| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Generic hugetlb support. | 
 | 3 |  * (C) William Irwin, April 2004 | 
 | 4 |  */ | 
 | 5 | #include <linux/list.h> | 
 | 6 | #include <linux/init.h> | 
 | 7 | #include <linux/module.h> | 
 | 8 | #include <linux/mm.h> | 
 | 9 | #include <linux/seq_file.h> | 
 | 10 | #include <linux/sysctl.h> | 
 | 11 | #include <linux/highmem.h> | 
 | 12 | #include <linux/mmu_notifier.h> | 
 | 13 | #include <linux/nodemask.h> | 
 | 14 | #include <linux/pagemap.h> | 
 | 15 | #include <linux/mempolicy.h> | 
 | 16 | #include <linux/cpuset.h> | 
 | 17 | #include <linux/mutex.h> | 
 | 18 | #include <linux/bootmem.h> | 
 | 19 | #include <linux/sysfs.h> | 
 | 20 | #include <linux/slab.h> | 
 | 21 | #include <linux/rmap.h> | 
 | 22 | #include <linux/swap.h> | 
 | 23 | #include <linux/swapops.h> | 
 | 24 |  | 
 | 25 | #include <asm/page.h> | 
 | 26 | #include <asm/pgtable.h> | 
 | 27 | #include <linux/io.h> | 
 | 28 |  | 
 | 29 | #include <linux/hugetlb.h> | 
 | 30 | #include <linux/node.h> | 
 | 31 | #include "internal.h" | 
 | 32 |  | 
 | 33 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | 
 | 34 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; | 
 | 35 | unsigned long hugepages_treat_as_movable; | 
 | 36 |  | 
 | 37 | static int max_hstate; | 
 | 38 | unsigned int default_hstate_idx; | 
 | 39 | struct hstate hstates[HUGE_MAX_HSTATE]; | 
 | 40 |  | 
 | 41 | __initdata LIST_HEAD(huge_boot_pages); | 
 | 42 |  | 
 | 43 | /* for command line parsing */ | 
 | 44 | static struct hstate * __initdata parsed_hstate; | 
 | 45 | static unsigned long __initdata default_hstate_max_huge_pages; | 
 | 46 | static unsigned long __initdata default_hstate_size; | 
 | 47 |  | 
 | 48 | #define for_each_hstate(h) \ | 
 | 49 | 	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | 
 | 50 |  | 
 | 51 | /* | 
 | 52 |  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | 
 | 53 |  */ | 
 | 54 | static DEFINE_SPINLOCK(hugetlb_lock); | 
 | 55 |  | 
 | 56 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) | 
 | 57 | { | 
 | 58 | 	bool free = (spool->count == 0) && (spool->used_hpages == 0); | 
 | 59 |  | 
 | 60 | 	spin_unlock(&spool->lock); | 
 | 61 |  | 
 | 62 | 	/* If no pages are used, and no other handles to the subpool | 
 | 63 | 	 * remain, free the subpool the subpool remain */ | 
 | 64 | 	if (free) | 
 | 65 | 		kfree(spool); | 
 | 66 | } | 
 | 67 |  | 
 | 68 | struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) | 
 | 69 | { | 
 | 70 | 	struct hugepage_subpool *spool; | 
 | 71 |  | 
 | 72 | 	spool = kmalloc(sizeof(*spool), GFP_KERNEL); | 
 | 73 | 	if (!spool) | 
 | 74 | 		return NULL; | 
 | 75 |  | 
 | 76 | 	spin_lock_init(&spool->lock); | 
 | 77 | 	spool->count = 1; | 
 | 78 | 	spool->max_hpages = nr_blocks; | 
 | 79 | 	spool->used_hpages = 0; | 
 | 80 |  | 
 | 81 | 	return spool; | 
 | 82 | } | 
 | 83 |  | 
 | 84 | void hugepage_put_subpool(struct hugepage_subpool *spool) | 
 | 85 | { | 
 | 86 | 	spin_lock(&spool->lock); | 
 | 87 | 	BUG_ON(!spool->count); | 
 | 88 | 	spool->count--; | 
 | 89 | 	unlock_or_release_subpool(spool); | 
 | 90 | } | 
 | 91 |  | 
 | 92 | static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, | 
 | 93 | 				      long delta) | 
 | 94 | { | 
 | 95 | 	int ret = 0; | 
 | 96 |  | 
 | 97 | 	if (!spool) | 
 | 98 | 		return 0; | 
 | 99 |  | 
 | 100 | 	spin_lock(&spool->lock); | 
 | 101 | 	if ((spool->used_hpages + delta) <= spool->max_hpages) { | 
 | 102 | 		spool->used_hpages += delta; | 
 | 103 | 	} else { | 
 | 104 | 		ret = -ENOMEM; | 
 | 105 | 	} | 
 | 106 | 	spin_unlock(&spool->lock); | 
 | 107 |  | 
 | 108 | 	return ret; | 
 | 109 | } | 
 | 110 |  | 
 | 111 | static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, | 
 | 112 | 				       long delta) | 
 | 113 | { | 
 | 114 | 	if (!spool) | 
 | 115 | 		return; | 
 | 116 |  | 
 | 117 | 	spin_lock(&spool->lock); | 
 | 118 | 	spool->used_hpages -= delta; | 
 | 119 | 	/* If hugetlbfs_put_super couldn't free spool due to | 
 | 120 | 	* an outstanding quota reference, free it now. */ | 
 | 121 | 	unlock_or_release_subpool(spool); | 
 | 122 | } | 
 | 123 |  | 
 | 124 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | 
 | 125 | { | 
 | 126 | 	return HUGETLBFS_SB(inode->i_sb)->spool; | 
 | 127 | } | 
 | 128 |  | 
 | 129 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | 
 | 130 | { | 
 | 131 | 	return subpool_inode(vma->vm_file->f_dentry->d_inode); | 
 | 132 | } | 
 | 133 |  | 
 | 134 | /* | 
 | 135 |  * Region tracking -- allows tracking of reservations and instantiated pages | 
 | 136 |  *                    across the pages in a mapping. | 
 | 137 |  * | 
 | 138 |  * The region data structures are protected by a combination of the mmap_sem | 
 | 139 |  * and the hugetlb_instantion_mutex.  To access or modify a region the caller | 
 | 140 |  * must either hold the mmap_sem for write, or the mmap_sem for read and | 
 | 141 |  * the hugetlb_instantiation mutex: | 
 | 142 |  * | 
 | 143 |  *	down_write(&mm->mmap_sem); | 
 | 144 |  * or | 
 | 145 |  *	down_read(&mm->mmap_sem); | 
 | 146 |  *	mutex_lock(&hugetlb_instantiation_mutex); | 
 | 147 |  */ | 
 | 148 | struct file_region { | 
 | 149 | 	struct list_head link; | 
 | 150 | 	long from; | 
 | 151 | 	long to; | 
 | 152 | }; | 
 | 153 |  | 
 | 154 | static long region_add(struct list_head *head, long f, long t) | 
 | 155 | { | 
 | 156 | 	struct file_region *rg, *nrg, *trg; | 
 | 157 |  | 
 | 158 | 	/* Locate the region we are either in or before. */ | 
 | 159 | 	list_for_each_entry(rg, head, link) | 
 | 160 | 		if (f <= rg->to) | 
 | 161 | 			break; | 
 | 162 |  | 
 | 163 | 	/* Round our left edge to the current segment if it encloses us. */ | 
 | 164 | 	if (f > rg->from) | 
 | 165 | 		f = rg->from; | 
 | 166 |  | 
 | 167 | 	/* Check for and consume any regions we now overlap with. */ | 
 | 168 | 	nrg = rg; | 
 | 169 | 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
 | 170 | 		if (&rg->link == head) | 
 | 171 | 			break; | 
 | 172 | 		if (rg->from > t) | 
 | 173 | 			break; | 
 | 174 |  | 
 | 175 | 		/* If this area reaches higher then extend our area to | 
 | 176 | 		 * include it completely.  If this is not the first area | 
 | 177 | 		 * which we intend to reuse, free it. */ | 
 | 178 | 		if (rg->to > t) | 
 | 179 | 			t = rg->to; | 
 | 180 | 		if (rg != nrg) { | 
 | 181 | 			list_del(&rg->link); | 
 | 182 | 			kfree(rg); | 
 | 183 | 		} | 
 | 184 | 	} | 
 | 185 | 	nrg->from = f; | 
 | 186 | 	nrg->to = t; | 
 | 187 | 	return 0; | 
 | 188 | } | 
 | 189 |  | 
 | 190 | static long region_chg(struct list_head *head, long f, long t) | 
 | 191 | { | 
 | 192 | 	struct file_region *rg, *nrg; | 
 | 193 | 	long chg = 0; | 
 | 194 |  | 
 | 195 | 	/* Locate the region we are before or in. */ | 
 | 196 | 	list_for_each_entry(rg, head, link) | 
 | 197 | 		if (f <= rg->to) | 
 | 198 | 			break; | 
 | 199 |  | 
 | 200 | 	/* If we are below the current region then a new region is required. | 
 | 201 | 	 * Subtle, allocate a new region at the position but make it zero | 
 | 202 | 	 * size such that we can guarantee to record the reservation. */ | 
 | 203 | 	if (&rg->link == head || t < rg->from) { | 
 | 204 | 		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | 
 | 205 | 		if (!nrg) | 
 | 206 | 			return -ENOMEM; | 
 | 207 | 		nrg->from = f; | 
 | 208 | 		nrg->to   = f; | 
 | 209 | 		INIT_LIST_HEAD(&nrg->link); | 
 | 210 | 		list_add(&nrg->link, rg->link.prev); | 
 | 211 |  | 
 | 212 | 		return t - f; | 
 | 213 | 	} | 
 | 214 |  | 
 | 215 | 	/* Round our left edge to the current segment if it encloses us. */ | 
 | 216 | 	if (f > rg->from) | 
 | 217 | 		f = rg->from; | 
 | 218 | 	chg = t - f; | 
 | 219 |  | 
 | 220 | 	/* Check for and consume any regions we now overlap with. */ | 
 | 221 | 	list_for_each_entry(rg, rg->link.prev, link) { | 
 | 222 | 		if (&rg->link == head) | 
 | 223 | 			break; | 
 | 224 | 		if (rg->from > t) | 
 | 225 | 			return chg; | 
 | 226 |  | 
 | 227 | 		/* We overlap with this area, if it extends further than | 
 | 228 | 		 * us then we must extend ourselves.  Account for its | 
 | 229 | 		 * existing reservation. */ | 
 | 230 | 		if (rg->to > t) { | 
 | 231 | 			chg += rg->to - t; | 
 | 232 | 			t = rg->to; | 
 | 233 | 		} | 
 | 234 | 		chg -= rg->to - rg->from; | 
 | 235 | 	} | 
 | 236 | 	return chg; | 
 | 237 | } | 
 | 238 |  | 
 | 239 | static long region_truncate(struct list_head *head, long end) | 
 | 240 | { | 
 | 241 | 	struct file_region *rg, *trg; | 
 | 242 | 	long chg = 0; | 
 | 243 |  | 
 | 244 | 	/* Locate the region we are either in or before. */ | 
 | 245 | 	list_for_each_entry(rg, head, link) | 
 | 246 | 		if (end <= rg->to) | 
 | 247 | 			break; | 
 | 248 | 	if (&rg->link == head) | 
 | 249 | 		return 0; | 
 | 250 |  | 
 | 251 | 	/* If we are in the middle of a region then adjust it. */ | 
 | 252 | 	if (end > rg->from) { | 
 | 253 | 		chg = rg->to - end; | 
 | 254 | 		rg->to = end; | 
 | 255 | 		rg = list_entry(rg->link.next, typeof(*rg), link); | 
 | 256 | 	} | 
 | 257 |  | 
 | 258 | 	/* Drop any remaining regions. */ | 
 | 259 | 	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | 
 | 260 | 		if (&rg->link == head) | 
 | 261 | 			break; | 
 | 262 | 		chg += rg->to - rg->from; | 
 | 263 | 		list_del(&rg->link); | 
 | 264 | 		kfree(rg); | 
 | 265 | 	} | 
 | 266 | 	return chg; | 
 | 267 | } | 
 | 268 |  | 
 | 269 | static long region_count(struct list_head *head, long f, long t) | 
 | 270 | { | 
 | 271 | 	struct file_region *rg; | 
 | 272 | 	long chg = 0; | 
 | 273 |  | 
 | 274 | 	/* Locate each segment we overlap with, and count that overlap. */ | 
 | 275 | 	list_for_each_entry(rg, head, link) { | 
 | 276 | 		int seg_from; | 
 | 277 | 		int seg_to; | 
 | 278 |  | 
 | 279 | 		if (rg->to <= f) | 
 | 280 | 			continue; | 
 | 281 | 		if (rg->from >= t) | 
 | 282 | 			break; | 
 | 283 |  | 
 | 284 | 		seg_from = max(rg->from, f); | 
 | 285 | 		seg_to = min(rg->to, t); | 
 | 286 |  | 
 | 287 | 		chg += seg_to - seg_from; | 
 | 288 | 	} | 
 | 289 |  | 
 | 290 | 	return chg; | 
 | 291 | } | 
 | 292 |  | 
 | 293 | /* | 
 | 294 |  * Convert the address within this vma to the page offset within | 
 | 295 |  * the mapping, in pagecache page units; huge pages here. | 
 | 296 |  */ | 
 | 297 | static pgoff_t vma_hugecache_offset(struct hstate *h, | 
 | 298 | 			struct vm_area_struct *vma, unsigned long address) | 
 | 299 | { | 
 | 300 | 	return ((address - vma->vm_start) >> huge_page_shift(h)) + | 
 | 301 | 			(vma->vm_pgoff >> huge_page_order(h)); | 
 | 302 | } | 
 | 303 |  | 
 | 304 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | 
 | 305 | 				     unsigned long address) | 
 | 306 | { | 
 | 307 | 	return vma_hugecache_offset(hstate_vma(vma), vma, address); | 
 | 308 | } | 
 | 309 |  | 
 | 310 | /* | 
 | 311 |  * Return the size of the pages allocated when backing a VMA. In the majority | 
 | 312 |  * cases this will be same size as used by the page table entries. | 
 | 313 |  */ | 
 | 314 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | 
 | 315 | { | 
 | 316 | 	struct hstate *hstate; | 
 | 317 |  | 
 | 318 | 	if (!is_vm_hugetlb_page(vma)) | 
 | 319 | 		return PAGE_SIZE; | 
 | 320 |  | 
 | 321 | 	hstate = hstate_vma(vma); | 
 | 322 |  | 
 | 323 | 	return 1UL << (hstate->order + PAGE_SHIFT); | 
 | 324 | } | 
 | 325 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); | 
 | 326 |  | 
 | 327 | /* | 
 | 328 |  * Return the page size being used by the MMU to back a VMA. In the majority | 
 | 329 |  * of cases, the page size used by the kernel matches the MMU size. On | 
 | 330 |  * architectures where it differs, an architecture-specific version of this | 
 | 331 |  * function is required. | 
 | 332 |  */ | 
 | 333 | #ifndef vma_mmu_pagesize | 
 | 334 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
 | 335 | { | 
 | 336 | 	return vma_kernel_pagesize(vma); | 
 | 337 | } | 
 | 338 | #endif | 
 | 339 |  | 
 | 340 | /* | 
 | 341 |  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom | 
 | 342 |  * bits of the reservation map pointer, which are always clear due to | 
 | 343 |  * alignment. | 
 | 344 |  */ | 
 | 345 | #define HPAGE_RESV_OWNER    (1UL << 0) | 
 | 346 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | 
 | 347 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) | 
 | 348 |  | 
 | 349 | /* | 
 | 350 |  * These helpers are used to track how many pages are reserved for | 
 | 351 |  * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | 
 | 352 |  * is guaranteed to have their future faults succeed. | 
 | 353 |  * | 
 | 354 |  * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | 
 | 355 |  * the reserve counters are updated with the hugetlb_lock held. It is safe | 
 | 356 |  * to reset the VMA at fork() time as it is not in use yet and there is no | 
 | 357 |  * chance of the global counters getting corrupted as a result of the values. | 
 | 358 |  * | 
 | 359 |  * The private mapping reservation is represented in a subtly different | 
 | 360 |  * manner to a shared mapping.  A shared mapping has a region map associated | 
 | 361 |  * with the underlying file, this region map represents the backing file | 
 | 362 |  * pages which have ever had a reservation assigned which this persists even | 
 | 363 |  * after the page is instantiated.  A private mapping has a region map | 
 | 364 |  * associated with the original mmap which is attached to all VMAs which | 
 | 365 |  * reference it, this region map represents those offsets which have consumed | 
 | 366 |  * reservation ie. where pages have been instantiated. | 
 | 367 |  */ | 
 | 368 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) | 
 | 369 | { | 
 | 370 | 	return (unsigned long)vma->vm_private_data; | 
 | 371 | } | 
 | 372 |  | 
 | 373 | static void set_vma_private_data(struct vm_area_struct *vma, | 
 | 374 | 							unsigned long value) | 
 | 375 | { | 
 | 376 | 	vma->vm_private_data = (void *)value; | 
 | 377 | } | 
 | 378 |  | 
 | 379 | struct resv_map { | 
 | 380 | 	struct kref refs; | 
 | 381 | 	struct list_head regions; | 
 | 382 | }; | 
 | 383 |  | 
 | 384 | static struct resv_map *resv_map_alloc(void) | 
 | 385 | { | 
 | 386 | 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | 
 | 387 | 	if (!resv_map) | 
 | 388 | 		return NULL; | 
 | 389 |  | 
 | 390 | 	kref_init(&resv_map->refs); | 
 | 391 | 	INIT_LIST_HEAD(&resv_map->regions); | 
 | 392 |  | 
 | 393 | 	return resv_map; | 
 | 394 | } | 
 | 395 |  | 
 | 396 | static void resv_map_release(struct kref *ref) | 
 | 397 | { | 
 | 398 | 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | 
 | 399 |  | 
 | 400 | 	/* Clear out any active regions before we release the map. */ | 
 | 401 | 	region_truncate(&resv_map->regions, 0); | 
 | 402 | 	kfree(resv_map); | 
 | 403 | } | 
 | 404 |  | 
 | 405 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | 
 | 406 | { | 
 | 407 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 408 | 	if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 409 | 		return (struct resv_map *)(get_vma_private_data(vma) & | 
 | 410 | 							~HPAGE_RESV_MASK); | 
 | 411 | 	return NULL; | 
 | 412 | } | 
 | 413 |  | 
 | 414 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) | 
 | 415 | { | 
 | 416 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 417 | 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); | 
 | 418 |  | 
 | 419 | 	set_vma_private_data(vma, (get_vma_private_data(vma) & | 
 | 420 | 				HPAGE_RESV_MASK) | (unsigned long)map); | 
