xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Copyright (C) 2002-2016 Free Software Foundation, Inc. |
| 2 | This file is part of the GNU C Library. |
| 3 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <assert.h> |
| 20 | #include <errno.h> |
| 21 | #include <signal.h> |
| 22 | #include <stdint.h> |
| 23 | #include <string.h> |
| 24 | #include <unistd.h> |
| 25 | #include <sys/mman.h> |
| 26 | #include <sys/param.h> |
| 27 | #include <dl-sysdep.h> |
| 28 | #include <dl-tls.h> |
| 29 | #include <tls.h> |
| 30 | #include <list.h> |
| 31 | #include <lowlevellock.h> |
| 32 | #include <futex-internal.h> |
| 33 | #include <kernel-features.h> |
| 34 | #include <stack-aliasing.h> |
| 35 | |
| 36 | |
| 37 | #ifndef NEED_SEPARATE_REGISTER_STACK |
| 38 | |
| 39 | /* Most architectures have exactly one stack pointer. Some have more. */ |
| 40 | # define STACK_VARIABLES void *stackaddr = NULL |
| 41 | |
| 42 | /* How to pass the values to the 'create_thread' function. */ |
| 43 | # define STACK_VARIABLES_ARGS stackaddr |
| 44 | |
| 45 | /* How to declare function which gets there parameters. */ |
| 46 | # define STACK_VARIABLES_PARMS void *stackaddr |
| 47 | |
| 48 | /* How to declare allocate_stack. */ |
| 49 | # define ALLOCATE_STACK_PARMS void **stack |
| 50 | |
| 51 | /* This is how the function is called. We do it this way to allow |
| 52 | other variants of the function to have more parameters. */ |
| 53 | # define ALLOCATE_STACK(attr, pd) allocate_stack (attr, pd, &stackaddr) |
| 54 | |
| 55 | #else |
| 56 | |
| 57 | /* We need two stacks. The kernel will place them but we have to tell |
| 58 | the kernel about the size of the reserved address space. */ |
| 59 | # define STACK_VARIABLES void *stackaddr = NULL; size_t stacksize = 0 |
| 60 | |
| 61 | /* How to pass the values to the 'create_thread' function. */ |
| 62 | # define STACK_VARIABLES_ARGS stackaddr, stacksize |
| 63 | |
| 64 | /* How to declare function which gets there parameters. */ |
| 65 | # define STACK_VARIABLES_PARMS void *stackaddr, size_t stacksize |
| 66 | |
| 67 | /* How to declare allocate_stack. */ |
| 68 | # define ALLOCATE_STACK_PARMS void **stack, size_t *stacksize |
| 69 | |
| 70 | /* This is how the function is called. We do it this way to allow |
| 71 | other variants of the function to have more parameters. */ |
| 72 | # define ALLOCATE_STACK(attr, pd) \ |
| 73 | allocate_stack (attr, pd, &stackaddr, &stacksize) |
| 74 | |
| 75 | #endif |
| 76 | |
| 77 | |
| 78 | /* Default alignment of stack. */ |
| 79 | #ifndef STACK_ALIGN |
| 80 | # define STACK_ALIGN __alignof__ (long double) |
| 81 | #endif |
| 82 | |
| 83 | /* Default value for minimal stack size after allocating thread |
| 84 | descriptor and guard. */ |
| 85 | #ifndef MINIMAL_REST_STACK |
| 86 | # define MINIMAL_REST_STACK 4096 |
| 87 | #endif |
| 88 | |
| 89 | |
| 90 | /* Newer kernels have the MAP_STACK flag to indicate a mapping is used for |
| 91 | a stack. Use it when possible. */ |
| 92 | #ifndef MAP_STACK |
| 93 | # define MAP_STACK 0 |
| 94 | #endif |
| 95 | |
| 96 | /* This yields the pointer that TLS support code calls the thread pointer. */ |
| 97 | #if TLS_TCB_AT_TP |
| 98 | # define TLS_TPADJ(pd) (pd) |
| 99 | #elif TLS_DTV_AT_TP |
| 100 | # define TLS_TPADJ(pd) ((struct pthread *)((char *) (pd) + TLS_PRE_TCB_SIZE)) |
| 101 | #endif |
| 102 | |
| 103 | /* Cache handling for not-yet free stacks. */ |
| 104 | |
| 105 | /* Maximum size in kB of cache. */ |
| 106 | static size_t stack_cache_maxsize = 40 * 1024 * 1024; /* 40MiBi by default. */ |
| 107 | static size_t stack_cache_actsize; |
| 108 | |
| 109 | /* Mutex protecting this variable. */ |
| 110 | static int stack_cache_lock = LLL_LOCK_INITIALIZER; |
| 111 | |
| 112 | /* List of queued stack frames. */ |
| 113 | static LIST_HEAD (stack_cache); |
| 114 | |
| 115 | /* List of the stacks in use. */ |
| 116 | static LIST_HEAD (stack_used); |
| 117 | |
| 118 | /* We need to record what list operations we are going to do so that, |
| 119 | in case of an asynchronous interruption due to a fork() call, we |
| 120 | can correct for the work. */ |
| 121 | static uintptr_t in_flight_stack; |
| 122 | |
| 123 | /* List of the threads with user provided stacks in use. No need to |
| 124 | initialize this, since it's done in __pthread_initialize_minimal. */ |
| 125 | list_t __stack_user __attribute__ ((nocommon)); |
| 126 | hidden_data_def (__stack_user) |
| 127 | |
| 128 | #if COLORING_INCREMENT != 0 |
| 129 | /* Number of threads created. */ |
| 130 | static unsigned int nptl_ncreated; |
| 131 | #endif |
| 132 | |
| 133 | |
| 134 | /* Check whether the stack is still used or not. */ |
| 135 | #define FREE_P(descr) ((descr)->tid <= 0) |
| 136 | |
| 137 | |
| 138 | static void |
| 139 | stack_list_del (list_t *elem) |
| 140 | { |
| 141 | in_flight_stack = (uintptr_t) elem; |
| 142 | |
| 143 | atomic_write_barrier (); |
| 144 | |
| 145 | list_del (elem); |
| 146 | |
| 147 | atomic_write_barrier (); |
| 148 | |
| 149 | in_flight_stack = 0; |
| 150 | } |
| 151 | |
| 152 | |
| 153 | static void |
| 154 | stack_list_add (list_t *elem, list_t *list) |
| 155 | { |
| 156 | in_flight_stack = (uintptr_t) elem | 1; |
| 157 | |
| 158 | atomic_write_barrier (); |
| 159 | |
| 160 | list_add (elem, list); |
| 161 | |
| 162 | atomic_write_barrier (); |
| 163 | |
| 164 | in_flight_stack = 0; |
| 165 | } |
| 166 | |
| 167 | |
| 168 | /* We create a double linked list of all cache entries. Double linked |
| 169 | because this allows removing entries from the end. */ |
| 170 | |
| 171 | |
| 172 | /* Get a stack frame from the cache. We have to match by size since |
