc); | 
 | 284 | 		} | 
 | 285 | 	} | 
 | 286 | 	write_unlock_irqrestore(&rs->rs_recv_lock, flags); | 
 | 287 |  | 
 | 288 | 	rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop); | 
 | 289 | 	return ret; | 
 | 290 | } | 
 | 291 |  | 
 | 292 | /* | 
 | 293 |  * Pull errors off the error queue. | 
 | 294 |  * If msghdr is NULL, we will just purge the error queue. | 
 | 295 |  */ | 
 | 296 | int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr) | 
 | 297 | { | 
 | 298 | 	struct rds_notifier *notifier; | 
 | 299 | 	struct rds_rdma_notify cmsg = { 0 }; /* fill holes with zero */ | 
 | 300 | 	unsigned int count = 0, max_messages = ~0U; | 
 | 301 | 	unsigned long flags; | 
 | 302 | 	LIST_HEAD(copy); | 
 | 303 | 	int err = 0; | 
 | 304 |  | 
 | 305 |  | 
 | 306 | 	/* put_cmsg copies to user space and thus may sleep. We can't do this | 
 | 307 | 	 * with rs_lock held, so first grab as many notifications as we can stuff | 
 | 308 | 	 * in the user provided cmsg buffer. We don't try to copy more, to avoid | 
 | 309 | 	 * losing notifications - except when the buffer is so small that it wouldn't | 
 | 310 | 	 * even hold a single notification. Then we give him as much of this single | 
 | 311 | 	 * msg as we can squeeze in, and set MSG_CTRUNC. | 
 | 312 | 	 */ | 
 | 313 | 	if (msghdr) { | 
 | 314 | 		max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg)); | 
 | 315 | 		if (!max_messages) | 
 | 316 | 			max_messages = 1; | 
 | 317 | 	} | 
 | 318 |  | 
 | 319 | 	spin_lock_irqsave(&rs->rs_lock, flags); | 
 | 320 | 	while (!list_empty(&rs->rs_notify_queue) && count < max_messages) { | 
 | 321 | 		notifier = list_entry(rs->rs_notify_queue.next, | 
 | 322 | 				struct rds_notifier, n_list); | 
 | 323 | 		list_move(¬ifier->n_list, ©); | 
 | 324 | 		count++; | 
 | 325 | 	} | 
 | 326 | 	spin_unlock_irqrestore(&rs->rs_lock, flags); | 
 | 327 |  | 
 | 328 | 	if (!count) | 
 | 329 | 		return 0; | 
 | 330 |  | 
 | 331 | 	while (!list_empty(©)) { | 
 | 332 | 		notifier = list_entry(copy.next, struct rds_notifier, n_list); | 
 | 333 |  | 
 | 334 | 		if (msghdr) { | 
 | 335 | 			cmsg.user_token = notifier->n_user_token; | 
 | 336 | 			cmsg.status = notifier->n_status; | 
 | 337 |  | 
 | 338 | 			err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS, | 
 | 339 | 				       sizeof(cmsg), &cmsg); | 
 | 340 | 			if (err) | 
 | 341 | 				break; | 
 | 342 | 		} | 
 | 343 |  | 
 | 344 | 		list_del_init(¬ifier->n_list); | 
 | 345 | 		kfree(notifier); | 
 | 346 | 	} | 
 | 347 |  | 
 | 348 | 	/* If we bailed out because of an error in put_cmsg, | 
 | 349 | 	 * we may be left with one or more notifications that we | 
 | 350 | 	 * didn't process. Return them to the head of the list. */ | 
 | 351 | 	if (!list_empty(©)) { | 
 | 352 | 		spin_lock_irqsave(&rs->rs_lock, flags); | 
 | 353 | 		list_splice(©, &rs->rs_notify_queue); | 
 | 354 | 		spin_unlock_irqrestore(&rs->rs_lock, flags); | 
 | 355 | 	} | 
 | 356 |  | 
 | 357 | 	return err; | 
 | 358 | } | 
 | 359 |  | 
 | 360 | /* | 
 | 361 |  * Queue a congestion notification | 
 | 362 |  */ | 
 | 363 | static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr) | 
 | 364 | { | 
 | 365 | 	uint64_t notify = rs->rs_cong_notify; | 
 | 366 | 	unsigned long flags; | 
