| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Read-Copy Update mechanism for mutual exclusion | 
|  | 3 | * | 
|  | 4 | * This program is free software; you can redistribute it and/or modify | 
|  | 5 | * it under the terms of the GNU General Public License as published by | 
|  | 6 | * the Free Software Foundation; either version 2 of the License, or | 
|  | 7 | * (at your option) any later version. | 
|  | 8 | * | 
|  | 9 | * This program is distributed in the hope that it will be useful, | 
|  | 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 12 | * GNU General Public License for more details. | 
|  | 13 | * | 
|  | 14 | * You should have received a copy of the GNU General Public License | 
|  | 15 | * along with this program; if not, write to the Free Software | 
|  | 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | 17 | * | 
|  | 18 | * Copyright IBM Corporation, 2008 | 
|  | 19 | * | 
|  | 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 
|  | 21 | *	    Manfred Spraul <manfred@colorfullife.com> | 
|  | 22 | *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version | 
|  | 23 | * | 
|  | 24 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 
|  | 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 
|  | 26 | * | 
|  | 27 | * For detailed explanation of Read-Copy Update mechanism see - | 
|  | 28 | *	Documentation/RCU | 
|  | 29 | */ | 
|  | 30 | #include <linux/types.h> | 
|  | 31 | #include <linux/kernel.h> | 
|  | 32 | #include <linux/init.h> | 
|  | 33 | #include <linux/spinlock.h> | 
|  | 34 | #include <linux/smp.h> | 
|  | 35 | #include <linux/rcupdate.h> | 
|  | 36 | #include <linux/interrupt.h> | 
|  | 37 | #include <linux/sched.h> | 
|  | 38 | #include <linux/nmi.h> | 
|  | 39 | #include <linux/atomic.h> | 
|  | 40 | #include <linux/bitops.h> | 
|  | 41 | #include <linux/export.h> | 
|  | 42 | #include <linux/completion.h> | 
|  | 43 | #include <linux/moduleparam.h> | 
|  | 44 | #include <linux/percpu.h> | 
|  | 45 | #include <linux/notifier.h> | 
|  | 46 | #include <linux/cpu.h> | 
|  | 47 | #include <linux/mutex.h> | 
|  | 48 | #include <linux/time.h> | 
|  | 49 | #include <linux/kernel_stat.h> | 
|  | 50 | #include <linux/wait.h> | 
|  | 51 | #include <linux/kthread.h> | 
|  | 52 | #include <linux/prefetch.h> | 
|  | 53 | #include <linux/delay.h> | 
|  | 54 | #include <linux/stop_machine.h> | 
|  | 55 |  | 
|  | 56 | #include "rcutree.h" | 
|  | 57 | #include <trace/events/rcu.h> | 
|  | 58 |  | 
|  | 59 | #include "rcu.h" | 
|  | 60 |  | 
|  | 61 | /* Data structures. */ | 
|  | 62 |  | 
|  | 63 | static struct lock_class_key rcu_node_class[NUM_RCU_LVLS]; | 
|  | 64 |  | 
|  | 65 | #define RCU_STATE_INITIALIZER(structname) { \ | 
|  | 66 | .level = { &structname##_state.node[0] }, \ | 
|  | 67 | .levelcnt = { \ | 
|  | 68 | NUM_RCU_LVL_0,  /* root of hierarchy. */ \ | 
|  | 69 | NUM_RCU_LVL_1, \ | 
|  | 70 | NUM_RCU_LVL_2, \ | 
|  | 71 | NUM_RCU_LVL_3, \ | 
|  | 72 | NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \ | 
|  | 73 | }, \ | 
|  | 74 | .fqs_state = RCU_GP_IDLE, \ | 
|  | 75 | .gpnum = -300, \ | 
|  | 76 | .completed = -300, \ | 
|  | 77 | .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \ | 
|  | 78 | .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \ | 
|  | 79 | .n_force_qs = 0, \ | 
|  | 80 | .n_force_qs_ngp = 0, \ | 
|  | 81 | .name = #structname, \ | 
|  | 82 | } | 
|  | 83 |  | 
|  | 84 | struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched); | 
|  | 85 | DEFINE_PER_CPU(struct rcu_data, rcu_sched_data); | 
|  | 86 |  | 
|  | 87 | struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh); | 
|  | 88 | DEFINE_PER_CPU(struct rcu_data, rcu_bh_data); | 
|  | 89 |  | 
|  | 90 | static struct rcu_state *rcu_state; | 
|  | 91 |  | 
|  | 92 | /* | 
|  | 93 | * The rcu_scheduler_active variable transitions from zero to one just | 
|  | 94 | * before the first task is spawned.  So when this variable is zero, RCU | 
|  | 95 | * can assume that there is but one task, allowing RCU to (for example) | 
|  | 96 | * optimized synchronize_sched() to a simple barrier().  When this variable | 
|  | 97 | * is one, RCU must actually do all the hard work required to detect real | 
|  | 98 | * grace periods.  This variable is also used to suppress boot-time false | 
|  | 99 | * positives from lockdep-RCU error checking. | 
|  | 100 | */ | 
|  | 101 | int rcu_scheduler_active __read_mostly; | 
|  | 102 | EXPORT_SYMBOL_GPL(rcu_scheduler_active); | 
|  | 103 |  | 
|  | 104 | /* | 
|  | 105 | * The rcu_scheduler_fully_active variable transitions from zero to one | 
|  | 106 | * during the early_initcall() processing, which is after the scheduler | 
|  | 107 | * is capable of creating new tasks.  So RCU processing (for example, | 
|  | 108 | * creating tasks for RCU priority boosting) must be delayed until after | 
|  | 109 | * rcu_scheduler_fully_active transitions from zero to one.  We also | 
|  | 110 | * currently delay invocation of any RCU callbacks until after this point. | 
|  | 111 | * | 
|  | 112 | * It might later prove better for people registering RCU callbacks during | 
|  | 113 | * early boot to take responsibility for these callbacks, but one step at | 
|  | 114 | * a time. | 
|  | 115 | */ | 
|  | 116 | static int rcu_scheduler_fully_active __read_mostly; | 
|  | 117 |  | 
|  | 118 | #ifdef CONFIG_RCU_BOOST | 
|  | 119 |  | 
|  | 120 | /* | 
|  | 121 | * Control variables for per-CPU and per-rcu_node kthreads.  These | 
|  | 122 | * handle all flavors of RCU. | 
|  | 123 | */ | 
|  | 124 | static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); | 
|  | 125 | DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); | 
|  | 126 | DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu); | 
|  | 127 | DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); | 
|  | 128 | DEFINE_PER_CPU(char, rcu_cpu_has_work); | 
|  | 129 |  | 
|  | 130 | #endif /* #ifdef CONFIG_RCU_BOOST */ | 
|  | 131 |  | 
|  | 132 | static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); | 
|  | 133 | static void invoke_rcu_core(void); | 
|  | 134 | static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); | 
|  | 135 |  | 
|  | 136 | /* | 
|  | 137 | * Track the rcutorture test sequence number and the update version | 
|  | 138 | * number within a given test.  The rcutorture_testseq is incremented | 
|  | 139 | * on every rcutorture module load and unload, so has an odd value | 
|  | 140 | * when a test is running.  The rcutorture_vernum is set to zero | 
|  | 141 | * when rcutorture starts and is incremented on each rcutorture update. | 
|  | 142 | * These variables enable correlating rcutorture output with the | 
|  | 143 | * RCU tracing information. | 
|  | 144 | */ | 
|  | 145 | unsigned long rcutorture_testseq; | 
|  | 146 | unsigned long rcutorture_vernum; | 
|  | 147 |  | 
|  | 148 | /* | 
|  | 149 | * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s | 
|  | 150 | * permit this function to be invoked without holding the root rcu_node | 
|  | 151 | * structure's ->lock, but of course results can be subject to change. | 
|  | 152 | */ | 
|  | 153 | static int rcu_gp_in_progress(struct rcu_state *rsp) | 
|  | 154 | { | 
|  | 155 | return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | /* | 
|  | 159 | * Note a quiescent state.  Because we do not need to know | 
|  | 160 | * how many quiescent states passed, just if there was at least | 
|  | 161 | * one since the start of the grace period, this just sets a flag. | 
|  | 162 | * The caller must have disabled preemption. | 
|  | 163 | */ | 
|  | 164 | void rcu_sched_qs(int cpu) | 
|  | 165 | { | 
|  | 166 | struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); | 
|  | 167 |  | 
|  | 168 | rdp->passed_quiesce_gpnum = rdp->gpnum; | 
|  | 169 | barrier(); | 
|  | 170 | if (rdp->passed_quiesce == 0) | 
|  | 171 | trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs"); | 
|  | 172 | rdp->passed_quiesce = 1; | 
|  | 173 | } | 
|  | 174 |  | 
|  | 175 | #ifdef CONFIG_PREEMPT_RT_FULL | 
|  | 176 | static void rcu_preempt_qs(int cpu); | 
|  | 177 |  | 
|  | 178 | void rcu_bh_qs(int cpu) | 
|  | 179 | { | 
|  | 180 | unsigned long flags; | 
|  | 181 |  | 
|  | 182 | /* Callers to this function, rcu_preempt_qs(), must disable irqs. */ | 
|  | 183 | local_irq_save(flags); | 
|  | 184 | rcu_preempt_qs(cpu); | 
|  | 185 | local_irq_restore(flags); | 
|  | 186 | } | 
|  | 187 | #else | 
|  | 188 | void rcu_bh_qs(int cpu) | 
|  | 189 | { | 
|  | 190 | struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); | 
|  | 191 |  | 
|  | 192 | rdp->passed_quiesce_gpnum = rdp->gpnum; | 
|  | 193 | barrier(); | 
|  | 194 | if (rdp->passed_quiesce == 0) | 
|  | 195 | trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs"); | 
|  | 196 | rdp->passed_quiesce = 1; | 
|  | 197 | } | 
|  | 198 | #endif | 
|  | 199 |  | 
|  | 200 | /* | 
|  | 201 | * Note a context switch.  This is a quiescent state for RCU-sched, | 
|  | 202 | * and requires special handling for preemptible RCU. | 
|  | 203 | * The caller must have disabled preemption. | 
|  | 204 | */ | 
|  | 205 | void rcu_note_context_switch(int cpu) | 
|  | 206 | { | 
|  | 207 | trace_rcu_utilization("Start context switch"); | 
|  | 208 | rcu_sched_qs(cpu); | 
|  | 209 | rcu_preempt_note_context_switch(cpu); | 
|  | 210 | trace_rcu_utilization("End context switch"); | 
|  | 211 | } | 
|  | 212 | EXPORT_SYMBOL_GPL(rcu_note_context_switch); | 
|  | 213 |  | 
|  | 214 | DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { | 
|  | 215 | .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, | 
|  | 216 | .dynticks = ATOMIC_INIT(1), | 
|  | 217 | }; | 
|  | 218 |  | 
|  | 219 | static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */ | 
|  | 220 | static long qhimark = 10000;	/* If this many pending, ignore blimit. */ | 
|  | 221 | static long qlowmark = 100;	/* Once only this many pending, use blimit. */ | 
|  | 222 |  | 
|  | 223 | module_param(blimit, long, 0); | 
|  | 224 | module_param(qhimark, long, 0); | 
|  | 225 | module_param(qlowmark, long, 0); | 
|  | 226 |  | 
|  | 227 | int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ | 
|  | 228 | int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; | 
|  | 229 |  | 
|  | 230 | module_param(rcu_cpu_stall_suppress, int, 0644); | 
|  | 231 | module_param(rcu_cpu_stall_timeout, int, 0644); | 
|  | 232 |  | 
|  | 233 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed); | 
|  | 234 | static int rcu_pending(int cpu); | 
|  | 235 |  | 
|  | 236 | /* | 
|  | 237 | * Return the number of RCU-sched batches processed thus far for debug & stats. | 
|  | 238 | */ | 
|  | 239 | long rcu_batches_completed_sched(void) | 
|  | 240 | { | 
|  | 241 | return rcu_sched_state.completed; | 
|  | 242 | } | 
|  | 243 | EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); | 
|  | 244 |  | 
|  | 245 | #ifndef CONFIG_PREEMPT_RT_FULL | 
|  | 246 | /* | 
|  | 247 | * Return the number of RCU BH batches processed thus far for debug & stats. | 
|  | 248 | */ | 
|  | 249 | long rcu_batches_completed_bh(void) | 
|  | 250 | { | 
|  | 251 | return rcu_bh_state.completed; | 
|  | 252 | } | 
|  | 253 | EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); | 
|  | 254 |  | 
|  | 255 | /* | 
|  | 256 | * Force a quiescent state for RCU BH. | 
|  | 257 | */ | 
|  | 258 | void rcu_bh_force_quiescent_state(void) | 
|  | 259 | { | 
|  | 260 | force_quiescent_state(&rcu_bh_state, 0); | 
|  | 261 | } | 
|  | 262 | EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); | 
|  | 263 | #endif | 
|  | 264 |  | 
|  | 265 | /* | 
|  | 266 | * Record the number of times rcutorture tests have been initiated and | 
|  | 267 | * terminated.  This information allows the debugfs tracing stats to be | 
|  | 268 | * correlated to the rcutorture messages, even when the rcutorture module | 
|  | 269 | * is being repeatedly loaded and unloaded.  In other words, we cannot | 
|  | 270 | * store this state in rcutorture itself. | 
|  | 271 | */ | 
|  | 272 | void rcutorture_record_test_transition(void) | 
|  | 273 | { | 
|  | 274 | rcutorture_testseq++; | 
|  | 275 | rcutorture_vernum = 0; | 
|  | 276 | } | 
|  | 277 | EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); | 
|  | 278 |  | 
|  | 279 | /* | 
|  | 280 | * Record the number of writer passes through the current rcutorture test. | 
|  | 281 | * This is also used to correlate debugfs tracing stats with the rcutorture | 
|  | 282 | * messages. | 
|  | 283 | */ | 
|  | 284 | void rcutorture_record_progress(unsigned long vernum) | 
|  | 285 | { | 
|  | 286 | rcutorture_vernum++; | 
|  | 287 | } | 
|  | 288 | EXPORT_SYMBOL_GPL(rcutorture_record_progress); | 
|  | 289 |  | 
|  | 290 | /* | 
|  | 291 | * Force a quiescent state for RCU-sched. | 
|  | 292 | */ | 
|  | 293 | void rcu_sched_force_quiescent_state(void) | 
|  | 294 | { | 
|  | 295 | force_quiescent_state(&rcu_sched_state, 0); | 
|  | 296 | } | 
|  | 297 | EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); | 
|  | 298 |  | 
|  | 299 | /* | 
|  | 300 | * Does the CPU have callbacks ready to be invoked? | 
|  | 301 | */ | 
|  | 302 | static int | 
|  | 303 | cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) | 
|  | 304 | { | 
|  | 305 | return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL]; | 
|  | 306 | } | 
|  | 307 |  | 
|  | 308 | /* | 
|  | 309 | * Does the current CPU require a yet-as-unscheduled grace period? | 
|  | 310 | */ | 
|  | 311 | static int | 
|  | 312 | cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 313 | { | 
|  | 314 | return *rdp->nxttail[RCU_DONE_TAIL + | 
|  | 315 | ACCESS_ONCE(rsp->completed) != rdp->completed] && | 
|  | 316 | !rcu_gp_in_progress(rsp); | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | /* | 
|  | 320 | * Return the root node of the specified rcu_state structure. | 
|  | 321 | */ | 
|  | 322 | static struct rcu_node *rcu_get_root(struct rcu_state *rsp) | 
|  | 323 | { | 
|  | 324 | return &rsp->node[0]; | 
|  | 325 | } | 
|  | 326 |  | 
|  | 327 | /* | 
|  | 328 | * If the specified CPU is offline, tell the caller that it is in | 
|  | 329 | * a quiescent state.  Otherwise, whack it with a reschedule IPI. | 
|  | 330 | * Grace periods can end up waiting on an offline CPU when that | 