| 173 | some blocks might be too small or far too large. */ |
| 174 | static struct pthread * |
| 175 | get_cached_stack (size_t *sizep, void **memp) |
| 176 | { |
| 177 | size_t size = *sizep; |
| 178 | struct pthread *result = NULL; |
| 179 | list_t *entry; |
| 180 | |
| 181 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 182 | |
| 183 | /* Search the cache for a matching entry. We search for the |
| 184 | smallest stack which has at least the required size. Note that |
| 185 | in normal situations the size of all allocated stacks is the |
| 186 | same. As the very least there are only a few different sizes. |
| 187 | Therefore this loop will exit early most of the time with an |
| 188 | exact match. */ |
| 189 | list_for_each (entry, &stack_cache) |
| 190 | { |
| 191 | struct pthread *curr; |
| 192 | |
| 193 | curr = list_entry (entry, struct pthread, list); |
| 194 | if (FREE_P (curr) && curr->stackblock_size >= size) |
| 195 | { |
| 196 | if (curr->stackblock_size == size) |
| 197 | { |
| 198 | result = curr; |
| 199 | break; |
| 200 | } |
| 201 | |
| 202 | if (result == NULL |
| 203 | || result->stackblock_size > curr->stackblock_size) |
| 204 | result = curr; |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | if (__builtin_expect (result == NULL, 0) |
| 209 | /* Make sure the size difference is not too excessive. In that |
| 210 | case we do not use the block. */ |
| 211 | || __builtin_expect (result->stackblock_size > 4 * size, 0)) |
| 212 | { |
| 213 | /* Release the lock. */ |
| 214 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 215 | |
| 216 | return NULL; |
| 217 | } |
| 218 | |
| 219 | /* Don't allow setxid until cloned. */ |
| 220 | result->setxid_futex = -1; |
| 221 | |
| 222 | /* Dequeue the entry. */ |
| 223 | stack_list_del (&result->list); |
| 224 | |
| 225 | /* And add to the list of stacks in use. */ |
| 226 | stack_list_add (&result->list, &stack_used); |
| 227 | |
| 228 | /* And decrease the cache size. */ |
| 229 | stack_cache_actsize -= result->stackblock_size; |
| 230 | |
| 231 | /* Release the lock early. */ |
| 232 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 233 | |
| 234 | /* Report size and location of the stack to the caller. */ |
| 235 | *sizep = result->stackblock_size; |
| 236 | *memp = result->stackblock; |
| 237 | |
| 238 | /* Cancellation handling is back to the default. */ |
| 239 | result->cancelhandling = 0; |
| 240 | result->cleanup = NULL; |
| 241 | |
| 242 | /* No pending event. */ |
| 243 | result->nextevent = NULL; |
| 244 | |
| 245 | /* Clear the DTV. */ |
| 246 | dtv_t *dtv = GET_DTV (TLS_TPADJ (result)); |
| 247 | for (size_t cnt = 0; cnt < dtv[-1].counter; ++cnt) |
| 248 | if (! dtv[1 + cnt].pointer.is_static |
| 249 | && dtv[1 + cnt].pointer.val != TLS_DTV_UNALLOCATED) |
| 250 | free (dtv[1 + cnt].pointer.val); |
| 251 | memset (dtv, '\0', (dtv[-1].counter + 1) * sizeof (dtv_t)); |
| 252 | |
| 253 | /* Re-initialize the TLS. */ |
| 254 | _dl_allocate_tls_init (TLS_TPADJ (result)); |
| 255 | |
| 256 | return result; |
| 257 | } |
| 258 | |
| 259 | |
| 260 | /* Free stacks until cache size is lower than LIMIT. */ |
| 261 | void |
| 262 | __free_stacks (size_t limit) |
| 263 | { |
| 264 | /* We reduce the size of the cache. Remove the last entries until |
| 265 | the size is below the limit. */ |
| 266 | list_t *entry; |
| 267 | list_t *prev; |
| 268 | |
| 269 | /* Search from the end of the list. */ |
| 270 | list_for_each_prev_safe (entry, prev, &stack_cache) |
| 271 | { |
| 272 | struct pthread *curr; |
| 273 | |
| 274 | curr = list_entry (entry, struct pthread, list); |
| 275 | if (FREE_P (curr)) |
| 276 | { |
| 277 | /* Unlink the block. */ |
| 278 | stack_list_del (entry); |
| 279 | |
| 280 | /* Account for the freed memory. */ |
| 281 | stack_cache_actsize -= curr->stackblock_size; |
| 282 | |
| 283 | /* Free the memory associated with the ELF TLS. */ |
| 284 | _dl_deallocate_tls (TLS_TPADJ (curr), false); |
| 285 | |
| 286 | /* Remove this block. This should never fail. If it does |
| 287 | something is really wrong. */ |
| 288 | if (munmap (curr->stackblock, curr->stackblock_size) != 0) |
| 289 | abort (); |
| 290 | |
| 291 | /* Maybe we have freed enough. */ |
| 292 | if (stack_cache_actsize <= limit) |
| 293 | break; |
| 294 | } |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | |
| 299 | /* Add a stack frame which is not used anymore to the stack. Must be |
| 300 | called with the cache lock held. */ |
| 301 | static inline void |
| 302 | __attribute ((always_inline)) |
| 303 | queue_stack (struct pthread *stack) |
| 304 | { |
| 305 | /* We unconditionally add the stack to the list. The memory may |
| 306 | still be in use but it will not be reused until the kernel marks |
| 307 | the stack as not used anymore. */ |
| 308 | stack_list_add (&stack->list, &stack_cache); |
| 309 | |
| 310 | stack_cache_actsize += stack->stackblock_size; |
| 311 | if (__glibc_unlikely (stack_cache_actsize > stack_cache_maxsize)) |
| 312 | __free_stacks (stack_cache_maxsize); |
| 313 | } |
| 314 | |
| 315 | |
| 316 | static int |
| 317 | internal_function |
| 318 | change_stack_perm (struct pthread *pd |
| 319 | #ifdef NEED_SEPARATE_REGISTER_STACK |
| 320 | , size_t pagemask |
| 321 | #endif |
| 322 | ) |
| 323 | { |
| 324 | #ifdef NEED_SEPARATE_REGISTER_STACK |
| 325 | void *stack = (pd->stackblock |
| 326 | + (((((pd->stackblock_size - pd->guardsize) / 2) |
| 327 | & pagemask) + pd->guardsize) & pagemask)); |
| 328 | size_t len = pd->stackblock + pd->stackblock_size - stack; |
| 329 | #elif _STACK_GROWS_DOWN |
| 330 | void *stack = pd->stackblock + pd->guardsize; |