 | 421 | } | 
 | 422 |  | 
 | 423 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | 
 | 424 | { | 
 | 425 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 426 | 	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); | 
 | 427 |  | 
 | 428 | 	set_vma_private_data(vma, get_vma_private_data(vma) | flags); | 
 | 429 | } | 
 | 430 |  | 
 | 431 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | 
 | 432 | { | 
 | 433 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 434 |  | 
 | 435 | 	return (get_vma_private_data(vma) & flag) != 0; | 
 | 436 | } | 
 | 437 |  | 
 | 438 | /* Decrement the reserved pages in the hugepage pool by one */ | 
 | 439 | static void decrement_hugepage_resv_vma(struct hstate *h, | 
 | 440 | 			struct vm_area_struct *vma) | 
 | 441 | { | 
 | 442 | 	if (vma->vm_flags & VM_NORESERVE) | 
 | 443 | 		return; | 
 | 444 |  | 
 | 445 | 	if (vma->vm_flags & VM_MAYSHARE) { | 
 | 446 | 		/* Shared mappings always use reserves */ | 
 | 447 | 		h->resv_huge_pages--; | 
 | 448 | 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 449 | 		/* | 
 | 450 | 		 * Only the process that called mmap() has reserves for | 
 | 451 | 		 * private mappings. | 
 | 452 | 		 */ | 
 | 453 | 		h->resv_huge_pages--; | 
 | 454 | 	} | 
 | 455 | } | 
 | 456 |  | 
 | 457 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ | 
 | 458 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) | 
 | 459 | { | 
 | 460 | 	VM_BUG_ON(!is_vm_hugetlb_page(vma)); | 
 | 461 | 	if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 462 | 		vma->vm_private_data = (void *)0; | 
 | 463 | } | 
 | 464 |  | 
 | 465 | /* Returns true if the VMA has associated reserve pages */ | 
 | 466 | static int vma_has_reserves(struct vm_area_struct *vma) | 
 | 467 | { | 
 | 468 | 	if (vma->vm_flags & VM_MAYSHARE) | 
 | 469 | 		return 1; | 
 | 470 | 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | 
 | 471 | 		return 1; | 
 | 472 | 	return 0; | 
 | 473 | } | 
 | 474 |  | 
 | 475 | static void copy_gigantic_page(struct page *dst, struct page *src) | 
 | 476 | { | 
 | 477 | 	int i; | 
 | 478 | 	struct hstate *h = page_hstate(src); | 
 | 479 | 	struct page *dst_base = dst; | 
 | 480 | 	struct page *src_base = src; | 
 | 481 |  | 
 | 482 | 	for (i = 0; i < pages_per_huge_page(h); ) { | 
 | 483 | 		cond_resched(); | 
 | 484 | 		copy_highpage(dst, src); | 
 | 485 |  | 
 | 486 | 		i++; | 
 | 487 | 		dst = mem_map_next(dst, dst_base, i); | 
 | 488 | 		src = mem_map_next(src, src_base, i); | 
 | 489 | 	} | 
 | 490 | } | 
 | 491 |  | 
 | 492 | void copy_huge_page(struct page *dst, struct page *src) | 
 | 493 | { | 
 | 494 | 	int i; | 
 | 495 | 	struct hstate *h = page_hstate(src); | 
 | 496 |  | 
 | 497 | 	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | 
 | 498 | 		copy_gigantic_page(dst, src); | 
 | 499 | 		return; | 
 | 500 | 	} | 
 | 501 |  | 
 | 502 | 	might_sleep(); | 
 | 503 | 	for (i = 0; i < pages_per_huge_page(h); i++) { | 
 | 504 | 		cond_resched(); | 
 | 505 | 		copy_highpage(dst + i, src + i); | 
 | 506 | 	} | 
 | 507 | } | 
 | 508 |  | 
 | 509 | static void enqueue_huge_page(struct hstate *h, struct page *page) | 
 | 510 | { | 
 | 511 | 	int nid = page_to_nid(page); | 
 | 512 | 	list_add(&page->lru, &h->hugepage_freelists[nid]); | 
 | 513 | 	h->free_huge_pages++; | 
 | 514 | 	h->free_huge_pages_node[nid]++; | 
 | 515 | } | 
 | 516 |  | 
 | 517 | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) | 
 | 518 | { | 
 | 519 | 	struct page *page; | 
 | 520 |  | 
 | 521 | 	if (list_empty(&h->hugepage_freelists[nid])) | 
 | 522 | 		return NULL; | 
 | 523 | 	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); | 
 | 524 | 	list_del(&page->lru); | 
 | 525 | 	set_page_refcounted(page); | 
 | 526 | 	h->free_huge_pages--; | 
 | 527 | 	h->free_huge_pages_node[nid]--; | 
 | 528 | 	return page; | 
 | 529 | } | 
 | 530 |  | 
 | 531 | static struct page *dequeue_huge_page_vma(struct hstate *h, | 
 | 532 | 				struct vm_area_struct *vma, | 
 | 533 | 				unsigned long address, int avoid_reserve) | 
 | 534 | { | 
 | 535 | 	struct page *page = NULL; | 
 | 536 | 	struct mempolicy *mpol; | 
 | 537 | 	nodemask_t *nodemask; | 
 | 538 | 	struct zonelist *zonelist; | 
 | 539 | 	struct zone *zone; | 
 | 540 | 	struct zoneref *z; | 
 | 541 | 	unsigned int cpuset_mems_cookie; | 
 | 542 |  | 
 | 543 | retry_cpuset: | 
 | 544 | 	cpuset_mems_cookie = get_mems_allowed(); | 
 | 545 | 	zonelist = huge_zonelist(vma, address, | 
 | 546 | 					htlb_alloc_mask, &mpol, &nodemask); | 
 | 547 | 	/* | 
 | 548 | 	 * A child process with MAP_PRIVATE mappings created by their parent | 
 | 549 | 	 * have no page reserves. This check ensures that reservations are | 
 | 550 | 	 * not "stolen". The child may still get SIGKILLed | 
 | 551 | 	 */ | 
 | 552 | 	if (!vma_has_reserves(vma) && | 
 | 553 | 			h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 554 | 		goto err; | 
 | 555 |  | 
 | 556 | 	/* If reserves cannot be used, ensure enough pages are in the pool */ | 
 | 557 | 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) | 
 | 558 | 		goto err; | 
 | 559 |  | 
 | 560 | 	for_each_zone_zonelist_nodemask(zone, z, zonelist, | 
 | 561 | 						MAX_NR_ZONES - 1, nodemask) { | 
 | 562 | 		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { | 
 | 563 | 			page = dequeue_huge_page_node(h, zone_to_nid(zone)); | 
 | 564 | 			if (page) { | 
 | 565 | 				if (!avoid_reserve) | 
 | 566 | 					decrement_hugepage_resv_vma(h, vma); | 
 | 567 | 				break; | 
 | 568 | 			} | 
 | 569 | 		} | 
 | 570 | 	} | 
 | 571 |  | 
 | 572 | 	mpol_cond_put(mpol); | 
 | 573 | 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) | 
 | 574 | 		goto retry_cpuset; | 
 | 575 | 	return page; | 
 | 576 |  | 
 | 577 | err: | 
 | 578 | 	mpol_cond_put(mpol); | 
 | 579 | 	return NULL; | 
 | 580 | } | 
 | 581 |  | 
 | 582 | static void update_and_free_page(struct hstate *h, struct page *page) | 
 | 583 | { | 
 | 584 | 	int i; | 
 | 585 |  | 
 | 586 | 	VM_BUG_ON(h->order >= MAX_ORDER); | 
 | 587 |  | 
 | 588 | 	h->nr_huge_pages--; | 
 | 589 | 	h->nr_huge_pages_node[page_to_nid(page)]--; | 
 | 590 | 	for (i = 0; i < pages_per_huge_page(h); i++) { | 
 | 591 | 		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | | 
 | 592 | 				1 << PG_referenced | 1 << PG_dirty | | 
 | 593 | 				1 << PG_active | 1 << PG_reserved | | 
 | 594 | 				1 << PG_private | 1 << PG_writeback); | 
 | 595 | 	} | 
 | 596 | 	set_compound_page_dtor(page, NULL); | 
 | 597 | 	set_page_refcounted(page); | 
 | 598 | 	arch_release_hugepage(page); | 
 | 599 | 	__free_pages(page, huge_page_order(h)); | 
 | 600 | } | 
 | 601 |  | 
 | 602 | struct hstate *size_to_hstate(unsigned long size) | 
 | 603 | { | 
 | 604 | 	struct hstate *h; | 
 | 605 |  | 
 | 606 | 	for_each_hstate(h) { | 
 | 607 | 		if (huge_page_size(h) == size) | 
 | 608 | 			return h; | 
 | 609 | 	} | 
 | 610 | 	return NULL; | 
 | 611 | } | 
 | 612 |  | 
 | 613 | static void free_huge_page(struct page *page) | 
 | 614 | { | 
 | 615 | 	/* | 
 | 616 | 	 * Can't pass hstate in here because it is called from the | 
 | 617 | 	 * compound page destructor. | 
 | 618 | 	 */ | 
 | 619 | 	struct hstate *h = page_hstate(page); | 
 | 620 | 	int nid = page_to_nid(page); | 
 | 621 | 	struct hugepage_subpool *spool = | 
 | 622 | 		(struct hugepage_subpool *)page_private(page); | 
 | 623 |  | 
 | 624 | 	set_page_private(page, 0); | 
 | 625 | 	page->mapping = NULL; | 
 | 626 | 	BUG_ON(page_count(page)); | 
 | 627 | 	BUG_ON(page_mapcount(page)); | 
 | 628 | 	INIT_LIST_HEAD(&page->lru); | 
 | 629 |  | 
 | 630 | 	spin_lock(&hugetlb_lock); | 
 | 631 | 	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { | 
 | 632 | 		update_and_free_page(h, page); | 
 | 633 | 		h->surplus_huge_pages--; | 
 | 634 | 		h->surplus_huge_pages_node[nid]--; | 
 | 635 | 	} else { | 
 | 636 | 		enqueue_huge_page(h, page); | 
 | 637 | 	} | 
 | 638 | 	spin_unlock(&hugetlb_lock); | 
 | 639 | 	hugepage_subpool_put_pages(spool, 1); | 
 | 640 | } | 
 | 641 |  | 
 | 642 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) | 
 | 643 | { | 
 | 644 | 	set_compound_page_dtor(page, free_huge_page); | 
 | 645 | 	spin_lock(&hugetlb_lock); | 
 | 646 | 	h->nr_huge_pages++; | 
 | 647 | 	h->nr_huge_pages_node[nid]++; | 
 | 648 | 	spin_unlock(&hugetlb_lock); | 
 | 649 | 	put_page(page); /* free it into the hugepage allocator */ | 
 | 650 | } | 
 | 651 |  | 
 | 652 | static void prep_compound_gigantic_page(struct page *page, unsigned long order) | 
 | 653 | { | 
 | 654 | 	int i; | 
 | 655 | 	int nr_pages = 1 << order; | 
 | 656 | 	struct page *p = page + 1; | 
 | 657 |  | 
 | 658 | 	/* we rely on prep_new_huge_page to set the destructor */ | 
 | 659 | 	set_compound_order(page, order); | 
 | 660 | 	__SetPageHead(page); | 
 | 661 | 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | 
 | 662 | 		__SetPageTail(p); | 
 | 663 | 		set_page_count(p, 0); | 
 | 664 | 		p->first_page = page; | 
 | 665 | 	} | 
 | 666 | } | 
 | 667 |  | 
 | 668 | int PageHuge(struct page *page) | 
 | 669 | { | 
 | 670 | 	compound_page_dtor *dtor; | 
 | 671 |  | 
 | 672 | 	if (!PageCompound(page)) | 
 | 673 | 		return 0; | 
 | 674 |  | 
 | 675 | 	page = compound_head(page); | 
 | 676 | 	dtor = get_compound_page_dtor(page); | 
 | 677 |  | 
 | 678 | 	return dtor == free_huge_page; | 
 | 679 | } | 
 | 680 | EXPORT_SYMBOL_GPL(PageHuge); | 
 | 681 |  | 
 | 682 | /* | 
 | 683 |  * PageHeadHuge() only returns true for hugetlbfs head page, but not for | 
 | 684 |  * normal or transparent huge pages. | 
 | 685 |  */ | 
 | 686 | int PageHeadHuge(struct page *page_head) | 
 | 687 | { | 
 | 688 | 	compound_page_dtor *dtor; | 
 | 689 |  | 
 | 690 | 	if (!PageHead(page_head)) | 
 | 691 | 		return 0; | 
 | 692 |  | 
 | 693 | 	dtor = get_compound_page_dtor(page_head); | 
 | 694 |  | 
 | 695 | 	return dtor == free_huge_page; | 
 | 696 | } | 
 | 697 | EXPORT_SYMBOL_GPL(PageHeadHuge); | 
 | 698 |  | 
 | 699 | pgoff_t __basepage_index(struct page *page) | 
 | 700 | { | 
 | 701 | 	struct page *page_head = compound_head(page); | 
 | 702 | 	pgoff_t index = page_index(page_head); | 
 | 703 | 	unsigned long compound_idx; | 
 | 704 |  | 
 | 705 | 	if (!PageHuge(page_head)) | 
 | 706 | 		return page_index(page); | 
 | 707 |  | 
 | 708 | 	if (compound_order(page_head) >= MAX_ORDER) | 
 | 709 | 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | 
 | 710 | 	else | 
 | 711 | 		compound_idx = page - page_head; | 
 | 712 |  | 
 | 713 | 	return (index << compound_order(page_head)) + compound_idx; | 
 | 714 | } | 
 | 715 |  | 
 | 716 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | 
 | 717 | { | 
 | 718 | 	struct page *page; | 
 | 719 |  | 
 | 720 | 	if (h->order >= MAX_ORDER) | 
 | 721 | 		return NULL; | 
 | 722 |  | 
 | 723 | 	page = alloc_pages_exact_node(nid, | 
 | 724 | 		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 
 | 725 | 						__GFP_REPEAT|__GFP_NOWARN, | 
 | 726 | 		huge_page_order(h)); | 
 | 727 | 	if (page) { | 
 | 728 | 		if (arch_prepare_hugepage(page)) { | 
 | 729 | 			__free_pages(page, huge_page_order(h)); | 
 | 730 | 			return NULL; | 
 | 731 | 		} | 
 | 732 | 		prep_new_huge_page(h, page, nid); | 
 | 733 | 	} | 
 | 734 |  | 
 | 735 | 	return page; | 
 | 736 | } | 
 | 737 |  | 
 | 738 | /* | 
 | 739 |  * common helper functions for hstate_next_node_to_{alloc|free}. | 
 | 740 |  * We may have allocated or freed a huge page based on a different | 
 | 741 |  * nodes_allowed previously, so h->next_node_to_{alloc|free} might | 
 | 742 |  * be outside of *nodes_allowed.  Ensure that we use an allowed | 
 | 743 |  * node for alloc or free. | 
 | 744 |  */ | 
 | 745 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) | 
 | 746 | { | 
 | 747 | 	nid = next_node(nid, *nodes_allowed); | 
 | 748 | 	if (nid == MAX_NUMNODES) | 
 | 749 | 		nid = first_node(*nodes_allowed); | 
 | 750 | 	VM_BUG_ON(nid >= MAX_NUMNODES); | 
 | 751 |  | 
 | 752 | 	return nid; | 
 | 753 | } | 
 | 754 |  | 
 | 755 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) | 
 | 756 | { | 
 | 757 | 	if (!node_isset(nid, *nodes_allowed)) | 
 | 758 | 		nid = next_node_allowed(nid, nodes_allowed); | 
 | 759 | 	return nid; | 
 | 760 | } | 
 | 761 |  | 
 | 762 | /* | 
 | 763 |  * returns the previously saved node ["this node"] from which to | 
 | 764 |  * allocate a persistent huge page for the pool and advance the | 
 | 765 |  * next node from which to allocate, handling wrap at end of node | 
 | 766 |  * mask. | 
 | 767 |  */ | 
 | 768 | static int hstate_next_node_to_alloc(struct hstate *h, | 
 | 769 | 					nodemask_t *nodes_allowed) | 
 | 770 | { | 
 | 771 | 	int nid; | 
 | 772 |  | 
 | 773 | 	VM_BUG_ON(!nodes_allowed); | 
 | 774 |  | 
 | 775 | 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | 
 | 776 | 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | 
 | 777 |  | 
 | 778 | 	return nid; | 
 | 779 | } | 
 | 780 |  | 
 | 781 | static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) | 
 | 782 | { | 
 | 783 | 	struct page *page; | 
 | 784 | 	int start_nid; | 
 | 785 | 	int next_nid; | 
 | 786 | 	int ret = 0; | 
 | 787 |  | 
 | 788 | 	start_nid = hstate_next_node_to_alloc(h, nodes_allowed); | 
 | 789 | 	next_nid = start_nid; | 
 | 790 |  | 
 | 791 | 	do { | 
 | 792 | 		page = alloc_fresh_huge_page_node(h, next_nid); | 
 | 793 | 		if (page) { | 
 | 794 | 			ret = 1; | 
 | 795 | 			break; | 
 | 796 | 		} | 
 | 797 | 		next_nid = hstate_next_node_to_alloc(h, nodes_allowed); | 
 | 798 | 	} while (next_nid != start_nid); | 
 | 799 |  | 
 | 800 | 	if (ret) | 
 | 801 | 		count_vm_event(HTLB_BUDDY_PGALLOC); | 
 | 802 | 	else | 
 | 803 | 		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
 | 804 |  | 
 | 805 | 	return ret; | 
 | 806 | } | 
 | 807 |  | 
 | 808 | /* | 
 | 809 |  * helper for free_pool_huge_page() - return the previously saved | 
 | 810 |  * node ["this node"] from which to free a huge page.  Advance the | 
 | 811 |  * next node id whether or not we find a free huge page to free so | 
 | 812 |  * that the next attempt to free addresses the next node. | 
 | 813 |  */ | 
 | 814 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) | 
 | 815 | { | 
 | 816 | 	int nid; | 
 | 817 |  | 
 | 818 | 	VM_BUG_ON(!nodes_allowed); | 
 | 819 |  | 
 | 820 | 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | 
 | 821 | 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | 
 | 822 |  | 
 | 823 | 	return nid; | 
 | 824 | } | 
 | 825 |  | 
 | 826 | /* | 
 | 827 |  * Free huge page from pool from next node to free. | 
 | 828 |  * Attempt to keep persistent huge pages more or less | 
 | 829 |  * balanced over allowed nodes. | 
 | 830 |  * Called with hugetlb_lock locked. | 
 | 831 |  */ | 
 | 832 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, | 
 | 833 | 							 bool acct_surplus) | 
 | 834 | { | 
 | 835 | 	int start_nid; | 
 | 836 | 	int next_nid; | 
 | 837 | 	int ret = 0; | 
 | 838 |  | 
 | 839 | 	start_nid = hstate_next_node_to_free(h, nodes_allowed); | 
 | 840 | 	next_nid = start_nid; | 
 | 841 |  | 
 | 842 | 	do { | 
 | 843 | 		/* | 
 | 844 | 		 * If we're returning unused surplus pages, only examine | 
 | 845 | 		 * nodes with surplus pages. | 
 | 846 | 		 */ | 
 | 847 | 		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && | 
 | 848 | 		    !list_empty(&h->hugepage_freelists[next_nid])) { | 
 | 849 | 			struct page *page = | 
 | 850 | 				list_entry(h->hugepage_freelists[next_nid].next, | 
 | 851 | 					  struct page, lru); | 
 | 852 | 			list_del(&page->lru); | 
 | 853 | 			h->free_huge_pages--; | 