|  | 331 | * CPU is in the process of coming online -- it will be added to the | 
|  | 332 | * rcu_node bitmasks before it actually makes it online.  The same thing | 
|  | 333 | * can happen while a CPU is in the process of coming online.  Because this | 
|  | 334 | * race is quite rare, we check for it after detecting that the grace | 
|  | 335 | * period has been delayed rather than checking each and every CPU | 
|  | 336 | * each and every time we start a new grace period. | 
|  | 337 | */ | 
|  | 338 | static int rcu_implicit_offline_qs(struct rcu_data *rdp) | 
|  | 339 | { | 
|  | 340 | /* | 
|  | 341 | * If the CPU is offline for more than a jiffy, it is in a quiescent | 
|  | 342 | * state.  We can trust its state not to change because interrupts | 
|  | 343 | * are disabled.  The reason for the jiffy's worth of slack is to | 
|  | 344 | * handle CPUs initializing on the way up and finding their way | 
|  | 345 | * to the idle loop on the way down. | 
|  | 346 | */ | 
|  | 347 | if (cpu_is_offline(rdp->cpu) && | 
|  | 348 | ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) { | 
|  | 349 | trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl"); | 
|  | 350 | rdp->offline_fqs++; | 
|  | 351 | return 1; | 
|  | 352 | } | 
|  | 353 | return 0; | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | /* | 
|  | 357 | * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle | 
|  | 358 | * | 
|  | 359 | * If the new value of the ->dynticks_nesting counter now is zero, | 
|  | 360 | * we really have entered idle, and must do the appropriate accounting. | 
|  | 361 | * The caller must have disabled interrupts. | 
|  | 362 | */ | 
|  | 363 | static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval) | 
|  | 364 | { | 
|  | 365 | trace_rcu_dyntick("Start", oldval, 0); | 
|  | 366 | if (!is_idle_task(current)) { | 
|  | 367 | struct task_struct *idle = idle_task(smp_processor_id()); | 
|  | 368 |  | 
|  | 369 | trace_rcu_dyntick("Error on entry: not idle task", oldval, 0); | 
|  | 370 | ftrace_dump(DUMP_ALL); | 
|  | 371 | WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", | 
|  | 372 | current->pid, current->comm, | 
|  | 373 | idle->pid, idle->comm); /* must be idle task! */ | 
|  | 374 | } | 
|  | 375 | rcu_prepare_for_idle(smp_processor_id()); | 
|  | 376 | /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ | 
|  | 377 | smp_mb__before_atomic_inc();  /* See above. */ | 
|  | 378 | atomic_inc(&rdtp->dynticks); | 
|  | 379 | smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */ | 
|  | 380 | WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); | 
|  | 381 |  | 
|  | 382 | /* | 
|  | 383 | * The idle task is not permitted to enter the idle loop while | 
|  | 384 | * in an RCU read-side critical section. | 
|  | 385 | */ | 
|  | 386 | rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), | 
|  | 387 | "Illegal idle entry in RCU read-side critical section."); | 
|  | 388 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), | 
|  | 389 | "Illegal idle entry in RCU-bh read-side critical section."); | 
|  | 390 | rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), | 
|  | 391 | "Illegal idle entry in RCU-sched read-side critical section."); | 
|  | 392 | } | 
|  | 393 |  | 
|  | 394 | /** | 
|  | 395 | * rcu_idle_enter - inform RCU that current CPU is entering idle | 
|  | 396 | * | 
|  | 397 | * Enter idle mode, in other words, -leave- the mode in which RCU | 
|  | 398 | * read-side critical sections can occur.  (Though RCU read-side | 
|  | 399 | * critical sections can occur in irq handlers in idle, a possibility | 
|  | 400 | * handled by irq_enter() and irq_exit().) | 
|  | 401 | * | 
|  | 402 | * We crowbar the ->dynticks_nesting field to zero to allow for | 
|  | 403 | * the possibility of usermode upcalls having messed up our count | 
|  | 404 | * of interrupt nesting level during the prior busy period. | 
|  | 405 | */ | 
|  | 406 | void rcu_idle_enter(void) | 
|  | 407 | { | 
|  | 408 | unsigned long flags; | 
|  | 409 | long long oldval; | 
|  | 410 | struct rcu_dynticks *rdtp; | 
|  | 411 |  | 
|  | 412 | local_irq_save(flags); | 
|  | 413 | rdtp = &__get_cpu_var(rcu_dynticks); | 
|  | 414 | oldval = rdtp->dynticks_nesting; | 
|  | 415 | WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); | 
|  | 416 | if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) | 
|  | 417 | rdtp->dynticks_nesting = 0; | 
|  | 418 | else | 
|  | 419 | rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; | 
|  | 420 | rcu_idle_enter_common(rdtp, oldval); | 
|  | 421 | local_irq_restore(flags); | 
|  | 422 | } | 
|  | 423 | EXPORT_SYMBOL_GPL(rcu_idle_enter); | 
|  | 424 |  | 
|  | 425 | /** | 
|  | 426 | * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle | 
|  | 427 | * | 
|  | 428 | * Exit from an interrupt handler, which might possibly result in entering | 
|  | 429 | * idle mode, in other words, leaving the mode in which read-side critical | 
|  | 430 | * sections can occur. | 
|  | 431 | * | 
|  | 432 | * This code assumes that the idle loop never does anything that might | 
|  | 433 | * result in unbalanced calls to irq_enter() and irq_exit().  If your | 
|  | 434 | * architecture violates this assumption, RCU will give you what you | 
|  | 435 | * deserve, good and hard.  But very infrequently and irreproducibly. | 
|  | 436 | * | 
|  | 437 | * Use things like work queues to work around this limitation. | 
|  | 438 | * | 
|  | 439 | * You have been warned. | 
|  | 440 | */ | 
|  | 441 | void rcu_irq_exit(void) | 
|  | 442 | { | 
|  | 443 | unsigned long flags; | 
|  | 444 | long long oldval; | 
|  | 445 | struct rcu_dynticks *rdtp; | 
|  | 446 |  | 
|  | 447 | local_irq_save(flags); | 
|  | 448 | rdtp = &__get_cpu_var(rcu_dynticks); | 
|  | 449 | oldval = rdtp->dynticks_nesting; | 
|  | 450 | rdtp->dynticks_nesting--; | 
|  | 451 | WARN_ON_ONCE(rdtp->dynticks_nesting < 0); | 
|  | 452 | if (rdtp->dynticks_nesting) | 
|  | 453 | trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting); | 
|  | 454 | else | 
|  | 455 | rcu_idle_enter_common(rdtp, oldval); | 
|  | 456 | local_irq_restore(flags); | 
|  | 457 | } | 
|  | 458 |  | 
|  | 459 | /* | 
|  | 460 | * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle | 
|  | 461 | * | 
|  | 462 | * If the new value of the ->dynticks_nesting counter was previously zero, | 
|  | 463 | * we really have exited idle, and must do the appropriate accounting. | 
|  | 464 | * The caller must have disabled interrupts. | 
|  | 465 | */ | 
|  | 466 | static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval) | 
|  | 467 | { | 
|  | 468 | smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */ | 
|  | 469 | atomic_inc(&rdtp->dynticks); | 
|  | 470 | /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ | 
|  | 471 | smp_mb__after_atomic_inc();  /* See above. */ | 
|  | 472 | WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); | 
|  | 473 | rcu_cleanup_after_idle(smp_processor_id()); | 
|  | 474 | trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting); | 
|  | 475 | if (!is_idle_task(current)) { | 
|  | 476 | struct task_struct *idle = idle_task(smp_processor_id()); | 
|  | 477 |  | 
|  | 478 | trace_rcu_dyntick("Error on exit: not idle task", | 
|  | 479 | oldval, rdtp->dynticks_nesting); | 
|  | 480 | ftrace_dump(DUMP_ALL); | 
|  | 481 | WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", | 
|  | 482 | current->pid, current->comm, | 
|  | 483 | idle->pid, idle->comm); /* must be idle task! */ | 
|  | 484 | } | 
|  | 485 | } | 
|  | 486 |  | 
|  | 487 | /** | 
|  | 488 | * rcu_idle_exit - inform RCU that current CPU is leaving idle | 
|  | 489 | * | 
|  | 490 | * Exit idle mode, in other words, -enter- the mode in which RCU | 
|  | 491 | * read-side critical sections can occur. | 
|  | 492 | * | 
|  | 493 | * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to | 
|  | 494 | * allow for the possibility of usermode upcalls messing up our count | 
|  | 495 | * of interrupt nesting level during the busy period that is just | 
|  | 496 | * now starting. | 
|  | 497 | */ | 
|  | 498 | void rcu_idle_exit(void) | 
|  | 499 | { | 
|  | 500 | unsigned long flags; | 
|  | 501 | struct rcu_dynticks *rdtp; | 
|  | 502 | long long oldval; | 
|  | 503 |  | 
|  | 504 | local_irq_save(flags); | 
|  | 505 | rdtp = &__get_cpu_var(rcu_dynticks); | 
|  | 506 | oldval = rdtp->dynticks_nesting; | 
|  | 507 | WARN_ON_ONCE(oldval < 0); | 
|  | 508 | if (oldval & DYNTICK_TASK_NEST_MASK) | 
|  | 509 | rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; | 
|  | 510 | else | 
|  | 511 | rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; | 
|  | 512 | rcu_idle_exit_common(rdtp, oldval); | 
|  | 513 | local_irq_restore(flags); | 
|  | 514 | } | 
|  | 515 | EXPORT_SYMBOL_GPL(rcu_idle_exit); | 
|  | 516 |  | 
|  | 517 | /** | 
|  | 518 | * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle | 
|  | 519 | * | 
|  | 520 | * Enter an interrupt handler, which might possibly result in exiting | 
|  | 521 | * idle mode, in other words, entering the mode in which read-side critical | 
|  | 522 | * sections can occur. | 
|  | 523 | * | 
|  | 524 | * Note that the Linux kernel is fully capable of entering an interrupt | 
|  | 525 | * handler that it never exits, for example when doing upcalls to | 
|  | 526 | * user mode!  This code assumes that the idle loop never does upcalls to | 
|  | 527 | * user mode.  If your architecture does do upcalls from the idle loop (or | 
|  | 528 | * does anything else that results in unbalanced calls to the irq_enter() | 
|  | 529 | * and irq_exit() functions), RCU will give you what you deserve, good | 
|  | 530 | * and hard.  But very infrequently and irreproducibly. | 
|  | 531 | * | 
|  | 532 | * Use things like work queues to work around this limitation. | 
|  | 533 | * | 
|  | 534 | * You have been warned. | 
|  | 535 | */ | 
|  | 536 | void rcu_irq_enter(void) | 
|  | 537 | { | 
|  | 538 | unsigned long flags; | 
|  | 539 | struct rcu_dynticks *rdtp; | 
|  | 540 | long long oldval; | 
|  | 541 |  | 
|  | 542 | local_irq_save(flags); | 
|  | 543 | rdtp = &__get_cpu_var(rcu_dynticks); | 
|  | 544 | oldval = rdtp->dynticks_nesting; | 
|  | 545 | rdtp->dynticks_nesting++; | 
|  | 546 | WARN_ON_ONCE(rdtp->dynticks_nesting == 0); | 
|  | 547 | if (oldval) | 
|  | 548 | trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting); | 
|  | 549 | else | 
|  | 550 | rcu_idle_exit_common(rdtp, oldval); | 
|  | 551 | local_irq_restore(flags); | 
|  | 552 | } | 
|  | 553 |  | 
|  | 554 | /** | 
|  | 555 | * rcu_nmi_enter - inform RCU of entry to NMI context | 
|  | 556 | * | 
|  | 557 | * If the CPU was idle with dynamic ticks active, and there is no | 
|  | 558 | * irq handler running, this updates rdtp->dynticks_nmi to let the | 
|  | 559 | * RCU grace-period handling know that the CPU is active. | 
|  | 560 | */ | 
|  | 561 | void rcu_nmi_enter(void) | 
|  | 562 | { | 
|  | 563 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | 
|  | 564 |  | 
|  | 565 | if (rdtp->dynticks_nmi_nesting == 0 && | 
|  | 566 | (atomic_read(&rdtp->dynticks) & 0x1)) | 
|  | 567 | return; | 
|  | 568 | rdtp->dynticks_nmi_nesting++; | 
|  | 569 | smp_mb__before_atomic_inc();  /* Force delay from prior write. */ | 
|  | 570 | atomic_inc(&rdtp->dynticks); | 
|  | 571 | /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ | 
|  | 572 | smp_mb__after_atomic_inc();  /* See above. */ | 
|  | 573 | WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); | 
|  | 574 | } | 
|  | 575 |  | 
|  | 576 | /** | 
|  | 577 | * rcu_nmi_exit - inform RCU of exit from NMI context | 
|  | 578 | * | 
|  | 579 | * If the CPU was idle with dynamic ticks active, and there is no | 
|  | 580 | * irq handler running, this updates rdtp->dynticks_nmi to let the | 
|  | 581 | * RCU grace-period handling know that the CPU is no longer active. | 
|  | 582 | */ | 
|  | 583 | void rcu_nmi_exit(void) | 
|  | 584 | { | 
|  | 585 | struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks); | 
|  | 586 |  | 
|  | 587 | if (rdtp->dynticks_nmi_nesting == 0 || | 
|  | 588 | --rdtp->dynticks_nmi_nesting != 0) | 
|  | 589 | return; | 
|  | 590 | /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ | 
|  | 591 | smp_mb__before_atomic_inc();  /* See above. */ | 
|  | 592 | atomic_inc(&rdtp->dynticks); | 
|  | 593 | smp_mb__after_atomic_inc();  /* Force delay to next write. */ | 
|  | 594 | WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); | 
|  | 595 | } | 
|  | 596 |  | 
|  | 597 | #ifdef CONFIG_PROVE_RCU | 
|  | 598 |  | 
|  | 599 | /** | 
|  | 600 | * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle | 
|  | 601 | * | 
|  | 602 | * If the current CPU is in its idle loop and is neither in an interrupt | 
|  | 603 | * or NMI handler, return true. | 
|  | 604 | */ | 
|  | 605 | int rcu_is_cpu_idle(void) | 
|  | 606 | { | 
|  | 607 | int ret; | 
|  | 608 |  | 
|  | 609 | preempt_disable(); | 
|  | 610 | ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0; | 
|  | 611 | preempt_enable(); | 
|  | 612 | return ret; | 
|  | 613 | } | 
|  | 614 | EXPORT_SYMBOL(rcu_is_cpu_idle); | 
|  | 615 |  | 
|  | 616 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 617 |  | 
|  | 618 | /* | 
|  | 619 | * Is the current CPU online?  Disable preemption to avoid false positives | 
|  | 620 | * that could otherwise happen due to the current CPU number being sampled, | 
|  | 621 | * this task being preempted, its old CPU being taken offline, resuming | 
|  | 622 | * on some other CPU, then determining that its old CPU is now offline. | 
|  | 623 | * It is OK to use RCU on an offline processor during initial boot, hence | 
|  | 624 | * the check for rcu_scheduler_fully_active.  Note also that it is OK | 
|  | 625 | * for a CPU coming online to use RCU for one jiffy prior to marking itself | 
|  | 626 | * online in the cpu_online_mask.  Similarly, it is OK for a CPU going | 
|  | 627 | * offline to continue to use RCU for one jiffy after marking itself | 
|  | 628 | * offline in the cpu_online_mask.  This leniency is necessary given the | 
|  | 629 | * non-atomic nature of the online and offline processing, for example, | 
|  | 630 | * the fact that a CPU enters the scheduler after completing the CPU_DYING | 