| 331 | size_t len = pd->stackblock_size - pd->guardsize; |
| 332 | #elif _STACK_GROWS_UP |
| 333 | void *stack = pd->stackblock; |
| 334 | size_t len = (uintptr_t) pd - pd->guardsize - (uintptr_t) pd->stackblock; |
| 335 | #else |
| 336 | # error "Define either _STACK_GROWS_DOWN or _STACK_GROWS_UP" |
| 337 | #endif |
| 338 | if (mprotect (stack, len, PROT_READ | PROT_WRITE | PROT_EXEC) != 0) |
| 339 | return errno; |
| 340 | |
| 341 | return 0; |
| 342 | } |
| 343 | |
| 344 | |
| 345 | /* Returns a usable stack for a new thread either by allocating a |
| 346 | new stack or reusing a cached stack of sufficient size. |
| 347 | ATTR must be non-NULL and point to a valid pthread_attr. |
| 348 | PDP must be non-NULL. */ |
| 349 | static int |
| 350 | allocate_stack (const struct pthread_attr *attr, struct pthread **pdp, |
| 351 | ALLOCATE_STACK_PARMS) |
| 352 | { |
| 353 | struct pthread *pd; |
| 354 | size_t size; |
| 355 | size_t pagesize_m1 = __getpagesize () - 1; |
| 356 | |
| 357 | assert (powerof2 (pagesize_m1 + 1)); |
| 358 | assert (TCB_ALIGNMENT >= STACK_ALIGN); |
| 359 | |
| 360 | /* Get the stack size from the attribute if it is set. Otherwise we |
| 361 | use the default we determined at start time. */ |
| 362 | if (attr->stacksize != 0) |
| 363 | size = attr->stacksize; |
| 364 | else |
| 365 | { |
| 366 | lll_lock (__default_pthread_attr_lock, LLL_PRIVATE); |
| 367 | size = __default_pthread_attr.stacksize; |
| 368 | lll_unlock (__default_pthread_attr_lock, LLL_PRIVATE); |
| 369 | } |
| 370 | |
| 371 | /* Get memory for the stack. */ |
| 372 | if (__glibc_unlikely (attr->flags & ATTR_FLAG_STACKADDR)) |
| 373 | { |
| 374 | uintptr_t adj; |
| 375 | |
| 376 | /* If the user also specified the size of the stack make sure it |
| 377 | is large enough. */ |
| 378 | if (attr->stacksize != 0 |
| 379 | && attr->stacksize < (__static_tls_size + MINIMAL_REST_STACK)) |
| 380 | return EINVAL; |
| 381 | |
| 382 | /* Adjust stack size for alignment of the TLS block. */ |
| 383 | #if TLS_TCB_AT_TP |
| 384 | adj = ((uintptr_t) attr->stackaddr - TLS_TCB_SIZE) |
| 385 | & __static_tls_align_m1; |
| 386 | assert (size > adj + TLS_TCB_SIZE); |
| 387 | #elif TLS_DTV_AT_TP |
| 388 | adj = ((uintptr_t) attr->stackaddr - __static_tls_size) |
| 389 | & __static_tls_align_m1; |
| 390 | assert (size > adj); |
| 391 | #endif |
| 392 | |
| 393 | /* The user provided some memory. Let's hope it matches the |
| 394 | size... We do not allocate guard pages if the user provided |
| 395 | the stack. It is the user's responsibility to do this if it |
| 396 | is wanted. */ |
| 397 | #if TLS_TCB_AT_TP |
| 398 | pd = (struct pthread *) ((uintptr_t) attr->stackaddr |
| 399 | - TLS_TCB_SIZE - adj); |
| 400 | #elif TLS_DTV_AT_TP |
| 401 | pd = (struct pthread *) (((uintptr_t) attr->stackaddr |
| 402 | - __static_tls_size - adj) |
| 403 | - TLS_PRE_TCB_SIZE); |
| 404 | #endif |
| 405 | |
| 406 | /* The user provided stack memory needs to be cleared. */ |
| 407 | memset (pd, '\0', sizeof (struct pthread)); |
| 408 | |
| 409 | /* The first TSD block is included in the TCB. */ |
| 410 | pd->specific[0] = pd->specific_1stblock; |
| 411 | |
| 412 | /* Remember the stack-related values. */ |
| 413 | pd->stackblock = (char *) attr->stackaddr - size; |
| 414 | pd->stackblock_size = size; |
| 415 | |
| 416 | /* This is a user-provided stack. It will not be queued in the |
| 417 | stack cache nor will the memory (except the TLS memory) be freed. */ |
| 418 | pd->user_stack = true; |
| 419 | |
| 420 | /* This is at least the second thread. */ |
| 421 | pd->header.multiple_threads = 1; |
| 422 | #ifndef TLS_MULTIPLE_THREADS_IN_TCB |
| 423 | __pthread_multiple_threads = *__libc_multiple_threads_ptr = 1; |
| 424 | #endif |
| 425 | |
| 426 | #ifndef __ASSUME_PRIVATE_FUTEX |
| 427 | /* The thread must know when private futexes are supported. */ |
| 428 | pd->header.private_futex = THREAD_GETMEM (THREAD_SELF, |
| 429 | header.private_futex); |
| 430 | #endif |
| 431 | |
| 432 | #ifdef NEED_DL_SYSINFO |
| 433 | SETUP_THREAD_SYSINFO (pd); |
| 434 | #endif |
| 435 | |
| 436 | /* The process ID is also the same as that of the caller. */ |
| 437 | pd->pid = THREAD_GETMEM (THREAD_SELF, pid); |
| 438 | |
| 439 | /* Don't allow setxid until cloned. */ |
| 440 | pd->setxid_futex = -1; |
| 441 | |
| 442 | /* Allocate the DTV for this thread. */ |
| 443 | if (_dl_allocate_tls (TLS_TPADJ (pd)) == NULL) |
| 444 | { |
| 445 | /* Something went wrong. */ |
| 446 | assert (errno == ENOMEM); |
| 447 | return errno; |
| 448 | } |
| 449 | |
| 450 | |
| 451 | /* Prepare to modify global data. */ |
| 452 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 453 | |
| 454 | /* And add to the list of stacks in use. */ |
| 455 | list_add (&pd->list, &__stack_user); |
| 456 | |
| 457 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 458 | } |
| 459 | else |
| 460 | { |
| 461 | /* Allocate some anonymous memory. If possible use the cache. */ |
| 462 | size_t guardsize; |
| 463 | size_t reqsize; |
| 464 | void *mem; |
| 465 | const int prot = (PROT_READ | PROT_WRITE |
| 466 | | ((GL(dl_stack_flags) & PF_X) ? PROT_EXEC : 0)); |
| 467 | |
| 468 | #if COLORING_INCREMENT != 0 |
| 469 | /* Add one more page for stack coloring. Don't do it for stacks |
| 470 | with 16 times pagesize or larger. This might just cause |
| 471 | unnecessary misalignment. */ |
| 472 | if (size <= 16 * pagesize_m1) |
| 473 | size += pagesize_m1 + 1; |
| 474 | #endif |
| 475 | |
| 476 | /* Adjust the stack size for alignment. */ |
| 477 | size &= ~__static_tls_align_m1; |
| 478 | assert (size != 0); |
| 479 | |