 | 854 | 			h->free_huge_pages_node[next_nid]--; | 
 | 855 | 			if (acct_surplus) { | 
 | 856 | 				h->surplus_huge_pages--; | 
 | 857 | 				h->surplus_huge_pages_node[next_nid]--; | 
 | 858 | 			} | 
 | 859 | 			update_and_free_page(h, page); | 
 | 860 | 			ret = 1; | 
 | 861 | 			break; | 
 | 862 | 		} | 
 | 863 | 		next_nid = hstate_next_node_to_free(h, nodes_allowed); | 
 | 864 | 	} while (next_nid != start_nid); | 
 | 865 |  | 
 | 866 | 	return ret; | 
 | 867 | } | 
 | 868 |  | 
 | 869 | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) | 
 | 870 | { | 
 | 871 | 	struct page *page; | 
 | 872 | 	unsigned int r_nid; | 
 | 873 |  | 
 | 874 | 	if (h->order >= MAX_ORDER) | 
 | 875 | 		return NULL; | 
 | 876 |  | 
 | 877 | 	/* | 
 | 878 | 	 * Assume we will successfully allocate the surplus page to | 
 | 879 | 	 * prevent racing processes from causing the surplus to exceed | 
 | 880 | 	 * overcommit | 
 | 881 | 	 * | 
 | 882 | 	 * This however introduces a different race, where a process B | 
 | 883 | 	 * tries to grow the static hugepage pool while alloc_pages() is | 
 | 884 | 	 * called by process A. B will only examine the per-node | 
 | 885 | 	 * counters in determining if surplus huge pages can be | 
 | 886 | 	 * converted to normal huge pages in adjust_pool_surplus(). A | 
 | 887 | 	 * won't be able to increment the per-node counter, until the | 
 | 888 | 	 * lock is dropped by B, but B doesn't drop hugetlb_lock until | 
 | 889 | 	 * no more huge pages can be converted from surplus to normal | 
 | 890 | 	 * state (and doesn't try to convert again). Thus, we have a | 
 | 891 | 	 * case where a surplus huge page exists, the pool is grown, and | 
 | 892 | 	 * the surplus huge page still exists after, even though it | 
 | 893 | 	 * should just have been converted to a normal huge page. This | 
 | 894 | 	 * does not leak memory, though, as the hugepage will be freed | 
 | 895 | 	 * once it is out of use. It also does not allow the counters to | 
 | 896 | 	 * go out of whack in adjust_pool_surplus() as we don't modify | 
 | 897 | 	 * the node values until we've gotten the hugepage and only the | 
 | 898 | 	 * per-node value is checked there. | 
 | 899 | 	 */ | 
 | 900 | 	spin_lock(&hugetlb_lock); | 
 | 901 | 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { | 
 | 902 | 		spin_unlock(&hugetlb_lock); | 
 | 903 | 		return NULL; | 
 | 904 | 	} else { | 
 | 905 | 		h->nr_huge_pages++; | 
 | 906 | 		h->surplus_huge_pages++; | 
 | 907 | 	} | 
 | 908 | 	spin_unlock(&hugetlb_lock); | 
 | 909 |  | 
 | 910 | 	if (nid == NUMA_NO_NODE) | 
 | 911 | 		page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 
 | 912 | 				   __GFP_REPEAT|__GFP_NOWARN, | 
 | 913 | 				   huge_page_order(h)); | 
 | 914 | 	else | 
 | 915 | 		page = alloc_pages_exact_node(nid, | 
 | 916 | 			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | 
 | 917 | 			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); | 
 | 918 |  | 
 | 919 | 	if (page && arch_prepare_hugepage(page)) { | 
 | 920 | 		__free_pages(page, huge_page_order(h)); | 
 | 921 | 		page = NULL; | 
 | 922 | 	} | 
 | 923 |  | 
 | 924 | 	spin_lock(&hugetlb_lock); | 
 | 925 | 	if (page) { | 
 | 926 | 		r_nid = page_to_nid(page); | 
 | 927 | 		set_compound_page_dtor(page, free_huge_page); | 
 | 928 | 		/* | 
 | 929 | 		 * We incremented the global counters already | 
 | 930 | 		 */ | 
 | 931 | 		h->nr_huge_pages_node[r_nid]++; | 
 | 932 | 		h->surplus_huge_pages_node[r_nid]++; | 
 | 933 | 		__count_vm_event(HTLB_BUDDY_PGALLOC); | 
 | 934 | 	} else { | 
 | 935 | 		h->nr_huge_pages--; | 
 | 936 | 		h->surplus_huge_pages--; | 
 | 937 | 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | 
 | 938 | 	} | 
 | 939 | 	spin_unlock(&hugetlb_lock); | 
 | 940 |  | 
 | 941 | 	return page; | 
 | 942 | } | 
 | 943 |  | 
 | 944 | /* | 
 | 945 |  * This allocation function is useful in the context where vma is irrelevant. | 
 | 946 |  * E.g. soft-offlining uses this function because it only cares physical | 
 | 947 |  * address of error page. | 
 | 948 |  */ | 
 | 949 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | 
 | 950 | { | 
 | 951 | 	struct page *page; | 
 | 952 |  | 
 | 953 | 	spin_lock(&hugetlb_lock); | 
 | 954 | 	page = dequeue_huge_page_node(h, nid); | 
 | 955 | 	spin_unlock(&hugetlb_lock); | 
 | 956 |  | 
 | 957 | 	if (!page) | 
 | 958 | 		page = alloc_buddy_huge_page(h, nid); | 
 | 959 |  | 
 | 960 | 	return page; | 
 | 961 | } | 
 | 962 |  | 
 | 963 | /* | 
 | 964 |  * Increase the hugetlb pool such that it can accommodate a reservation | 
 | 965 |  * of size 'delta'. | 
 | 966 |  */ | 
 | 967 | static int gather_surplus_pages(struct hstate *h, int delta) | 
 | 968 | { | 
 | 969 | 	struct list_head surplus_list; | 
 | 970 | 	struct page *page, *tmp; | 
 | 971 | 	int ret, i; | 
 | 972 | 	int needed, allocated; | 
 | 973 | 	bool alloc_ok = true; | 
 | 974 |  | 
 | 975 | 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages; | 
 | 976 | 	if (needed <= 0) { | 
 | 977 | 		h->resv_huge_pages += delta; | 
 | 978 | 		return 0; | 
 | 979 | 	} | 
 | 980 |  | 
 | 981 | 	allocated = 0; | 
 | 982 | 	INIT_LIST_HEAD(&surplus_list); | 
 | 983 |  | 
 | 984 | 	ret = -ENOMEM; | 
 | 985 | retry: | 
 | 986 | 	spin_unlock(&hugetlb_lock); | 
 | 987 | 	for (i = 0; i < needed; i++) { | 
 | 988 | 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE); | 
 | 989 | 		if (!page) { | 
 | 990 | 			alloc_ok = false; | 
 | 991 | 			break; | 
 | 992 | 		} | 
 | 993 | 		list_add(&page->lru, &surplus_list); | 
 | 994 | 	} | 
 | 995 | 	allocated += i; | 
 | 996 |  | 
 | 997 | 	/* | 
 | 998 | 	 * After retaking hugetlb_lock, we need to recalculate 'needed' | 
 | 999 | 	 * because either resv_huge_pages or free_huge_pages may have changed. | 
 | 1000 | 	 */ | 
 | 1001 | 	spin_lock(&hugetlb_lock); | 
 | 1002 | 	needed = (h->resv_huge_pages + delta) - | 
 | 1003 | 			(h->free_huge_pages + allocated); | 
 | 1004 | 	if (needed > 0) { | 
 | 1005 | 		if (alloc_ok) | 
 | 1006 | 			goto retry; | 
 | 1007 | 		/* | 
 | 1008 | 		 * We were not able to allocate enough pages to | 
 | 1009 | 		 * satisfy the entire reservation so we free what | 
 | 1010 | 		 * we've allocated so far. | 
 | 1011 | 		 */ | 
 | 1012 | 		goto free; | 
 | 1013 | 	} | 
 | 1014 | 	/* | 
 | 1015 | 	 * The surplus_list now contains _at_least_ the number of extra pages | 
 | 1016 | 	 * needed to accommodate the reservation.  Add the appropriate number | 
 | 1017 | 	 * of pages to the hugetlb pool and free the extras back to the buddy | 
 | 1018 | 	 * allocator.  Commit the entire reservation here to prevent another | 
 | 1019 | 	 * process from stealing the pages as they are added to the pool but | 
 | 1020 | 	 * before they are reserved. | 
 | 1021 | 	 */ | 
 | 1022 | 	needed += allocated; | 
 | 1023 | 	h->resv_huge_pages += delta; | 
 | 1024 | 	ret = 0; | 
 | 1025 |  | 
 | 1026 | 	/* Free the needed pages to the hugetlb pool */ | 
 | 1027 | 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
 | 1028 | 		if ((--needed) < 0) | 
 | 1029 | 			break; | 
 | 1030 | 		list_del(&page->lru); | 
 | 1031 | 		/* | 
 | 1032 | 		 * This page is now managed by the hugetlb allocator and has | 
 | 1033 | 		 * no users -- drop the buddy allocator's reference. | 
 | 1034 | 		 */ | 
 | 1035 | 		put_page_testzero(page); | 
 | 1036 | 		VM_BUG_ON(page_count(page)); | 
 | 1037 | 		enqueue_huge_page(h, page); | 
 | 1038 | 	} | 
 | 1039 | free: | 
 | 1040 | 	spin_unlock(&hugetlb_lock); | 
 | 1041 |  | 
 | 1042 | 	/* Free unnecessary surplus pages to the buddy allocator */ | 
 | 1043 | 	if (!list_empty(&surplus_list)) { | 
 | 1044 | 		list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 
 | 1045 | 			list_del(&page->lru); | 
 | 1046 | 			put_page(page); | 
 | 1047 | 		} | 
 | 1048 | 	} | 
 | 1049 | 	spin_lock(&hugetlb_lock); | 
 | 1050 |  | 
 | 1051 | 	return ret; | 
 | 1052 | } | 
 | 1053 |  | 
 | 1054 | /* | 
 | 1055 |  * When releasing a hugetlb pool reservation, any surplus pages that were | 
 | 1056 |  * allocated to satisfy the reservation must be explicitly freed if they were | 
 | 1057 |  * never used. | 
 | 1058 |  * Called with hugetlb_lock held. | 
 | 1059 |  */ | 
 | 1060 | static void return_unused_surplus_pages(struct hstate *h, | 
 | 1061 | 					unsigned long unused_resv_pages) | 
 | 1062 | { | 
 | 1063 | 	unsigned long nr_pages; | 
 | 1064 |  | 
 | 1065 | 	/* Uncommit the reservation */ | 
 | 1066 | 	h->resv_huge_pages -= unused_resv_pages; | 
 | 1067 |  | 
 | 1068 | 	/* Cannot return gigantic pages currently */ | 
 | 1069 | 	if (h->order >= MAX_ORDER) | 
 | 1070 | 		return; | 
 | 1071 |  | 
 | 1072 | 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages); | 
 | 1073 |  | 
 | 1074 | 	/* | 
 | 1075 | 	 * We want to release as many surplus pages as possible, spread | 
 | 1076 | 	 * evenly across all nodes with memory. Iterate across these nodes | 
 | 1077 | 	 * until we can no longer free unreserved surplus pages. This occurs | 
 | 1078 | 	 * when the nodes with surplus pages have no free pages. | 
 | 1079 | 	 * free_pool_huge_page() will balance the the freed pages across the | 
 | 1080 | 	 * on-line nodes with memory and will handle the hstate accounting. | 
 | 1081 | 	 */ | 
 | 1082 | 	while (nr_pages--) { | 
 | 1083 | 		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) | 
 | 1084 | 			break; | 
 | 1085 | 		cond_resched_lock(&hugetlb_lock); | 
 | 1086 | 	} | 
 | 1087 | } | 
 | 1088 |  | 
 | 1089 | /* | 
 | 1090 |  * Determine if the huge page at addr within the vma has an associated | 
 | 1091 |  * reservation.  Where it does not we will need to logically increase | 
 | 1092 |  * reservation and actually increase subpool usage before an allocation | 
 | 1093 |  * can occur.  Where any new reservation would be required the | 
 | 1094 |  * reservation change is prepared, but not committed.  Once the page | 
 | 1095 |  * has been allocated from the subpool and instantiated the change should | 
 | 1096 |  * be committed via vma_commit_reservation.  No action is required on | 
 | 1097 |  * failure. | 
 | 1098 |  */ | 
 | 1099 | static long vma_needs_reservation(struct hstate *h, | 
 | 1100 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | 1101 | { | 
 | 1102 | 	struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 1103 | 	struct inode *inode = mapping->host; | 
 | 1104 |  | 
 | 1105 | 	if (vma->vm_flags & VM_MAYSHARE) { | 
 | 1106 | 		pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
 | 1107 | 		return region_chg(&inode->i_mapping->private_list, | 
 | 1108 | 							idx, idx + 1); | 
 | 1109 |  | 
 | 1110 | 	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 1111 | 		return 1; | 
 | 1112 |  | 
 | 1113 | 	} else  { | 
 | 1114 | 		long err; | 
 | 1115 | 		pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
 | 1116 | 		struct resv_map *reservations = vma_resv_map(vma); | 
 | 1117 |  | 
 | 1118 | 		err = region_chg(&reservations->regions, idx, idx + 1); | 
 | 1119 | 		if (err < 0) | 
 | 1120 | 			return err; | 
 | 1121 | 		return 0; | 
 | 1122 | 	} | 
 | 1123 | } | 
 | 1124 | static void vma_commit_reservation(struct hstate *h, | 
 | 1125 | 			struct vm_area_struct *vma, unsigned long addr) | 
 | 1126 | { | 
 | 1127 | 	struct address_space *mapping = vma->vm_file->f_mapping; | 
 | 1128 | 	struct inode *inode = mapping->host; | 
 | 1129 |  | 
 | 1130 | 	if (vma->vm_flags & VM_MAYSHARE) { | 
 | 1131 | 		pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
 | 1132 | 		region_add(&inode->i_mapping->private_list, idx, idx + 1); | 
 | 1133 |  | 
 | 1134 | 	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | 
 | 1135 | 		pgoff_t idx = vma_hugecache_offset(h, vma, addr); | 
 | 1136 | 		struct resv_map *reservations = vma_resv_map(vma); | 
 | 1137 |  | 
 | 1138 | 		/* Mark this page used in the map. */ | 
 | 1139 | 		region_add(&reservations->regions, idx, idx + 1); | 
 | 1140 | 	} | 
 | 1141 | } | 
 | 1142 |  | 
 | 1143 | static struct page *alloc_huge_page(struct vm_area_struct *vma, | 
 | 1144 | 				    unsigned long addr, int avoid_reserve) | 
 | 1145 | { | 
 | 1146 | 	struct hugepage_subpool *spool = subpool_vma(vma); | 
 | 1147 | 	struct hstate *h = hstate_vma(vma); | 
 | 1148 | 	struct page *page; | 
 | 1149 | 	long chg; | 
 | 1150 |  | 
 | 1151 | 	/* | 
 | 1152 | 	 * Processes that did not create the mapping will have no | 
 | 1153 | 	 * reserves and will not have accounted against subpool | 
 | 1154 | 	 * limit. Check that the subpool limit can be made before | 
 | 1155 | 	 * satisfying the allocation MAP_NORESERVE mappings may also | 
 | 1156 | 	 * need pages and subpool limit allocated allocated if no reserve | 
 | 1157 | 	 * mapping overlaps. | 
 | 1158 | 	 */ | 
 | 1159 | 	chg = vma_needs_reservation(h, vma, addr); | 
 | 1160 | 	if (chg < 0) | 
 | 1161 | 		return ERR_PTR(-VM_FAULT_OOM); | 
 | 1162 | 	if (chg) | 
 | 1163 | 		if (hugepage_subpool_get_pages(spool, chg)) | 
 | 1164 | 			return ERR_PTR(-VM_FAULT_SIGBUS); | 
 | 1165 |  | 
 | 1166 | 	spin_lock(&hugetlb_lock); | 
 | 1167 | 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); | 
 | 1168 | 	spin_unlock(&hugetlb_lock); | 
 | 1169 |  | 
 | 1170 | 	if (!page) { | 
 | 1171 | 		page = alloc_buddy_huge_page(h, NUMA_NO_NODE); | 
 | 1172 | 		if (!page) { | 
 | 1173 | 			hugepage_subpool_put_pages(spool, chg); | 
 | 1174 | 			return ERR_PTR(-VM_FAULT_SIGBUS); | 
 | 1175 | 		} | 
 | 1176 | 	} | 
 | 1177 |  | 
 | 1178 | 	set_page_private(page, (unsigned long)spool); | 
 | 1179 |  | 
 | 1180 | 	vma_commit_reservation(h, vma, addr); | 
 | 1181 |  | 
 | 1182 | 	return page; | 
 | 1183 | } | 
 | 1184 |  | 
 | 1185 | int __weak alloc_bootmem_huge_page(struct hstate *h) | 
 | 1186 | { | 
 | 1187 | 	struct huge_bootmem_page *m; | 
 | 1188 | 	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); | 
 | 1189 |  | 
 | 1190 | 	while (nr_nodes) { | 
 | 1191 | 		void *addr; | 
 | 1192 |  | 
 | 1193 | 		addr = __alloc_bootmem_node_nopanic( | 
 | 1194 | 				NODE_DATA(hstate_next_node_to_alloc(h, | 
 | 1195 | 						&node_states[N_HIGH_MEMORY])), | 
 | 1196 | 				huge_page_size(h), huge_page_size(h), 0); | 
 | 1197 |  | 
 | 1198 | 		if (addr) { | 
 | 1199 | 			/* | 
 | 1200 | 			 * Use the beginning of the huge page to store the | 
 | 1201 | 			 * huge_bootmem_page struct (until gather_bootmem | 
 | 1202 | 			 * puts them into the mem_map). | 
 | 1203 | 			 */ | 
 | 1204 | 			m = addr; | 
 | 1205 | 			goto found; | 
 | 1206 | 		} | 
 | 1207 | 		nr_nodes--; | 
 | 1208 | 	} | 
 | 1209 | 	return 0; | 
 | 1210 |  | 
 | 1211 | found: | 
 | 1212 | 	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | 
 | 1213 | 	/* Put them into a private list first because mem_map is not up yet */ | 
 | 1214 | 	list_add(&m->list, &huge_boot_pages); | 
 | 1215 | 	m->hstate = h; | 
 | 1216 | 	return 1; | 
 | 1217 | } | 
 | 1218 |  | 
 | 1219 | static void prep_compound_huge_page(struct page *page, int order) | 
 | 1220 | { | 
 | 1221 | 	if (unlikely(order > (MAX_ORDER - 1))) | 
 | 1222 | 		prep_compound_gigantic_page(page, order); | 
 | 1223 | 	else | 
 | 1224 | 		prep_compound_page(page, order); | 
 | 1225 | } | 
 | 1226 |  | 
 | 1227 | /* Put bootmem huge pages into the standard lists after mem_map is up */ | 
 | 1228 | static void __init gather_bootmem_prealloc(void) | 
 | 1229 | { | 
 | 1230 | 	struct huge_bootmem_page *m; | 
 | 1231 |  | 
 | 1232 | 	list_for_each_entry(m, &huge_boot_pages, list) { | 
 | 1233 | 		struct hstate *h = m->hstate; | 
 | 1234 | 		struct page *page; | 
 | 1235 |  | 
 | 1236 | #ifdef CONFIG_HIGHMEM | 