|  | 631 | * notifiers. | 
|  | 632 | * | 
|  | 633 | * This is also why RCU internally marks CPUs online during the | 
|  | 634 | * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. | 
|  | 635 | * | 
|  | 636 | * Disable checking if in an NMI handler because we cannot safely report | 
|  | 637 | * errors from NMI handlers anyway. | 
|  | 638 | */ | 
|  | 639 | bool rcu_lockdep_current_cpu_online(void) | 
|  | 640 | { | 
|  | 641 | struct rcu_data *rdp; | 
|  | 642 | struct rcu_node *rnp; | 
|  | 643 | bool ret; | 
|  | 644 |  | 
|  | 645 | if (in_nmi()) | 
|  | 646 | return 1; | 
|  | 647 | preempt_disable(); | 
|  | 648 | rdp = &__get_cpu_var(rcu_sched_data); | 
|  | 649 | rnp = rdp->mynode; | 
|  | 650 | ret = (rdp->grpmask & rnp->qsmaskinit) || | 
|  | 651 | !rcu_scheduler_fully_active; | 
|  | 652 | preempt_enable(); | 
|  | 653 | return ret; | 
|  | 654 | } | 
|  | 655 | EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); | 
|  | 656 |  | 
|  | 657 | #endif /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  | 658 |  | 
|  | 659 | #endif /* #ifdef CONFIG_PROVE_RCU */ | 
|  | 660 |  | 
|  | 661 | /** | 
|  | 662 | * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle | 
|  | 663 | * | 
|  | 664 | * If the current CPU is idle or running at a first-level (not nested) | 
|  | 665 | * interrupt from idle, return true.  The caller must have at least | 
|  | 666 | * disabled preemption. | 
|  | 667 | */ | 
|  | 668 | int rcu_is_cpu_rrupt_from_idle(void) | 
|  | 669 | { | 
|  | 670 | return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1; | 
|  | 671 | } | 
|  | 672 |  | 
|  | 673 | /* | 
|  | 674 | * Snapshot the specified CPU's dynticks counter so that we can later | 
|  | 675 | * credit them with an implicit quiescent state.  Return 1 if this CPU | 
|  | 676 | * is in dynticks idle mode, which is an extended quiescent state. | 
|  | 677 | */ | 
|  | 678 | static int dyntick_save_progress_counter(struct rcu_data *rdp) | 
|  | 679 | { | 
|  | 680 | rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); | 
|  | 681 | return (rdp->dynticks_snap & 0x1) == 0; | 
|  | 682 | } | 
|  | 683 |  | 
|  | 684 | /* | 
|  | 685 | * Return true if the specified CPU has passed through a quiescent | 
|  | 686 | * state by virtue of being in or having passed through an dynticks | 
|  | 687 | * idle state since the last call to dyntick_save_progress_counter() | 
|  | 688 | * for this same CPU. | 
|  | 689 | */ | 
|  | 690 | static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) | 
|  | 691 | { | 
|  | 692 | unsigned int curr; | 
|  | 693 | unsigned int snap; | 
|  | 694 |  | 
|  | 695 | curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); | 
|  | 696 | snap = (unsigned int)rdp->dynticks_snap; | 
|  | 697 |  | 
|  | 698 | /* | 
|  | 699 | * If the CPU passed through or entered a dynticks idle phase with | 
|  | 700 | * no active irq/NMI handlers, then we can safely pretend that the CPU | 
|  | 701 | * already acknowledged the request to pass through a quiescent | 
|  | 702 | * state.  Either way, that CPU cannot possibly be in an RCU | 
|  | 703 | * read-side critical section that started before the beginning | 
|  | 704 | * of the current RCU grace period. | 
|  | 705 | */ | 
|  | 706 | if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { | 
|  | 707 | trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti"); | 
|  | 708 | rdp->dynticks_fqs++; | 
|  | 709 | return 1; | 
|  | 710 | } | 
|  | 711 |  | 
|  | 712 | /* Go check for the CPU being offline. */ | 
|  | 713 | return rcu_implicit_offline_qs(rdp); | 
|  | 714 | } | 
|  | 715 |  | 
|  | 716 | static int jiffies_till_stall_check(void) | 
|  | 717 | { | 
|  | 718 | int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout); | 
|  | 719 |  | 
|  | 720 | /* | 
|  | 721 | * Limit check must be consistent with the Kconfig limits | 
|  | 722 | * for CONFIG_RCU_CPU_STALL_TIMEOUT. | 
|  | 723 | */ | 
|  | 724 | if (till_stall_check < 3) { | 
|  | 725 | ACCESS_ONCE(rcu_cpu_stall_timeout) = 3; | 
|  | 726 | till_stall_check = 3; | 
|  | 727 | } else if (till_stall_check > 300) { | 
|  | 728 | ACCESS_ONCE(rcu_cpu_stall_timeout) = 300; | 
|  | 729 | till_stall_check = 300; | 
|  | 730 | } | 
|  | 731 | return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; | 
|  | 732 | } | 
|  | 733 |  | 
|  | 734 | static void record_gp_stall_check_time(struct rcu_state *rsp) | 
|  | 735 | { | 
|  | 736 | rsp->gp_start = jiffies; | 
|  | 737 | rsp->jiffies_stall = jiffies + jiffies_till_stall_check(); | 
|  | 738 | } | 
|  | 739 |  | 
|  | 740 | static void print_other_cpu_stall(struct rcu_state *rsp) | 
|  | 741 | { | 
|  | 742 | int cpu; | 
|  | 743 | long delta; | 
|  | 744 | unsigned long flags; | 
|  | 745 | int ndetected; | 
|  | 746 | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | 747 |  | 
|  | 748 | /* Only let one CPU complain about others per time interval. */ | 
|  | 749 |  | 
|  | 750 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 751 | delta = jiffies - rsp->jiffies_stall; | 
|  | 752 | if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { | 
|  | 753 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 754 | return; | 
|  | 755 | } | 
|  | 756 | rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3; | 
|  | 757 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 758 |  | 
|  | 759 | /* | 
|  | 760 | * OK, time to rat on our buddy... | 
|  | 761 | * See Documentation/RCU/stallwarn.txt for info on how to debug | 
|  | 762 | * RCU CPU stall warnings. | 
|  | 763 | */ | 
|  | 764 | printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:", | 
|  | 765 | rsp->name); | 
|  | 766 | print_cpu_stall_info_begin(); | 
|  | 767 | rcu_for_each_leaf_node(rsp, rnp) { | 
|  | 768 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 769 | ndetected += rcu_print_task_stall(rnp); | 
|  | 770 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 771 | if (rnp->qsmask == 0) | 
|  | 772 | continue; | 
|  | 773 | for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) | 
|  | 774 | if (rnp->qsmask & (1UL << cpu)) { | 
|  | 775 | print_cpu_stall_info(rsp, rnp->grplo + cpu); | 
|  | 776 | ndetected++; | 
|  | 777 | } | 
|  | 778 | } | 
|  | 779 |  | 
|  | 780 | /* | 
|  | 781 | * Now rat on any tasks that got kicked up to the root rcu_node | 
|  | 782 | * due to CPU offlining. | 
|  | 783 | */ | 
|  | 784 | rnp = rcu_get_root(rsp); | 
|  | 785 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 786 | ndetected = rcu_print_task_stall(rnp); | 
|  | 787 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 788 |  | 
|  | 789 | print_cpu_stall_info_end(); | 
|  | 790 | printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n", | 
|  | 791 | smp_processor_id(), (long)(jiffies - rsp->gp_start)); | 
|  | 792 | if (ndetected == 0) | 
|  | 793 | printk(KERN_ERR "INFO: Stall ended before state dump start\n"); | 
|  | 794 | else if (!trigger_all_cpu_backtrace()) | 
|  | 795 | dump_stack(); | 
|  | 796 |  | 
|  | 797 | /* If so configured, complain about tasks blocking the grace period. */ | 
|  | 798 |  | 
|  | 799 | rcu_print_detail_task_stall(rsp); | 
|  | 800 |  | 
|  | 801 | force_quiescent_state(rsp, 0);  /* Kick them all. */ | 
|  | 802 | } | 
|  | 803 |  | 
|  | 804 | static void print_cpu_stall(struct rcu_state *rsp) | 
|  | 805 | { | 
|  | 806 | unsigned long flags; | 
|  | 807 | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | 808 |  | 
|  | 809 | /* | 
|  | 810 | * OK, time to rat on ourselves... | 
|  | 811 | * See Documentation/RCU/stallwarn.txt for info on how to debug | 
|  | 812 | * RCU CPU stall warnings. | 
|  | 813 | */ | 
|  | 814 | printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name); | 
|  | 815 | print_cpu_stall_info_begin(); | 
|  | 816 | print_cpu_stall_info(rsp, smp_processor_id()); | 
|  | 817 | print_cpu_stall_info_end(); | 
|  | 818 | printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start); | 
|  | 819 | if (!trigger_all_cpu_backtrace()) | 
|  | 820 | dump_stack(); | 
|  | 821 |  | 
|  | 822 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 823 | if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) | 
|  | 824 | rsp->jiffies_stall = jiffies + | 
|  | 825 | 3 * jiffies_till_stall_check() + 3; | 
|  | 826 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 827 |  | 
|  | 828 | set_need_resched();  /* kick ourselves to get things going. */ | 
|  | 829 | } | 
|  | 830 |  | 
|  | 831 | static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 832 | { | 
|  | 833 | unsigned long j; | 
|  | 834 | unsigned long js; | 
|  | 835 | struct rcu_node *rnp; | 
|  | 836 |  | 
|  | 837 | if (rcu_cpu_stall_suppress) | 
|  | 838 | return; | 
|  | 839 | j = ACCESS_ONCE(jiffies); | 
|  | 840 | js = ACCESS_ONCE(rsp->jiffies_stall); | 
|  | 841 | rnp = rdp->mynode; | 
|  | 842 | if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) { | 
|  | 843 |  | 
|  | 844 | /* We haven't checked in, so go dump stack. */ | 
|  | 845 | print_cpu_stall(rsp); | 
|  | 846 |  | 
|  | 847 | } else if (rcu_gp_in_progress(rsp) && | 
|  | 848 | ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { | 
|  | 849 |  | 
|  | 850 | /* They had a few time units to dump stack, so complain. */ | 
|  | 851 | print_other_cpu_stall(rsp); | 
|  | 852 | } | 
|  | 853 | } | 
|  | 854 |  | 
|  | 855 | static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) | 
|  | 856 | { | 
|  | 857 | rcu_cpu_stall_suppress = 1; | 
|  | 858 | return NOTIFY_DONE; | 
|  | 859 | } | 
|  | 860 |  | 
|  | 861 | /** | 
|  | 862 | * rcu_cpu_stall_reset - prevent further stall warnings in current grace period | 
|  | 863 | * | 
|  | 864 | * Set the stall-warning timeout way off into the future, thus preventing | 
|  | 865 | * any RCU CPU stall-warning messages from appearing in the current set of | 
|  | 866 | * RCU grace periods. | 
|  | 867 | * | 
|  | 868 | * The caller must disable hard irqs. | 
|  | 869 | */ | 
|  | 870 | void rcu_cpu_stall_reset(void) | 
|  | 871 | { | 
|  | 872 | rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2; | 
|  | 873 | rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2; | 
|  | 874 | rcu_preempt_stall_reset(); | 
|  | 875 | } | 
|  | 876 |  | 
|  | 877 | static struct notifier_block rcu_panic_block = { | 
|  | 878 | .notifier_call = rcu_panic, | 
|  | 879 | }; | 
|  | 880 |  | 
|  | 881 | static void __init check_cpu_stall_init(void) | 
|  | 882 | { | 
|  | 883 | atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); | 
|  | 884 | } | 
|  | 885 |  | 
|  | 886 | /* | 
|  | 887 | * Update CPU-local rcu_data state to record the newly noticed grace period. | 
|  | 888 | * This is used both when we started the grace period and when we notice | 
|  | 889 | * that someone else started the grace period.  The caller must hold the | 
|  | 890 | * ->lock of the leaf rcu_node structure corresponding to the current CPU, | 
|  | 891 | *  and must have irqs disabled. | 
|  | 892 | */ | 
|  | 893 | static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | 
|  | 894 | { | 
|  | 895 | if (rdp->gpnum != rnp->gpnum) { | 
|  | 896 | /* | 
|  | 897 | * If the current grace period is waiting for this CPU, | 
|  | 898 | * set up to detect a quiescent state, otherwise don't | 
|  | 899 | * go looking for one. | 
|  | 900 | */ | 
|  | 901 | rdp->gpnum = rnp->gpnum; | 
|  | 902 | trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart"); | 
|  | 903 | if (rnp->qsmask & rdp->grpmask) { | 
|  | 904 | rdp->qs_pending = 1; | 
|  | 905 | rdp->passed_quiesce = 0; | 
|  | 906 | } else | 
|  | 907 | rdp->qs_pending = 0; | 
|  | 908 | zero_cpu_stall_ticks(rdp); | 
|  | 909 | } | 
|  | 910 | } | 
|  | 911 |  | 
|  | 912 | static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 913 | { | 
|  | 914 | unsigned long flags; | 
|  | 915 | struct rcu_node *rnp; | 
|  | 916 |  | 
|  | 917 | local_irq_save(flags); | 
|  | 918 | rnp = rdp->mynode; | 
|  | 919 | if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */ | 
|  | 920 | !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ | 
|  | 921 | local_irq_restore(flags); | 
|  | 922 | return; | 
|  | 923 | } | 
|  | 924 | __note_new_gpnum(rsp, rnp, rdp); | 
|  | 925 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 926 | } | 
|  | 927 |  | 
|  | 928 | /* | 
|  | 929 | * Did someone else start a new RCU grace period start since we last | 
|  | 930 | * checked?  Update local state appropriately if so.  Must be called | 
|  | 931 | * on the CPU corresponding to rdp. | 
|  | 932 | */ | 
|  | 933 | static int | 
|  | 934 | check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 935 | { | 
|  | 936 | unsigned long flags; | 
|  | 937 | int ret = 0; | 
|  | 938 |  | 
|  | 939 | local_irq_save(flags); | 
|  | 940 | if (rdp->gpnum != rsp->gpnum) { | 
|  | 941 | note_new_gpnum(rsp, rdp); | 
|  | 942 | ret = 1; | 
|  | 943 | } | 
|  | 944 | local_irq_restore(flags); | 
|  | 945 | return ret; | 
|  | 946 | } | 
|  | 947 |  | 
|  | 948 | /* | 
|  | 949 | * Advance this CPU's callbacks, but only if the current grace period | 
|  | 950 | * has ended.  This may be called only from the CPU to whom the rdp | 
|  | 951 | * belongs.  In addition, the corresponding leaf rcu_node structure's | 
|  | 952 | * ->lock must be held by the caller, with irqs disabled. | 
|  | 953 | */ | 
|  | 954 | static void | 
|  | 955 | __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | 
|  | 956 | { | 
|  | 957 | /* Did another grace period end? */ | 
|  | 958 | if (rdp->completed != rnp->completed) { | 
|  | 959 |  | 
|  | 960 | /* Advance callbacks.  No harm if list empty. */ | 
|  | 961 | rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL]; | 
|  | 962 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL]; | 
|  | 963 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  | 964 |  | 
|  | 965 | /* Remember that we saw this grace-period completion. */ | 
|  | 966 | rdp->completed = rnp->completed; | 
|  | 967 | trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend"); | 
|  | 968 |  | 
|  | 969 | /* | 
|  | 970 | * If we were in an extended quiescent state, we may have | 
|  | 971 | * missed some grace periods that others CPUs handled on | 
|  | 972 | * our behalf. Catch up with this state to avoid noting | 