| 480 | /* Make sure the size of the stack is enough for the guard and |
| 481 | eventually the thread descriptor. */ |
| 482 | guardsize = (attr->guardsize + pagesize_m1) & ~pagesize_m1; |
| 483 | if (__builtin_expect (size < ((guardsize + __static_tls_size |
| 484 | + MINIMAL_REST_STACK + pagesize_m1) |
| 485 | & ~pagesize_m1), |
| 486 | 0)) |
| 487 | /* The stack is too small (or the guard too large). */ |
| 488 | return EINVAL; |
| 489 | |
| 490 | /* Try to get a stack from the cache. */ |
| 491 | reqsize = size; |
| 492 | pd = get_cached_stack (&size, &mem); |
| 493 | if (pd == NULL) |
| 494 | { |
| 495 | /* To avoid aliasing effects on a larger scale than pages we |
| 496 | adjust the allocated stack size if necessary. This way |
| 497 | allocations directly following each other will not have |
| 498 | aliasing problems. */ |
| 499 | #if MULTI_PAGE_ALIASING != 0 |
| 500 | if ((size % MULTI_PAGE_ALIASING) == 0) |
| 501 | size += pagesize_m1 + 1; |
| 502 | #endif |
| 503 | |
| 504 | mem = mmap (NULL, size, prot, |
| 505 | MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0); |
| 506 | |
| 507 | if (__glibc_unlikely (mem == MAP_FAILED)) |
| 508 | return errno; |
| 509 | |
| 510 | /* SIZE is guaranteed to be greater than zero. |
| 511 | So we can never get a null pointer back from mmap. */ |
| 512 | assert (mem != NULL); |
| 513 | |
| 514 | #if COLORING_INCREMENT != 0 |
| 515 | /* Atomically increment NCREATED. */ |
| 516 | unsigned int ncreated = atomic_increment_val (&nptl_ncreated); |
| 517 | |
| 518 | /* We chose the offset for coloring by incrementing it for |
| 519 | every new thread by a fixed amount. The offset used |
| 520 | module the page size. Even if coloring would be better |
| 521 | relative to higher alignment values it makes no sense to |
| 522 | do it since the mmap() interface does not allow us to |
| 523 | specify any alignment for the returned memory block. */ |
| 524 | size_t coloring = (ncreated * COLORING_INCREMENT) & pagesize_m1; |
| 525 | |
| 526 | /* Make sure the coloring offsets does not disturb the alignment |
| 527 | of the TCB and static TLS block. */ |
| 528 | if (__glibc_unlikely ((coloring & __static_tls_align_m1) != 0)) |
| 529 | coloring = (((coloring + __static_tls_align_m1) |
| 530 | & ~(__static_tls_align_m1)) |
| 531 | & ~pagesize_m1); |
| 532 | #else |
| 533 | /* Unless specified we do not make any adjustments. */ |
| 534 | # define coloring 0 |
| 535 | #endif |
| 536 | |
| 537 | /* Place the thread descriptor at the end of the stack. */ |
| 538 | #if TLS_TCB_AT_TP |
| 539 | pd = (struct pthread *) ((char *) mem + size - coloring) - 1; |
| 540 | #elif TLS_DTV_AT_TP |
| 541 | pd = (struct pthread *) ((((uintptr_t) mem + size - coloring |
| 542 | - __static_tls_size) |
| 543 | & ~__static_tls_align_m1) |
| 544 | - TLS_PRE_TCB_SIZE); |
| 545 | #endif |
| 546 | |
| 547 | /* Remember the stack-related values. */ |
| 548 | pd->stackblock = mem; |
| 549 | pd->stackblock_size = size; |
| 550 | |
| 551 | /* We allocated the first block thread-specific data array. |
| 552 | This address will not change for the lifetime of this |
| 553 | descriptor. */ |
| 554 | pd->specific[0] = pd->specific_1stblock; |
| 555 | |
| 556 | /* This is at least the second thread. */ |
| 557 | pd->header.multiple_threads = 1; |
| 558 | #ifndef TLS_MULTIPLE_THREADS_IN_TCB |
| 559 | __pthread_multiple_threads = *__libc_multiple_threads_ptr = 1; |
| 560 | #endif |
| 561 | |
| 562 | #ifndef __ASSUME_PRIVATE_FUTEX |
| 563 | /* The thread must know when private futexes are supported. */ |
| 564 | pd->header.private_futex = THREAD_GETMEM (THREAD_SELF, |
| 565 | header.private_futex); |
| 566 | #endif |
| 567 | |
| 568 | #ifdef NEED_DL_SYSINFO |
| 569 | SETUP_THREAD_SYSINFO (pd); |
| 570 | #endif |
| 571 | |
| 572 | /* Don't allow setxid until cloned. */ |
| 573 | pd->setxid_futex = -1; |
| 574 | |
| 575 | /* The process ID is also the same as that of the caller. */ |
| 576 | pd->pid = THREAD_GETMEM (THREAD_SELF, pid); |
| 577 | |
| 578 | /* Allocate the DTV for this thread. */ |
| 579 | if (_dl_allocate_tls (TLS_TPADJ (pd)) == NULL) |
| 580 | { |
| 581 | /* Something went wrong. */ |
| 582 | assert (errno == ENOMEM); |
| 583 | |
| 584 | /* Free the stack memory we just allocated. */ |
| 585 | (void) munmap (mem, size); |
| 586 | |
| 587 | return errno; |
| 588 | } |
| 589 | |
| 590 | |
| 591 | /* Prepare to modify global data. */ |
| 592 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 593 | |
| 594 | /* And add to the list of stacks in use. */ |
| 595 | stack_list_add (&pd->list, &stack_used); |
| 596 | |
| 597 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 598 | |
| 599 | |
| 600 | /* There might have been a race. Another thread might have |
| 601 | caused the stacks to get exec permission while this new |
| 602 | stack was prepared. Detect if this was possible and |
| 603 | change the permission if necessary. */ |
| 604 | if (__builtin_expect ((GL(dl_stack_flags) & PF_X) != 0 |
| 605 | && (prot & PROT_EXEC) == 0, 0)) |
| 606 | { |
| 607 | int err = change_stack_perm (pd |
| 608 | #ifdef NEED_SEPARATE_REGISTER_STACK |
| 609 | , ~pagesize_m1 |
| 610 | #endif |
| 611 | ); |
| 612 | if (err != 0) |
| 613 | { |
| 614 | /* Free the stack memory we just allocated. */ |
| 615 | (void) munmap (mem, size); |
| 616 | |
| 617 | return err; |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | |
| 622 | /* Note that all of the stack and the thread descriptor is |
| 623 | zeroed. This means we do not have to initialize fields |
| 624 | with initial value zero. This is specifically true for |
| 625 | the 'tid' field which is always set back to zero once the |