 | 1237 | 		page = pfn_to_page(m->phys >> PAGE_SHIFT); | 
 | 1238 | 		free_bootmem_late((unsigned long)m, | 
 | 1239 | 				  sizeof(struct huge_bootmem_page)); | 
 | 1240 | #else | 
 | 1241 | 		page = virt_to_page(m); | 
 | 1242 | #endif | 
 | 1243 | 		__ClearPageReserved(page); | 
 | 1244 | 		WARN_ON(page_count(page) != 1); | 
 | 1245 | 		prep_compound_huge_page(page, h->order); | 
 | 1246 | 		prep_new_huge_page(h, page, page_to_nid(page)); | 
 | 1247 | 		/* | 
 | 1248 | 		 * If we had gigantic hugepages allocated at boot time, we need | 
 | 1249 | 		 * to restore the 'stolen' pages to totalram_pages in order to | 
 | 1250 | 		 * fix confusing memory reports from free(1) and another | 
 | 1251 | 		 * side-effects, like CommitLimit going negative. | 
 | 1252 | 		 */ | 
 | 1253 | 		if (h->order > (MAX_ORDER - 1)) | 
 | 1254 | 			totalram_pages += 1 << h->order; | 
 | 1255 | 	} | 
 | 1256 | } | 
 | 1257 |  | 
 | 1258 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) | 
 | 1259 | { | 
 | 1260 | 	unsigned long i; | 
 | 1261 |  | 
 | 1262 | 	for (i = 0; i < h->max_huge_pages; ++i) { | 
 | 1263 | 		if (h->order >= MAX_ORDER) { | 
 | 1264 | 			if (!alloc_bootmem_huge_page(h)) | 
 | 1265 | 				break; | 
 | 1266 | 		} else if (!alloc_fresh_huge_page(h, | 
 | 1267 | 					 &node_states[N_HIGH_MEMORY])) | 
 | 1268 | 			break; | 
 | 1269 | 	} | 
 | 1270 | 	h->max_huge_pages = i; | 
 | 1271 | } | 
 | 1272 |  | 
 | 1273 | static void __init hugetlb_init_hstates(void) | 
 | 1274 | { | 
 | 1275 | 	struct hstate *h; | 
 | 1276 |  | 
 | 1277 | 	for_each_hstate(h) { | 
 | 1278 | 		/* oversize hugepages were init'ed in early boot */ | 
 | 1279 | 		if (h->order < MAX_ORDER) | 
 | 1280 | 			hugetlb_hstate_alloc_pages(h); | 
 | 1281 | 	} | 
 | 1282 | } | 
 | 1283 |  | 
 | 1284 | static char * __init memfmt(char *buf, unsigned long n) | 
 | 1285 | { | 
 | 1286 | 	if (n >= (1UL << 30)) | 
 | 1287 | 		sprintf(buf, "%lu GB", n >> 30); | 
 | 1288 | 	else if (n >= (1UL << 20)) | 
 | 1289 | 		sprintf(buf, "%lu MB", n >> 20); | 
 | 1290 | 	else | 
 | 1291 | 		sprintf(buf, "%lu KB", n >> 10); | 
 | 1292 | 	return buf; | 
 | 1293 | } | 
 | 1294 |  | 
 | 1295 | static void __init report_hugepages(void) | 
 | 1296 | { | 
 | 1297 | 	struct hstate *h; | 
 | 1298 |  | 
 | 1299 | 	for_each_hstate(h) { | 
 | 1300 | 		char buf[32]; | 
 | 1301 | 		printk(KERN_INFO "HugeTLB registered %s page size, " | 
 | 1302 | 				 "pre-allocated %ld pages\n", | 
 | 1303 | 			memfmt(buf, huge_page_size(h)), | 
 | 1304 | 			h->free_huge_pages); | 
 | 1305 | 	} | 
 | 1306 | } | 
 | 1307 |  | 
 | 1308 | #ifdef CONFIG_HIGHMEM | 
 | 1309 | static void try_to_free_low(struct hstate *h, unsigned long count, | 
 | 1310 | 						nodemask_t *nodes_allowed) | 
 | 1311 | { | 
 | 1312 | 	int i; | 
 | 1313 |  | 
 | 1314 | 	if (h->order >= MAX_ORDER) | 
 | 1315 | 		return; | 
 | 1316 |  | 
 | 1317 | 	for_each_node_mask(i, *nodes_allowed) { | 
 | 1318 | 		struct page *page, *next; | 
 | 1319 | 		struct list_head *freel = &h->hugepage_freelists[i]; | 
 | 1320 | 		list_for_each_entry_safe(page, next, freel, lru) { | 
 | 1321 | 			if (count >= h->nr_huge_pages) | 
 | 1322 | 				return; | 
 | 1323 | 			if (PageHighMem(page)) | 
 | 1324 | 				continue; | 
 | 1325 | 			list_del(&page->lru); | 
 | 1326 | 			update_and_free_page(h, page); | 
 | 1327 | 			h->free_huge_pages--; | 
 | 1328 | 			h->free_huge_pages_node[page_to_nid(page)]--; | 
 | 1329 | 		} | 
 | 1330 | 	} | 
 | 1331 | } | 
 | 1332 | #else | 
 | 1333 | static inline void try_to_free_low(struct hstate *h, unsigned long count, | 
 | 1334 | 						nodemask_t *nodes_allowed) | 
 | 1335 | { | 
 | 1336 | } | 
 | 1337 | #endif | 
 | 1338 |  | 
 | 1339 | /* | 
 | 1340 |  * Increment or decrement surplus_huge_pages.  Keep node-specific counters | 
 | 1341 |  * balanced by operating on them in a round-robin fashion. | 
 | 1342 |  * Returns 1 if an adjustment was made. | 
 | 1343 |  */ | 
 | 1344 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, | 
 | 1345 | 				int delta) | 
 | 1346 | { | 
 | 1347 | 	int start_nid, next_nid; | 
 | 1348 | 	int ret = 0; | 
 | 1349 |  | 
 | 1350 | 	VM_BUG_ON(delta != -1 && delta != 1); | 
 | 1351 |  | 
 | 1352 | 	if (delta < 0) | 
 | 1353 | 		start_nid = hstate_next_node_to_alloc(h, nodes_allowed); | 
 | 1354 | 	else | 
 | 1355 | 		start_nid = hstate_next_node_to_free(h, nodes_allowed); | 
 | 1356 | 	next_nid = start_nid; | 
 | 1357 |  | 
 | 1358 | 	do { | 
 | 1359 | 		int nid = next_nid; | 
 | 1360 | 		if (delta < 0)  { | 
 | 1361 | 			/* | 
 | 1362 | 			 * To shrink on this node, there must be a surplus page | 
 | 1363 | 			 */ | 
 | 1364 | 			if (!h->surplus_huge_pages_node[nid]) { | 
 | 1365 | 				next_nid = hstate_next_node_to_alloc(h, | 
 | 1366 | 								nodes_allowed); | 
 | 1367 | 				continue; | 
 | 1368 | 			} | 
 | 1369 | 		} | 
 | 1370 | 		if (delta > 0) { | 
 | 1371 | 			/* | 
 | 1372 | 			 * Surplus cannot exceed the total number of pages | 
 | 1373 | 			 */ | 
 | 1374 | 			if (h->surplus_huge_pages_node[nid] >= | 
 | 1375 | 						h->nr_huge_pages_node[nid]) { | 
 | 1376 | 				next_nid = hstate_next_node_to_free(h, | 
 | 1377 | 								nodes_allowed); | 
 | 1378 | 				continue; | 
 | 1379 | 			} | 
 | 1380 | 		} | 
 | 1381 |  | 
 | 1382 | 		h->surplus_huge_pages += delta; | 
 | 1383 | 		h->surplus_huge_pages_node[nid] += delta; | 
 | 1384 | 		ret = 1; | 
 | 1385 | 		break; | 
 | 1386 | 	} while (next_nid != start_nid); | 
 | 1387 |  | 
 | 1388 | 	return ret; | 
 | 1389 | } | 
 | 1390 |  | 
 | 1391 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) | 
 | 1392 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, | 
 | 1393 | 						nodemask_t *nodes_allowed) | 
 | 1394 | { | 
 | 1395 | 	unsigned long min_count, ret; | 
 | 1396 |  | 
 | 1397 | 	if (h->order >= MAX_ORDER) | 
 | 1398 | 		return h->max_huge_pages; | 
 | 1399 |  | 
 | 1400 | 	/* | 
 | 1401 | 	 * Increase the pool size | 
 | 1402 | 	 * First take pages out of surplus state.  Then make up the | 
 | 1403 | 	 * remaining difference by allocating fresh huge pages. | 
 | 1404 | 	 * | 
 | 1405 | 	 * We might race with alloc_buddy_huge_page() here and be unable | 
 | 1406 | 	 * to convert a surplus huge page to a normal huge page. That is | 
 | 1407 | 	 * not critical, though, it just means the overall size of the | 
 | 1408 | 	 * pool might be one hugepage larger than it needs to be, but | 
 | 1409 | 	 * within all the constraints specified by the sysctls. | 
 | 1410 | 	 */ | 
 | 1411 | 	spin_lock(&hugetlb_lock); | 
 | 1412 | 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { | 
 | 1413 | 		if (!adjust_pool_surplus(h, nodes_allowed, -1)) | 
 | 1414 | 			break; | 
 | 1415 | 	} | 
 | 1416 |  | 
 | 1417 | 	while (count > persistent_huge_pages(h)) { | 
 | 1418 | 		/* | 
 | 1419 | 		 * If this allocation races such that we no longer need the | 
 | 1420 | 		 * page, free_huge_page will handle it by freeing the page | 
 | 1421 | 		 * and reducing the surplus. | 
 | 1422 | 		 */ | 
 | 1423 | 		spin_unlock(&hugetlb_lock); | 
 | 1424 | 		ret = alloc_fresh_huge_page(h, nodes_allowed); | 
 | 1425 | 		spin_lock(&hugetlb_lock); | 
 | 1426 | 		if (!ret) | 
 | 1427 | 			goto out; | 
 | 1428 |  | 
 | 1429 | 		/* Bail for signals. Probably ctrl-c from user */ | 
 | 1430 | 		if (signal_pending(current)) | 
 | 1431 | 			goto out; | 
 | 1432 | 	} | 
 | 1433 |  | 
 | 1434 | 	/* | 
 | 1435 | 	 * Decrease the pool size | 
 | 1436 | 	 * First return free pages to the buddy allocator (being careful | 
 | 1437 | 	 * to keep enough around to satisfy reservations).  Then place | 
 | 1438 | 	 * pages into surplus state as needed so the pool will shrink | 
 | 1439 | 	 * to the desired size as pages become free. | 
 | 1440 | 	 * | 
 | 1441 | 	 * By placing pages into the surplus state independent of the | 
 | 1442 | 	 * overcommit value, we are allowing the surplus pool size to | 
 | 1443 | 	 * exceed overcommit. There are few sane options here. Since | 
 | 1444 | 	 * alloc_buddy_huge_page() is checking the global counter, | 
 | 1445 | 	 * though, we'll note that we're not allowed to exceed surplus | 
 | 1446 | 	 * and won't grow the pool anywhere else. Not until one of the | 
 | 1447 | 	 * sysctls are changed, or the surplus pages go out of use. | 
 | 1448 | 	 */ | 
 | 1449 | 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; | 
 | 1450 | 	min_count = max(count, min_count); | 
 | 1451 | 	try_to_free_low(h, min_count, nodes_allowed); | 
 | 1452 | 	while (min_count < persistent_huge_pages(h)) { | 
 | 1453 | 		if (!free_pool_huge_page(h, nodes_allowed, 0)) | 
 | 1454 | 			break; | 
 | 1455 | 		cond_resched_lock(&hugetlb_lock); | 
 | 1456 | 	} | 
 | 1457 | 	while (count < persistent_huge_pages(h)) { | 
 | 1458 | 		if (!adjust_pool_surplus(h, nodes_allowed, 1)) | 
 | 1459 | 			break; | 
 | 1460 | 	} | 
 | 1461 | out: | 
 | 1462 | 	ret = persistent_huge_pages(h); | 
 | 1463 | 	spin_unlock(&hugetlb_lock); | 
 | 1464 | 	return ret; | 
 | 1465 | } | 
 | 1466 |  | 
 | 1467 | #define HSTATE_ATTR_RO(_name) \ | 
 | 1468 | 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
 | 1469 |  | 
 | 1470 | #define HSTATE_ATTR(_name) \ | 
 | 1471 | 	static struct kobj_attribute _name##_attr = \ | 
 | 1472 | 		__ATTR(_name, 0644, _name##_show, _name##_store) | 
 | 1473 |  | 
 | 1474 | static struct kobject *hugepages_kobj; | 
 | 1475 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | 
 | 1476 |  | 
 | 1477 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); | 
 | 1478 |  | 
 | 1479 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | 
 | 1480 | { | 
 | 1481 | 	int i; | 
 | 1482 |  | 
 | 1483 | 	for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
 | 1484 | 		if (hstate_kobjs[i] == kobj) { | 
 | 1485 | 			if (nidp) | 
 | 1486 | 				*nidp = NUMA_NO_NODE; | 
 | 1487 | 			return &hstates[i]; | 
 | 1488 | 		} | 
 | 1489 |  | 
 | 1490 | 	return kobj_to_node_hstate(kobj, nidp); | 
 | 1491 | } | 
 | 1492 |  | 
 | 1493 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, | 
 | 1494 | 					struct kobj_attribute *attr, char *buf) | 
 | 1495 | { | 
 | 1496 | 	struct hstate *h; | 
 | 1497 | 	unsigned long nr_huge_pages; | 
 | 1498 | 	int nid; | 
 | 1499 |  | 
 | 1500 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 1501 | 	if (nid == NUMA_NO_NODE) | 
 | 1502 | 		nr_huge_pages = h->nr_huge_pages; | 
 | 1503 | 	else | 
 | 1504 | 		nr_huge_pages = h->nr_huge_pages_node[nid]; | 
 | 1505 |  | 
 | 1506 | 	return sprintf(buf, "%lu\n", nr_huge_pages); | 
 | 1507 | } | 
 | 1508 |  | 
 | 1509 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, | 
 | 1510 | 			struct kobject *kobj, struct kobj_attribute *attr, | 
 | 1511 | 			const char *buf, size_t len) | 
 | 1512 | { | 
 | 1513 | 	int err; | 
 | 1514 | 	int nid; | 
 | 1515 | 	unsigned long count; | 
 | 1516 | 	struct hstate *h; | 
 | 1517 | 	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); | 
 | 1518 |  | 
 | 1519 | 	err = strict_strtoul(buf, 10, &count); | 
 | 1520 | 	if (err) | 
 | 1521 | 		goto out; | 
 | 1522 |  | 
 | 1523 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 1524 | 	if (h->order >= MAX_ORDER) { | 
 | 1525 | 		err = -EINVAL; | 
 | 1526 | 		goto out; | 
 | 1527 | 	} | 
 | 1528 |  | 
 | 1529 | 	if (nid == NUMA_NO_NODE) { | 
 | 1530 | 		/* | 
 | 1531 | 		 * global hstate attribute | 
 | 1532 | 		 */ | 
 | 1533 | 		if (!(obey_mempolicy && | 
 | 1534 | 				init_nodemask_of_mempolicy(nodes_allowed))) { | 
 | 1535 | 			NODEMASK_FREE(nodes_allowed); | 
 | 1536 | 			nodes_allowed = &node_states[N_HIGH_MEMORY]; | 
 | 1537 | 		} | 
 | 1538 | 	} else if (nodes_allowed) { | 
 | 1539 | 		/* | 
 | 1540 | 		 * per node hstate attribute: adjust count to global, | 
 | 1541 | 		 * but restrict alloc/free to the specified node. | 
 | 1542 | 		 */ | 
 | 1543 | 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | 
 | 1544 | 		init_nodemask_of_node(nodes_allowed, nid); | 
 | 1545 | 	} else | 
 | 1546 | 		nodes_allowed = &node_states[N_HIGH_MEMORY]; | 
 | 1547 |  | 
 | 1548 | 	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); | 
 | 1549 |  | 
 | 1550 | 	if (nodes_allowed != &node_states[N_HIGH_MEMORY]) | 
 | 1551 | 		NODEMASK_FREE(nodes_allowed); | 
 | 1552 |  | 
 | 1553 | 	return len; | 
 | 1554 | out: | 
 | 1555 | 	NODEMASK_FREE(nodes_allowed); | 
 | 1556 | 	return err; | 
 | 1557 | } | 
 | 1558 |  | 
 | 1559 | static ssize_t nr_hugepages_show(struct kobject *kobj, | 
 | 1560 | 				       struct kobj_attribute *attr, char *buf) | 
 | 1561 | { | 
 | 1562 | 	return nr_hugepages_show_common(kobj, attr, buf); | 
 | 1563 | } | 
 | 1564 |  | 
 | 1565 | static ssize_t nr_hugepages_store(struct kobject *kobj, | 
 | 1566 | 	       struct kobj_attribute *attr, const char *buf, size_t len) | 
 | 1567 | { | 
 | 1568 | 	return nr_hugepages_store_common(false, kobj, attr, buf, len); | 
 | 1569 | } | 
 | 1570 | HSTATE_ATTR(nr_hugepages); | 
 | 1571 |  | 
 | 1572 | #ifdef CONFIG_NUMA | 
 | 1573 |  | 
 | 1574 | /* | 
 | 1575 |  * hstate attribute for optionally mempolicy-based constraint on persistent | 
 | 1576 |  * huge page alloc/free. | 
 | 1577 |  */ | 
 | 1578 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | 
 | 1579 | 				       struct kobj_attribute *attr, char *buf) | 
 | 1580 | { | 
 | 1581 | 	return nr_hugepages_show_common(kobj, attr, buf); | 
 | 1582 | } | 
 | 1583 |  | 
 | 1584 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | 
 | 1585 | 	       struct kobj_attribute *attr, const char *buf, size_t len) | 
 | 1586 | { | 
 | 1587 | 	return nr_hugepages_store_common(true, kobj, attr, buf, len); | 
 | 1588 | } | 
 | 1589 | HSTATE_ATTR(nr_hugepages_mempolicy); | 
 | 1590 | #endif | 
 | 1591 |  | 
 | 1592 |  | 
 | 1593 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | 
 | 1594 | 					struct kobj_attribute *attr, char *buf) | 
 | 1595 | { | 
 | 1596 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 | 1597 | 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | 
 | 1598 | } | 
 | 1599 |  | 
 | 1600 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | 
 | 1601 | 		struct kobj_attribute *attr, const char *buf, size_t count) | 
 | 1602 | { | 
 | 1603 | 	int err; | 
 | 1604 | 	unsigned long input; | 
 | 1605 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 | 1606 |  | 
 | 1607 | 	if (h->order >= MAX_ORDER) | 
 | 1608 | 		return -EINVAL; | 
 | 1609 |  | 
 | 1610 | 	err = strict_strtoul(buf, 10, &input); | 
 | 1611 | 	if (err) | 
 | 1612 | 		return err; | 
 | 1613 |  | 
 | 1614 | 	spin_lock(&hugetlb_lock); | 
 | 1615 | 	h->nr_overcommit_huge_pages = input; | 
 | 1616 | 	spin_unlock(&hugetlb_lock); | 
 | 1617 |  | 
 | 1618 | 	return count; | 
 | 1619 | } | 
 | 1620 | HSTATE_ATTR(nr_overcommit_hugepages); | 
 | 1621 |  | 
 | 1622 | static ssize_t free_hugepages_show(struct kobject *kobj, | 
 | 1623 | 					struct kobj_attribute *attr, char *buf) | 
 | 1624 | { | 
 | 1625 | 	struct hstate *h; | 
 | 1626 | 	unsigned long free_huge_pages; | 
 | 1627 | 	int nid; | 
 | 1628 |  | 
 | 1629 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 1630 | 	if (nid == NUMA_NO_NODE) | 
 | 1631 | 		free_huge_pages = h->free_huge_pages; | 
 | 1632 | 	else | 
 | 1633 | 		free_huge_pages = h->free_huge_pages_node[nid]; | 
 | 1634 |  | 
 | 1635 | 	return sprintf(buf, "%lu\n", free_huge_pages); | 
 | 1636 | } | 
 | 1637 | HSTATE_ATTR_RO(free_hugepages); | 
 | 1638 |  | 
 | 1639 | static ssize_t resv_hugepages_show(struct kobject *kobj, | 
 | 1640 | 					struct kobj_attribute *attr, char *buf) | 
 | 1641 | { | 