|  | 973 | * spurious new grace periods.  If another grace period | 
|  | 974 | * has started, then rnp->gpnum will have advanced, so | 
|  | 975 | * we will detect this later on. | 
|  | 976 | */ | 
|  | 977 | if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) | 
|  | 978 | rdp->gpnum = rdp->completed; | 
|  | 979 |  | 
|  | 980 | /* | 
|  | 981 | * If RCU does not need a quiescent state from this CPU, | 
|  | 982 | * then make sure that this CPU doesn't go looking for one. | 
|  | 983 | */ | 
|  | 984 | if ((rnp->qsmask & rdp->grpmask) == 0) | 
|  | 985 | rdp->qs_pending = 0; | 
|  | 986 | } | 
|  | 987 | } | 
|  | 988 |  | 
|  | 989 | /* | 
|  | 990 | * Advance this CPU's callbacks, but only if the current grace period | 
|  | 991 | * has ended.  This may be called only from the CPU to whom the rdp | 
|  | 992 | * belongs. | 
|  | 993 | */ | 
|  | 994 | static void | 
|  | 995 | rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 996 | { | 
|  | 997 | unsigned long flags; | 
|  | 998 | struct rcu_node *rnp; | 
|  | 999 |  | 
|  | 1000 | local_irq_save(flags); | 
|  | 1001 | rnp = rdp->mynode; | 
|  | 1002 | if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */ | 
|  | 1003 | !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ | 
|  | 1004 | local_irq_restore(flags); | 
|  | 1005 | return; | 
|  | 1006 | } | 
|  | 1007 | __rcu_process_gp_end(rsp, rnp, rdp); | 
|  | 1008 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1009 | } | 
|  | 1010 |  | 
|  | 1011 | /* | 
|  | 1012 | * Do per-CPU grace-period initialization for running CPU.  The caller | 
|  | 1013 | * must hold the lock of the leaf rcu_node structure corresponding to | 
|  | 1014 | * this CPU. | 
|  | 1015 | */ | 
|  | 1016 | static void | 
|  | 1017 | rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) | 
|  | 1018 | { | 
|  | 1019 | /* Prior grace period ended, so advance callbacks for current CPU. */ | 
|  | 1020 | __rcu_process_gp_end(rsp, rnp, rdp); | 
|  | 1021 |  | 
|  | 1022 | /* | 
|  | 1023 | * Because this CPU just now started the new grace period, we know | 
|  | 1024 | * that all of its callbacks will be covered by this upcoming grace | 
|  | 1025 | * period, even the ones that were registered arbitrarily recently. | 
|  | 1026 | * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL. | 
|  | 1027 | * | 
|  | 1028 | * Other CPUs cannot be sure exactly when the grace period started. | 
|  | 1029 | * Therefore, their recently registered callbacks must pass through | 
|  | 1030 | * an additional RCU_NEXT_READY stage, so that they will be handled | 
|  | 1031 | * by the next RCU grace period. | 
|  | 1032 | */ | 
|  | 1033 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  | 1034 | rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  | 1035 |  | 
|  | 1036 | /* Set state so that this CPU will detect the next quiescent state. */ | 
|  | 1037 | __note_new_gpnum(rsp, rnp, rdp); | 
|  | 1038 | } | 
|  | 1039 |  | 
|  | 1040 | /* | 
|  | 1041 | * Start a new RCU grace period if warranted, re-initializing the hierarchy | 
|  | 1042 | * in preparation for detecting the next grace period.  The caller must hold | 
|  | 1043 | * the root node's ->lock, which is released before return.  Hard irqs must | 
|  | 1044 | * be disabled. | 
|  | 1045 | * | 
|  | 1046 | * Note that it is legal for a dying CPU (which is marked as offline) to | 
|  | 1047 | * invoke this function.  This can happen when the dying CPU reports its | 
|  | 1048 | * quiescent state. | 
|  | 1049 | */ | 
|  | 1050 | static void | 
|  | 1051 | rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | 
|  | 1052 | __releases(rcu_get_root(rsp)->lock) | 
|  | 1053 | { | 
|  | 1054 | struct rcu_data *rdp = this_cpu_ptr(rsp->rda); | 
|  | 1055 | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | 1056 |  | 
|  | 1057 | if (!rcu_scheduler_fully_active || | 
|  | 1058 | !cpu_needs_another_gp(rsp, rdp)) { | 
|  | 1059 | /* | 
|  | 1060 | * Either the scheduler hasn't yet spawned the first | 
|  | 1061 | * non-idle task or this CPU does not need another | 
|  | 1062 | * grace period.  Either way, don't start a new grace | 
|  | 1063 | * period. | 
|  | 1064 | */ | 
|  | 1065 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1066 | return; | 
|  | 1067 | } | 
|  | 1068 |  | 
|  | 1069 | if (rsp->fqs_active) { | 
|  | 1070 | /* | 
|  | 1071 | * This CPU needs a grace period, but force_quiescent_state() | 
|  | 1072 | * is running.  Tell it to start one on this CPU's behalf. | 
|  | 1073 | */ | 
|  | 1074 | rsp->fqs_need_gp = 1; | 
|  | 1075 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1076 | return; | 
|  | 1077 | } | 
|  | 1078 |  | 
|  | 1079 | /* Advance to a new grace period and initialize state. */ | 
|  | 1080 | rsp->gpnum++; | 
|  | 1081 | trace_rcu_grace_period(rsp->name, rsp->gpnum, "start"); | 
|  | 1082 | WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT); | 
|  | 1083 | rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | 
|  | 1084 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 
|  | 1085 | record_gp_stall_check_time(rsp); | 
|  | 1086 | raw_spin_unlock(&rnp->lock);  /* leave irqs disabled. */ | 
|  | 1087 |  | 
|  | 1088 | /* Exclude any concurrent CPU-hotplug operations. */ | 
|  | 1089 | raw_spin_lock(&rsp->onofflock);  /* irqs already disabled. */ | 
|  | 1090 |  | 
|  | 1091 | /* | 
|  | 1092 | * Set the quiescent-state-needed bits in all the rcu_node | 
|  | 1093 | * structures for all currently online CPUs in breadth-first | 
|  | 1094 | * order, starting from the root rcu_node structure.  This | 
|  | 1095 | * operation relies on the layout of the hierarchy within the | 
|  | 1096 | * rsp->node[] array.  Note that other CPUs will access only | 
|  | 1097 | * the leaves of the hierarchy, which still indicate that no | 
|  | 1098 | * grace period is in progress, at least until the corresponding | 
|  | 1099 | * leaf node has been initialized.  In addition, we have excluded | 
|  | 1100 | * CPU-hotplug operations. | 
|  | 1101 | * | 
|  | 1102 | * Note that the grace period cannot complete until we finish | 
|  | 1103 | * the initialization process, as there will be at least one | 
|  | 1104 | * qsmask bit set in the root node until that time, namely the | 
|  | 1105 | * one corresponding to this CPU, due to the fact that we have | 
|  | 1106 | * irqs disabled. | 
|  | 1107 | */ | 
|  | 1108 | rcu_for_each_node_breadth_first(rsp, rnp) { | 
|  | 1109 | raw_spin_lock(&rnp->lock);	/* irqs already disabled. */ | 
|  | 1110 | rcu_preempt_check_blocked_tasks(rnp); | 
|  | 1111 | rnp->qsmask = rnp->qsmaskinit; | 
|  | 1112 | rnp->gpnum = rsp->gpnum; | 
|  | 1113 | rnp->completed = rsp->completed; | 
|  | 1114 | if (rnp == rdp->mynode) | 
|  | 1115 | rcu_start_gp_per_cpu(rsp, rnp, rdp); | 
|  | 1116 | rcu_preempt_boost_start_gp(rnp); | 
|  | 1117 | trace_rcu_grace_period_init(rsp->name, rnp->gpnum, | 
|  | 1118 | rnp->level, rnp->grplo, | 
|  | 1119 | rnp->grphi, rnp->qsmask); | 
|  | 1120 | raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */ | 
|  | 1121 | } | 
|  | 1122 |  | 
|  | 1123 | rnp = rcu_get_root(rsp); | 
|  | 1124 | raw_spin_lock(&rnp->lock);		/* irqs already disabled. */ | 
|  | 1125 | rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | 
|  | 1126 | raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */ | 
|  | 1127 | raw_spin_unlock_irqrestore(&rsp->onofflock, flags); | 
|  | 1128 | } | 
|  | 1129 |  | 
|  | 1130 | /* | 
|  | 1131 | * Report a full set of quiescent states to the specified rcu_state | 
|  | 1132 | * data structure.  This involves cleaning up after the prior grace | 
|  | 1133 | * period and letting rcu_start_gp() start up the next grace period | 
|  | 1134 | * if one is needed.  Note that the caller must hold rnp->lock, as | 
|  | 1135 | * required by rcu_start_gp(), which will release it. | 
|  | 1136 | */ | 
|  | 1137 | static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) | 
|  | 1138 | __releases(rcu_get_root(rsp)->lock) | 
|  | 1139 | { | 
|  | 1140 | unsigned long gp_duration; | 
|  | 1141 | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | 1142 | struct rcu_data *rdp = this_cpu_ptr(rsp->rda); | 
|  | 1143 |  | 
|  | 1144 | WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); | 
|  | 1145 |  | 
|  | 1146 | /* | 
|  | 1147 | * Ensure that all grace-period and pre-grace-period activity | 
|  | 1148 | * is seen before the assignment to rsp->completed. | 
|  | 1149 | */ | 
|  | 1150 | smp_mb(); /* See above block comment. */ | 
|  | 1151 | gp_duration = jiffies - rsp->gp_start; | 
|  | 1152 | if (gp_duration > rsp->gp_max) | 
|  | 1153 | rsp->gp_max = gp_duration; | 
|  | 1154 |  | 
|  | 1155 | /* | 
|  | 1156 | * We know the grace period is complete, but to everyone else | 
|  | 1157 | * it appears to still be ongoing.  But it is also the case | 
|  | 1158 | * that to everyone else it looks like there is nothing that | 
|  | 1159 | * they can do to advance the grace period.  It is therefore | 
|  | 1160 | * safe for us to drop the lock in order to mark the grace | 
|  | 1161 | * period as completed in all of the rcu_node structures. | 
|  | 1162 | * | 
|  | 1163 | * But if this CPU needs another grace period, it will take | 
|  | 1164 | * care of this while initializing the next grace period. | 
|  | 1165 | * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL | 
|  | 1166 | * because the callbacks have not yet been advanced: Those | 
|  | 1167 | * callbacks are waiting on the grace period that just now | 
|  | 1168 | * completed. | 
|  | 1169 | */ | 
|  | 1170 | if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) { | 
|  | 1171 | raw_spin_unlock(&rnp->lock);	 /* irqs remain disabled. */ | 
|  | 1172 |  | 
|  | 1173 | /* | 
|  | 1174 | * Propagate new ->completed value to rcu_node structures | 
|  | 1175 | * so that other CPUs don't have to wait until the start | 
|  | 1176 | * of the next grace period to process their callbacks. | 
|  | 1177 | */ | 
|  | 1178 | rcu_for_each_node_breadth_first(rsp, rnp) { | 
|  | 1179 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ | 
|  | 1180 | rnp->completed = rsp->gpnum; | 
|  | 1181 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 
|  | 1182 | } | 
|  | 1183 | rnp = rcu_get_root(rsp); | 
|  | 1184 | raw_spin_lock(&rnp->lock); /* irqs already disabled. */ | 
|  | 1185 | } | 
|  | 1186 |  | 
|  | 1187 | rsp->completed = rsp->gpnum;  /* Declare the grace period complete. */ | 
|  | 1188 | trace_rcu_grace_period(rsp->name, rsp->completed, "end"); | 
|  | 1189 | rsp->fqs_state = RCU_GP_IDLE; | 
|  | 1190 | rcu_start_gp(rsp, flags);  /* releases root node's rnp->lock. */ | 
|  | 1191 | } | 
|  | 1192 |  | 
|  | 1193 | /* | 
|  | 1194 | * Similar to rcu_report_qs_rdp(), for which it is a helper function. | 
|  | 1195 | * Allows quiescent states for a group of CPUs to be reported at one go | 
|  | 1196 | * to the specified rcu_node structure, though all the CPUs in the group | 
|  | 1197 | * must be represented by the same rcu_node structure (which need not be | 
|  | 1198 | * a leaf rcu_node structure, though it often will be).  That structure's | 
|  | 1199 | * lock must be held upon entry, and it is released before return. | 
|  | 1200 | */ | 
|  | 1201 | static void | 
|  | 1202 | rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, | 
|  | 1203 | struct rcu_node *rnp, unsigned long flags) | 
|  | 1204 | __releases(rnp->lock) | 
|  | 1205 | { | 
|  | 1206 | struct rcu_node *rnp_c; | 
|  | 1207 |  | 
|  | 1208 | /* Walk up the rcu_node hierarchy. */ | 
|  | 1209 | for (;;) { | 
|  | 1210 | if (!(rnp->qsmask & mask)) { | 
|  | 1211 |  | 
|  | 1212 | /* Our bit has already been cleared, so done. */ | 
|  | 1213 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1214 | return; | 
|  | 1215 | } | 
|  | 1216 | rnp->qsmask &= ~mask; | 
|  | 1217 | trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, | 
|  | 1218 | mask, rnp->qsmask, rnp->level, | 
|  | 1219 | rnp->grplo, rnp->grphi, | 
|  | 1220 | !!rnp->gp_tasks); | 
|  | 1221 | if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { | 
|  | 1222 |  | 
|  | 1223 | /* Other bits still set at this level, so done. */ | 
|  | 1224 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1225 | return; | 
|  | 1226 | } | 
|  | 1227 | mask = rnp->grpmask; | 
|  | 1228 | if (rnp->parent == NULL) { | 
|  | 1229 |  | 
|  | 1230 | /* No more levels.  Exit loop holding root lock. */ | 
|  | 1231 |  | 
|  | 1232 | break; | 
|  | 1233 | } | 
|  | 1234 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1235 | rnp_c = rnp; | 
|  | 1236 | rnp = rnp->parent; | 
|  | 1237 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 1238 | WARN_ON_ONCE(rnp_c->qsmask); | 
|  | 1239 | } | 
|  | 1240 |  | 
|  | 1241 | /* | 
|  | 1242 | * Get here if we are the last CPU to pass through a quiescent | 
|  | 1243 | * state for this grace period.  Invoke rcu_report_qs_rsp() | 
|  | 1244 | * to clean up and start the next grace period if one is needed. | 
|  | 1245 | */ | 
|  | 1246 | rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ | 
|  | 1247 | } | 
|  | 1248 |  | 
|  | 1249 | /* | 
|  | 1250 | * Record a quiescent state for the specified CPU to that CPU's rcu_data | 
|  | 1251 | * structure.  This must be either called from the specified CPU, or | 
|  | 1252 | * called when the specified CPU is known to be offline (and when it is | 
|  | 1253 | * also known that no other CPU is concurrently trying to help the offline | 
|  | 1254 | * CPU).  The lastcomp argument is used to make sure we are still in the | 
|  | 1255 | * grace period of interest.  We don't want to end the current grace period | 
|  | 1256 | * based on quiescent states detected in an earlier grace period! | 
|  | 1257 | */ | 
|  | 1258 | static void | 
|  | 1259 | rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp) | 
|  | 1260 | { | 
|  | 1261 | unsigned long flags; | 
|  | 1262 | unsigned long mask; | 
|  | 1263 | struct rcu_node *rnp; | 
|  | 1264 |  | 
|  | 1265 | rnp = rdp->mynode; | 
|  | 1266 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 1267 | if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) { | 
|  | 1268 |  | 
|  | 1269 | /* | 
|  | 1270 | * The grace period in which this quiescent state was | 