 | 367 | 	int err; | 
 | 368 |  | 
 | 369 | 	err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE, | 
 | 370 | 			sizeof(notify), ¬ify); | 
 | 371 | 	if (err) | 
 | 372 | 		return err; | 
 | 373 |  | 
 | 374 | 	spin_lock_irqsave(&rs->rs_lock, flags); | 
 | 375 | 	rs->rs_cong_notify &= ~notify; | 
 | 376 | 	spin_unlock_irqrestore(&rs->rs_lock, flags); | 
 | 377 |  | 
 | 378 | 	return 0; | 
 | 379 | } | 
 | 380 |  | 
 | 381 | /* | 
 | 382 |  * Receive any control messages. | 
 | 383 |  */ | 
 | 384 | static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg) | 
 | 385 | { | 
 | 386 | 	int ret = 0; | 
 | 387 |  | 
 | 388 | 	if (inc->i_rdma_cookie) { | 
 | 389 | 		ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST, | 
 | 390 | 				sizeof(inc->i_rdma_cookie), &inc->i_rdma_cookie); | 
 | 391 | 		if (ret) | 
 | 392 | 			return ret; | 
 | 393 | 	} | 
 | 394 |  | 
 | 395 | 	return 0; | 
 | 396 | } | 
 | 397 |  | 
 | 398 | int rds_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, | 
 | 399 | 		size_t size, int msg_flags) | 
 | 400 | { | 
 | 401 | 	struct sock *sk = sock->sk; | 
 | 402 | 	struct rds_sock *rs = rds_sk_to_rs(sk); | 
 | 403 | 	long timeo; | 
 | 404 | 	int ret = 0, nonblock = msg_flags & MSG_DONTWAIT; | 
 | 405 | 	struct sockaddr_in *sin; | 
 | 406 | 	struct rds_incoming *inc = NULL; | 
 | 407 |  | 
 | 408 | 	/* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */ | 
 | 409 | 	timeo = sock_rcvtimeo(sk, nonblock); | 
 | 410 |  | 
 | 411 | 	rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo); | 
 | 412 |  | 
 | 413 | 	if (msg_flags & MSG_OOB) | 
 | 414 | 		goto out; | 
 | 415 |  | 
 | 416 | 	while (1) { | 
 | 417 | 		/* If there are pending notifications, do those - and nothing else */ | 
 | 418 | 		if (!list_empty(&rs->rs_notify_queue)) { | 
 | 419 | 			ret = rds_notify_queue_get(rs, msg); | 
 | 420 | 			break; | 
 | 421 | 		} | 
 | 422 |  | 
 | 423 | 		if (rs->rs_cong_notify) { | 
 | 424 | 			ret = rds_notify_cong(rs, msg); | 
 | 425 | 			break; | 
 | 426 | 		} | 
 | 427 |  | 
 | 428 | 		if (!rds_next_incoming(rs, &inc)) { | 
 | 429 | 			if (nonblock) { | 
 | 430 | 				ret = -EAGAIN; | 
 | 431 | 				break; | 
 | 432 | 			} | 
 | 433 |  | 
 | 434 | 			timeo = wait_event_interruptible_timeout(*sk_sleep(sk), | 
 | 435 | 					(!list_empty(&rs->rs_notify_queue) || | 
 | 436 | 					 rs->rs_cong_notify || | 
 | 437 | 					 rds_next_incoming(rs, &inc)), timeo); | 
 | 438 | 			rdsdebug("recvmsg woke inc %p timeo %ld\n", inc, | 
 | 439 | 				 timeo); | 
 | 440 | 			if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) | 
 | 441 | 				continue; | 
 | 442 |  | 
 | 443 | 			ret = timeo; | 
 | 444 | 			if (ret == 0) | 
 | 445 | 				ret = -ETIMEDOUT; | 
 | 446 | 			break; | 
 | 447 | 		} | 
 | 448 |  | 
 | 449 | 		rdsdebug("copying inc %p from %pI4:%u to user\n", inc, | 
 | 450 | 			 &inc->i_conn->c_faddr, | 
 | 451 | 			 ntohs(inc->i_hdr.h_sport)); | 
 | 452 | 		ret = inc->i_conn->c_trans->inc_copy_to_user(inc, msg->msg_iov, | 
 | 453 | 							     size); | 
 | 454 | 		if (ret < 0) | 
 | 455 | 			break; | 
 | 456 |  | 
 | 457 | 		/* | 
 | 458 | 		 * if the message we just copied isn't at the head of the | 
 | 459 | 		 * recv queue then someone else raced us to return it, try | 