 | 1642 | 	struct hstate *h = kobj_to_hstate(kobj, NULL); | 
 | 1643 | 	return sprintf(buf, "%lu\n", h->resv_huge_pages); | 
 | 1644 | } | 
 | 1645 | HSTATE_ATTR_RO(resv_hugepages); | 
 | 1646 |  | 
 | 1647 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | 
 | 1648 | 					struct kobj_attribute *attr, char *buf) | 
 | 1649 | { | 
 | 1650 | 	struct hstate *h; | 
 | 1651 | 	unsigned long surplus_huge_pages; | 
 | 1652 | 	int nid; | 
 | 1653 |  | 
 | 1654 | 	h = kobj_to_hstate(kobj, &nid); | 
 | 1655 | 	if (nid == NUMA_NO_NODE) | 
 | 1656 | 		surplus_huge_pages = h->surplus_huge_pages; | 
 | 1657 | 	else | 
 | 1658 | 		surplus_huge_pages = h->surplus_huge_pages_node[nid]; | 
 | 1659 |  | 
 | 1660 | 	return sprintf(buf, "%lu\n", surplus_huge_pages); | 
 | 1661 | } | 
 | 1662 | HSTATE_ATTR_RO(surplus_hugepages); | 
 | 1663 |  | 
 | 1664 | static struct attribute *hstate_attrs[] = { | 
 | 1665 | 	&nr_hugepages_attr.attr, | 
 | 1666 | 	&nr_overcommit_hugepages_attr.attr, | 
 | 1667 | 	&free_hugepages_attr.attr, | 
 | 1668 | 	&resv_hugepages_attr.attr, | 
 | 1669 | 	&surplus_hugepages_attr.attr, | 
 | 1670 | #ifdef CONFIG_NUMA | 
 | 1671 | 	&nr_hugepages_mempolicy_attr.attr, | 
 | 1672 | #endif | 
 | 1673 | 	NULL, | 
 | 1674 | }; | 
 | 1675 |  | 
 | 1676 | static struct attribute_group hstate_attr_group = { | 
 | 1677 | 	.attrs = hstate_attrs, | 
 | 1678 | }; | 
 | 1679 |  | 
 | 1680 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, | 
 | 1681 | 				    struct kobject **hstate_kobjs, | 
 | 1682 | 				    struct attribute_group *hstate_attr_group) | 
 | 1683 | { | 
 | 1684 | 	int retval; | 
 | 1685 | 	int hi = h - hstates; | 
 | 1686 |  | 
 | 1687 | 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); | 
 | 1688 | 	if (!hstate_kobjs[hi]) | 
 | 1689 | 		return -ENOMEM; | 
 | 1690 |  | 
 | 1691 | 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); | 
 | 1692 | 	if (retval) | 
 | 1693 | 		kobject_put(hstate_kobjs[hi]); | 
 | 1694 |  | 
 | 1695 | 	return retval; | 
 | 1696 | } | 
 | 1697 |  | 
 | 1698 | static void __init hugetlb_sysfs_init(void) | 
 | 1699 | { | 
 | 1700 | 	struct hstate *h; | 
 | 1701 | 	int err; | 
 | 1702 |  | 
 | 1703 | 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | 
 | 1704 | 	if (!hugepages_kobj) | 
 | 1705 | 		return; | 
 | 1706 |  | 
 | 1707 | 	for_each_hstate(h) { | 
 | 1708 | 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, | 
 | 1709 | 					 hstate_kobjs, &hstate_attr_group); | 
 | 1710 | 		if (err) | 
 | 1711 | 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | 
 | 1712 | 								h->name); | 
 | 1713 | 	} | 
 | 1714 | } | 
 | 1715 |  | 
 | 1716 | #ifdef CONFIG_NUMA | 
 | 1717 |  | 
 | 1718 | /* | 
 | 1719 |  * node_hstate/s - associate per node hstate attributes, via their kobjects, | 
 | 1720 |  * with node devices in node_devices[] using a parallel array.  The array | 
 | 1721 |  * index of a node device or _hstate == node id. | 
 | 1722 |  * This is here to avoid any static dependency of the node device driver, in | 
 | 1723 |  * the base kernel, on the hugetlb module. | 
 | 1724 |  */ | 
 | 1725 | struct node_hstate { | 
 | 1726 | 	struct kobject		*hugepages_kobj; | 
 | 1727 | 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE]; | 
 | 1728 | }; | 
 | 1729 | struct node_hstate node_hstates[MAX_NUMNODES]; | 
 | 1730 |  | 
 | 1731 | /* | 
 | 1732 |  * A subset of global hstate attributes for node devices | 
 | 1733 |  */ | 
 | 1734 | static struct attribute *per_node_hstate_attrs[] = { | 
 | 1735 | 	&nr_hugepages_attr.attr, | 
 | 1736 | 	&free_hugepages_attr.attr, | 
 | 1737 | 	&surplus_hugepages_attr.attr, | 
 | 1738 | 	NULL, | 
 | 1739 | }; | 
 | 1740 |  | 
 | 1741 | static struct attribute_group per_node_hstate_attr_group = { | 
 | 1742 | 	.attrs = per_node_hstate_attrs, | 
 | 1743 | }; | 
 | 1744 |  | 
 | 1745 | /* | 
 | 1746 |  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. | 
 | 1747 |  * Returns node id via non-NULL nidp. | 
 | 1748 |  */ | 
 | 1749 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
 | 1750 | { | 
 | 1751 | 	int nid; | 
 | 1752 |  | 
 | 1753 | 	for (nid = 0; nid < nr_node_ids; nid++) { | 
 | 1754 | 		struct node_hstate *nhs = &node_hstates[nid]; | 
 | 1755 | 		int i; | 
 | 1756 | 		for (i = 0; i < HUGE_MAX_HSTATE; i++) | 
 | 1757 | 			if (nhs->hstate_kobjs[i] == kobj) { | 
 | 1758 | 				if (nidp) | 
 | 1759 | 					*nidp = nid; | 
 | 1760 | 				return &hstates[i]; | 
 | 1761 | 			} | 
 | 1762 | 	} | 
 | 1763 |  | 
 | 1764 | 	BUG(); | 
 | 1765 | 	return NULL; | 
 | 1766 | } | 
 | 1767 |  | 
 | 1768 | /* | 
 | 1769 |  * Unregister hstate attributes from a single node device. | 
 | 1770 |  * No-op if no hstate attributes attached. | 
 | 1771 |  */ | 
 | 1772 | void hugetlb_unregister_node(struct node *node) | 
 | 1773 | { | 
 | 1774 | 	struct hstate *h; | 
 | 1775 | 	struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
 | 1776 |  | 
 | 1777 | 	if (!nhs->hugepages_kobj) | 
 | 1778 | 		return;		/* no hstate attributes */ | 
 | 1779 |  | 
 | 1780 | 	for_each_hstate(h) | 
 | 1781 | 		if (nhs->hstate_kobjs[h - hstates]) { | 
 | 1782 | 			kobject_put(nhs->hstate_kobjs[h - hstates]); | 
 | 1783 | 			nhs->hstate_kobjs[h - hstates] = NULL; | 
 | 1784 | 		} | 
 | 1785 |  | 
 | 1786 | 	kobject_put(nhs->hugepages_kobj); | 
 | 1787 | 	nhs->hugepages_kobj = NULL; | 
 | 1788 | } | 
 | 1789 |  | 
 | 1790 | /* | 
 | 1791 |  * hugetlb module exit:  unregister hstate attributes from node devices | 
 | 1792 |  * that have them. | 
 | 1793 |  */ | 
 | 1794 | static void hugetlb_unregister_all_nodes(void) | 
 | 1795 | { | 
 | 1796 | 	int nid; | 
 | 1797 |  | 
 | 1798 | 	/* | 
 | 1799 | 	 * disable node device registrations. | 
 | 1800 | 	 */ | 
 | 1801 | 	register_hugetlbfs_with_node(NULL, NULL); | 
 | 1802 |  | 
 | 1803 | 	/* | 
 | 1804 | 	 * remove hstate attributes from any nodes that have them. | 
 | 1805 | 	 */ | 
 | 1806 | 	for (nid = 0; nid < nr_node_ids; nid++) | 
 | 1807 | 		hugetlb_unregister_node(&node_devices[nid]); | 
 | 1808 | } | 
 | 1809 |  | 
 | 1810 | /* | 
 | 1811 |  * Register hstate attributes for a single node device. | 
 | 1812 |  * No-op if attributes already registered. | 
 | 1813 |  */ | 
 | 1814 | void hugetlb_register_node(struct node *node) | 
 | 1815 | { | 
 | 1816 | 	struct hstate *h; | 
 | 1817 | 	struct node_hstate *nhs = &node_hstates[node->dev.id]; | 
 | 1818 | 	int err; | 
 | 1819 |  | 
 | 1820 | 	if (nhs->hugepages_kobj) | 
 | 1821 | 		return;		/* already allocated */ | 
 | 1822 |  | 
 | 1823 | 	nhs->hugepages_kobj = kobject_create_and_add("hugepages", | 
 | 1824 | 							&node->dev.kobj); | 
 | 1825 | 	if (!nhs->hugepages_kobj) | 
 | 1826 | 		return; | 
 | 1827 |  | 
 | 1828 | 	for_each_hstate(h) { | 
 | 1829 | 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | 
 | 1830 | 						nhs->hstate_kobjs, | 
 | 1831 | 						&per_node_hstate_attr_group); | 
 | 1832 | 		if (err) { | 
 | 1833 | 			printk(KERN_ERR "Hugetlb: Unable to add hstate %s" | 
 | 1834 | 					" for node %d\n", | 
 | 1835 | 						h->name, node->dev.id); | 
 | 1836 | 			hugetlb_unregister_node(node); | 
 | 1837 | 			break; | 
 | 1838 | 		} | 
 | 1839 | 	} | 
 | 1840 | } | 
 | 1841 |  | 
 | 1842 | /* | 
 | 1843 |  * hugetlb init time:  register hstate attributes for all registered node | 
 | 1844 |  * devices of nodes that have memory.  All on-line nodes should have | 
 | 1845 |  * registered their associated device by this time. | 
 | 1846 |  */ | 
 | 1847 | static void hugetlb_register_all_nodes(void) | 
 | 1848 | { | 
 | 1849 | 	int nid; | 
 | 1850 |  | 
 | 1851 | 	for_each_node_state(nid, N_HIGH_MEMORY) { | 
 | 1852 | 		struct node *node = &node_devices[nid]; | 
 | 1853 | 		if (node->dev.id == nid) | 
 | 1854 | 			hugetlb_register_node(node); | 
 | 1855 | 	} | 
 | 1856 |  | 
 | 1857 | 	/* | 
 | 1858 | 	 * Let the node device driver know we're here so it can | 
 | 1859 | 	 * [un]register hstate attributes on node hotplug. | 
 | 1860 | 	 */ | 
 | 1861 | 	register_hugetlbfs_with_node(hugetlb_register_node, | 
 | 1862 | 				     hugetlb_unregister_node); | 
 | 1863 | } | 
 | 1864 | #else	/* !CONFIG_NUMA */ | 
 | 1865 |  | 
 | 1866 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | 
 | 1867 | { | 
 | 1868 | 	BUG(); | 
 | 1869 | 	if (nidp) | 
 | 1870 | 		*nidp = -1; | 
 | 1871 | 	return NULL; | 
 | 1872 | } | 
 | 1873 |  | 
 | 1874 | static void hugetlb_unregister_all_nodes(void) { } | 
 | 1875 |  | 
 | 1876 | static void hugetlb_register_all_nodes(void) { } | 
 | 1877 |  | 
 | 1878 | #endif | 
 | 1879 |  | 
 | 1880 | static void __exit hugetlb_exit(void) | 
 | 1881 | { | 
 | 1882 | 	struct hstate *h; | 
 | 1883 |  | 
 | 1884 | 	hugetlb_unregister_all_nodes(); | 
 | 1885 |  | 
 | 1886 | 	for_each_hstate(h) { | 
 | 1887 | 		kobject_put(hstate_kobjs[h - hstates]); | 
 | 1888 | 	} | 
 | 1889 |  | 
 | 1890 | 	kobject_put(hugepages_kobj); | 
 | 1891 | } | 
 | 1892 | module_exit(hugetlb_exit); | 
 | 1893 |  | 
 | 1894 | static int __init hugetlb_init(void) | 
 | 1895 | { | 
 | 1896 | 	/* Some platform decide whether they support huge pages at boot | 
 | 1897 | 	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | 
 | 1898 | 	 * there is no such support | 
 | 1899 | 	 */ | 
 | 1900 | 	if (HPAGE_SHIFT == 0) | 
 | 1901 | 		return 0; | 
 | 1902 |  | 
 | 1903 | 	if (!size_to_hstate(default_hstate_size)) { | 
 | 1904 | 		default_hstate_size = HPAGE_SIZE; | 
 | 1905 | 		if (!size_to_hstate(default_hstate_size)) | 
 | 1906 | 			hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | 
 | 1907 | 	} | 
 | 1908 | 	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; | 
 | 1909 | 	if (default_hstate_max_huge_pages) | 
 | 1910 | 		default_hstate.max_huge_pages = default_hstate_max_huge_pages; | 
 | 1911 |  | 
 | 1912 | 	hugetlb_init_hstates(); | 
 | 1913 |  | 
 | 1914 | 	gather_bootmem_prealloc(); | 
 | 1915 |  | 
 | 1916 | 	report_hugepages(); | 
 | 1917 |  | 
 | 1918 | 	hugetlb_sysfs_init(); | 
 | 1919 |  | 
 | 1920 | 	hugetlb_register_all_nodes(); | 
 | 1921 |  | 
 | 1922 | 	return 0; | 
 | 1923 | } | 
 | 1924 | module_init(hugetlb_init); | 
 | 1925 |  | 
 | 1926 | /* Should be called on processing a hugepagesz=... option */ | 
 | 1927 | void __init hugetlb_add_hstate(unsigned order) | 
 | 1928 | { | 
 | 1929 | 	struct hstate *h; | 
 | 1930 | 	unsigned long i; | 
 | 1931 |  | 
 | 1932 | 	if (size_to_hstate(PAGE_SIZE << order)) { | 
 | 1933 | 		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | 
 | 1934 | 		return; | 
 | 1935 | 	} | 
 | 1936 | 	BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | 
 | 1937 | 	BUG_ON(order == 0); | 
 | 1938 | 	h = &hstates[max_hstate++]; | 
 | 1939 | 	h->order = order; | 
 | 1940 | 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | 
 | 1941 | 	h->nr_huge_pages = 0; | 
 | 1942 | 	h->free_huge_pages = 0; | 
 | 1943 | 	for (i = 0; i < MAX_NUMNODES; ++i) | 
 | 1944 | 		INIT_LIST_HEAD(&h->hugepage_freelists[i]); | 
 | 1945 | 	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); | 
 | 1946 | 	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); | 
 | 1947 | 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", | 
 | 1948 | 					huge_page_size(h)/1024); | 
 | 1949 |  | 
 | 1950 | 	parsed_hstate = h; | 
 | 1951 | } | 
 | 1952 |  | 
 | 1953 | static int __init hugetlb_nrpages_setup(char *s) | 
 | 1954 | { | 
 | 1955 | 	unsigned long *mhp; | 
 | 1956 | 	static unsigned long *last_mhp; | 
 | 1957 |  | 
 | 1958 | 	/* | 
 | 1959 | 	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | 
 | 1960 | 	 * so this hugepages= parameter goes to the "default hstate". | 
 | 1961 | 	 */ | 
 | 1962 | 	if (!max_hstate) | 
 | 1963 | 		mhp = &default_hstate_max_huge_pages; | 
 | 1964 | 	else | 
 | 1965 | 		mhp = &parsed_hstate->max_huge_pages; | 
 | 1966 |  | 
 | 1967 | 	if (mhp == last_mhp) { | 
 | 1968 | 		printk(KERN_WARNING "hugepages= specified twice without " | 
 | 1969 | 			"interleaving hugepagesz=, ignoring\n"); | 
 | 1970 | 		return 1; | 
 | 1971 | 	} | 
 | 1972 |  | 
 | 1973 | 	if (sscanf(s, "%lu", mhp) <= 0) | 
 | 1974 | 		*mhp = 0; | 
 | 1975 |  | 
 | 1976 | 	/* | 
 | 1977 | 	 * Global state is always initialized later in hugetlb_init. | 
 | 1978 | 	 * But we need to allocate >= MAX_ORDER hstates here early to still | 
 | 1979 | 	 * use the bootmem allocator. | 
 | 1980 | 	 */ | 
 | 1981 | 	if (max_hstate && parsed_hstate->order >= MAX_ORDER) | 
 | 1982 | 		hugetlb_hstate_alloc_pages(parsed_hstate); | 
 | 1983 |  | 
 | 1984 | 	last_mhp = mhp; | 
 | 1985 |  | 
 | 1986 | 	return 1; | 
 | 1987 | } | 
 | 1988 | __setup("hugepages=", hugetlb_nrpages_setup); | 
 | 1989 |  | 
 | 1990 | static int __init hugetlb_default_setup(char *s) | 
 | 1991 | { | 
 | 1992 | 	default_hstate_size = memparse(s, &s); | 
 | 1993 | 	return 1; | 
 | 1994 | } | 
 | 1995 | __setup("default_hugepagesz=", hugetlb_default_setup); | 
 | 1996 |  | 
 | 1997 | static unsigned int cpuset_mems_nr(unsigned int *array) | 
 | 1998 | { | 
 | 1999 | 	int node; | 
 | 2000 | 	unsigned int nr = 0; | 
 | 2001 |  | 
 | 2002 | 	for_each_node_mask(node, cpuset_current_mems_allowed) | 
 | 2003 | 		nr += array[node]; | 
 | 2004 |  | 
 | 2005 | 	return nr; | 
 | 2006 | } | 
 | 2007 |  | 
 | 2008 | #ifdef CONFIG_SYSCTL | 
 | 2009 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, | 
 | 2010 | 			 struct ctl_table *table, int write, | 
 | 2011 | 			 void __user *buffer, size_t *length, loff_t *ppos) | 
 | 2012 | { | 
 | 2013 | 	struct hstate *h = &default_hstate; | 
 | 2014 | 	unsigned long tmp; | 
 | 2015 | 	int ret; | 
 | 2016 |  | 
 | 2017 | 	tmp = h->max_huge_pages; | 
 | 2018 |  | 
 | 2019 | 	if (write && h->order >= MAX_ORDER) | 
 | 2020 | 		return -EINVAL; | 
 | 2021 |  | 
 | 2022 | 	table->data = &tmp; | 
 | 2023 | 	table->maxlen = sizeof(unsigned long); | 
 | 2024 | 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
 | 2025 | 	if (ret) | 
 | 2026 | 		goto out; | 
 | 2027 |  | 
 | 2028 | 	if (write) { | 
 | 2029 | 		NODEMASK_ALLOC(nodemask_t, nodes_allowed, | 
 | 2030 | 						GFP_KERNEL | __GFP_NORETRY); | 
 | 2031 | 		if (!(obey_mempolicy && | 
 | 2032 | 			       init_nodemask_of_mempolicy(nodes_allowed))) { | 
 | 2033 | 			NODEMASK_FREE(nodes_allowed); | 
 | 2034 | 			nodes_allowed = &node_states[N_HIGH_MEMORY]; | 
 | 2035 | 		} | 
 | 2036 | 		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); | 
 | 2037 |  | 
 | 2038 | 		if (nodes_allowed != &node_states[N_HIGH_MEMORY]) | 
 | 2039 | 			NODEMASK_FREE(nodes_allowed); | 
 | 2040 | 	} | 
 | 2041 | out: | 
 | 2042 | 	return ret; | 
 | 2043 | } | 
 | 2044 |  | 
 | 2045 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, | 
 | 2046 | 			  void __user *buffer, size_t *length, loff_t *ppos) | 
 | 2047 | { | 
 | 2048 |  | 
 | 2049 | 	return hugetlb_sysctl_handler_common(false, table, write, | 
 | 2050 | 							buffer, length, ppos); | 
 | 2051 | } | 
 | 2052 |  | 
 | 2053 | #ifdef CONFIG_NUMA | 
 | 2054 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | 
 | 2055 | 			  void __user *buffer, size_t *length, loff_t *ppos) | 
 | 2056 | { | 
 | 2057 | 	return hugetlb_sysctl_handler_common(true, table, write, | 
 | 2058 | 							buffer, length, ppos); | 
 | 2059 | } | 
 | 2060 | #endif /* CONFIG_NUMA */ | 
 | 2061 |  | 
 | 2062 | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, | 
 | 2063 | 			void __user *buffer, | 
 | 2064 | 			size_t *length, loff_t *ppos) | 
 | 2065 | { | 
 | 2066 | 	proc_dointvec(table, write, buffer, length, ppos); | 
 | 2067 | 	if (hugepages_treat_as_movable) | 