| 626 | stack is not used anymore and for the 'guardsize' field |
| 627 | which will be read next. */ |
| 628 | } |
| 629 | |
| 630 | /* Create or resize the guard area if necessary. */ |
| 631 | if (__glibc_unlikely (guardsize > pd->guardsize)) |
| 632 | { |
| 633 | #ifdef NEED_SEPARATE_REGISTER_STACK |
| 634 | char *guard = mem + (((size - guardsize) / 2) & ~pagesize_m1); |
| 635 | #elif _STACK_GROWS_DOWN |
| 636 | char *guard = mem; |
| 637 | # elif _STACK_GROWS_UP |
| 638 | char *guard = (char *) (((uintptr_t) pd - guardsize) & ~pagesize_m1); |
| 639 | #endif |
| 640 | if (mprotect (guard, guardsize, PROT_NONE) != 0) |
| 641 | { |
| 642 | mprot_error: |
| 643 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 644 | |
| 645 | /* Remove the thread from the list. */ |
| 646 | stack_list_del (&pd->list); |
| 647 | |
| 648 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 649 | |
| 650 | /* Get rid of the TLS block we allocated. */ |
| 651 | _dl_deallocate_tls (TLS_TPADJ (pd), false); |
| 652 | |
| 653 | /* Free the stack memory regardless of whether the size |
| 654 | of the cache is over the limit or not. If this piece |
| 655 | of memory caused problems we better do not use it |
| 656 | anymore. Uh, and we ignore possible errors. There |
| 657 | is nothing we could do. */ |
| 658 | (void) munmap (mem, size); |
| 659 | |
| 660 | return errno; |
| 661 | } |
| 662 | |
| 663 | pd->guardsize = guardsize; |
| 664 | } |
| 665 | else if (__builtin_expect (pd->guardsize - guardsize > size - reqsize, |
| 666 | 0)) |
| 667 | { |
| 668 | /* The old guard area is too large. */ |
| 669 | |
| 670 | #ifdef NEED_SEPARATE_REGISTER_STACK |
| 671 | char *guard = mem + (((size - guardsize) / 2) & ~pagesize_m1); |
| 672 | char *oldguard = mem + (((size - pd->guardsize) / 2) & ~pagesize_m1); |
| 673 | |
| 674 | if (oldguard < guard |
| 675 | && mprotect (oldguard, guard - oldguard, prot) != 0) |
| 676 | goto mprot_error; |
| 677 | |
| 678 | if (mprotect (guard + guardsize, |
| 679 | oldguard + pd->guardsize - guard - guardsize, |
| 680 | prot) != 0) |
| 681 | goto mprot_error; |
| 682 | #elif _STACK_GROWS_DOWN |
| 683 | if (mprotect ((char *) mem + guardsize, pd->guardsize - guardsize, |
| 684 | prot) != 0) |
| 685 | goto mprot_error; |
| 686 | #elif _STACK_GROWS_UP |
| 687 | if (mprotect ((char *) pd - pd->guardsize, |
| 688 | pd->guardsize - guardsize, prot) != 0) |
| 689 | goto mprot_error; |
| 690 | #endif |
| 691 | |
| 692 | pd->guardsize = guardsize; |
| 693 | } |
| 694 | /* The pthread_getattr_np() calls need to get passed the size |
| 695 | requested in the attribute, regardless of how large the |
| 696 | actually used guardsize is. */ |
| 697 | pd->reported_guardsize = guardsize; |
| 698 | } |
| 699 | |
| 700 | /* Initialize the lock. We have to do this unconditionally since the |
| 701 | stillborn thread could be canceled while the lock is taken. */ |
| 702 | pd->lock = LLL_LOCK_INITIALIZER; |
| 703 | |
| 704 | /* The robust mutex lists also need to be initialized |
| 705 | unconditionally because the cleanup for the previous stack owner |
| 706 | might have happened in the kernel. */ |
| 707 | pd->robust_head.futex_offset = (offsetof (pthread_mutex_t, __data.__lock) |
| 708 | - offsetof (pthread_mutex_t, |
| 709 | __data.__list.__next)); |
| 710 | pd->robust_head.list_op_pending = NULL; |
| 711 | #ifdef __PTHREAD_MUTEX_HAVE_PREV |
| 712 | pd->robust_prev = &pd->robust_head; |
| 713 | #endif |
| 714 | pd->robust_head.list = &pd->robust_head; |
| 715 | |
| 716 | /* We place the thread descriptor at the end of the stack. */ |
| 717 | *pdp = pd; |
| 718 | |
| 719 | #if _STACK_GROWS_DOWN |
| 720 | void *stacktop; |
| 721 | |
| 722 | # if TLS_TCB_AT_TP |
| 723 | /* The stack begins before the TCB and the static TLS block. */ |
| 724 | stacktop = ((char *) (pd + 1) - __static_tls_size); |
| 725 | # elif TLS_DTV_AT_TP |
| 726 | stacktop = (char *) (pd - 1); |
| 727 | # endif |
| 728 | |
| 729 | # ifdef NEED_SEPARATE_REGISTER_STACK |
| 730 | *stack = pd->stackblock; |
| 731 | *stacksize = stacktop - *stack; |
| 732 | # else |
| 733 | *stack = stacktop; |
| 734 | # endif |
| 735 | #else |
| 736 | *stack = pd->stackblock; |
| 737 | assert (*stack > 0); |
| 738 | #endif |
| 739 | |
| 740 | return 0; |
| 741 | } |
| 742 | |
| 743 | |
| 744 | void |
| 745 | internal_function |
| 746 | __deallocate_stack (struct pthread *pd) |
| 747 | { |
| 748 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 749 | |
| 750 | /* Remove the thread from the list of threads with user defined |
| 751 | stacks. */ |
| 752 | stack_list_del (&pd->list); |
| 753 | |
| 754 | /* Not much to do. Just free the mmap()ed memory. Note that we do |
| 755 | not reset the 'used' flag in the 'tid' field. This is done by |
| 756 | the kernel. If no thread has been created yet this field is |
| 757 | still zero. */ |
| 758 | if (__glibc_likely (! pd->user_stack)) |
| 759 | (void) queue_stack (pd); |
| 760 | else |
| 761 | /* Free the memory associated with the ELF TLS. */ |
| 762 | _dl_deallocate_tls (TLS_TPADJ (pd), false); |
| 763 | |
| 764 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 765 | } |
| 766 | |
| 767 | |
| 768 | int |
| 769 | internal_function |
| 770 | __make_stacks_executable (void **stack_endp) |
| 771 | { |
| 772 | /* First the main thread's stack. */ |
| 773 | int err = _dl_make_stack_executable (stack_endp); |
| 774 | if (err != 0) |
| 775 | return err; |
| 776 | |
| 777 | #ifdef NEED_SEPARATE_REGISTER_STACK |
| 778 | const size_t pagemask = ~(__getpagesize () - 1); |
| 779 | #endif |
| 780 | |
| 781 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 782 | |
