| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2010-2021 The OpenSSL Project Authors. All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | 5 | * this file except in compliance with the License.  You can obtain a copy | 
|  | 6 | * in the file LICENSE in the source distribution or at | 
|  | 7 | * https://www.openssl.org/source/license.html | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | #include <openssl/crypto.h> | 
|  | 11 | #include "modes_local.h" | 
|  | 12 | #include <string.h> | 
|  | 13 |  | 
|  | 14 | #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) | 
|  | 15 | typedef size_t size_t_aX __attribute((__aligned__(1))); | 
|  | 16 | #else | 
|  | 17 | typedef size_t size_t_aX; | 
|  | 18 | #endif | 
|  | 19 |  | 
|  | 20 | #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) | 
|  | 21 | /* redefine, because alignment is ensured */ | 
|  | 22 | # undef  GETU32 | 
|  | 23 | # define GETU32(p)       BSWAP4(*(const u32 *)(p)) | 
|  | 24 | # undef  PUTU32 | 
|  | 25 | # define PUTU32(p,v)     *(u32 *)(p) = BSWAP4(v) | 
|  | 26 | #endif | 
|  | 27 |  | 
|  | 28 | #define PACK(s)         ((size_t)(s)<<(sizeof(size_t)*8-16)) | 
|  | 29 | #define REDUCE1BIT(V)   do { \ | 
|  | 30 | if (sizeof(size_t)==8) { \ | 
|  | 31 | u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ | 
|  | 32 | V.lo  = (V.hi<<63)|(V.lo>>1); \ | 
|  | 33 | V.hi  = (V.hi>>1 )^T; \ | 
|  | 34 | } \ | 
|  | 35 | else { \ | 
|  | 36 | u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ | 
|  | 37 | V.lo  = (V.hi<<63)|(V.lo>>1); \ | 
|  | 38 | V.hi  = (V.hi>>1 )^((u64)T<<32); \ | 
|  | 39 | } \ | 
|  | 40 | } while(0) | 
|  | 41 |  | 
|  | 42 | /*- | 
|  | 43 | * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should | 
|  | 44 | * never be set to 8. 8 is effectively reserved for testing purposes. | 
|  | 45 | * TABLE_BITS>1 are lookup-table-driven implementations referred to as | 
|  | 46 | * "Shoup's" in GCM specification. In other words OpenSSL does not cover | 
|  | 47 | * whole spectrum of possible table driven implementations. Why? In | 
|  | 48 | * non-"Shoup's" case memory access pattern is segmented in such manner, | 
|  | 49 | * that it's trivial to see that cache timing information can reveal | 
|  | 50 | * fair portion of intermediate hash value. Given that ciphertext is | 
|  | 51 | * always available to attacker, it's possible for him to attempt to | 
|  | 52 | * deduce secret parameter H and if successful, tamper with messages | 
|  | 53 | * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's | 
|  | 54 | * not as trivial, but there is no reason to believe that it's resistant | 
|  | 55 | * to cache-timing attack. And the thing about "8-bit" implementation is | 
|  | 56 | * that it consumes 16 (sixteen) times more memory, 4KB per individual | 
|  | 57 | * key + 1KB shared. Well, on pros side it should be twice as fast as | 
|  | 58 | * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version | 
|  | 59 | * was observed to run ~75% faster, closer to 100% for commercial | 
|  | 60 | * compilers... Yet "4-bit" procedure is preferred, because it's | 
|  | 61 | * believed to provide better security-performance balance and adequate | 
|  | 62 | * all-round performance. "All-round" refers to things like: | 
|  | 63 | * | 
|  | 64 | * - shorter setup time effectively improves overall timing for | 
|  | 65 | *   handling short messages; | 
|  | 66 | * - larger table allocation can become unbearable because of VM | 
|  | 67 | *   subsystem penalties (for example on Windows large enough free | 
|  | 68 | *   results in VM working set trimming, meaning that consequent | 
|  | 69 | *   malloc would immediately incur working set expansion); | 
|  | 70 | * - larger table has larger cache footprint, which can affect | 
|  | 71 | *   performance of other code paths (not necessarily even from same | 
|  | 72 | *   thread in Hyper-Threading world); | 
|  | 73 | * | 
|  | 74 | * Value of 1 is not appropriate for performance reasons. | 
|  | 75 | */ | 
|  | 76 | #if     TABLE_BITS==8 | 
|  | 77 |  | 
|  | 78 | static void gcm_init_8bit(u128 Htable[256], u64 H[2]) | 
|  | 79 | { | 
|  | 80 | int i, j; | 
|  | 81 | u128 V; | 
|  | 82 |  | 
|  | 83 | Htable[0].hi = 0; | 
|  | 84 | Htable[0].lo = 0; | 
|  | 85 | V.hi = H[0]; | 
|  | 86 | V.lo = H[1]; | 
|  | 87 |  | 
|  | 88 | for (Htable[128] = V, i = 64; i > 0; i >>= 1) { | 
|  | 89 | REDUCE1BIT(V); | 
|  | 90 | Htable[i] = V; | 
|  | 91 | } | 
|  | 92 |  | 
|  | 93 | for (i = 2; i < 256; i <<= 1) { | 
|  | 94 | u128 *Hi = Htable + i, H0 = *Hi; | 
|  | 95 | for (j = 1; j < i; ++j) { | 
|  | 96 | Hi[j].hi = H0.hi ^ Htable[j].hi; | 
|  | 97 | Hi[j].lo = H0.lo ^ Htable[j].lo; | 
|  | 98 | } | 
|  | 99 | } | 
|  | 100 | } | 
|  | 101 |  | 
|  | 102 | static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256]) | 
|  | 103 | { | 
|  | 104 | u128 Z = { 0, 0 }; | 
|  | 105 | const u8 *xi = (const u8 *)Xi + 15; | 
|  | 106 | size_t rem, n = *xi; | 
|  | 107 | const union { | 
|  | 108 | long one; | 
|  | 109 | char little; | 
|  | 110 | } is_endian = { 1 }; | 
|  | 111 | static const size_t rem_8bit[256] = { | 
|  | 112 | PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246), | 
|  | 113 | PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E), | 
|  | 114 | PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56), | 