 | 460 | 		 * to get the next message. | 
 | 461 | 		 */ | 
 | 462 | 		if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) { | 
 | 463 | 			rds_inc_put(inc); | 
 | 464 | 			inc = NULL; | 
 | 465 | 			rds_stats_inc(s_recv_deliver_raced); | 
 | 466 | 			continue; | 
 | 467 | 		} | 
 | 468 |  | 
 | 469 | 		if (ret < be32_to_cpu(inc->i_hdr.h_len)) { | 
 | 470 | 			if (msg_flags & MSG_TRUNC) | 
 | 471 | 				ret = be32_to_cpu(inc->i_hdr.h_len); | 
 | 472 | 			msg->msg_flags |= MSG_TRUNC; | 
 | 473 | 		} | 
 | 474 |  | 
 | 475 | 		if (rds_cmsg_recv(inc, msg)) { | 
 | 476 | 			ret = -EFAULT; | 
 | 477 | 			goto out; | 
 | 478 | 		} | 
 | 479 |  | 
 | 480 | 		rds_stats_inc(s_recv_delivered); | 
 | 481 |  | 
 | 482 | 		sin = (struct sockaddr_in *)msg->msg_name; | 
 | 483 | 		if (sin) { | 
 | 484 | 			sin->sin_family = AF_INET; | 
 | 485 | 			sin->sin_port = inc->i_hdr.h_sport; | 
 | 486 | 			sin->sin_addr.s_addr = inc->i_saddr; | 
 | 487 | 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); | 
 | 488 | 			msg->msg_namelen = sizeof(*sin); | 
 | 489 | 		} | 
 | 490 | 		break; | 
 | 491 | 	} | 
 | 492 |  | 
 | 493 | 	if (inc) | 
 | 494 | 		rds_inc_put(inc); | 
 | 495 |  | 
 | 496 | out: | 
 | 497 | 	return ret; | 
 | 498 | } | 
 | 499 |  | 
 | 500 | /* | 
 | 501 |  * The socket is being shut down and we're asked to drop messages that were | 
 | 502 |  * queued for recvmsg.  The caller has unbound the socket so the receive path | 
 | 503 |  * won't queue any more incoming fragments or messages on the socket. | 
 | 504 |  */ | 
 | 505 | void rds_clear_recv_queue(struct rds_sock *rs) | 
 | 506 | { | 
 | 507 | 	struct sock *sk = rds_rs_to_sk(rs); | 
 | 508 | 	struct rds_incoming *inc, *tmp; | 
 | 509 | 	unsigned long flags; | 
 | 510 |  | 
 | 511 | 	write_lock_irqsave(&rs->rs_recv_lock, flags); | 
 | 512 | 	list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) { | 
 | 513 | 		rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong, | 
 | 514 | 				      -be32_to_cpu(inc->i_hdr.h_len), | 
 | 515 | 				      inc->i_hdr.h_dport); | 
 | 516 | 		list_del_init(&inc->i_item); | 
 | 517 | 		rds_inc_put(inc); | 
 | 518 | 	} | 
 | 519 | 	write_unlock_irqrestore(&rs->rs_recv_lock, flags); | 
 | 520 | } | 
 | 521 |  | 
 | 522 | /* | 
 | 523 |  * inc->i_saddr isn't used here because it is only set in the receive | 
 | 524 |  * path. | 
 | 525 |  */ | 
 | 526 | void rds_inc_info_copy(struct rds_incoming *inc, | 
 | 527 | 		       struct rds_info_iterator *iter, | 
 | 528 | 		       __be32 saddr, __be32 daddr, int flip) | 
 | 529 | { | 
 | 530 | 	struct rds_info_message minfo; | 
 | 531 |  | 
 | 532 | 	minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence); | 
 | 533 | 	minfo.len = be32_to_cpu(inc->i_hdr.h_len); | 
 | 534 |  | 
 | 535 | 	if (flip) { | 
 | 536 | 		minfo.laddr = daddr; | 
 | 537 | 		minfo.faddr = saddr; | 
 | 538 | 		minfo.lport = inc->i_hdr.h_dport; | 
 | 539 | 		minfo.fport = inc->i_hdr.h_sport; | 
 | 540 | 	} else { | 
 | 541 | 		minfo.laddr = saddr; | 
 | 542 | 		minfo.faddr = daddr; | 
 | 543 | 		minfo.lport = inc->i_hdr.h_sport; | 
 | 544 | 		minfo.fport = inc->i_hdr.h_dport; | 
 | 545 | 	} | 
 | 546 |  | 
 | 547 | 	rds_info_copy(iter, &minfo, sizeof(minfo)); | 
 | 548 | } |