| 783 | list_t *runp; |
| 784 | list_for_each (runp, &stack_used) |
| 785 | { |
| 786 | err = change_stack_perm (list_entry (runp, struct pthread, list) |
| 787 | #ifdef NEED_SEPARATE_REGISTER_STACK |
| 788 | , pagemask |
| 789 | #endif |
| 790 | ); |
| 791 | if (err != 0) |
| 792 | break; |
| 793 | } |
| 794 | |
| 795 | /* Also change the permission for the currently unused stacks. This |
| 796 | might be wasted time but better spend it here than adding a check |
| 797 | in the fast path. */ |
| 798 | if (err == 0) |
| 799 | list_for_each (runp, &stack_cache) |
| 800 | { |
| 801 | err = change_stack_perm (list_entry (runp, struct pthread, list) |
| 802 | #ifdef NEED_SEPARATE_REGISTER_STACK |
| 803 | , pagemask |
| 804 | #endif |
| 805 | ); |
| 806 | if (err != 0) |
| 807 | break; |
| 808 | } |
| 809 | |
| 810 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 811 | |
| 812 | return err; |
| 813 | } |
| 814 | |
| 815 | |
| 816 | /* In case of a fork() call the memory allocation in the child will be |
| 817 | the same but only one thread is running. All stacks except that of |
| 818 | the one running thread are not used anymore. We have to recycle |
| 819 | them. */ |
| 820 | void |
| 821 | __reclaim_stacks (void) |
| 822 | { |
| 823 | struct pthread *self = (struct pthread *) THREAD_SELF; |
| 824 | |
| 825 | /* No locking necessary. The caller is the only stack in use. But |
| 826 | we have to be aware that we might have interrupted a list |
| 827 | operation. */ |
| 828 | |
| 829 | if (in_flight_stack != 0) |
| 830 | { |
| 831 | bool add_p = in_flight_stack & 1; |
| 832 | list_t *elem = (list_t *) (in_flight_stack & ~(uintptr_t) 1); |
| 833 | |
| 834 | if (add_p) |
| 835 | { |
| 836 | /* We always add at the beginning of the list. So in this case we |
| 837 | only need to check the beginning of these lists to see if the |
| 838 | pointers at the head of the list are inconsistent. */ |
| 839 | list_t *l = NULL; |
| 840 | |
| 841 | if (stack_used.next->prev != &stack_used) |
| 842 | l = &stack_used; |
| 843 | else if (stack_cache.next->prev != &stack_cache) |
| 844 | l = &stack_cache; |
| 845 | |
| 846 | if (l != NULL) |
| 847 | { |
| 848 | assert (l->next->prev == elem); |
| 849 | elem->next = l->next; |
| 850 | elem->prev = l; |
| 851 | l->next = elem; |
| 852 | } |
| 853 | } |
| 854 | else |
| 855 | { |
| 856 | /* We can simply always replay the delete operation. */ |
| 857 | elem->next->prev = elem->prev; |
| 858 | elem->prev->next = elem->next; |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | /* Mark all stacks except the still running one as free. */ |
| 863 | list_t *runp; |
| 864 | list_for_each (runp, &stack_used) |
| 865 | { |
| 866 | struct pthread *curp = list_entry (runp, struct pthread, list); |
| 867 | if (curp != self) |
| 868 | { |
| 869 | /* This marks the stack as free. */ |
| 870 | curp->tid = 0; |
| 871 | |
| 872 | /* The PID field must be initialized for the new process. */ |
| 873 | curp->pid = self->pid; |
| 874 | |
| 875 | /* Account for the size of the stack. */ |
| 876 | stack_cache_actsize += curp->stackblock_size; |
| 877 | |
| 878 | if (curp->specific_used) |
| 879 | { |
| 880 | /* Clear the thread-specific data. */ |
| 881 | memset (curp->specific_1stblock, '\0', |
| 882 | sizeof (curp->specific_1stblock)); |
| 883 | |
| 884 | curp->specific_used = false; |
| 885 | |
| 886 | for (size_t cnt = 1; cnt < PTHREAD_KEY_1STLEVEL_SIZE; ++cnt) |
| 887 | if (curp->specific[cnt] != NULL) |
| 888 | { |
| 889 | memset (curp->specific[cnt], '\0', |
| 890 | sizeof (curp->specific_1stblock)); |
| 891 | |
| 892 | /* We have allocated the block which we do not |
| 893 | free here so re-set the bit. */ |
| 894 | curp->specific_used = true; |
| 895 | } |
| 896 | } |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | /* Reset the PIDs in any cached stacks. */ |
| 901 | list_for_each (runp, &stack_cache) |
| 902 | { |
| 903 | struct pthread *curp = list_entry (runp, struct pthread, list); |
| 904 | curp->pid = self->pid; |
| 905 | } |
| 906 | |
| 907 | /* Add the stack of all running threads to the cache. */ |
| 908 | list_splice (&stack_used, &stack_cache); |
| 909 | |
| 910 | /* Remove the entry for the current thread to from the cache list |
| 911 | and add it to the list of running threads. Which of the two |
| 912 | lists is decided by the user_stack flag. */ |
| 913 | stack_list_del (&self->list); |
| 914 | |
| 915 | /* Re-initialize the lists for all the threads. */ |
| 916 | INIT_LIST_HEAD (&stack_used); |
| 917 | INIT_LIST_HEAD (&__stack_user); |
| 918 | |
| 919 | if (__glibc_unlikely (THREAD_GETMEM (self, user_stack))) |
| 920 | list_add (&self->list, &__stack_user); |
| 921 | else |
| 922 | list_add (&self->list, &stack_used); |
| 923 | |
| 924 | /* There is one thread running. */ |
| 925 | __nptl_nthreads = 1; |
| 926 | |
| 927 | in_flight_stack = 0; |
| 928 | |
| 929 | /* Initialize locks. */ |
| 930 | stack_cache_lock = LLL_LOCK_INITIALIZER; |
| 931 | __default_pthread_attr_lock = LLL_LOCK_INITIALIZER; |
| 932 | } |
| 933 | |
| 934 | |
| 935 | #if HP_TIMING_AVAIL |
| 936 | # undef __find_thread_by_id |
| 937 | /* Find a thread given the thread ID. */ |
| 938 | attribute_hidden |
| 939 | struct pthread * |
| 940 | __find_thread_by_id (pid_t tid) |
| 941 | { |
| 942 | struct pthread *result = NULL; |
| 943 | |
| 944 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 945 | |
| 946 | /* Iterate over the list with system-allocated threads first. */ |
| 947 | list_t *runp; |
| 948 | list_for_each (runp, &stack_used) |
| 949 | { |
| 950 | struct pthread *curp; |
| 951 | |
| 952 | curp = list_entry (runp, struct pthread, list); |