 | 2068 | 		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | 
 | 2069 | 	else | 
 | 2070 | 		htlb_alloc_mask = GFP_HIGHUSER; | 
 | 2071 | 	return 0; | 
 | 2072 | } | 
 | 2073 |  | 
 | 2074 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, | 
 | 2075 | 			void __user *buffer, | 
 | 2076 | 			size_t *length, loff_t *ppos) | 
 | 2077 | { | 
 | 2078 | 	struct hstate *h = &default_hstate; | 
 | 2079 | 	unsigned long tmp; | 
 | 2080 | 	int ret; | 
 | 2081 |  | 
 | 2082 | 	tmp = h->nr_overcommit_huge_pages; | 
 | 2083 |  | 
 | 2084 | 	if (write && h->order >= MAX_ORDER) | 
 | 2085 | 		return -EINVAL; | 
 | 2086 |  | 
 | 2087 | 	table->data = &tmp; | 
 | 2088 | 	table->maxlen = sizeof(unsigned long); | 
 | 2089 | 	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); | 
 | 2090 | 	if (ret) | 
 | 2091 | 		goto out; | 
 | 2092 |  | 
 | 2093 | 	if (write) { | 
 | 2094 | 		spin_lock(&hugetlb_lock); | 
 | 2095 | 		h->nr_overcommit_huge_pages = tmp; | 
 | 2096 | 		spin_unlock(&hugetlb_lock); | 
 | 2097 | 	} | 
 | 2098 | out: | 
 | 2099 | 	return ret; | 
 | 2100 | } | 
 | 2101 |  | 
 | 2102 | #endif /* CONFIG_SYSCTL */ | 
 | 2103 |  | 
 | 2104 | void hugetlb_report_meminfo(struct seq_file *m) | 
 | 2105 | { | 
 | 2106 | 	struct hstate *h = &default_hstate; | 
 | 2107 | 	seq_printf(m, | 
 | 2108 | 			"HugePages_Total:   %5lu\n" | 
 | 2109 | 			"HugePages_Free:    %5lu\n" | 
 | 2110 | 			"HugePages_Rsvd:    %5lu\n" | 
 | 2111 | 			"HugePages_Surp:    %5lu\n" | 
 | 2112 | 			"Hugepagesize:   %8lu kB\n", | 
 | 2113 | 			h->nr_huge_pages, | 
 | 2114 | 			h->free_huge_pages, | 
 | 2115 | 			h->resv_huge_pages, | 
 | 2116 | 			h->surplus_huge_pages, | 
 | 2117 | 			1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | 
 | 2118 | } | 
 | 2119 |  | 
 | 2120 | int hugetlb_report_node_meminfo(int nid, char *buf) | 
 | 2121 | { | 
 | 2122 | 	struct hstate *h = &default_hstate; | 
 | 2123 | 	return sprintf(buf, | 
 | 2124 | 		"Node %d HugePages_Total: %5u\n" | 
 | 2125 | 		"Node %d HugePages_Free:  %5u\n" | 
 | 2126 | 		"Node %d HugePages_Surp:  %5u\n", | 
 | 2127 | 		nid, h->nr_huge_pages_node[nid], | 
 | 2128 | 		nid, h->free_huge_pages_node[nid], | 
 | 2129 | 		nid, h->surplus_huge_pages_node[nid]); | 
 | 2130 | } | 
 | 2131 |  | 
 | 2132 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ | 
 | 2133 | unsigned long hugetlb_total_pages(void) | 
 | 2134 | { | 
 | 2135 | 	struct hstate *h; | 
 | 2136 | 	unsigned long nr_total_pages = 0; | 
 | 2137 |  | 
 | 2138 | 	for_each_hstate(h) | 
 | 2139 | 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | 
 | 2140 | 	return nr_total_pages; | 
 | 2141 | } | 
 | 2142 |  | 
 | 2143 | static int hugetlb_acct_memory(struct hstate *h, long delta) | 
 | 2144 | { | 
 | 2145 | 	int ret = -ENOMEM; | 
 | 2146 |  | 
 | 2147 | 	spin_lock(&hugetlb_lock); | 
 | 2148 | 	/* | 
 | 2149 | 	 * When cpuset is configured, it breaks the strict hugetlb page | 
 | 2150 | 	 * reservation as the accounting is done on a global variable. Such | 
 | 2151 | 	 * reservation is completely rubbish in the presence of cpuset because | 
 | 2152 | 	 * the reservation is not checked against page availability for the | 
 | 2153 | 	 * current cpuset. Application can still potentially OOM'ed by kernel | 
 | 2154 | 	 * with lack of free htlb page in cpuset that the task is in. | 
 | 2155 | 	 * Attempt to enforce strict accounting with cpuset is almost | 
 | 2156 | 	 * impossible (or too ugly) because cpuset is too fluid that | 
 | 2157 | 	 * task or memory node can be dynamically moved between cpusets. | 
 | 2158 | 	 * | 
 | 2159 | 	 * The change of semantics for shared hugetlb mapping with cpuset is | 
 | 2160 | 	 * undesirable. However, in order to preserve some of the semantics, | 
 | 2161 | 	 * we fall back to check against current free page availability as | 
 | 2162 | 	 * a best attempt and hopefully to minimize the impact of changing | 
 | 2163 | 	 * semantics that cpuset has. | 
 | 2164 | 	 */ | 
 | 2165 | 	if (delta > 0) { | 
 | 2166 | 		if (gather_surplus_pages(h, delta) < 0) | 
 | 2167 | 			goto out; | 
 | 2168 |  | 
 | 2169 | 		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { | 
 | 2170 | 			return_unused_surplus_pages(h, delta); | 
 | 2171 | 			goto out; | 
 | 2172 | 		} | 
 | 2173 | 	} | 
 | 2174 |  | 
 | 2175 | 	ret = 0; | 
 | 2176 | 	if (delta < 0) | 
 | 2177 | 		return_unused_surplus_pages(h, (unsigned long) -delta); | 
 | 2178 |  | 
 | 2179 | out: | 
 | 2180 | 	spin_unlock(&hugetlb_lock); | 
 | 2181 | 	return ret; | 
 | 2182 | } | 
 | 2183 |  | 
 | 2184 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) | 
 | 2185 | { | 
 | 2186 | 	struct resv_map *reservations = vma_resv_map(vma); | 
 | 2187 |  | 
 | 2188 | 	/* | 
 | 2189 | 	 * This new VMA should share its siblings reservation map if present. | 
 | 2190 | 	 * The VMA will only ever have a valid reservation map pointer where | 
 | 2191 | 	 * it is being copied for another still existing VMA.  As that VMA | 
 | 2192 | 	 * has a reference to the reservation map it cannot disappear until | 
 | 2193 | 	 * after this open call completes.  It is therefore safe to take a | 
 | 2194 | 	 * new reference here without additional locking. | 
 | 2195 | 	 */ | 
 | 2196 | 	if (reservations) | 
 | 2197 | 		kref_get(&reservations->refs); | 
 | 2198 | } | 
 | 2199 |  | 
 | 2200 | static void resv_map_put(struct vm_area_struct *vma) | 
 | 2201 | { | 
 | 2202 | 	struct resv_map *reservations = vma_resv_map(vma); | 
 | 2203 |  | 
 | 2204 | 	if (!reservations) | 
 | 2205 | 		return; | 
 | 2206 | 	kref_put(&reservations->refs, resv_map_release); | 
 | 2207 | } | 
 | 2208 |  | 
 | 2209 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) | 
 | 2210 | { | 
 | 2211 | 	struct hstate *h = hstate_vma(vma); | 
 | 2212 | 	struct resv_map *reservations = vma_resv_map(vma); | 
 | 2213 | 	struct hugepage_subpool *spool = subpool_vma(vma); | 
 | 2214 | 	unsigned long reserve; | 
 | 2215 | 	unsigned long start; | 
 | 2216 | 	unsigned long end; | 
 | 2217 |  | 
 | 2218 | 	if (reservations) { | 
 | 2219 | 		start = vma_hugecache_offset(h, vma, vma->vm_start); | 
 | 2220 | 		end = vma_hugecache_offset(h, vma, vma->vm_end); | 
 | 2221 |  | 
 | 2222 | 		reserve = (end - start) - | 
 | 2223 | 			region_count(&reservations->regions, start, end); | 
 | 2224 |  | 
 | 2225 | 		resv_map_put(vma); | 
 | 2226 |  | 
 | 2227 | 		if (reserve) { | 
 | 2228 | 			hugetlb_acct_memory(h, -reserve); | 
 | 2229 | 			hugepage_subpool_put_pages(spool, reserve); | 
 | 2230 | 		} | 
 | 2231 | 	} | 
 | 2232 | } | 
 | 2233 |  | 
 | 2234 | /* | 
 | 2235 |  * We cannot handle pagefaults against hugetlb pages at all.  They cause | 
 | 2236 |  * handle_mm_fault() to try to instantiate regular-sized pages in the | 
 | 2237 |  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get | 
 | 2238 |  * this far. | 
 | 2239 |  */ | 
 | 2240 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
 | 2241 | { | 
 | 2242 | 	BUG(); | 
 | 2243 | 	return 0; | 
 | 2244 | } | 
 | 2245 |  | 
 | 2246 | const struct vm_operations_struct hugetlb_vm_ops = { | 
 | 2247 | 	.fault = hugetlb_vm_op_fault, | 
 | 2248 | 	.open = hugetlb_vm_op_open, | 
 | 2249 | 	.close = hugetlb_vm_op_close, | 
 | 2250 | }; | 
 | 2251 |  | 
 | 2252 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, | 
 | 2253 | 				int writable) | 
 | 2254 | { | 
 | 2255 | 	pte_t entry; | 
 | 2256 |  | 
 | 2257 | 	if (writable) { | 
 | 2258 | 		entry = | 
 | 2259 | 		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | 
 | 2260 | 	} else { | 
 | 2261 | 		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); | 
 | 2262 | 	} | 
 | 2263 | 	entry = pte_mkyoung(entry); | 
 | 2264 | 	entry = pte_mkhuge(entry); | 
 | 2265 |  | 
 | 2266 | 	return entry; | 
 | 2267 | } | 
 | 2268 |  | 
 | 2269 | static void set_huge_ptep_writable(struct vm_area_struct *vma, | 
 | 2270 | 				   unsigned long address, pte_t *ptep) | 
 | 2271 | { | 
 | 2272 | 	pte_t entry; | 
 | 2273 |  | 
 | 2274 | 	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); | 
 | 2275 | 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) | 
 | 2276 | 		update_mmu_cache(vma, address, ptep); | 
 | 2277 | } | 
 | 2278 |  | 
 | 2279 | static int is_hugetlb_entry_migration(pte_t pte) | 
 | 2280 | { | 
 | 2281 | 	swp_entry_t swp; | 
 | 2282 |  | 
 | 2283 | 	if (huge_pte_none(pte) || pte_present(pte)) | 
 | 2284 | 		return 0; | 
 | 2285 | 	swp = pte_to_swp_entry(pte); | 
 | 2286 | 	if (non_swap_entry(swp) && is_migration_entry(swp)) | 
 | 2287 | 		return 1; | 
 | 2288 | 	else | 
 | 2289 | 		return 0; | 
 | 2290 | } | 
 | 2291 |  | 
 | 2292 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | 
 | 2293 | { | 
 | 2294 | 	swp_entry_t swp; | 
 | 2295 |  | 
 | 2296 | 	if (huge_pte_none(pte) || pte_present(pte)) | 
 | 2297 | 		return 0; | 
 | 2298 | 	swp = pte_to_swp_entry(pte); | 
 | 2299 | 	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) | 
 | 2300 | 		return 1; | 
 | 2301 | 	else | 
 | 2302 | 		return 0; | 
 | 2303 | } | 
 | 2304 |  | 
 | 2305 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | 
 | 2306 | 			    struct vm_area_struct *vma) | 
 | 2307 | { | 
 | 2308 | 	pte_t *src_pte, *dst_pte, entry; | 
 | 2309 | 	struct page *ptepage; | 
 | 2310 | 	unsigned long addr; | 
 | 2311 | 	int cow; | 
 | 2312 | 	struct hstate *h = hstate_vma(vma); | 
 | 2313 | 	unsigned long sz = huge_page_size(h); | 
 | 2314 |  | 
 | 2315 | 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | 
 | 2316 |  | 
 | 2317 | 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { | 
 | 2318 | 		src_pte = huge_pte_offset(src, addr); | 
 | 2319 | 		if (!src_pte) | 
 | 2320 | 			continue; | 
 | 2321 | 		dst_pte = huge_pte_alloc(dst, addr, sz); | 
 | 2322 | 		if (!dst_pte) | 
 | 2323 | 			goto nomem; | 
 | 2324 |  | 
 | 2325 | 		/* If the pagetables are shared don't copy or take references */ | 
 | 2326 | 		if (dst_pte == src_pte) | 
 | 2327 | 			continue; | 
 | 2328 |  | 
 | 2329 | 		spin_lock(&dst->page_table_lock); | 
 | 2330 | 		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); | 
 | 2331 | 		entry = huge_ptep_get(src_pte); | 
 | 2332 | 		if (huge_pte_none(entry)) { /* skip none entry */ | 
 | 2333 | 			; | 
 | 2334 | 		} else if (unlikely(is_hugetlb_entry_migration(entry) || | 
 | 2335 | 				    is_hugetlb_entry_hwpoisoned(entry))) { | 
 | 2336 | 			swp_entry_t swp_entry = pte_to_swp_entry(entry); | 
 | 2337 |  | 
 | 2338 | 			if (is_write_migration_entry(swp_entry) && cow) { | 
 | 2339 | 				/* | 
 | 2340 | 				 * COW mappings require pages in both | 
 | 2341 | 				 * parent and child to be set to read. | 
 | 2342 | 				 */ | 
 | 2343 | 				make_migration_entry_read(&swp_entry); | 
 | 2344 | 				entry = swp_entry_to_pte(swp_entry); | 
 | 2345 | 				set_huge_pte_at(src, addr, src_pte, entry); | 
 | 2346 | 			} | 
 | 2347 | 			set_huge_pte_at(dst, addr, dst_pte, entry); | 
 | 2348 | 		} else { | 
 | 2349 | 			if (cow) | 
 | 2350 | 				huge_ptep_set_wrprotect(src, addr, src_pte); | 
 | 2351 | 			entry = huge_ptep_get(src_pte); | 
 | 2352 | 			ptepage = pte_page(entry); | 
 | 2353 | 			get_page(ptepage); | 
 | 2354 | 			page_dup_rmap(ptepage); | 
 | 2355 | 			set_huge_pte_at(dst, addr, dst_pte, entry); | 
 | 2356 | 		} | 
 | 2357 | 		spin_unlock(&src->page_table_lock); | 
 | 2358 | 		spin_unlock(&dst->page_table_lock); | 
 | 2359 | 	} | 
 | 2360 | 	return 0; | 
 | 2361 |  | 
 | 2362 | nomem: | 
 | 2363 | 	return -ENOMEM; | 
 | 2364 | } | 
 | 2365 |  | 
 | 2366 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
 | 2367 | 			    unsigned long end, struct page *ref_page) | 
 | 2368 | { | 
 | 2369 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 2370 | 	unsigned long address; | 
 | 2371 | 	pte_t *ptep; | 
 | 2372 | 	pte_t pte; | 
 | 2373 | 	struct page *page; | 
 | 2374 | 	struct page *tmp; | 
 | 2375 | 	struct hstate *h = hstate_vma(vma); | 
 | 2376 | 	unsigned long sz = huge_page_size(h); | 
 | 2377 |  | 
 | 2378 | 	/* | 
 | 2379 | 	 * A page gathering list, protected by per file i_mmap_mutex. The | 
 | 2380 | 	 * lock is used to avoid list corruption from multiple unmapping | 
 | 2381 | 	 * of the same page since we are using page->lru. | 
 | 2382 | 	 */ | 
 | 2383 | 	LIST_HEAD(page_list); | 
 | 2384 |  | 
 | 2385 | 	WARN_ON(!is_vm_hugetlb_page(vma)); | 
 | 2386 | 	BUG_ON(start & ~huge_page_mask(h)); | 
 | 2387 | 	BUG_ON(end & ~huge_page_mask(h)); | 
 | 2388 |  | 
 | 2389 | 	mmu_notifier_invalidate_range_start(mm, start, end); | 
 | 2390 | 	spin_lock(&mm->page_table_lock); | 
 | 2391 | 	for (address = start; address < end; address += sz) { | 
 | 2392 | 		ptep = huge_pte_offset(mm, address); | 
 | 2393 | 		if (!ptep) | 
 | 2394 | 			continue; | 
 | 2395 |  | 
 | 2396 | 		if (huge_pmd_unshare(mm, &address, ptep)) | 
 | 2397 | 			continue; | 
 | 2398 |  | 
 | 2399 | 		pte = huge_ptep_get(ptep); | 
 | 2400 | 		if (huge_pte_none(pte)) | 
 | 2401 | 			continue; | 
 | 2402 |  | 
 | 2403 | 		/* | 
 | 2404 | 		 * Migrating hugepage or HWPoisoned hugepage is already | 
 | 2405 | 		 * unmapped and its refcount is dropped | 
 | 2406 | 		 */ | 
 | 2407 | 		if (unlikely(!pte_present(pte))) | 
 | 2408 | 			continue; | 
 | 2409 |  | 
 | 2410 | 		page = pte_page(pte); | 
 | 2411 | 		/* | 
 | 2412 | 		 * If a reference page is supplied, it is because a specific | 
 | 2413 | 		 * page is being unmapped, not a range. Ensure the page we | 
 | 2414 | 		 * are about to unmap is the actual page of interest. | 
 | 2415 | 		 */ | 
 | 2416 | 		if (ref_page) { | 
 | 2417 | 			if (page != ref_page) | 
 | 2418 | 				continue; | 
 | 2419 |  | 
 | 2420 | 			/* | 
 | 2421 | 			 * Mark the VMA as having unmapped its page so that | 
 | 2422 | 			 * future faults in this VMA will fail rather than | 
 | 2423 | 			 * looking like data was lost | 
 | 2424 | 			 */ | 
 | 2425 | 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | 
 | 2426 | 		} | 
 | 2427 |  | 
 | 2428 | 		pte = huge_ptep_get_and_clear(mm, address, ptep); | 
 | 2429 | 		if (pte_dirty(pte)) | 
 | 2430 | 			set_page_dirty(page); | 
 | 2431 | 		list_add(&page->lru, &page_list); | 
 | 2432 |  | 
 | 2433 | 		/* Bail out after unmapping reference page if supplied */ | 
 | 2434 | 		if (ref_page) | 
 | 2435 | 			break; | 
 | 2436 | 	} | 
 | 2437 | 	flush_tlb_range(vma, start, end); | 
 | 2438 | 	spin_unlock(&mm->page_table_lock); | 
 | 2439 | 	mmu_notifier_invalidate_range_end(mm, start, end); | 
 | 2440 | 	list_for_each_entry_safe(page, tmp, &page_list, lru) { | 
 | 2441 | 		page_remove_rmap(page); | 
 | 2442 | 		list_del(&page->lru); | 
 | 2443 | 		put_page(page); | 
 | 2444 | 	} | 
 | 2445 | } | 
 | 2446 |  | 
 | 2447 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 
 | 2448 | 			  unsigned long end, struct page *ref_page) | 
 | 2449 | { | 
 | 2450 | 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); | 
 | 2451 | 	__unmap_hugepage_range(vma, start, end, ref_page); | 
 | 2452 | 	/* | 
 | 2453 | 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable | 
 | 2454 | 	 * test will fail on a vma being torn down, and not grab a page table | 
 | 2455 | 	 * on its way out.  We're lucky that the flag has such an appropriate | 
 | 2456 | 	 * name, and can in fact be safely cleared here. We could clear it | 
 | 2457 | 	 * before the __unmap_hugepage_range above, but all that's necessary | 
 | 2458 | 	 * is to clear it before releasing the i_mmap_mutex below. | 
 | 2459 | 	 * | 
 | 2460 | 	 * This works because in the contexts this is called, the VMA is | 
 | 2461 | 	 * going to be destroyed. It is not vunerable to madvise(DONTNEED) | 