|  | 1271 | * recorded has ended, so don't report it upwards. | 
|  | 1272 | * We will instead need a new quiescent state that lies | 
|  | 1273 | * within the current grace period. | 
|  | 1274 | */ | 
|  | 1275 | rdp->passed_quiesce = 0;	/* need qs for new gp. */ | 
|  | 1276 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1277 | return; | 
|  | 1278 | } | 
|  | 1279 | mask = rdp->grpmask; | 
|  | 1280 | if ((rnp->qsmask & mask) == 0) { | 
|  | 1281 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1282 | } else { | 
|  | 1283 | rdp->qs_pending = 0; | 
|  | 1284 |  | 
|  | 1285 | /* | 
|  | 1286 | * This GP can't end until cpu checks in, so all of our | 
|  | 1287 | * callbacks can be processed during the next GP. | 
|  | 1288 | */ | 
|  | 1289 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 
|  | 1290 |  | 
|  | 1291 | rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ | 
|  | 1292 | } | 
|  | 1293 | } | 
|  | 1294 |  | 
|  | 1295 | /* | 
|  | 1296 | * Check to see if there is a new grace period of which this CPU | 
|  | 1297 | * is not yet aware, and if so, set up local rcu_data state for it. | 
|  | 1298 | * Otherwise, see if this CPU has just passed through its first | 
|  | 1299 | * quiescent state for this grace period, and record that fact if so. | 
|  | 1300 | */ | 
|  | 1301 | static void | 
|  | 1302 | rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 1303 | { | 
|  | 1304 | /* If there is now a new grace period, record and return. */ | 
|  | 1305 | if (check_for_new_grace_period(rsp, rdp)) | 
|  | 1306 | return; | 
|  | 1307 |  | 
|  | 1308 | /* | 
|  | 1309 | * Does this CPU still need to do its part for current grace period? | 
|  | 1310 | * If no, return and let the other CPUs do their part as well. | 
|  | 1311 | */ | 
|  | 1312 | if (!rdp->qs_pending) | 
|  | 1313 | return; | 
|  | 1314 |  | 
|  | 1315 | /* | 
|  | 1316 | * Was there a quiescent state since the beginning of the grace | 
|  | 1317 | * period? If no, then exit and wait for the next call. | 
|  | 1318 | */ | 
|  | 1319 | if (!rdp->passed_quiesce) | 
|  | 1320 | return; | 
|  | 1321 |  | 
|  | 1322 | /* | 
|  | 1323 | * Tell RCU we are done (but rcu_report_qs_rdp() will be the | 
|  | 1324 | * judge of that). | 
|  | 1325 | */ | 
|  | 1326 | rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum); | 
|  | 1327 | } | 
|  | 1328 |  | 
|  | 1329 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 1330 |  | 
|  | 1331 | /* | 
|  | 1332 | * Move a dying CPU's RCU callbacks to online CPU's callback list. | 
|  | 1333 | * Also record a quiescent state for this CPU for the current grace period. | 
|  | 1334 | * Synchronization and interrupt disabling are not required because | 
|  | 1335 | * this function executes in stop_machine() context.  Therefore, cleanup | 
|  | 1336 | * operations that might block must be done later from the CPU_DEAD | 
|  | 1337 | * notifier. | 
|  | 1338 | * | 
|  | 1339 | * Note that the outgoing CPU's bit has already been cleared in the | 
|  | 1340 | * cpu_online_mask.  This allows us to randomly pick a callback | 
|  | 1341 | * destination from the bits set in that mask. | 
|  | 1342 | */ | 
|  | 1343 | static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) | 
|  | 1344 | { | 
|  | 1345 | int i; | 
|  | 1346 | unsigned long mask; | 
|  | 1347 | int receive_cpu = cpumask_any(cpu_online_mask); | 
|  | 1348 | struct rcu_data *rdp = this_cpu_ptr(rsp->rda); | 
|  | 1349 | struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu); | 
|  | 1350 | RCU_TRACE(struct rcu_node *rnp = rdp->mynode); /* For dying CPU. */ | 
|  | 1351 |  | 
|  | 1352 | /* First, adjust the counts. */ | 
|  | 1353 | if (rdp->nxtlist != NULL) { | 
|  | 1354 | receive_rdp->qlen_lazy += rdp->qlen_lazy; | 
|  | 1355 | receive_rdp->qlen += rdp->qlen; | 
|  | 1356 | rdp->qlen_lazy = 0; | 
|  | 1357 | rdp->qlen = 0; | 
|  | 1358 | } | 
|  | 1359 |  | 
|  | 1360 | /* | 
|  | 1361 | * Next, move ready-to-invoke callbacks to be invoked on some | 
|  | 1362 | * other CPU.  These will not be required to pass through another | 
|  | 1363 | * grace period:  They are done, regardless of CPU. | 
|  | 1364 | */ | 
|  | 1365 | if (rdp->nxtlist != NULL && | 
|  | 1366 | rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) { | 
|  | 1367 | struct rcu_head *oldhead; | 
|  | 1368 | struct rcu_head **oldtail; | 
|  | 1369 | struct rcu_head **newtail; | 
|  | 1370 |  | 
|  | 1371 | oldhead = rdp->nxtlist; | 
|  | 1372 | oldtail = receive_rdp->nxttail[RCU_DONE_TAIL]; | 
|  | 1373 | rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; | 
|  | 1374 | *rdp->nxttail[RCU_DONE_TAIL] = *oldtail; | 
|  | 1375 | *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead; | 
|  | 1376 | newtail = rdp->nxttail[RCU_DONE_TAIL]; | 
|  | 1377 | for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) { | 
|  | 1378 | if (receive_rdp->nxttail[i] == oldtail) | 
|  | 1379 | receive_rdp->nxttail[i] = newtail; | 
|  | 1380 | if (rdp->nxttail[i] == newtail) | 
|  | 1381 | rdp->nxttail[i] = &rdp->nxtlist; | 
|  | 1382 | } | 
|  | 1383 | } | 
|  | 1384 |  | 
|  | 1385 | /* | 
|  | 1386 | * Finally, put the rest of the callbacks at the end of the list. | 
|  | 1387 | * The ones that made it partway through get to start over:  We | 
|  | 1388 | * cannot assume that grace periods are synchronized across CPUs. | 
|  | 1389 | * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but | 
|  | 1390 | * this does not seem compelling.  Not yet, anyway.) | 
|  | 1391 | */ | 
|  | 1392 | if (rdp->nxtlist != NULL) { | 
|  | 1393 | *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist; | 
|  | 1394 | receive_rdp->nxttail[RCU_NEXT_TAIL] = | 
|  | 1395 | rdp->nxttail[RCU_NEXT_TAIL]; | 
|  | 1396 | receive_rdp->n_cbs_adopted += rdp->qlen; | 
|  | 1397 | rdp->n_cbs_orphaned += rdp->qlen; | 
|  | 1398 |  | 
|  | 1399 | rdp->nxtlist = NULL; | 
|  | 1400 | for (i = 0; i < RCU_NEXT_SIZE; i++) | 
|  | 1401 | rdp->nxttail[i] = &rdp->nxtlist; | 
|  | 1402 | } | 
|  | 1403 |  | 
|  | 1404 | /* | 
|  | 1405 | * Record a quiescent state for the dying CPU.  This is safe | 
|  | 1406 | * only because we have already cleared out the callbacks. | 
|  | 1407 | * (Otherwise, the RCU core might try to schedule the invocation | 
|  | 1408 | * of callbacks on this now-offline CPU, which would be bad.) | 
|  | 1409 | */ | 
|  | 1410 | mask = rdp->grpmask;	/* rnp->grplo is constant. */ | 
|  | 1411 | trace_rcu_grace_period(rsp->name, | 
|  | 1412 | rnp->gpnum + 1 - !!(rnp->qsmask & mask), | 
|  | 1413 | "cpuofl"); | 
|  | 1414 | rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum); | 
|  | 1415 | /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */ | 
|  | 1416 | } | 
|  | 1417 |  | 
|  | 1418 | /* | 
|  | 1419 | * The CPU has been completely removed, and some other CPU is reporting | 
|  | 1420 | * this fact from process context.  Do the remainder of the cleanup. | 
|  | 1421 | * There can only be one CPU hotplug operation at a time, so no other | 
|  | 1422 | * CPU can be attempting to update rcu_cpu_kthread_task. | 
|  | 1423 | */ | 
|  | 1424 | static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) | 
|  | 1425 | { | 
|  | 1426 | unsigned long flags; | 
|  | 1427 | unsigned long mask; | 
|  | 1428 | int need_report = 0; | 
|  | 1429 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | 
|  | 1430 | struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rnp. */ | 
|  | 1431 |  | 
|  | 1432 | /* Adjust any no-longer-needed kthreads. */ | 
|  | 1433 | rcu_stop_cpu_kthread(cpu); | 
|  | 1434 | rcu_node_kthread_setaffinity(rnp, -1); | 
|  | 1435 |  | 
|  | 1436 | /* Remove the dying CPU from the bitmasks in the rcu_node hierarchy. */ | 
|  | 1437 |  | 
|  | 1438 | /* Exclude any attempts to start a new grace period. */ | 
|  | 1439 | raw_spin_lock_irqsave(&rsp->onofflock, flags); | 
|  | 1440 |  | 
|  | 1441 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | 
|  | 1442 | mask = rdp->grpmask;	/* rnp->grplo is constant. */ | 
|  | 1443 | do { | 
|  | 1444 | raw_spin_lock(&rnp->lock);	/* irqs already disabled. */ | 
|  | 1445 | rnp->qsmaskinit &= ~mask; | 
|  | 1446 | if (rnp->qsmaskinit != 0) { | 
|  | 1447 | if (rnp != rdp->mynode) | 
|  | 1448 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 
|  | 1449 | break; | 
|  | 1450 | } | 
|  | 1451 | if (rnp == rdp->mynode) | 
|  | 1452 | need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); | 
|  | 1453 | else | 
|  | 1454 | raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 
|  | 1455 | mask = rnp->grpmask; | 
|  | 1456 | rnp = rnp->parent; | 
|  | 1457 | } while (rnp != NULL); | 
|  | 1458 |  | 
|  | 1459 | /* | 
|  | 1460 | * We still hold the leaf rcu_node structure lock here, and | 
|  | 1461 | * irqs are still disabled.  The reason for this subterfuge is | 
|  | 1462 | * because invoking rcu_report_unblock_qs_rnp() with ->onofflock | 
|  | 1463 | * held leads to deadlock. | 
|  | 1464 | */ | 
|  | 1465 | raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 
|  | 1466 | rnp = rdp->mynode; | 
|  | 1467 | if (need_report & RCU_OFL_TASKS_NORM_GP) | 
|  | 1468 | rcu_report_unblock_qs_rnp(rnp, flags); | 
|  | 1469 | else | 
|  | 1470 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1471 | if (need_report & RCU_OFL_TASKS_EXP_GP) | 
|  | 1472 | rcu_report_exp_rnp(rsp, rnp, true); | 
|  | 1473 | } | 
|  | 1474 |  | 
|  | 1475 | #else /* #ifdef CONFIG_HOTPLUG_CPU */ | 
|  | 1476 |  | 
|  | 1477 | static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) | 
|  | 1478 | { | 
|  | 1479 | } | 
|  | 1480 |  | 
|  | 1481 | static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) | 
|  | 1482 | { | 
|  | 1483 | } | 
|  | 1484 |  | 
|  | 1485 | #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ | 
|  | 1486 |  | 
|  | 1487 | /* | 
|  | 1488 | * Invoke any RCU callbacks that have made it to the end of their grace | 
|  | 1489 | * period.  Thottle as specified by rdp->blimit. | 
|  | 1490 | */ | 
|  | 1491 | static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 1492 | { | 
|  | 1493 | unsigned long flags; | 
|  | 1494 | struct rcu_head *next, *list, **tail; | 
|  | 1495 | long bl, count, count_lazy; | 
|  | 1496 |  | 
|  | 1497 | /* If no callbacks are ready, just return.*/ | 
|  | 1498 | if (!cpu_has_callbacks_ready_to_invoke(rdp)) { | 
|  | 1499 | trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); | 
|  | 1500 | trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), | 
|  | 1501 | need_resched(), is_idle_task(current), | 
|  | 1502 | rcu_is_callbacks_kthread()); | 
|  | 1503 | return; | 
|  | 1504 | } | 
|  | 1505 |  | 
|  | 1506 | /* | 
|  | 1507 | * Extract the list of ready callbacks, disabling to prevent | 
|  | 1508 | * races with call_rcu() from interrupt handlers. | 
|  | 1509 | */ | 
|  | 1510 | local_irq_save(flags); | 
|  | 1511 | WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); | 
|  | 1512 | bl = rdp->blimit; | 
|  | 1513 | trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); | 
|  | 1514 | list = rdp->nxtlist; | 
|  | 1515 | rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; | 
|  | 1516 | *rdp->nxttail[RCU_DONE_TAIL] = NULL; | 
|  | 1517 | tail = rdp->nxttail[RCU_DONE_TAIL]; | 
|  | 1518 | for (count = RCU_NEXT_SIZE - 1; count >= 0; count--) | 
|  | 1519 | if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL]) | 
|  | 1520 | rdp->nxttail[count] = &rdp->nxtlist; | 
|  | 1521 | local_irq_restore(flags); | 
|  | 1522 |  | 
|  | 1523 | /* Invoke callbacks. */ | 
|  | 1524 | count = count_lazy = 0; | 
|  | 1525 | while (list) { | 
|  | 1526 | next = list->next; | 
|  | 1527 | prefetch(next); | 
|  | 1528 | debug_rcu_head_unqueue(list); | 
|  | 1529 | if (__rcu_reclaim(rsp->name, list)) | 
|  | 1530 | count_lazy++; | 
|  | 1531 | list = next; | 
|  | 1532 | /* Stop only if limit reached and CPU has something to do. */ | 
|  | 1533 | if (++count >= bl && | 
|  | 1534 | (need_resched() || | 
|  | 1535 | (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) | 
|  | 1536 | break; | 
|  | 1537 | } | 
|  | 1538 |  | 
|  | 1539 | local_irq_save(flags); | 
|  | 1540 | trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), | 
|  | 1541 | is_idle_task(current), | 
|  | 1542 | rcu_is_callbacks_kthread()); | 
|  | 1543 |  | 
|  | 1544 | /* Update count, and requeue any remaining callbacks. */ | 
|  | 1545 | rdp->qlen_lazy -= count_lazy; | 
|  | 1546 | rdp->qlen -= count; | 
|  | 1547 | rdp->n_cbs_invoked += count; | 
|  | 1548 | if (list != NULL) { | 
|  | 1549 | *tail = rdp->nxtlist; | 
|  | 1550 | rdp->nxtlist = list; | 
|  | 1551 | for (count = 0; count < RCU_NEXT_SIZE; count++) | 
|  | 1552 | if (&rdp->nxtlist == rdp->nxttail[count]) | 
|  | 1553 | rdp->nxttail[count] = tail; | 
|  | 1554 | else | 
|  | 1555 | break; | 
|  | 1556 | } | 
|  | 1557 |  | 
|  | 1558 | /* Reinstate batch limit if we have worked down the excess. */ | 
|  | 1559 | if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) | 
|  | 1560 | rdp->blimit = blimit; | 
|  | 1561 |  | 
|  | 1562 | /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ | 
|  | 1563 | if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { | 
|  | 1564 | rdp->qlen_last_fqs_check = 0; | 
|  | 1565 | rdp->n_force_qs_snap = rsp->n_force_qs; | 
|  | 1566 | } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) | 
|  | 1567 | rdp->qlen_last_fqs_check = rdp->qlen; | 
|  | 1568 |  | 
|  | 1569 | local_irq_restore(flags); | 
|  | 1570 |  | 
|  | 1571 | /* Re-invoke RCU core processing if there are callbacks remaining. */ | 
|  | 1572 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | 
|  | 1573 | invoke_rcu_core(); | 
|  | 1574 | } | 
|  | 1575 |  | 
|  | 1576 | /* | 
|  | 1577 | * Check to see if this CPU is in a non-context-switch quiescent state | 
|  | 1578 | * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). | 
|  | 1579 | * Also schedule RCU core processing. | 
|  | 1580 | * | 
|  | 1581 | * This function must be called from hardirq context.  It is normally | 
|  | 1582 | * invoked from the scheduling-clock interrupt.  If rcu_pending returns | 
|  | 1583 | * false, there is no point in invoking rcu_check_callbacks(). | 
|  | 1584 | */ | 
|  | 1585 | void rcu_check_callbacks(int cpu, int user) | 
|  | 1586 | { | 