| 953 | |
| 954 | if (curp->tid == tid) |
| 955 | { |
| 956 | result = curp; |
| 957 | goto out; |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | /* Now the list with threads using user-allocated stacks. */ |
| 962 | list_for_each (runp, &__stack_user) |
| 963 | { |
| 964 | struct pthread *curp; |
| 965 | |
| 966 | curp = list_entry (runp, struct pthread, list); |
| 967 | |
| 968 | if (curp->tid == tid) |
| 969 | { |
| 970 | result = curp; |
| 971 | goto out; |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | out: |
| 976 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 977 | |
| 978 | return result; |
| 979 | } |
| 980 | #endif |
| 981 | |
| 982 | |
| 983 | #ifdef SIGSETXID |
| 984 | static void |
| 985 | internal_function |
| 986 | setxid_mark_thread (struct xid_command *cmdp, struct pthread *t) |
| 987 | { |
| 988 | int ch; |
| 989 | |
| 990 | /* Wait until this thread is cloned. */ |
| 991 | if (t->setxid_futex == -1 |
| 992 | && ! atomic_compare_and_exchange_bool_acq (&t->setxid_futex, -2, -1)) |
| 993 | do |
| 994 | futex_wait_simple (&t->setxid_futex, -2, FUTEX_PRIVATE); |
| 995 | while (t->setxid_futex == -2); |
| 996 | |
| 997 | /* Don't let the thread exit before the setxid handler runs. */ |
| 998 | t->setxid_futex = 0; |
| 999 | |
| 1000 | do |
| 1001 | { |
| 1002 | ch = t->cancelhandling; |
| 1003 | |
| 1004 | /* If the thread is exiting right now, ignore it. */ |
| 1005 | if ((ch & EXITING_BITMASK) != 0) |
| 1006 | { |
| 1007 | /* Release the futex if there is no other setxid in |
| 1008 | progress. */ |
| 1009 | if ((ch & SETXID_BITMASK) == 0) |
| 1010 | { |
| 1011 | t->setxid_futex = 1; |
| 1012 | futex_wake (&t->setxid_futex, 1, FUTEX_PRIVATE); |
| 1013 | } |
| 1014 | return; |
| 1015 | } |
| 1016 | } |
| 1017 | while (atomic_compare_and_exchange_bool_acq (&t->cancelhandling, |
| 1018 | ch | SETXID_BITMASK, ch)); |
| 1019 | } |
| 1020 | |
| 1021 | |
| 1022 | static void |
| 1023 | internal_function |
| 1024 | setxid_unmark_thread (struct xid_command *cmdp, struct pthread *t) |
| 1025 | { |
| 1026 | int ch; |
| 1027 | |
| 1028 | do |
| 1029 | { |
| 1030 | ch = t->cancelhandling; |
| 1031 | if ((ch & SETXID_BITMASK) == 0) |
| 1032 | return; |
| 1033 | } |
| 1034 | while (atomic_compare_and_exchange_bool_acq (&t->cancelhandling, |
| 1035 | ch & ~SETXID_BITMASK, ch)); |
| 1036 | |
| 1037 | /* Release the futex just in case. */ |
| 1038 | t->setxid_futex = 1; |
| 1039 | futex_wake (&t->setxid_futex, 1, FUTEX_PRIVATE); |
| 1040 | } |
| 1041 | |
| 1042 | |
| 1043 | static int |
| 1044 | internal_function |
| 1045 | setxid_signal_thread (struct xid_command *cmdp, struct pthread *t) |
| 1046 | { |
| 1047 | if ((t->cancelhandling & SETXID_BITMASK) == 0) |
| 1048 | return 0; |
| 1049 | |
| 1050 | int val; |
| 1051 | INTERNAL_SYSCALL_DECL (err); |
| 1052 | val = INTERNAL_SYSCALL (tgkill, err, 3, THREAD_GETMEM (THREAD_SELF, pid), |
| 1053 | t->tid, SIGSETXID); |
| 1054 | |
| 1055 | /* If this failed, it must have had not started yet or else exited. */ |
| 1056 | if (!INTERNAL_SYSCALL_ERROR_P (val, err)) |
| 1057 | { |
| 1058 | atomic_increment (&cmdp->cntr); |
| 1059 | return 1; |
| 1060 | } |
| 1061 | else |
| 1062 | return 0; |
| 1063 | } |
| 1064 | |
| 1065 | /* Check for consistency across set*id system call results. The abort |
| 1066 | should not happen as long as all privileges changes happen through |
| 1067 | the glibc wrappers. ERROR must be 0 (no error) or an errno |
| 1068 | code. */ |
| 1069 | void |
| 1070 | attribute_hidden |
| 1071 | __nptl_setxid_error (struct xid_command *cmdp, int error) |
| 1072 | { |
| 1073 | do |
| 1074 | { |
| 1075 | int olderror = cmdp->error; |
| 1076 | if (olderror == error) |
| 1077 | break; |
| 1078 | if (olderror != -1) |
| 1079 | /* Mismatch between current and previous results. */ |
| 1080 | abort (); |
| 1081 | } |
| 1082 | while (atomic_compare_and_exchange_bool_acq (&cmdp->error, error, -1)); |
| 1083 | } |
| 1084 | |
| 1085 | int |
| 1086 | attribute_hidden |
| 1087 | __nptl_setxid (struct xid_command *cmdp) |
| 1088 | { |
| 1089 | int signalled; |
| 1090 | int result; |
| 1091 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 1092 | |
| 1093 | __xidcmd = cmdp; |
| 1094 | cmdp->cntr = 0; |
| 1095 | cmdp->error = -1; |
| 1096 | |
| 1097 | struct pthread *self = THREAD_SELF; |
| 1098 | |
| 1099 | /* Iterate over the list with system-allocated threads first. */ |
| 1100 | list_t *runp; |
| 1101 | list_for_each (runp, &stack_used) |
| 1102 | { |
| 1103 | struct pthread *t = list_entry (runp, struct pthread, list); |
| 1104 | if (t == self) |
| 1105 | continue; |
| 1106 | |
| 1107 | setxid_mark_thread (cmdp, t); |
| 1108 | } |
| 1109 | |
| 1110 | /* Now the list with threads using user-allocated stacks. */ |
| 1111 | list_for_each (runp, &__stack_user) |
| 1112 | { |
| 1113 | struct pthread *t = list_entry (runp, struct pthread, list); |
| 1114 | if (t == self) |
| 1115 | continue; |
| 1116 | |
| 1117 | setxid_mark_thread (cmdp, t); |
| 1118 | } |
| 1119 | |
| 1120 | /* Iterate until we don't succeed in signalling anyone. That means |
| 1121 | we have gotten all running threads, and their children will be |
| 1122 | automatically correct once started. */ |
| 1123 | do |
| 1124 | { |
| 1125 | signalled = 0; |
| 1126 | |
| 1127 | list_for_each (runp, &stack_used) |
| 1128 | { |
| 1129 | struct pthread *t = list_entry (runp, struct pthread, list); |
| 1130 | if (t == self) |
| 1131 | continue; |
| 1132 | |
| 1133 | signalled += setxid_signal_thread (cmdp, t); |
| 1134 | } |
| 1135 | |
| 1136 | list_for_each (runp, &__stack_user) |
| 1137 | { |