 | 2462 | 	 * because madvise is not supported on hugetlbfs. The same applies | 
 | 2463 | 	 * for direct IO. unmap_hugepage_range() is only being called just | 
 | 2464 | 	 * before free_pgtables() so clearing VM_MAYSHARE will not cause | 
 | 2465 | 	 * surprises later. | 
 | 2466 | 	 */ | 
 | 2467 | 	vma->vm_flags &= ~VM_MAYSHARE; | 
 | 2468 | 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); | 
 | 2469 | } | 
 | 2470 |  | 
 | 2471 | /* | 
 | 2472 |  * This is called when the original mapper is failing to COW a MAP_PRIVATE | 
 | 2473 |  * mappping it owns the reserve page for. The intention is to unmap the page | 
 | 2474 |  * from other VMAs and let the children be SIGKILLed if they are faulting the | 
 | 2475 |  * same region. | 
 | 2476 |  */ | 
 | 2477 | static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 2478 | 				struct page *page, unsigned long address) | 
 | 2479 | { | 
 | 2480 | 	struct hstate *h = hstate_vma(vma); | 
 | 2481 | 	struct vm_area_struct *iter_vma; | 
 | 2482 | 	struct address_space *mapping; | 
 | 2483 | 	struct prio_tree_iter iter; | 
 | 2484 | 	pgoff_t pgoff; | 
 | 2485 |  | 
 | 2486 | 	/* | 
 | 2487 | 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation | 
 | 2488 | 	 * from page cache lookup which is in HPAGE_SIZE units. | 
 | 2489 | 	 */ | 
 | 2490 | 	address = address & huge_page_mask(h); | 
 | 2491 | 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + | 
 | 2492 | 			vma->vm_pgoff; | 
 | 2493 | 	mapping = vma->vm_file->f_dentry->d_inode->i_mapping; | 
 | 2494 |  | 
 | 2495 | 	/* | 
 | 2496 | 	 * Take the mapping lock for the duration of the table walk. As | 
 | 2497 | 	 * this mapping should be shared between all the VMAs, | 
 | 2498 | 	 * __unmap_hugepage_range() is called as the lock is already held | 
 | 2499 | 	 */ | 
 | 2500 | 	mutex_lock(&mapping->i_mmap_mutex); | 
 | 2501 | 	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
 | 2502 | 		/* Do not unmap the current VMA */ | 
 | 2503 | 		if (iter_vma == vma) | 
 | 2504 | 			continue; | 
 | 2505 |  | 
 | 2506 | 		/* | 
 | 2507 | 		 * Unmap the page from other VMAs without their own reserves. | 
 | 2508 | 		 * They get marked to be SIGKILLed if they fault in these | 
 | 2509 | 		 * areas. This is because a future no-page fault on this VMA | 
 | 2510 | 		 * could insert a zeroed page instead of the data existing | 
 | 2511 | 		 * from the time of fork. This would look like data corruption | 
 | 2512 | 		 */ | 
 | 2513 | 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | 
 | 2514 | 			__unmap_hugepage_range(iter_vma, | 
 | 2515 | 				address, address + huge_page_size(h), | 
 | 2516 | 				page); | 
 | 2517 | 	} | 
 | 2518 | 	mutex_unlock(&mapping->i_mmap_mutex); | 
 | 2519 |  | 
 | 2520 | 	return 1; | 
 | 2521 | } | 
 | 2522 |  | 
 | 2523 | /* | 
 | 2524 |  * Hugetlb_cow() should be called with page lock of the original hugepage held. | 
 | 2525 |  * Called with hugetlb_instantiation_mutex held and pte_page locked so we | 
 | 2526 |  * cannot race with other handlers or page migration. | 
 | 2527 |  * Keep the pte_same checks anyway to make transition from the mutex easier. | 
 | 2528 |  */ | 
 | 2529 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 2530 | 			unsigned long address, pte_t *ptep, pte_t pte, | 
 | 2531 | 			struct page *pagecache_page) | 
 | 2532 | { | 
 | 2533 | 	struct hstate *h = hstate_vma(vma); | 
 | 2534 | 	struct page *old_page, *new_page; | 
 | 2535 | 	int avoidcopy; | 
 | 2536 | 	int outside_reserve = 0; | 
 | 2537 |  | 
 | 2538 | 	old_page = pte_page(pte); | 
 | 2539 |  | 
 | 2540 | retry_avoidcopy: | 
 | 2541 | 	/* If no-one else is actually using this page, avoid the copy | 
 | 2542 | 	 * and just make the page writable */ | 
 | 2543 | 	avoidcopy = (page_mapcount(old_page) == 1); | 
 | 2544 | 	if (avoidcopy) { | 
 | 2545 | 		if (PageAnon(old_page)) | 
 | 2546 | 			page_move_anon_rmap(old_page, vma, address); | 
 | 2547 | 		set_huge_ptep_writable(vma, address, ptep); | 
 | 2548 | 		return 0; | 
 | 2549 | 	} | 
 | 2550 |  | 
 | 2551 | 	/* | 
 | 2552 | 	 * If the process that created a MAP_PRIVATE mapping is about to | 
 | 2553 | 	 * perform a COW due to a shared page count, attempt to satisfy | 
 | 2554 | 	 * the allocation without using the existing reserves. The pagecache | 
 | 2555 | 	 * page is used to determine if the reserve at this address was | 
 | 2556 | 	 * consumed or not. If reserves were used, a partial faulted mapping | 
 | 2557 | 	 * at the time of fork() could consume its reserves on COW instead | 
 | 2558 | 	 * of the full address range. | 
 | 2559 | 	 */ | 
 | 2560 | 	if (!(vma->vm_flags & VM_MAYSHARE) && | 
 | 2561 | 			is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | 
 | 2562 | 			old_page != pagecache_page) | 
 | 2563 | 		outside_reserve = 1; | 
 | 2564 |  | 
 | 2565 | 	page_cache_get(old_page); | 
 | 2566 |  | 
 | 2567 | 	/* Drop page_table_lock as buddy allocator may be called */ | 
 | 2568 | 	spin_unlock(&mm->page_table_lock); | 
 | 2569 | 	new_page = alloc_huge_page(vma, address, outside_reserve); | 
 | 2570 |  | 
 | 2571 | 	if (IS_ERR(new_page)) { | 
 | 2572 | 		page_cache_release(old_page); | 
 | 2573 |  | 
 | 2574 | 		/* | 
 | 2575 | 		 * If a process owning a MAP_PRIVATE mapping fails to COW, | 
 | 2576 | 		 * it is due to references held by a child and an insufficient | 
 | 2577 | 		 * huge page pool. To guarantee the original mappers | 
 | 2578 | 		 * reliability, unmap the page from child processes. The child | 
 | 2579 | 		 * may get SIGKILLed if it later faults. | 
 | 2580 | 		 */ | 
 | 2581 | 		if (outside_reserve) { | 
 | 2582 | 			BUG_ON(huge_pte_none(pte)); | 
 | 2583 | 			if (unmap_ref_private(mm, vma, old_page, address)) { | 
 | 2584 | 				BUG_ON(huge_pte_none(pte)); | 
 | 2585 | 				spin_lock(&mm->page_table_lock); | 
 | 2586 | 				ptep = huge_pte_offset(mm, address & huge_page_mask(h)); | 
 | 2587 | 				if (likely(pte_same(huge_ptep_get(ptep), pte))) | 
 | 2588 | 					goto retry_avoidcopy; | 
 | 2589 | 				/* | 
 | 2590 | 				 * race occurs while re-acquiring page_table_lock, and | 
 | 2591 | 				 * our job is done. | 
 | 2592 | 				 */ | 
 | 2593 | 				return 0; | 
 | 2594 | 			} | 
 | 2595 | 			WARN_ON_ONCE(1); | 
 | 2596 | 		} | 
 | 2597 |  | 
 | 2598 | 		/* Caller expects lock to be held */ | 
 | 2599 | 		spin_lock(&mm->page_table_lock); | 
 | 2600 | 		return -PTR_ERR(new_page); | 
 | 2601 | 	} | 
 | 2602 |  | 
 | 2603 | 	/* | 
 | 2604 | 	 * When the original hugepage is shared one, it does not have | 
 | 2605 | 	 * anon_vma prepared. | 
 | 2606 | 	 */ | 
 | 2607 | 	if (unlikely(anon_vma_prepare(vma))) { | 
 | 2608 | 		page_cache_release(new_page); | 
 | 2609 | 		page_cache_release(old_page); | 
 | 2610 | 		/* Caller expects lock to be held */ | 
 | 2611 | 		spin_lock(&mm->page_table_lock); | 
 | 2612 | 		return VM_FAULT_OOM; | 
 | 2613 | 	} | 
 | 2614 |  | 
 | 2615 | 	copy_user_huge_page(new_page, old_page, address, vma, | 
 | 2616 | 			    pages_per_huge_page(h)); | 
 | 2617 | 	__SetPageUptodate(new_page); | 
 | 2618 |  | 
 | 2619 | 	/* | 
 | 2620 | 	 * Retake the page_table_lock to check for racing updates | 
 | 2621 | 	 * before the page tables are altered | 
 | 2622 | 	 */ | 
 | 2623 | 	spin_lock(&mm->page_table_lock); | 
 | 2624 | 	ptep = huge_pte_offset(mm, address & huge_page_mask(h)); | 
 | 2625 | 	if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 
 | 2626 | 		/* Break COW */ | 
 | 2627 | 		mmu_notifier_invalidate_range_start(mm, | 
 | 2628 | 			address & huge_page_mask(h), | 
 | 2629 | 			(address & huge_page_mask(h)) + huge_page_size(h)); | 
 | 2630 | 		huge_ptep_clear_flush(vma, address, ptep); | 
 | 2631 | 		set_huge_pte_at(mm, address, ptep, | 
 | 2632 | 				make_huge_pte(vma, new_page, 1)); | 
 | 2633 | 		page_remove_rmap(old_page); | 
 | 2634 | 		hugepage_add_new_anon_rmap(new_page, vma, address); | 
 | 2635 | 		/* Make the old page be freed below */ | 
 | 2636 | 		new_page = old_page; | 
 | 2637 | 		mmu_notifier_invalidate_range_end(mm, | 
 | 2638 | 			address & huge_page_mask(h), | 
 | 2639 | 			(address & huge_page_mask(h)) + huge_page_size(h)); | 
 | 2640 | 	} | 
 | 2641 | 	page_cache_release(new_page); | 
 | 2642 | 	page_cache_release(old_page); | 
 | 2643 | 	return 0; | 
 | 2644 | } | 
 | 2645 |  | 
 | 2646 | /* Return the pagecache page at a given address within a VMA */ | 
 | 2647 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, | 
 | 2648 | 			struct vm_area_struct *vma, unsigned long address) | 
 | 2649 | { | 
 | 2650 | 	struct address_space *mapping; | 
 | 2651 | 	pgoff_t idx; | 
 | 2652 |  | 
 | 2653 | 	mapping = vma->vm_file->f_mapping; | 
 | 2654 | 	idx = vma_hugecache_offset(h, vma, address); | 
 | 2655 |  | 
 | 2656 | 	return find_lock_page(mapping, idx); | 
 | 2657 | } | 
 | 2658 |  | 
 | 2659 | /* | 
 | 2660 |  * Return whether there is a pagecache page to back given address within VMA. | 
 | 2661 |  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | 
 | 2662 |  */ | 
 | 2663 | static bool hugetlbfs_pagecache_present(struct hstate *h, | 
 | 2664 | 			struct vm_area_struct *vma, unsigned long address) | 
 | 2665 | { | 
 | 2666 | 	struct address_space *mapping; | 
 | 2667 | 	pgoff_t idx; | 
 | 2668 | 	struct page *page; | 
 | 2669 |  | 
 | 2670 | 	mapping = vma->vm_file->f_mapping; | 
 | 2671 | 	idx = vma_hugecache_offset(h, vma, address); | 
 | 2672 |  | 
 | 2673 | 	page = find_get_page(mapping, idx); | 
 | 2674 | 	if (page) | 
 | 2675 | 		put_page(page); | 
 | 2676 | 	return page != NULL; | 
 | 2677 | } | 
 | 2678 |  | 
 | 2679 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 2680 | 			unsigned long address, pte_t *ptep, unsigned int flags) | 
 | 2681 | { | 
 | 2682 | 	struct hstate *h = hstate_vma(vma); | 
 | 2683 | 	int ret = VM_FAULT_SIGBUS; | 
 | 2684 | 	int anon_rmap = 0; | 
 | 2685 | 	pgoff_t idx; | 
 | 2686 | 	unsigned long size; | 
 | 2687 | 	struct page *page; | 
 | 2688 | 	struct address_space *mapping; | 
 | 2689 | 	pte_t new_pte; | 
 | 2690 |  | 
 | 2691 | 	/* | 
 | 2692 | 	 * Currently, we are forced to kill the process in the event the | 
 | 2693 | 	 * original mapper has unmapped pages from the child due to a failed | 
 | 2694 | 	 * COW. Warn that such a situation has occurred as it may not be obvious | 
 | 2695 | 	 */ | 
 | 2696 | 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | 
 | 2697 | 		printk(KERN_WARNING | 
 | 2698 | 			"PID %d killed due to inadequate hugepage pool\n", | 
 | 2699 | 			current->pid); | 
 | 2700 | 		return ret; | 
 | 2701 | 	} | 
 | 2702 |  | 
 | 2703 | 	mapping = vma->vm_file->f_mapping; | 
 | 2704 | 	idx = vma_hugecache_offset(h, vma, address); | 
 | 2705 |  | 
 | 2706 | 	/* | 
 | 2707 | 	 * Use page lock to guard against racing truncation | 
 | 2708 | 	 * before we get page_table_lock. | 
 | 2709 | 	 */ | 
 | 2710 | retry: | 
 | 2711 | 	page = find_lock_page(mapping, idx); | 
 | 2712 | 	if (!page) { | 
 | 2713 | 		size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 2714 | 		if (idx >= size) | 
 | 2715 | 			goto out; | 
 | 2716 | 		page = alloc_huge_page(vma, address, 0); | 
 | 2717 | 		if (IS_ERR(page)) { | 
 | 2718 | 			ret = -PTR_ERR(page); | 
 | 2719 | 			goto out; | 
 | 2720 | 		} | 
 | 2721 | 		clear_huge_page(page, address, pages_per_huge_page(h)); | 
 | 2722 | 		__SetPageUptodate(page); | 
 | 2723 |  | 
 | 2724 | 		if (vma->vm_flags & VM_MAYSHARE) { | 
 | 2725 | 			int err; | 
 | 2726 | 			struct inode *inode = mapping->host; | 
 | 2727 |  | 
 | 2728 | 			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | 
 | 2729 | 			if (err) { | 
 | 2730 | 				put_page(page); | 
 | 2731 | 				if (err == -EEXIST) | 
 | 2732 | 					goto retry; | 
 | 2733 | 				goto out; | 
 | 2734 | 			} | 
 | 2735 |  | 
 | 2736 | 			spin_lock(&inode->i_lock); | 
 | 2737 | 			inode->i_blocks += blocks_per_huge_page(h); | 
 | 2738 | 			spin_unlock(&inode->i_lock); | 
 | 2739 | 		} else { | 
 | 2740 | 			lock_page(page); | 
 | 2741 | 			if (unlikely(anon_vma_prepare(vma))) { | 
 | 2742 | 				ret = VM_FAULT_OOM; | 
 | 2743 | 				goto backout_unlocked; | 
 | 2744 | 			} | 
 | 2745 | 			anon_rmap = 1; | 
 | 2746 | 		} | 
 | 2747 | 	} else { | 
 | 2748 | 		/* | 
 | 2749 | 		 * If memory error occurs between mmap() and fault, some process | 
 | 2750 | 		 * don't have hwpoisoned swap entry for errored virtual address. | 
 | 2751 | 		 * So we need to block hugepage fault by PG_hwpoison bit check. | 
 | 2752 | 		 */ | 
 | 2753 | 		if (unlikely(PageHWPoison(page))) { | 
 | 2754 | 			ret = VM_FAULT_HWPOISON | | 
 | 2755 | 			      VM_FAULT_SET_HINDEX(h - hstates); | 
 | 2756 | 			goto backout_unlocked; | 
 | 2757 | 		} | 
 | 2758 | 	} | 
 | 2759 |  | 
 | 2760 | 	/* | 
 | 2761 | 	 * If we are going to COW a private mapping later, we examine the | 
 | 2762 | 	 * pending reservations for this page now. This will ensure that | 
 | 2763 | 	 * any allocations necessary to record that reservation occur outside | 
 | 2764 | 	 * the spinlock. | 
 | 2765 | 	 */ | 
 | 2766 | 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) | 
 | 2767 | 		if (vma_needs_reservation(h, vma, address) < 0) { | 
 | 2768 | 			ret = VM_FAULT_OOM; | 
 | 2769 | 			goto backout_unlocked; | 
 | 2770 | 		} | 
 | 2771 |  | 
 | 2772 | 	spin_lock(&mm->page_table_lock); | 
 | 2773 | 	size = i_size_read(mapping->host) >> huge_page_shift(h); | 
 | 2774 | 	if (idx >= size) | 
 | 2775 | 		goto backout; | 
 | 2776 |  | 
 | 2777 | 	ret = 0; | 
 | 2778 | 	if (!huge_pte_none(huge_ptep_get(ptep))) | 
 | 2779 | 		goto backout; | 
 | 2780 |  | 
 | 2781 | 	if (anon_rmap) | 
 | 2782 | 		hugepage_add_new_anon_rmap(page, vma, address); | 
 | 2783 | 	else | 
 | 2784 | 		page_dup_rmap(page); | 
 | 2785 | 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) | 
 | 2786 | 				&& (vma->vm_flags & VM_SHARED))); | 
 | 2787 | 	set_huge_pte_at(mm, address, ptep, new_pte); | 
 | 2788 |  | 
 | 2789 | 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { | 
 | 2790 | 		/* Optimization, do the COW without a second fault */ | 
 | 2791 | 		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); | 
 | 2792 | 	} | 
 | 2793 |  | 
 | 2794 | 	spin_unlock(&mm->page_table_lock); | 
 | 2795 | 	unlock_page(page); | 
 | 2796 | out: | 
 | 2797 | 	return ret; | 
 | 2798 |  | 
 | 2799 | backout: | 
 | 2800 | 	spin_unlock(&mm->page_table_lock); | 
 | 2801 | backout_unlocked: | 
 | 2802 | 	unlock_page(page); | 
 | 2803 | 	put_page(page); | 
 | 2804 | 	goto out; | 
 | 2805 | } | 
 | 2806 |  | 
 | 2807 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 2808 | 			unsigned long address, unsigned int flags) | 
 | 2809 | { | 
 | 2810 | 	pte_t *ptep; | 
 | 2811 | 	pte_t entry; | 
 | 2812 | 	int ret; | 
 | 2813 | 	struct page *page = NULL; | 
 | 2814 | 	struct page *pagecache_page = NULL; | 
 | 2815 | 	static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 
 | 2816 | 	struct hstate *h = hstate_vma(vma); | 
 | 2817 | 	int need_wait_lock = 0; | 
 | 2818 |  | 
 | 2819 | 	address &= huge_page_mask(h); | 
 | 2820 |  | 
 | 2821 | 	ptep = huge_pte_offset(mm, address); | 
 | 2822 | 	if (ptep) { | 
 | 2823 | 		entry = huge_ptep_get(ptep); | 
 | 2824 | 		if (unlikely(is_hugetlb_entry_migration(entry))) { | 
 | 2825 | 			migration_entry_wait_huge(mm, ptep); | 
 | 2826 | 			return 0; | 
 | 2827 | 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | 
 | 2828 | 			return VM_FAULT_HWPOISON_LARGE | | 
 | 2829 | 			       VM_FAULT_SET_HINDEX(h - hstates); | 
 | 2830 | 	} | 
 | 2831 |  | 
 | 2832 | 	ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 