|  | 1587 | trace_rcu_utilization("Start scheduler-tick"); | 
|  | 1588 | increment_cpu_stall_ticks(); | 
|  | 1589 | if (user || rcu_is_cpu_rrupt_from_idle()) { | 
|  | 1590 |  | 
|  | 1591 | /* | 
|  | 1592 | * Get here if this CPU took its interrupt from user | 
|  | 1593 | * mode or from the idle loop, and if this is not a | 
|  | 1594 | * nested interrupt.  In this case, the CPU is in | 
|  | 1595 | * a quiescent state, so note it. | 
|  | 1596 | * | 
|  | 1597 | * No memory barrier is required here because both | 
|  | 1598 | * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local | 
|  | 1599 | * variables that other CPUs neither access nor modify, | 
|  | 1600 | * at least not while the corresponding CPU is online. | 
|  | 1601 | */ | 
|  | 1602 |  | 
|  | 1603 | rcu_sched_qs(cpu); | 
|  | 1604 | rcu_bh_qs(cpu); | 
|  | 1605 |  | 
|  | 1606 | } else if (!in_softirq()) { | 
|  | 1607 |  | 
|  | 1608 | /* | 
|  | 1609 | * Get here if this CPU did not take its interrupt from | 
|  | 1610 | * softirq, in other words, if it is not interrupting | 
|  | 1611 | * a rcu_bh read-side critical section.  This is an _bh | 
|  | 1612 | * critical section, so note it. | 
|  | 1613 | */ | 
|  | 1614 |  | 
|  | 1615 | rcu_bh_qs(cpu); | 
|  | 1616 | } | 
|  | 1617 | rcu_preempt_check_callbacks(cpu); | 
|  | 1618 | if (rcu_pending(cpu)) | 
|  | 1619 | invoke_rcu_core(); | 
|  | 1620 | trace_rcu_utilization("End scheduler-tick"); | 
|  | 1621 | } | 
|  | 1622 |  | 
|  | 1623 | /* | 
|  | 1624 | * Scan the leaf rcu_node structures, processing dyntick state for any that | 
|  | 1625 | * have not yet encountered a quiescent state, using the function specified. | 
|  | 1626 | * Also initiate boosting for any threads blocked on the root rcu_node. | 
|  | 1627 | * | 
|  | 1628 | * The caller must have suppressed start of new grace periods. | 
|  | 1629 | */ | 
|  | 1630 | static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *)) | 
|  | 1631 | { | 
|  | 1632 | unsigned long bit; | 
|  | 1633 | int cpu; | 
|  | 1634 | unsigned long flags; | 
|  | 1635 | unsigned long mask; | 
|  | 1636 | struct rcu_node *rnp; | 
|  | 1637 |  | 
|  | 1638 | rcu_for_each_leaf_node(rsp, rnp) { | 
|  | 1639 | mask = 0; | 
|  | 1640 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 1641 | if (!rcu_gp_in_progress(rsp)) { | 
|  | 1642 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1643 | return; | 
|  | 1644 | } | 
|  | 1645 | if (rnp->qsmask == 0) { | 
|  | 1646 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ | 
|  | 1647 | continue; | 
|  | 1648 | } | 
|  | 1649 | cpu = rnp->grplo; | 
|  | 1650 | bit = 1; | 
|  | 1651 | for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { | 
|  | 1652 | if ((rnp->qsmask & bit) != 0 && | 
|  | 1653 | f(per_cpu_ptr(rsp->rda, cpu))) | 
|  | 1654 | mask |= bit; | 
|  | 1655 | } | 
|  | 1656 | if (mask != 0) { | 
|  | 1657 |  | 
|  | 1658 | /* rcu_report_qs_rnp() releases rnp->lock. */ | 
|  | 1659 | rcu_report_qs_rnp(mask, rsp, rnp, flags); | 
|  | 1660 | continue; | 
|  | 1661 | } | 
|  | 1662 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 1663 | } | 
|  | 1664 | rnp = rcu_get_root(rsp); | 
|  | 1665 | if (rnp->qsmask == 0) { | 
|  | 1666 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 1667 | rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ | 
|  | 1668 | } | 
|  | 1669 | } | 
|  | 1670 |  | 
|  | 1671 | /* | 
|  | 1672 | * Force quiescent states on reluctant CPUs, and also detect which | 
|  | 1673 | * CPUs are in dyntick-idle mode. | 
|  | 1674 | */ | 
|  | 1675 | static void force_quiescent_state(struct rcu_state *rsp, int relaxed) | 
|  | 1676 | { | 
|  | 1677 | unsigned long flags; | 
|  | 1678 | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | 1679 |  | 
|  | 1680 | trace_rcu_utilization("Start fqs"); | 
|  | 1681 | if (!rcu_gp_in_progress(rsp)) { | 
|  | 1682 | trace_rcu_utilization("End fqs"); | 
|  | 1683 | return;  /* No grace period in progress, nothing to force. */ | 
|  | 1684 | } | 
|  | 1685 | if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) { | 
|  | 1686 | rsp->n_force_qs_lh++; /* Inexact, can lose counts.  Tough! */ | 
|  | 1687 | trace_rcu_utilization("End fqs"); | 
|  | 1688 | return;	/* Someone else is already on the job. */ | 
|  | 1689 | } | 
|  | 1690 | if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies)) | 
|  | 1691 | goto unlock_fqs_ret; /* no emergency and done recently. */ | 
|  | 1692 | rsp->n_force_qs++; | 
|  | 1693 | raw_spin_lock(&rnp->lock);  /* irqs already disabled */ | 
|  | 1694 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 
|  | 1695 | if(!rcu_gp_in_progress(rsp)) { | 
|  | 1696 | rsp->n_force_qs_ngp++; | 
|  | 1697 | raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */ | 
|  | 1698 | goto unlock_fqs_ret;  /* no GP in progress, time updated. */ | 
|  | 1699 | } | 
|  | 1700 | rsp->fqs_active = 1; | 
|  | 1701 | switch (rsp->fqs_state) { | 
|  | 1702 | case RCU_GP_IDLE: | 
|  | 1703 | case RCU_GP_INIT: | 
|  | 1704 |  | 
|  | 1705 | break; /* grace period idle or initializing, ignore. */ | 
|  | 1706 |  | 
|  | 1707 | case RCU_SAVE_DYNTICK: | 
|  | 1708 | if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK) | 
|  | 1709 | break; /* So gcc recognizes the dead code. */ | 
|  | 1710 |  | 
|  | 1711 | raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */ | 
|  | 1712 |  | 
|  | 1713 | /* Record dyntick-idle state. */ | 
|  | 1714 | force_qs_rnp(rsp, dyntick_save_progress_counter); | 
|  | 1715 | raw_spin_lock(&rnp->lock);  /* irqs already disabled */ | 
|  | 1716 | if (rcu_gp_in_progress(rsp)) | 
|  | 1717 | rsp->fqs_state = RCU_FORCE_QS; | 
|  | 1718 | break; | 
|  | 1719 |  | 
|  | 1720 | case RCU_FORCE_QS: | 
|  | 1721 |  | 
|  | 1722 | /* Check dyntick-idle state, send IPI to laggarts. */ | 
|  | 1723 | raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */ | 
|  | 1724 | force_qs_rnp(rsp, rcu_implicit_dynticks_qs); | 
|  | 1725 |  | 
|  | 1726 | /* Leave state in case more forcing is required. */ | 
|  | 1727 |  | 
|  | 1728 | raw_spin_lock(&rnp->lock);  /* irqs already disabled */ | 
|  | 1729 | break; | 
|  | 1730 | } | 
|  | 1731 | rsp->fqs_active = 0; | 
|  | 1732 | if (rsp->fqs_need_gp) { | 
|  | 1733 | raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */ | 
|  | 1734 | rsp->fqs_need_gp = 0; | 
|  | 1735 | rcu_start_gp(rsp, flags); /* releases rnp->lock */ | 
|  | 1736 | trace_rcu_utilization("End fqs"); | 
|  | 1737 | return; | 
|  | 1738 | } | 
|  | 1739 | raw_spin_unlock(&rnp->lock);  /* irqs remain disabled */ | 
|  | 1740 | unlock_fqs_ret: | 
|  | 1741 | raw_spin_unlock_irqrestore(&rsp->fqslock, flags); | 
|  | 1742 | trace_rcu_utilization("End fqs"); | 
|  | 1743 | } | 
|  | 1744 |  | 
|  | 1745 | /* | 
|  | 1746 | * This does the RCU core processing work for the specified rcu_state | 
|  | 1747 | * and rcu_data structures.  This may be called only from the CPU to | 
|  | 1748 | * whom the rdp belongs. | 
|  | 1749 | */ | 
|  | 1750 | static void | 
|  | 1751 | __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 1752 | { | 
|  | 1753 | unsigned long flags; | 
|  | 1754 |  | 
|  | 1755 | WARN_ON_ONCE(rdp->beenonline == 0); | 
|  | 1756 |  | 
|  | 1757 | /* | 
|  | 1758 | * If an RCU GP has gone long enough, go check for dyntick | 
|  | 1759 | * idle CPUs and, if needed, send resched IPIs. | 
|  | 1760 | */ | 
|  | 1761 | if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) | 
|  | 1762 | force_quiescent_state(rsp, 1); | 
|  | 1763 |  | 
|  | 1764 | /* | 
|  | 1765 | * Advance callbacks in response to end of earlier grace | 
|  | 1766 | * period that some other CPU ended. | 
|  | 1767 | */ | 
|  | 1768 | rcu_process_gp_end(rsp, rdp); | 
|  | 1769 |  | 
|  | 1770 | /* Update RCU state based on any recent quiescent states. */ | 
|  | 1771 | rcu_check_quiescent_state(rsp, rdp); | 
|  | 1772 |  | 
|  | 1773 | /* Does this CPU require a not-yet-started grace period? */ | 
|  | 1774 | if (cpu_needs_another_gp(rsp, rdp)) { | 
|  | 1775 | raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags); | 
|  | 1776 | rcu_start_gp(rsp, flags);  /* releases above lock */ | 
|  | 1777 | } | 
|  | 1778 |  | 
|  | 1779 | /* If there are callbacks ready, invoke them. */ | 
|  | 1780 | if (cpu_has_callbacks_ready_to_invoke(rdp)) | 
|  | 1781 | invoke_rcu_callbacks(rsp, rdp); | 
|  | 1782 | } | 
|  | 1783 |  | 
|  | 1784 | /* | 
|  | 1785 | * Do RCU core processing for the current CPU. | 
|  | 1786 | */ | 
|  | 1787 | static void rcu_process_callbacks(struct softirq_action *unused) | 
|  | 1788 | { | 
|  | 1789 | trace_rcu_utilization("Start RCU core"); | 
|  | 1790 | __rcu_process_callbacks(&rcu_sched_state, | 
|  | 1791 | &__get_cpu_var(rcu_sched_data)); | 
|  | 1792 | __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data)); | 
|  | 1793 | rcu_preempt_process_callbacks(); | 
|  | 1794 | trace_rcu_utilization("End RCU core"); | 
|  | 1795 | } | 
|  | 1796 |  | 
|  | 1797 | /* | 
|  | 1798 | * Schedule RCU callback invocation.  If the specified type of RCU | 
|  | 1799 | * does not support RCU priority boosting, just do a direct call, | 
|  | 1800 | * otherwise wake up the per-CPU kernel kthread.  Note that because we | 
|  | 1801 | * are running on the current CPU with interrupts disabled, the | 
|  | 1802 | * rcu_cpu_kthread_task cannot disappear out from under us. | 
|  | 1803 | */ | 
|  | 1804 | static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 1805 | { | 
|  | 1806 | if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) | 
|  | 1807 | return; | 
|  | 1808 | if (likely(!rsp->boost)) { | 
|  | 1809 | rcu_do_batch(rsp, rdp); | 
|  | 1810 | return; | 
|  | 1811 | } | 
|  | 1812 | invoke_rcu_callbacks_kthread(); | 
|  | 1813 | } | 
|  | 1814 |  | 
|  | 1815 | static void invoke_rcu_core(void) | 
|  | 1816 | { | 
|  | 1817 | raise_softirq(RCU_SOFTIRQ); | 
|  | 1818 | } | 
|  | 1819 |  | 
|  | 1820 | static void | 
|  | 1821 | __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), | 
|  | 1822 | struct rcu_state *rsp, bool lazy) | 
|  | 1823 | { | 
|  | 1824 | unsigned long flags; | 
|  | 1825 | struct rcu_data *rdp; | 
|  | 1826 |  | 
|  | 1827 | WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ | 
|  | 1828 | debug_rcu_head_queue(head); | 
|  | 1829 | head->func = func; | 
|  | 1830 | head->next = NULL; | 
|  | 1831 |  | 
|  | 1832 | smp_mb(); /* Ensure RCU update seen before callback registry. */ | 
|  | 1833 |  | 
|  | 1834 | /* | 
|  | 1835 | * Opportunistically note grace-period endings and beginnings. | 
|  | 1836 | * Note that we might see a beginning right after we see an | 
|  | 1837 | * end, but never vice versa, since this CPU has to pass through | 
|  | 1838 | * a quiescent state betweentimes. | 
|  | 1839 | */ | 
|  | 1840 | local_irq_save(flags); | 
|  | 1841 | rdp = this_cpu_ptr(rsp->rda); | 
|  | 1842 |  | 
|  | 1843 | /* Add the callback to our list. */ | 
|  | 1844 | *rdp->nxttail[RCU_NEXT_TAIL] = head; | 
|  | 1845 | rdp->nxttail[RCU_NEXT_TAIL] = &head->next; | 
|  | 1846 | rdp->qlen++; | 
|  | 1847 | if (lazy) | 
|  | 1848 | rdp->qlen_lazy++; | 
|  | 1849 |  | 
|  | 1850 | if (__is_kfree_rcu_offset((unsigned long)func)) | 
|  | 1851 | trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, | 
|  | 1852 | rdp->qlen_lazy, rdp->qlen); | 
|  | 1853 | else | 
|  | 1854 | trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); | 
|  | 1855 |  | 
|  | 1856 | /* If interrupts were disabled, don't dive into RCU core. */ | 
|  | 1857 | if (irqs_disabled_flags(flags)) { | 
|  | 1858 | local_irq_restore(flags); | 
|  | 1859 | return; | 
|  | 1860 | } | 
|  | 1861 |  | 
|  | 1862 | /* | 
|  | 1863 | * Force the grace period if too many callbacks or too long waiting. | 
|  | 1864 | * Enforce hysteresis, and don't invoke force_quiescent_state() | 
|  | 1865 | * if some other CPU has recently done so.  Also, don't bother | 
|  | 1866 | * invoking force_quiescent_state() if the newly enqueued callback | 
|  | 1867 | * is the only one waiting for a grace period to complete. | 
|  | 1868 | */ | 
|  | 1869 | if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { | 
|  | 1870 |  | 
|  | 1871 | /* Are we ignoring a completed grace period? */ | 
|  | 1872 | rcu_process_gp_end(rsp, rdp); | 
|  | 1873 | check_for_new_grace_period(rsp, rdp); | 
|  | 1874 |  | 
|  | 1875 | /* Start a new grace period if one not already started. */ | 
|  | 1876 | if (!rcu_gp_in_progress(rsp)) { | 
|  | 1877 | unsigned long nestflag; | 
|  | 1878 | struct rcu_node *rnp_root = rcu_get_root(rsp); | 
|  | 1879 |  | 
|  | 1880 | raw_spin_lock_irqsave(&rnp_root->lock, nestflag); | 
|  | 1881 | rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */ | 
|  | 1882 | } else { | 
|  | 1883 | /* Give the grace period a kick. */ | 
|  | 1884 | rdp->blimit = LONG_MAX; | 
|  | 1885 | if (rsp->n_force_qs == rdp->n_force_qs_snap && | 
|  | 1886 | *rdp->nxttail[RCU_DONE_TAIL] != head) | 
|  | 1887 | force_quiescent_state(rsp, 0); | 
|  | 1888 | rdp->n_force_qs_snap = rsp->n_force_qs; | 
|  | 1889 | rdp->qlen_last_fqs_check = rdp->qlen; | 
|  | 1890 | } | 
|  | 1891 | } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) | 
|  | 1892 | force_quiescent_state(rsp, 1); | 
|  | 1893 | local_irq_restore(flags); | 
|  | 1894 | } | 
|  | 1895 |  | 
|  | 1896 | /* | 
|  | 1897 | * Queue an RCU-sched callback for invocation after a grace period. | 
|  | 1898 | */ | 
|  | 1899 | void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 
|  | 1900 | { | 
|  | 1901 | __call_rcu(head, func, &rcu_sched_state, 0); | 
|  | 1902 | } | 
|  | 1903 | EXPORT_SYMBOL_GPL(call_rcu_sched); | 
|  | 1904 |  | 
|  | 1905 | #ifndef CONFIG_PREEMPT_RT_FULL | 
|  | 1906 | /* | 
|  | 1907 | * Queue an RCU callback for invocation after a quicker grace period. | 
|  | 1908 | */ | 
|  | 1909 | void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | 
|  | 1910 | { | 
|  | 1911 | __call_rcu(head, func, &rcu_bh_state, 0); | 
|  | 1912 | } | 
|  | 1913 | EXPORT_SYMBOL_GPL(call_rcu_bh); | 
|  | 1914 | #endif | 
|  | 1915 |  | 
|  | 1916 | /** | 
|  | 1917 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. | 
|  | 1918 | * | 
|  | 1919 | * Control will return to the caller some time after a full rcu-sched | 
|  | 1920 | * grace period has elapsed, in other words after all currently executing | 