| 1138 | struct pthread *t = list_entry (runp, struct pthread, list); |
| 1139 | if (t == self) |
| 1140 | continue; |
| 1141 | |
| 1142 | signalled += setxid_signal_thread (cmdp, t); |
| 1143 | } |
| 1144 | |
| 1145 | int cur = cmdp->cntr; |
| 1146 | while (cur != 0) |
| 1147 | { |
| 1148 | futex_wait_simple ((unsigned int *) &cmdp->cntr, cur, |
| 1149 | FUTEX_PRIVATE); |
| 1150 | cur = cmdp->cntr; |
| 1151 | } |
| 1152 | } |
| 1153 | while (signalled != 0); |
| 1154 | |
| 1155 | /* Clean up flags, so that no thread blocks during exit waiting |
| 1156 | for a signal which will never come. */ |
| 1157 | list_for_each (runp, &stack_used) |
| 1158 | { |
| 1159 | struct pthread *t = list_entry (runp, struct pthread, list); |
| 1160 | if (t == self) |
| 1161 | continue; |
| 1162 | |
| 1163 | setxid_unmark_thread (cmdp, t); |
| 1164 | } |
| 1165 | |
| 1166 | list_for_each (runp, &__stack_user) |
| 1167 | { |
| 1168 | struct pthread *t = list_entry (runp, struct pthread, list); |
| 1169 | if (t == self) |
| 1170 | continue; |
| 1171 | |
| 1172 | setxid_unmark_thread (cmdp, t); |
| 1173 | } |
| 1174 | |
| 1175 | /* This must be last, otherwise the current thread might not have |
| 1176 | permissions to send SIGSETXID syscall to the other threads. */ |
| 1177 | INTERNAL_SYSCALL_DECL (err); |
| 1178 | result = INTERNAL_SYSCALL_NCS (cmdp->syscall_no, err, 3, |
| 1179 | cmdp->id[0], cmdp->id[1], cmdp->id[2]); |
| 1180 | int error = 0; |
| 1181 | if (__glibc_unlikely (INTERNAL_SYSCALL_ERROR_P (result, err))) |
| 1182 | { |
| 1183 | error = INTERNAL_SYSCALL_ERRNO (result, err); |
| 1184 | __set_errno (error); |
| 1185 | result = -1; |
| 1186 | } |
| 1187 | __nptl_setxid_error (cmdp, error); |
| 1188 | |
| 1189 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 1190 | return result; |
| 1191 | } |
| 1192 | #endif /* SIGSETXID. */ |
| 1193 | |
| 1194 | |
| 1195 | static inline void __attribute__((always_inline)) |
| 1196 | init_one_static_tls (struct pthread *curp, struct link_map *map) |
| 1197 | { |
| 1198 | # if TLS_TCB_AT_TP |
| 1199 | void *dest = (char *) curp - map->l_tls_offset; |
| 1200 | # elif TLS_DTV_AT_TP |
| 1201 | void *dest = (char *) curp + map->l_tls_offset + TLS_PRE_TCB_SIZE; |
| 1202 | # else |
| 1203 | # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" |
| 1204 | # endif |
| 1205 | |
| 1206 | /* We cannot delay the initialization of the Static TLS area, since |
| 1207 | it can be accessed with LE or IE, but since the DTV is only used |
| 1208 | by GD and LD, we can delay its update to avoid a race. */ |
| 1209 | memset (__mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size), |
| 1210 | '\0', map->l_tls_blocksize - map->l_tls_initimage_size); |
| 1211 | } |
| 1212 | |
| 1213 | void |
| 1214 | attribute_hidden |
| 1215 | __pthread_init_static_tls (struct link_map *map) |
| 1216 | { |
| 1217 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 1218 | |
| 1219 | /* Iterate over the list with system-allocated threads first. */ |
| 1220 | list_t *runp; |
| 1221 | list_for_each (runp, &stack_used) |
| 1222 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
| 1223 | |
| 1224 | /* Now the list with threads using user-allocated stacks. */ |
| 1225 | list_for_each (runp, &__stack_user) |
| 1226 | init_one_static_tls (list_entry (runp, struct pthread, list), map); |
| 1227 | |
| 1228 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 1229 | } |
| 1230 | |
| 1231 | |
| 1232 | void |
| 1233 | attribute_hidden |
| 1234 | __wait_lookup_done (void) |
| 1235 | { |
| 1236 | lll_lock (stack_cache_lock, LLL_PRIVATE); |
| 1237 | |
| 1238 | struct pthread *self = THREAD_SELF; |
| 1239 | |
| 1240 | /* Iterate over the list with system-allocated threads first. */ |
| 1241 | list_t *runp; |
| 1242 | list_for_each (runp, &stack_used) |
| 1243 | { |
| 1244 | struct pthread *t = list_entry (runp, struct pthread, list); |
| 1245 | if (t == self || t->header.gscope_flag == THREAD_GSCOPE_FLAG_UNUSED) |
| 1246 | continue; |
| 1247 | |
| 1248 | int *const gscope_flagp = &t->header.gscope_flag; |
| 1249 | |
| 1250 | /* We have to wait until this thread is done with the global |
| 1251 | scope. First tell the thread that we are waiting and |
| 1252 | possibly have to be woken. */ |
| 1253 | if (atomic_compare_and_exchange_bool_acq (gscope_flagp, |
| 1254 | THREAD_GSCOPE_FLAG_WAIT, |
| 1255 | THREAD_GSCOPE_FLAG_USED)) |
| 1256 | continue; |
| 1257 | |
| 1258 | do |
| 1259 | futex_wait_simple ((unsigned int *) gscope_flagp, |
| 1260 | THREAD_GSCOPE_FLAG_WAIT, FUTEX_PRIVATE); |
| 1261 | while (*gscope_flagp == THREAD_GSCOPE_FLAG_WAIT); |
| 1262 | } |
| 1263 | |
| 1264 | /* Now the list with threads using user-allocated stacks. */ |
| 1265 | list_for_each (runp, &__stack_user) |
| 1266 | { |
| 1267 | struct pthread *t = list_entry (runp, struct pthread, list); |
| 1268 | if (t == self || t->header.gscope_flag == THREAD_GSCOPE_FLAG_UNUSED) |
| 1269 | continue; |
| 1270 | |
| 1271 | int *const gscope_flagp = &t->header.gscope_flag; |
| 1272 | |
| 1273 | /* We have to wait until this thread is done with the global |
| 1274 | scope. First tell the thread that we are waiting and |
| 1275 | possibly have to be woken. */ |
| 1276 | if (atomic_compare_and_exchange_bool_acq (gscope_flagp, |
| 1277 | THREAD_GSCOPE_FLAG_WAIT, |
| 1278 | THREAD_GSCOPE_FLAG_USED)) |
| 1279 | continue; |
| 1280 | |
| 1281 | do |
| 1282 | futex_wait_simple ((unsigned int *) gscope_flagp, |
| 1283 | THREAD_GSCOPE_FLAG_WAIT, FUTEX_PRIVATE); |
| 1284 | while (*gscope_flagp == THREAD_GSCOPE_FLAG_WAIT); |
| 1285 | } |
| 1286 | |
| 1287 | lll_unlock (stack_cache_lock, LLL_PRIVATE); |
| 1288 | } |