 | 2833 | 	if (!ptep) | 
 | 2834 | 		return VM_FAULT_OOM; | 
 | 2835 |  | 
 | 2836 | 	/* | 
 | 2837 | 	 * Serialize hugepage allocation and instantiation, so that we don't | 
 | 2838 | 	 * get spurious allocation failures if two CPUs race to instantiate | 
 | 2839 | 	 * the same page in the page cache. | 
 | 2840 | 	 */ | 
 | 2841 | 	mutex_lock(&hugetlb_instantiation_mutex); | 
 | 2842 | 	entry = huge_ptep_get(ptep); | 
 | 2843 | 	if (huge_pte_none(entry)) { | 
 | 2844 | 		ret = hugetlb_no_page(mm, vma, address, ptep, flags); | 
 | 2845 | 		goto out_mutex; | 
 | 2846 | 	} | 
 | 2847 |  | 
 | 2848 | 	ret = 0; | 
 | 2849 |  | 
 | 2850 | 	/* | 
 | 2851 | 	 * entry could be a migration/hwpoison entry at this point, so this | 
 | 2852 | 	 * check prevents the kernel from going below assuming that we have | 
 | 2853 | 	 * a active hugepage in pagecache. This goto expects the 2nd page fault, | 
 | 2854 | 	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly | 
 | 2855 | 	 * handle it. | 
 | 2856 | 	 */ | 
 | 2857 | 	if (!pte_present(entry)) | 
 | 2858 | 		goto out_mutex; | 
 | 2859 |  | 
 | 2860 | 	/* | 
 | 2861 | 	 * If we are going to COW the mapping later, we examine the pending | 
 | 2862 | 	 * reservations for this page now. This will ensure that any | 
 | 2863 | 	 * allocations necessary to record that reservation occur outside the | 
 | 2864 | 	 * spinlock. For private mappings, we also lookup the pagecache | 
 | 2865 | 	 * page now as it is used to determine if a reservation has been | 
 | 2866 | 	 * consumed. | 
 | 2867 | 	 */ | 
 | 2868 | 	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { | 
 | 2869 | 		if (vma_needs_reservation(h, vma, address) < 0) { | 
 | 2870 | 			ret = VM_FAULT_OOM; | 
 | 2871 | 			goto out_mutex; | 
 | 2872 | 		} | 
 | 2873 |  | 
 | 2874 | 		if (!(vma->vm_flags & VM_MAYSHARE)) | 
 | 2875 | 			pagecache_page = hugetlbfs_pagecache_page(h, | 
 | 2876 | 								vma, address); | 
 | 2877 | 	} | 
 | 2878 |  | 
 | 2879 | 	spin_lock(&mm->page_table_lock); | 
 | 2880 |  | 
 | 2881 | 	/* Check for a racing update before calling hugetlb_cow */ | 
 | 2882 | 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 
 | 2883 | 		goto out_page_table_lock; | 
 | 2884 |  | 
 | 2885 | 	/* | 
 | 2886 | 	 * hugetlb_cow() requires page locks of pte_page(entry) and | 
 | 2887 | 	 * pagecache_page, so here we need take the former one | 
 | 2888 | 	 * when page != pagecache_page or !pagecache_page. | 
 | 2889 | 	 */ | 
 | 2890 | 	page = pte_page(entry); | 
 | 2891 | 	if (page != pagecache_page) | 
 | 2892 | 		if (!trylock_page(page)) { | 
 | 2893 | 			need_wait_lock = 1; | 
 | 2894 | 			goto out_page_table_lock; | 
 | 2895 | 	} | 
 | 2896 |  | 
 | 2897 | 	get_page(page); | 
 | 2898 |  | 
 | 2899 |  | 
 | 2900 | 	if (flags & FAULT_FLAG_WRITE) { | 
 | 2901 | 		if (!pte_write(entry)) { | 
 | 2902 | 			ret = hugetlb_cow(mm, vma, address, ptep, entry, | 
 | 2903 | 							pagecache_page); | 
 | 2904 | 			goto out_put_page; | 
 | 2905 | 		} | 
 | 2906 | 		entry = pte_mkdirty(entry); | 
 | 2907 | 	} | 
 | 2908 | 	entry = pte_mkyoung(entry); | 
 | 2909 | 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, | 
 | 2910 | 						flags & FAULT_FLAG_WRITE)) | 
 | 2911 | 		update_mmu_cache(vma, address, ptep); | 
 | 2912 |  | 
 | 2913 | out_put_page: | 
 | 2914 | 	if (page != pagecache_page) | 
 | 2915 | 		unlock_page(page); | 
 | 2916 | 	put_page(page); | 
 | 2917 | out_page_table_lock: | 
 | 2918 | 	spin_unlock(&mm->page_table_lock); | 
 | 2919 |  | 
 | 2920 | 	if (pagecache_page) { | 
 | 2921 | 		unlock_page(pagecache_page); | 
 | 2922 | 		put_page(pagecache_page); | 
 | 2923 | 	} | 
 | 2924 | 	if (page != pagecache_page) | 
 | 2925 | 		unlock_page(page); | 
 | 2926 | 	put_page(page); | 
 | 2927 |  | 
 | 2928 | out_mutex: | 
 | 2929 | 	mutex_unlock(&hugetlb_instantiation_mutex); | 
 | 2930 |  | 
 | 2931 | 	return ret; | 
 | 2932 | } | 
 | 2933 |  | 
 | 2934 | /* Can be overriden by architectures */ | 
 | 2935 | __attribute__((weak)) struct page * | 
 | 2936 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | 
 | 2937 | 	       pud_t *pud, int write) | 
 | 2938 | { | 
 | 2939 | 	BUG(); | 
 | 2940 | 	return NULL; | 
 | 2941 | } | 
 | 2942 |  | 
 | 2943 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 2944 | 			struct page **pages, struct vm_area_struct **vmas, | 
 | 2945 | 			unsigned long *position, int *length, int i, | 
 | 2946 | 			unsigned int flags) | 
 | 2947 | { | 
 | 2948 | 	unsigned long pfn_offset; | 
 | 2949 | 	unsigned long vaddr = *position; | 
 | 2950 | 	int remainder = *length; | 
 | 2951 | 	struct hstate *h = hstate_vma(vma); | 
 | 2952 |  | 
 | 2953 | 	spin_lock(&mm->page_table_lock); | 
 | 2954 | 	while (vaddr < vma->vm_end && remainder) { | 
 | 2955 | 		pte_t *pte; | 
 | 2956 | 		int absent; | 
 | 2957 | 		struct page *page; | 
 | 2958 |  | 
 | 2959 | 		/* | 
 | 2960 | 		 * Some archs (sparc64, sh*) have multiple pte_ts to | 
 | 2961 | 		 * each hugepage.  We have to make sure we get the | 
 | 2962 | 		 * first, for the page indexing below to work. | 
 | 2963 | 		 */ | 
 | 2964 | 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); | 
 | 2965 | 		absent = !pte || huge_pte_none(huge_ptep_get(pte)); | 
 | 2966 |  | 
 | 2967 | 		/* | 
 | 2968 | 		 * When coredumping, it suits get_dump_page if we just return | 
 | 2969 | 		 * an error where there's an empty slot with no huge pagecache | 
 | 2970 | 		 * to back it.  This way, we avoid allocating a hugepage, and | 
 | 2971 | 		 * the sparse dumpfile avoids allocating disk blocks, but its | 
 | 2972 | 		 * huge holes still show up with zeroes where they need to be. | 
 | 2973 | 		 */ | 
 | 2974 | 		if (absent && (flags & FOLL_DUMP) && | 
 | 2975 | 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) { | 
 | 2976 | 			remainder = 0; | 
 | 2977 | 			break; | 
 | 2978 | 		} | 
 | 2979 |  | 
 | 2980 | 		/* | 
 | 2981 | 		 * We need call hugetlb_fault for both hugepages under migration | 
 | 2982 | 		 * (in which case hugetlb_fault waits for the migration,) and | 
 | 2983 | 		 * hwpoisoned hugepages (in which case we need to prevent the | 
 | 2984 | 		 * caller from accessing to them.) In order to do this, we use | 
 | 2985 | 		 * here is_swap_pte instead of is_hugetlb_entry_migration and | 
 | 2986 | 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers | 
 | 2987 | 		 * both cases, and because we can't follow correct pages | 
 | 2988 | 		 * directly from any kind of swap entries. | 
 | 2989 | 		 */ | 
 | 2990 | 		if (absent || is_swap_pte(huge_ptep_get(pte)) || | 
 | 2991 | 		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { | 
 | 2992 | 			int ret; | 
 | 2993 |  | 
 | 2994 | 			spin_unlock(&mm->page_table_lock); | 
 | 2995 | 			ret = hugetlb_fault(mm, vma, vaddr, | 
 | 2996 | 				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); | 
 | 2997 | 			spin_lock(&mm->page_table_lock); | 
 | 2998 | 			if (!(ret & VM_FAULT_ERROR)) | 
 | 2999 | 				continue; | 
 | 3000 |  | 
 | 3001 | 			remainder = 0; | 
 | 3002 | 			break; | 
 | 3003 | 		} | 
 | 3004 |  | 
 | 3005 | 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; | 
 | 3006 | 		page = pte_page(huge_ptep_get(pte)); | 
 | 3007 | same_page: | 
 | 3008 | 		if (pages) { | 
 | 3009 | 			pages[i] = mem_map_offset(page, pfn_offset); | 
 | 3010 | 			get_page(pages[i]); | 
 | 3011 | 		} | 
 | 3012 |  | 
 | 3013 | 		if (vmas) | 
 | 3014 | 			vmas[i] = vma; | 
 | 3015 |  | 
 | 3016 | 		vaddr += PAGE_SIZE; | 
 | 3017 | 		++pfn_offset; | 
 | 3018 | 		--remainder; | 
 | 3019 | 		++i; | 
 | 3020 | 		if (vaddr < vma->vm_end && remainder && | 
 | 3021 | 				pfn_offset < pages_per_huge_page(h)) { | 
 | 3022 | 			/* | 
 | 3023 | 			 * We use pfn_offset to avoid touching the pageframes | 
 | 3024 | 			 * of this compound page. | 
 | 3025 | 			 */ | 
 | 3026 | 			goto same_page; | 
 | 3027 | 		} | 
 | 3028 | 	} | 
 | 3029 | 	spin_unlock(&mm->page_table_lock); | 
 | 3030 | 	*length = remainder; | 
 | 3031 | 	*position = vaddr; | 
 | 3032 |  | 
 | 3033 | 	return i ? i : -EFAULT; | 
 | 3034 | } | 
 | 3035 |  | 
 | 3036 | void hugetlb_change_protection(struct vm_area_struct *vma, | 
 | 3037 | 		unsigned long address, unsigned long end, pgprot_t newprot) | 
 | 3038 | { | 
 | 3039 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 3040 | 	unsigned long start = address; | 
 | 3041 | 	pte_t *ptep; | 
 | 3042 | 	pte_t pte; | 
 | 3043 | 	struct hstate *h = hstate_vma(vma); | 
 | 3044 |  | 
 | 3045 | 	BUG_ON(address >= end); | 
 | 3046 | 	flush_cache_range(vma, address, end); | 
 | 3047 |  | 
 | 3048 | 	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); | 
 | 3049 | 	spin_lock(&mm->page_table_lock); | 
 | 3050 | 	for (; address < end; address += huge_page_size(h)) { | 
 | 3051 | 		ptep = huge_pte_offset(mm, address); | 
 | 3052 | 		if (!ptep) | 
 | 3053 | 			continue; | 
 | 3054 | 		if (huge_pmd_unshare(mm, &address, ptep)) | 
 | 3055 | 			continue; | 
 | 3056 | 		pte = huge_ptep_get(ptep); | 
 | 3057 | 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) | 
 | 3058 | 			continue; | 
 | 3059 | 		if (unlikely(is_hugetlb_entry_migration(pte))) { | 
 | 3060 | 			swp_entry_t entry = pte_to_swp_entry(pte); | 
 | 3061 |  | 
 | 3062 | 			if (is_write_migration_entry(entry)) { | 
 | 3063 | 				pte_t newpte; | 
 | 3064 |  | 
 | 3065 | 				make_migration_entry_read(&entry); | 
 | 3066 | 				newpte = swp_entry_to_pte(entry); | 
 | 3067 | 				set_huge_pte_at(mm, address, ptep, newpte); | 
 | 3068 | 			} | 
 | 3069 | 			continue; | 
 | 3070 | 		} | 
 | 3071 | 		if (!huge_pte_none(pte)) { | 
 | 3072 | 			pte = huge_ptep_get_and_clear(mm, address, ptep); | 
 | 3073 | 			pte = pte_mkhuge(pte_modify(pte, newprot)); | 
 | 3074 | 			set_huge_pte_at(mm, address, ptep, pte); | 
 | 3075 | 		} | 
 | 3076 | 	} | 
 | 3077 | 	spin_unlock(&mm->page_table_lock); | 
 | 3078 | 	/* | 
 | 3079 | 	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare | 
 | 3080 | 	 * may have cleared our pud entry and done put_page on the page table: | 
 | 3081 | 	 * once we release i_mmap_mutex, another task can do the final put_page | 
 | 3082 | 	 * and that page table be reused and filled with junk. | 
 | 3083 | 	 */ | 
 | 3084 | 	flush_tlb_range(vma, start, end); | 
 | 3085 | 	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); | 
 | 3086 | } | 
 | 3087 |  | 
 | 3088 | int hugetlb_reserve_pages(struct inode *inode, | 
 | 3089 | 					long from, long to, | 
 | 3090 | 					struct vm_area_struct *vma, | 
 | 3091 | 					vm_flags_t vm_flags) | 
 | 3092 | { | 
 | 3093 | 	long ret, chg; | 
 | 3094 | 	struct hstate *h = hstate_inode(inode); | 
 | 3095 | 	struct hugepage_subpool *spool = subpool_inode(inode); | 
 | 3096 |  | 
 | 3097 | 	/* | 
 | 3098 | 	 * Only apply hugepage reservation if asked. At fault time, an | 
 | 3099 | 	 * attempt will be made for VM_NORESERVE to allocate a page | 
 | 3100 | 	 * without using reserves | 
 | 3101 | 	 */ | 
 | 3102 | 	if (vm_flags & VM_NORESERVE) | 
 | 3103 | 		return 0; | 
 | 3104 |  | 
 | 3105 | 	/* | 
 | 3106 | 	 * Shared mappings base their reservation on the number of pages that | 
 | 3107 | 	 * are already allocated on behalf of the file. Private mappings need | 
 | 3108 | 	 * to reserve the full area even if read-only as mprotect() may be | 
 | 3109 | 	 * called to make the mapping read-write. Assume !vma is a shm mapping | 
 | 3110 | 	 */ | 
 | 3111 | 	if (!vma || vma->vm_flags & VM_MAYSHARE) | 
 | 3112 | 		chg = region_chg(&inode->i_mapping->private_list, from, to); | 
 | 3113 | 	else { | 
 | 3114 | 		struct resv_map *resv_map = resv_map_alloc(); | 
 | 3115 | 		if (!resv_map) | 
 | 3116 | 			return -ENOMEM; | 
 | 3117 |  | 
 | 3118 | 		chg = to - from; | 
 | 3119 |  | 
 | 3120 | 		set_vma_resv_map(vma, resv_map); | 
 | 3121 | 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | 
 | 3122 | 	} | 
 | 3123 |  | 
 | 3124 | 	if (chg < 0) { | 
 | 3125 | 		ret = chg; | 
 | 3126 | 		goto out_err; | 
 | 3127 | 	} | 
 | 3128 |  | 
 | 3129 | 	/* There must be enough pages in the subpool for the mapping */ | 
 | 3130 | 	if (hugepage_subpool_get_pages(spool, chg)) { | 
 | 3131 | 		ret = -ENOSPC; | 
 | 3132 | 		goto out_err; | 
 | 3133 | 	} | 
 | 3134 |  | 
 | 3135 | 	/* | 
 | 3136 | 	 * Check enough hugepages are available for the reservation. | 
 | 3137 | 	 * Hand the pages back to the subpool if there are not | 
 | 3138 | 	 */ | 
 | 3139 | 	ret = hugetlb_acct_memory(h, chg); | 
 | 3140 | 	if (ret < 0) { | 
 | 3141 | 		hugepage_subpool_put_pages(spool, chg); | 
 | 3142 | 		goto out_err; | 
 | 3143 | 	} | 
 | 3144 |  | 
 | 3145 | 	/* | 
 | 3146 | 	 * Account for the reservations made. Shared mappings record regions | 
 | 3147 | 	 * that have reservations as they are shared by multiple VMAs. | 
 | 3148 | 	 * When the last VMA disappears, the region map says how much | 
 | 3149 | 	 * the reservation was and the page cache tells how much of | 
 | 3150 | 	 * the reservation was consumed. Private mappings are per-VMA and | 
 | 3151 | 	 * only the consumed reservations are tracked. When the VMA | 
 | 3152 | 	 * disappears, the original reservation is the VMA size and the | 
 | 3153 | 	 * consumed reservations are stored in the map. Hence, nothing | 
 | 3154 | 	 * else has to be done for private mappings here | 
 | 3155 | 	 */ | 
 | 3156 | 	if (!vma || vma->vm_flags & VM_MAYSHARE) | 
 | 3157 | 		region_add(&inode->i_mapping->private_list, from, to); | 
 | 3158 | 	return 0; | 
 | 3159 | out_err: | 
 | 3160 | 	if (vma) | 
 | 3161 | 		resv_map_put(vma); | 
 | 3162 | 	return ret; | 
 | 3163 | } | 
 | 3164 |  | 
 | 3165 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | 
 | 3166 | { | 
 | 3167 | 	struct hstate *h = hstate_inode(inode); | 
 | 3168 | 	long chg = region_truncate(&inode->i_mapping->private_list, offset); | 
 | 3169 | 	struct hugepage_subpool *spool = subpool_inode(inode); | 
 | 3170 |  | 
 | 3171 | 	spin_lock(&inode->i_lock); | 
 | 3172 | 	inode->i_blocks -= (blocks_per_huge_page(h) * freed); | 
 | 3173 | 	spin_unlock(&inode->i_lock); | 
 | 3174 |  | 
 | 3175 | 	hugepage_subpool_put_pages(spool, (chg - freed)); | 
 | 3176 | 	hugetlb_acct_memory(h, -(chg - freed)); | 
 | 3177 | } | 
 | 3178 |  | 
 | 3179 | #ifdef CONFIG_MEMORY_FAILURE | 
 | 3180 |  | 
 | 3181 | /* Should be called in hugetlb_lock */ | 
 | 3182 | static int is_hugepage_on_freelist(struct page *hpage) | 
 | 3183 | { | 
 | 3184 | 	struct page *page; | 
 | 3185 | 	struct page *tmp; | 
 | 3186 | 	struct hstate *h = page_hstate(hpage); | 
 | 3187 | 	int nid = page_to_nid(hpage); | 
 | 3188 |  | 
 | 3189 | 	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) | 
 | 3190 | 		if (page == hpage) | 
 | 3191 | 			return 1; | 
 | 3192 | 	return 0; | 
 | 3193 | } | 
 | 3194 |  | 
 | 3195 | /* | 
 | 3196 |  * This function is called from memory failure code. | 
 | 3197 |  * Assume the caller holds page lock of the head page. | 
 | 3198 |  */ | 
 | 3199 | int dequeue_hwpoisoned_huge_page(struct page *hpage) | 
 | 3200 | { | 
 | 3201 | 	struct hstate *h = page_hstate(hpage); | 
 | 3202 | 	int nid = page_to_nid(hpage); | 
 | 3203 | 	int ret = -EBUSY; | 
 | 3204 |  | 
 | 3205 | 	spin_lock(&hugetlb_lock); | 
 | 3206 | 	if (is_hugepage_on_freelist(hpage)) { | 
 | 3207 | 		list_del(&hpage->lru); | 
 | 3208 | 		set_page_refcounted(hpage); | 
 | 3209 | 		h->free_huge_pages--; | 
 | 3210 | 		h->free_huge_pages_node[nid]--; | 
 | 3211 | 		ret = 0; | 
 | 3212 | 	} | 
 | 3213 | 	spin_unlock(&hugetlb_lock); | 
 | 3214 | 	return ret; | 
 | 3215 | } | 
 | 3216 | #endif |