|  | 1921 | * rcu-sched read-side critical sections have completed.   These read-side | 
|  | 1922 | * critical sections are delimited by rcu_read_lock_sched() and | 
|  | 1923 | * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(), | 
|  | 1924 | * local_irq_disable(), and so on may be used in place of | 
|  | 1925 | * rcu_read_lock_sched(). | 
|  | 1926 | * | 
|  | 1927 | * This means that all preempt_disable code sequences, including NMI and | 
|  | 1928 | * hardware-interrupt handlers, in progress on entry will have completed | 
|  | 1929 | * before this primitive returns.  However, this does not guarantee that | 
|  | 1930 | * softirq handlers will have completed, since in some kernels, these | 
|  | 1931 | * handlers can run in process context, and can block. | 
|  | 1932 | * | 
|  | 1933 | * This primitive provides the guarantees made by the (now removed) | 
|  | 1934 | * synchronize_kernel() API.  In contrast, synchronize_rcu() only | 
|  | 1935 | * guarantees that rcu_read_lock() sections will have completed. | 
|  | 1936 | * In "classic RCU", these two guarantees happen to be one and | 
|  | 1937 | * the same, but can differ in realtime RCU implementations. | 
|  | 1938 | */ | 
|  | 1939 | void synchronize_sched(void) | 
|  | 1940 | { | 
|  | 1941 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && | 
|  | 1942 | !lock_is_held(&rcu_lock_map) && | 
|  | 1943 | !lock_is_held(&rcu_sched_lock_map), | 
|  | 1944 | "Illegal synchronize_sched() in RCU-sched read-side critical section"); | 
|  | 1945 | if (rcu_blocking_is_gp()) | 
|  | 1946 | return; | 
|  | 1947 | wait_rcu_gp(call_rcu_sched); | 
|  | 1948 | } | 
|  | 1949 | EXPORT_SYMBOL_GPL(synchronize_sched); | 
|  | 1950 |  | 
|  | 1951 | #ifndef CONFIG_PREEMPT_RT_FULL | 
|  | 1952 | /** | 
|  | 1953 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | 
|  | 1954 | * | 
|  | 1955 | * Control will return to the caller some time after a full rcu_bh grace | 
|  | 1956 | * period has elapsed, in other words after all currently executing rcu_bh | 
|  | 1957 | * read-side critical sections have completed.  RCU read-side critical | 
|  | 1958 | * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), | 
|  | 1959 | * and may be nested. | 
|  | 1960 | */ | 
|  | 1961 | void synchronize_rcu_bh(void) | 
|  | 1962 | { | 
|  | 1963 | rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && | 
|  | 1964 | !lock_is_held(&rcu_lock_map) && | 
|  | 1965 | !lock_is_held(&rcu_sched_lock_map), | 
|  | 1966 | "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); | 
|  | 1967 | if (rcu_blocking_is_gp()) | 
|  | 1968 | return; | 
|  | 1969 | wait_rcu_gp(call_rcu_bh); | 
|  | 1970 | } | 
|  | 1971 | EXPORT_SYMBOL_GPL(synchronize_rcu_bh); | 
|  | 1972 | #endif | 
|  | 1973 |  | 
|  | 1974 | static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0); | 
|  | 1975 | static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0); | 
|  | 1976 |  | 
|  | 1977 | static int synchronize_sched_expedited_cpu_stop(void *data) | 
|  | 1978 | { | 
|  | 1979 | /* | 
|  | 1980 | * There must be a full memory barrier on each affected CPU | 
|  | 1981 | * between the time that try_stop_cpus() is called and the | 
|  | 1982 | * time that it returns. | 
|  | 1983 | * | 
|  | 1984 | * In the current initial implementation of cpu_stop, the | 
|  | 1985 | * above condition is already met when the control reaches | 
|  | 1986 | * this point and the following smp_mb() is not strictly | 
|  | 1987 | * necessary.  Do smp_mb() anyway for documentation and | 
|  | 1988 | * robustness against future implementation changes. | 
|  | 1989 | */ | 
|  | 1990 | smp_mb(); /* See above comment block. */ | 
|  | 1991 | return 0; | 
|  | 1992 | } | 
|  | 1993 |  | 
|  | 1994 | /** | 
|  | 1995 | * synchronize_sched_expedited - Brute-force RCU-sched grace period | 
|  | 1996 | * | 
|  | 1997 | * Wait for an RCU-sched grace period to elapse, but use a "big hammer" | 
|  | 1998 | * approach to force the grace period to end quickly.  This consumes | 
|  | 1999 | * significant time on all CPUs and is unfriendly to real-time workloads, | 
|  | 2000 | * so is thus not recommended for any sort of common-case code.  In fact, | 
|  | 2001 | * if you are using synchronize_sched_expedited() in a loop, please | 
|  | 2002 | * restructure your code to batch your updates, and then use a single | 
|  | 2003 | * synchronize_sched() instead. | 
|  | 2004 | * | 
|  | 2005 | * Note that it is illegal to call this function while holding any lock | 
|  | 2006 | * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal | 
|  | 2007 | * to call this function from a CPU-hotplug notifier.  Failing to observe | 
|  | 2008 | * these restriction will result in deadlock. | 
|  | 2009 | * | 
|  | 2010 | * This implementation can be thought of as an application of ticket | 
|  | 2011 | * locking to RCU, with sync_sched_expedited_started and | 
|  | 2012 | * sync_sched_expedited_done taking on the roles of the halves | 
|  | 2013 | * of the ticket-lock word.  Each task atomically increments | 
|  | 2014 | * sync_sched_expedited_started upon entry, snapshotting the old value, | 
|  | 2015 | * then attempts to stop all the CPUs.  If this succeeds, then each | 
|  | 2016 | * CPU will have executed a context switch, resulting in an RCU-sched | 
|  | 2017 | * grace period.  We are then done, so we use atomic_cmpxchg() to | 
|  | 2018 | * update sync_sched_expedited_done to match our snapshot -- but | 
|  | 2019 | * only if someone else has not already advanced past our snapshot. | 
|  | 2020 | * | 
|  | 2021 | * On the other hand, if try_stop_cpus() fails, we check the value | 
|  | 2022 | * of sync_sched_expedited_done.  If it has advanced past our | 
|  | 2023 | * initial snapshot, then someone else must have forced a grace period | 
|  | 2024 | * some time after we took our snapshot.  In this case, our work is | 
|  | 2025 | * done for us, and we can simply return.  Otherwise, we try again, | 
|  | 2026 | * but keep our initial snapshot for purposes of checking for someone | 
|  | 2027 | * doing our work for us. | 
|  | 2028 | * | 
|  | 2029 | * If we fail too many times in a row, we fall back to synchronize_sched(). | 
|  | 2030 | */ | 
|  | 2031 | void synchronize_sched_expedited(void) | 
|  | 2032 | { | 
|  | 2033 | int firstsnap, s, snap, trycount = 0; | 
|  | 2034 |  | 
|  | 2035 | /* Note that atomic_inc_return() implies full memory barrier. */ | 
|  | 2036 | firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started); | 
|  | 2037 | get_online_cpus(); | 
|  | 2038 | WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); | 
|  | 2039 |  | 
|  | 2040 | /* | 
|  | 2041 | * Each pass through the following loop attempts to force a | 
|  | 2042 | * context switch on each CPU. | 
|  | 2043 | */ | 
|  | 2044 | while (try_stop_cpus(cpu_online_mask, | 
|  | 2045 | synchronize_sched_expedited_cpu_stop, | 
|  | 2046 | NULL) == -EAGAIN) { | 
|  | 2047 | put_online_cpus(); | 
|  | 2048 |  | 
|  | 2049 | /* No joy, try again later.  Or just synchronize_sched(). */ | 
|  | 2050 | if (trycount++ < 10) | 
|  | 2051 | udelay(trycount * num_online_cpus()); | 
|  | 2052 | else { | 
|  | 2053 | synchronize_sched(); | 
|  | 2054 | return; | 
|  | 2055 | } | 
|  | 2056 |  | 
|  | 2057 | /* Check to see if someone else did our work for us. */ | 
|  | 2058 | s = atomic_read(&sync_sched_expedited_done); | 
|  | 2059 | if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) { | 
|  | 2060 | smp_mb(); /* ensure test happens before caller kfree */ | 
|  | 2061 | return; | 
|  | 2062 | } | 
|  | 2063 |  | 
|  | 2064 | /* | 
|  | 2065 | * Refetching sync_sched_expedited_started allows later | 
|  | 2066 | * callers to piggyback on our grace period.  We subtract | 
|  | 2067 | * 1 to get the same token that the last incrementer got. | 
|  | 2068 | * We retry after they started, so our grace period works | 
|  | 2069 | * for them, and they started after our first try, so their | 
|  | 2070 | * grace period works for us. | 
|  | 2071 | */ | 
|  | 2072 | get_online_cpus(); | 
|  | 2073 | snap = atomic_read(&sync_sched_expedited_started); | 
|  | 2074 | smp_mb(); /* ensure read is before try_stop_cpus(). */ | 
|  | 2075 | } | 
|  | 2076 |  | 
|  | 2077 | /* | 
|  | 2078 | * Everyone up to our most recent fetch is covered by our grace | 
|  | 2079 | * period.  Update the counter, but only if our work is still | 
|  | 2080 | * relevant -- which it won't be if someone who started later | 
|  | 2081 | * than we did beat us to the punch. | 
|  | 2082 | */ | 
|  | 2083 | do { | 
|  | 2084 | s = atomic_read(&sync_sched_expedited_done); | 
|  | 2085 | if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) { | 
|  | 2086 | smp_mb(); /* ensure test happens before caller kfree */ | 
|  | 2087 | break; | 
|  | 2088 | } | 
|  | 2089 | } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s); | 
|  | 2090 |  | 
|  | 2091 | put_online_cpus(); | 
|  | 2092 | } | 
|  | 2093 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | 
|  | 2094 |  | 
|  | 2095 | /* | 
|  | 2096 | * Check to see if there is any immediate RCU-related work to be done | 
|  | 2097 | * by the current CPU, for the specified type of RCU, returning 1 if so. | 
|  | 2098 | * The checks are in order of increasing expense: checks that can be | 
|  | 2099 | * carried out against CPU-local state are performed first.  However, | 
|  | 2100 | * we must check for CPU stalls first, else we might not get a chance. | 
|  | 2101 | */ | 
|  | 2102 | static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) | 
|  | 2103 | { | 
|  | 2104 | struct rcu_node *rnp = rdp->mynode; | 
|  | 2105 |  | 
|  | 2106 | rdp->n_rcu_pending++; | 
|  | 2107 |  | 
|  | 2108 | /* Check for CPU stalls, if enabled. */ | 
|  | 2109 | check_cpu_stall(rsp, rdp); | 
|  | 2110 |  | 
|  | 2111 | /* Is the RCU core waiting for a quiescent state from this CPU? */ | 
|  | 2112 | if (rcu_scheduler_fully_active && | 
|  | 2113 | rdp->qs_pending && !rdp->passed_quiesce) { | 
|  | 2114 |  | 
|  | 2115 | /* | 
|  | 2116 | * If force_quiescent_state() coming soon and this CPU | 
|  | 2117 | * needs a quiescent state, and this is either RCU-sched | 
|  | 2118 | * or RCU-bh, force a local reschedule. | 
|  | 2119 | */ | 
|  | 2120 | rdp->n_rp_qs_pending++; | 
|  | 2121 | if (!rdp->preemptible && | 
|  | 2122 | ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1, | 
|  | 2123 | jiffies)) | 
|  | 2124 | set_need_resched(); | 
|  | 2125 | } else if (rdp->qs_pending && rdp->passed_quiesce) { | 
|  | 2126 | rdp->n_rp_report_qs++; | 
|  | 2127 | return 1; | 
|  | 2128 | } | 
|  | 2129 |  | 
|  | 2130 | /* Does this CPU have callbacks ready to invoke? */ | 
|  | 2131 | if (cpu_has_callbacks_ready_to_invoke(rdp)) { | 
|  | 2132 | rdp->n_rp_cb_ready++; | 
|  | 2133 | return 1; | 
|  | 2134 | } | 
|  | 2135 |  | 
|  | 2136 | /* Has RCU gone idle with this CPU needing another grace period? */ | 
|  | 2137 | if (cpu_needs_another_gp(rsp, rdp)) { | 
|  | 2138 | rdp->n_rp_cpu_needs_gp++; | 
|  | 2139 | return 1; | 
|  | 2140 | } | 
|  | 2141 |  | 
|  | 2142 | /* Has another RCU grace period completed?  */ | 
|  | 2143 | if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ | 
|  | 2144 | rdp->n_rp_gp_completed++; | 
|  | 2145 | return 1; | 
|  | 2146 | } | 
|  | 2147 |  | 
|  | 2148 | /* Has a new RCU grace period started? */ | 
|  | 2149 | if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ | 
|  | 2150 | rdp->n_rp_gp_started++; | 
|  | 2151 | return 1; | 
|  | 2152 | } | 
|  | 2153 |  | 
|  | 2154 | /* Has an RCU GP gone long enough to send resched IPIs &c? */ | 
|  | 2155 | if (rcu_gp_in_progress(rsp) && | 
|  | 2156 | ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) { | 
|  | 2157 | rdp->n_rp_need_fqs++; | 
|  | 2158 | return 1; | 
|  | 2159 | } | 
|  | 2160 |  | 
|  | 2161 | /* nothing to do */ | 
|  | 2162 | rdp->n_rp_need_nothing++; | 
|  | 2163 | return 0; | 
|  | 2164 | } | 
|  | 2165 |  | 
|  | 2166 | /* | 
|  | 2167 | * Check to see if there is any immediate RCU-related work to be done | 
|  | 2168 | * by the current CPU, returning 1 if so.  This function is part of the | 
|  | 2169 | * RCU implementation; it is -not- an exported member of the RCU API. | 
|  | 2170 | */ | 
|  | 2171 | static int rcu_pending(int cpu) | 
|  | 2172 | { | 
|  | 2173 | return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) || | 
|  | 2174 | __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) || | 
|  | 2175 | rcu_preempt_pending(cpu); | 
|  | 2176 | } | 
|  | 2177 |  | 
|  | 2178 | /* | 
|  | 2179 | * Check to see if any future RCU-related work will need to be done | 
|  | 2180 | * by the current CPU, even if none need be done immediately, returning | 
|  | 2181 | * 1 if so. | 
|  | 2182 | */ | 
|  | 2183 | static int rcu_cpu_has_callbacks(int cpu) | 
|  | 2184 | { | 
|  | 2185 | /* RCU callbacks either ready or pending? */ | 
|  | 2186 | return per_cpu(rcu_sched_data, cpu).nxtlist || | 
|  | 2187 | per_cpu(rcu_bh_data, cpu).nxtlist || | 
|  | 2188 | rcu_preempt_cpu_has_callbacks(cpu); | 
|  | 2189 | } | 
|  | 2190 |  | 
|  | 2191 | static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL}; | 
|  | 2192 | static atomic_t rcu_barrier_cpu_count; | 
|  | 2193 | static DEFINE_MUTEX(rcu_barrier_mutex); | 
|  | 2194 | static struct completion rcu_barrier_completion; | 
|  | 2195 |  | 
|  | 2196 | static void rcu_barrier_callback(struct rcu_head *notused) | 
|  | 2197 | { | 
|  | 2198 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | 
|  | 2199 | complete(&rcu_barrier_completion); | 
|  | 2200 | } | 
|  | 2201 |  | 
|  | 2202 | /* | 
|  | 2203 | * Called with preemption disabled, and from cross-cpu IRQ context. | 
|  | 2204 | */ | 
|  | 2205 | static void rcu_barrier_func(void *type) | 
|  | 2206 | { | 
|  | 2207 | int cpu = smp_processor_id(); | 
|  | 2208 | struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu); | 
|  | 2209 | void (*call_rcu_func)(struct rcu_head *head, | 
|  | 2210 | void (*func)(struct rcu_head *head)); | 
|  | 2211 |  | 
|  | 2212 | atomic_inc(&rcu_barrier_cpu_count); | 
|  | 2213 | call_rcu_func = type; | 
|  | 2214 | call_rcu_func(head, rcu_barrier_callback); | 
|  | 2215 | } | 
|  | 2216 |  | 
|  | 2217 | /* | 
|  | 2218 | * Orchestrate the specified type of RCU barrier, waiting for all | 
|  | 2219 | * RCU callbacks of the specified type to complete. | 
|  | 2220 | */ | 
|  | 2221 | static void _rcu_barrier(struct rcu_state *rsp, | 
|  | 2222 | void (*call_rcu_func)(struct rcu_head *head, | 
|  | 2223 | void (*func)(struct rcu_head *head))) | 
|  | 2224 | { | 
|  | 2225 | BUG_ON(in_interrupt()); | 
|  | 2226 | /* Take mutex to serialize concurrent rcu_barrier() requests. */ | 
|  | 2227 | mutex_lock(&rcu_barrier_mutex); | 
|  | 2228 | init_completion(&rcu_barrier_completion); | 
|  | 2229 | /* | 
|  | 2230 | * Initialize rcu_barrier_cpu_count to 1, then invoke | 
|  | 2231 | * rcu_barrier_func() on each CPU, so that each CPU also has | 
|  | 2232 | * incremented rcu_barrier_cpu_count.  Only then is it safe to | 
|  | 2233 | * decrement rcu_barrier_cpu_count -- otherwise the first CPU | 
|  | 2234 | * might complete its grace period before all of the other CPUs | 
|  | 2235 | * did their increment, causing this function to return too | 
|  | 2236 | * early.  Note that on_each_cpu() disables irqs, which prevents | 
|  | 2237 | * any CPUs from coming online or going offline until each online | 
|  | 2238 | * CPU has queued its RCU-barrier callback. | 
|  | 2239 | */ | 
|  | 2240 | atomic_set(&rcu_barrier_cpu_count, 1); | 
|  | 2241 | on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1); | 
|  | 2242 | if (atomic_dec_and_test(&rcu_barrier_cpu_count)) | 
|  | 2243 | complete(&rcu_barrier_completion); | 
|  | 2244 | wait_for_completion(&rcu_barrier_completion); | 
|  | 2245 | mutex_unlock(&rcu_barrier_mutex); | 
|  | 2246 | } | 
|  | 2247 |  | 
|  | 2248 | #ifndef CONFIG_PREEMPT_RT_FULL | 
|  | 2249 | /** | 
|  | 2250 | * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. | 
|  | 2251 | */ | 
|  | 2252 | void rcu_barrier_bh(void) | 
|  | 2253 | { | 
|  | 2254 | _rcu_barrier(&rcu_bh_state, call_rcu_bh); | 
|  | 2255 | } | 
|  | 2256 | EXPORT_SYMBOL_GPL(rcu_barrier_bh); | 
|  | 2257 | #endif | 
|  | 2258 |  | 
|  | 2259 | /** | 
|  | 2260 | * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. | 
|  | 2261 | */ | 
|  | 2262 | void rcu_barrier_sched(void) | 
|  | 2263 | { | 
|  | 2264 | _rcu_barrier(&rcu_sched_state, call_rcu_sched); | 
|  | 2265 | } | 
|  | 2266 | EXPORT_SYMBOL_GPL(rcu_barrier_sched); | 
|  | 2267 |  | 
|  | 2268 | /* | 
|  | 2269 | * Do boot-time initialization of a CPU's per-CPU RCU data. | 
|  | 2270 | */ | 
|  | 2271 | static void __init | 
|  | 2272 | rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) | 
|  | 2273 | { | 
|  | 2274 | unsigned long flags; | 
|  | 2275 | int i; | 
|  | 2276 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | 
|  | 2277 | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | 2278 |  | 
|  | 2279 | /* Set up local state, ensuring consistent view of global state. */ | 
|  | 2280 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 2281 | rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); | 
|  | 2282 | rdp->nxtlist = NULL; | 
|  | 2283 | for (i = 0; i < RCU_NEXT_SIZE; i++) | 
|  | 2284 | rdp->nxttail[i] = &rdp->nxtlist; | 
|  | 2285 | rdp->qlen_lazy = 0; | 
|  | 2286 | rdp->qlen = 0; | 
|  | 2287 | rdp->dynticks = &per_cpu(rcu_dynticks, cpu); | 
|  | 2288 | WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); | 
|  | 2289 | WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); | 
|  | 2290 | rdp->cpu = cpu; | 
|  | 2291 | rdp->rsp = rsp; | 
|  | 2292 | raw_spin_unlock_irqrestore(&rnp->lock, flags); | 
|  | 2293 | } | 
|  | 2294 |  | 
|  | 2295 | /* | 
|  | 2296 | * Initialize a CPU's per-CPU RCU data.  Note that only one online or | 
|  | 2297 | * offline event can be happening at a given time.  Note also that we | 
|  | 2298 | * can accept some slop in the rsp->completed access due to the fact | 
|  | 2299 | * that this CPU cannot possibly have any RCU callbacks in flight yet. | 
|  | 2300 | */ | 
|  | 2301 | static void __cpuinit | 
|  | 2302 | rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) | 
|  | 2303 | { | 
|  | 2304 | unsigned long flags; | 
|  | 2305 | unsigned long mask; | 
|  | 2306 | struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); | 
|  | 2307 | struct rcu_node *rnp = rcu_get_root(rsp); | 
|  | 2308 |  | 
|  | 2309 | /* Set up local state, ensuring consistent view of global state. */ | 
|  | 2310 | raw_spin_lock_irqsave(&rnp->lock, flags); | 
|  | 2311 | rdp->beenonline = 1;	 /* We have now been online. */ | 
|  | 2312 | rdp->preemptible = preemptible; | 
|  | 2313 | rdp->qlen_last_fqs_check = 0; | 
|  | 2314 | rdp->n_force_qs_snap = rsp->n_force_qs; | 
|  | 2315 | rdp->blimit = blimit; | 
|  | 2316 | rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; | 
|  | 2317 | atomic_set(&rdp->dynticks->dynticks, | 
|  | 2318 | (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); | 
|  | 2319 | rcu_prepare_for_idle_init(cpu); | 
|  | 2320 | raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */ | 
|  | 2321 |  | 
|  | 2322 | /* | 
|  | 2323 | * A new grace period might start here.  If so, we won't be part | 
|  | 2324 | * of it, but that is OK, as we are currently in a quiescent state. | 
|  | 2325 | */ | 
|  | 2326 |  | 
|  | 2327 | /* Exclude any attempts to start a new GP on large systems. */ | 
|  | 2328 | raw_spin_lock(&rsp->onofflock);		/* irqs already disabled. */ | 
|  | 2329 |  | 
|  | 2330 | /* Add CPU to rcu_node bitmasks. */ | 
|  | 2331 | rnp = rdp->mynode; | 
|  | 2332 | mask = rdp->grpmask; | 
|  | 2333 | do { | 
|  | 2334 | /* Exclude any attempts to start a new GP on small systems. */ | 
|  | 2335 | raw_spin_lock(&rnp->lock);	/* irqs already disabled. */ | 
|  | 2336 | rnp->qsmaskinit |= mask; | 
|  | 2337 | mask = rnp->grpmask; | 
|  | 2338 | if (rnp == rdp->mynode) { | 
|  | 2339 | /* | 
|  | 2340 | * If there is a grace period in progress, we will | 
|  | 2341 | * set up to wait for it next time we run the | 
|  | 2342 | * RCU core code. | 
|  | 2343 | */ | 
|  | 2344 | rdp->gpnum = rnp->completed; | 
|  | 2345 | rdp->completed = rnp->completed; | 
|  | 2346 | rdp->passed_quiesce = 0; | 
|  | 2347 | rdp->qs_pending = 0; | 
|  | 2348 | rdp->passed_quiesce_gpnum = rnp->gpnum - 1; | 
|  | 2349 | trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl"); | 
|  | 2350 | } | 
|  | 2351 | raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ | 
|  | 2352 | rnp = rnp->parent; | 
|  | 2353 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | 
|  | 2354 |  | 
|  | 2355 | raw_spin_unlock_irqrestore(&rsp->onofflock, flags); | 
|  | 2356 | } | 
|  | 2357 |  | 
|  | 2358 | static void __cpuinit rcu_prepare_cpu(int cpu) | 
|  | 2359 | { | 
|  | 2360 | rcu_init_percpu_data(cpu, &rcu_sched_state, 0); | 
|  | 2361 | rcu_init_percpu_data(cpu, &rcu_bh_state, 0); | 
|  | 2362 | rcu_preempt_init_percpu_data(cpu); | 
|  | 2363 | } | 
|  | 2364 |  | 
|  | 2365 | /* | 
|  | 2366 | * Handle CPU online/offline notification events. | 
|  | 2367 | */ | 
|  | 2368 | static int __cpuinit rcu_cpu_notify(struct notifier_block *self, | 
|  | 2369 | unsigned long action, void *hcpu) | 
|  | 2370 | { | 
|  | 2371 | long cpu = (long)hcpu; | 
|  | 2372 | struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); | 
|  | 2373 | struct rcu_node *rnp = rdp->mynode; | 
|  | 2374 |  | 
|  | 2375 | trace_rcu_utilization("Start CPU hotplug"); | 
|  | 2376 | switch (action) { | 
|  | 2377 | case CPU_UP_PREPARE: | 
|  | 2378 | case CPU_UP_PREPARE_FROZEN: | 
|  | 2379 | rcu_prepare_cpu(cpu); | 
|  | 2380 | rcu_prepare_kthreads(cpu); | 
|  | 2381 | break; | 
|  | 2382 | case CPU_ONLINE: | 
|  | 2383 | case CPU_DOWN_FAILED: | 
|  | 2384 | rcu_node_kthread_setaffinity(rnp, -1); | 
|  | 2385 | rcu_cpu_kthread_setrt(cpu, 1); | 
|  | 2386 | break; | 
|  | 2387 | case CPU_DOWN_PREPARE: | 
|  | 2388 | rcu_node_kthread_setaffinity(rnp, cpu); | 
|  | 2389 | rcu_cpu_kthread_setrt(cpu, 0); | 
|  | 2390 | break; | 
|  | 2391 | case CPU_DYING: | 
|  | 2392 | case CPU_DYING_FROZEN: | 
|  | 2393 | /* | 
|  | 2394 | * The whole machine is "stopped" except this CPU, so we can | 
|  | 2395 | * touch any data without introducing corruption. We send the | 
|  | 2396 | * dying CPU's callbacks to an arbitrarily chosen online CPU. | 
|  | 2397 | */ | 
|  | 2398 | rcu_cleanup_dying_cpu(&rcu_bh_state); | 
|  | 2399 | rcu_cleanup_dying_cpu(&rcu_sched_state); | 
|  | 2400 | rcu_preempt_cleanup_dying_cpu(); | 
|  | 2401 | rcu_cleanup_after_idle(cpu); | 
|  | 2402 | break; | 
|  | 2403 | case CPU_DEAD: | 
|  | 2404 | case CPU_DEAD_FROZEN: | 
|  | 2405 | case CPU_UP_CANCELED: | 
|  | 2406 | case CPU_UP_CANCELED_FROZEN: | 
|  | 2407 | rcu_cleanup_dead_cpu(cpu, &rcu_bh_state); | 
|  | 2408 | rcu_cleanup_dead_cpu(cpu, &rcu_sched_state); | 
|  | 2409 | rcu_preempt_cleanup_dead_cpu(cpu); | 
|  | 2410 | break; | 
|  | 2411 | default: | 
|  | 2412 | break; | 
|  | 2413 | } | 
|  | 2414 | trace_rcu_utilization("End CPU hotplug"); | 
|  | 2415 | return NOTIFY_OK; | 
|  | 2416 | } | 
|  | 2417 |  | 
|  | 2418 | /* | 
|  | 2419 | * This function is invoked towards the end of the scheduler's initialization | 
|  | 2420 | * process.  Before this is called, the idle task might contain | 
|  | 2421 | * RCU read-side critical sections (during which time, this idle | 
|  | 2422 | * task is booting the system).  After this function is called, the | 
|  | 2423 | * idle tasks are prohibited from containing RCU read-side critical | 
|  | 2424 | * sections.  This function also enables RCU lockdep checking. | 
|  | 2425 | */ | 
|  | 2426 | void rcu_scheduler_starting(void) | 
|  | 2427 | { | 
|  | 2428 | WARN_ON(num_online_cpus() != 1); | 
|  | 2429 | WARN_ON(nr_context_switches() > 0); | 
|  | 2430 | rcu_scheduler_active = 1; | 
|  | 2431 | } | 
|  | 2432 |  | 
|  | 2433 | /* | 
|  | 2434 | * Compute the per-level fanout, either using the exact fanout specified | 
|  | 2435 | * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. | 
|  | 2436 | */ | 
|  | 2437 | #ifdef CONFIG_RCU_FANOUT_EXACT | 
|  | 2438 | static void __init rcu_init_levelspread(struct rcu_state *rsp) | 
|  | 2439 | { | 
|  | 2440 | int i; | 
|  | 2441 |  | 
|  | 2442 | for (i = NUM_RCU_LVLS - 1; i > 0; i--) | 
|  | 2443 | rsp->levelspread[i] = CONFIG_RCU_FANOUT; | 
|  | 2444 | rsp->levelspread[0] = RCU_FANOUT_LEAF; | 
|  | 2445 | } | 
|  | 2446 | #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ | 
|  | 2447 | static void __init rcu_init_levelspread(struct rcu_state *rsp) | 
|  | 2448 | { | 
|  | 2449 | int ccur; | 
|  | 2450 | int cprv; | 
|  | 2451 | int i; | 
|  | 2452 |  | 
|  | 2453 | cprv = NR_CPUS; | 
|  | 2454 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { | 
|  | 2455 | ccur = rsp->levelcnt[i]; | 
|  | 2456 | rsp->levelspread[i] = (cprv + ccur - 1) / ccur; | 
|  | 2457 | cprv = ccur; | 
|  | 2458 | } | 
|  | 2459 | } | 
|  | 2460 | #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ | 
|  | 2461 |  | 
|  | 2462 | /* | 
|  | 2463 | * Helper function for rcu_init() that initializes one rcu_state structure. | 
|  | 2464 | */ | 
|  | 2465 | static void __init rcu_init_one(struct rcu_state *rsp, | 
|  | 2466 | struct rcu_data __percpu *rda) | 
|  | 2467 | { | 
|  | 2468 | static char *buf[] = { "rcu_node_level_0", | 
|  | 2469 | "rcu_node_level_1", | 
|  | 2470 | "rcu_node_level_2", | 
|  | 2471 | "rcu_node_level_3" };  /* Match MAX_RCU_LVLS */ | 
|  | 2472 | int cpustride = 1; | 
|  | 2473 | int i; | 
|  | 2474 | int j; | 
|  | 2475 | struct rcu_node *rnp; | 
|  | 2476 |  | 
|  | 2477 | BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */ | 
|  | 2478 |  | 
|  | 2479 | /* Initialize the level-tracking arrays. */ | 
|  | 2480 |  | 
|  | 2481 | for (i = 1; i < NUM_RCU_LVLS; i++) | 
|  | 2482 | rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; | 
|  | 2483 | rcu_init_levelspread(rsp); | 
|  | 2484 |  | 
|  | 2485 | /* Initialize the elements themselves, starting from the leaves. */ | 
|  | 2486 |  | 
|  | 2487 | for (i = NUM_RCU_LVLS - 1; i >= 0; i--) { | 
|  | 2488 | cpustride *= rsp->levelspread[i]; | 
|  | 2489 | rnp = rsp->level[i]; | 
|  | 2490 | for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { | 
|  | 2491 | raw_spin_lock_init(&rnp->lock); | 
|  | 2492 | lockdep_set_class_and_name(&rnp->lock, | 
|  | 2493 | &rcu_node_class[i], buf[i]); | 
|  | 2494 | rnp->gpnum = 0; | 
|  | 2495 | rnp->qsmask = 0; | 
|  | 2496 | rnp->qsmaskinit = 0; | 
|  | 2497 | rnp->grplo = j * cpustride; | 
|  | 2498 | rnp->grphi = (j + 1) * cpustride - 1; | 
|  | 2499 | if (rnp->grphi >= NR_CPUS) | 
|  | 2500 | rnp->grphi = NR_CPUS - 1; | 
|  | 2501 | if (i == 0) { | 
|  | 2502 | rnp->grpnum = 0; | 
|  | 2503 | rnp->grpmask = 0; | 
|  | 2504 | rnp->parent = NULL; | 
|  | 2505 | } else { | 
|  | 2506 | rnp->grpnum = j % rsp->levelspread[i - 1]; | 
|  | 2507 | rnp->grpmask = 1UL << rnp->grpnum; | 
|  | 2508 | rnp->parent = rsp->level[i - 1] + | 
|  | 2509 | j / rsp->levelspread[i - 1]; | 
|  | 2510 | } | 
|  | 2511 | rnp->level = i; | 
|  | 2512 | INIT_LIST_HEAD(&rnp->blkd_tasks); | 
|  | 2513 | } | 
|  | 2514 | } | 
|  | 2515 |  | 
|  | 2516 | rsp->rda = rda; | 
|  | 2517 | rnp = rsp->level[NUM_RCU_LVLS - 1]; | 
|  | 2518 | for_each_possible_cpu(i) { | 
|  | 2519 | while (i > rnp->grphi) | 
|  | 2520 | rnp++; | 
|  | 2521 | per_cpu_ptr(rsp->rda, i)->mynode = rnp; | 
|  | 2522 | rcu_boot_init_percpu_data(i, rsp); | 
|  | 2523 | } | 
|  | 2524 | } | 
|  | 2525 |  | 
|  | 2526 | void __init rcu_init(void) | 
|  | 2527 | { | 
|  | 2528 | int cpu; | 
|  | 2529 |  | 
|  | 2530 | rcu_bootup_announce(); | 
|  | 2531 | rcu_init_one(&rcu_sched_state, &rcu_sched_data); | 
|  | 2532 | rcu_init_one(&rcu_bh_state, &rcu_bh_data); | 
|  | 2533 | __rcu_init_preempt(); | 
|  | 2534 | open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); | 
|  | 2535 |  | 
|  | 2536 | /* | 
|  | 2537 | * We don't need protection against CPU-hotplug here because | 
|  | 2538 | * this is called early in boot, before either interrupts | 
|  | 2539 | * or the scheduler are operational. | 
|  | 2540 | */ | 
|  | 2541 | cpu_notifier(rcu_cpu_notify, 0); | 
|  | 2542 | for_each_online_cpu(cpu) | 
|  | 2543 | rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); | 
|  | 2544 | check_cpu_stall_init(); | 
|  | 2545 | } | 
|  | 2546 |  | 
|  | 2547 | #include "rcutree_plugin.h" |