|  | 115 | PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E), | 
|  | 116 | PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66), | 
|  | 117 | PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E), | 
|  | 118 | PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076), | 
|  | 119 | PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E), | 
|  | 120 | PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06), | 
|  | 121 | PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E), | 
|  | 122 | PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416), | 
|  | 123 | PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E), | 
|  | 124 | PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626), | 
|  | 125 | PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E), | 
|  | 126 | PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836), | 
|  | 127 | PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E), | 
|  | 128 | PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6), | 
|  | 129 | PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE), | 
|  | 130 | PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6), | 
|  | 131 | PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE), | 
|  | 132 | PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6), | 
|  | 133 | PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE), | 
|  | 134 | PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6), | 
|  | 135 | PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE), | 
|  | 136 | PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86), | 
|  | 137 | PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E), | 
|  | 138 | PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496), | 
|  | 139 | PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E), | 
|  | 140 | PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6), | 
|  | 141 | PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE), | 
|  | 142 | PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6), | 
|  | 143 | PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE), | 
|  | 144 | PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346), | 
|  | 145 | PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E), | 
|  | 146 | PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56), | 
|  | 147 | PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E), | 
|  | 148 | PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66), | 
|  | 149 | PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E), | 
|  | 150 | PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176), | 
|  | 151 | PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E), | 
|  | 152 | PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06), | 
|  | 153 | PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E), | 
|  | 154 | PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516), | 
|  | 155 | PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E), | 
|  | 156 | PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726), | 
|  | 157 | PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E), | 
|  | 158 | PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936), | 
|  | 159 | PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E), | 
|  | 160 | PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6), | 
|  | 161 | PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE), | 
|  | 162 | PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6), | 
|  | 163 | PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE), | 
|  | 164 | PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6), | 
|  | 165 | PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE), | 
|  | 166 | PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6), | 
|  | 167 | PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE), | 
|  | 168 | PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86), | 
|  | 169 | PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E), | 
|  | 170 | PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596), | 
|  | 171 | PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E), | 
|  | 172 | PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6), | 
|  | 173 | PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE), | 
|  | 174 | PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6), | 
|  | 175 | PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) | 
|  | 176 | }; | 
|  | 177 |  | 
|  | 178 | while (1) { | 
|  | 179 | Z.hi ^= Htable[n].hi; | 
|  | 180 | Z.lo ^= Htable[n].lo; | 
|  | 181 |  | 
|  | 182 | if ((u8 *)Xi == xi) | 
|  | 183 | break; | 
|  | 184 |  | 
|  | 185 | n = *(--xi); | 
|  | 186 |  | 
|  | 187 | rem = (size_t)Z.lo & 0xff; | 
|  | 188 | Z.lo = (Z.hi << 56) | (Z.lo >> 8); | 
|  | 189 | Z.hi = (Z.hi >> 8); | 
|  | 190 | if (sizeof(size_t) == 8) | 
|  | 191 | Z.hi ^= rem_8bit[rem]; | 
|  | 192 | else | 
|  | 193 | Z.hi ^= (u64)rem_8bit[rem] << 32; | 
|  | 194 | } | 
|  | 195 |  | 
|  | 196 | if (is_endian.little) { | 
|  | 197 | # ifdef BSWAP8 | 
|  | 198 | Xi[0] = BSWAP8(Z.hi); | 
|  | 199 | Xi[1] = BSWAP8(Z.lo); | 
|  | 200 | # else | 
|  | 201 | u8 *p = (u8 *)Xi; | 
|  | 202 | u32 v; | 
|  | 203 | v = (u32)(Z.hi >> 32); | 
|  | 204 | PUTU32(p, v); | 
|  | 205 | v = (u32)(Z.hi); | 
|  | 206 | PUTU32(p + 4, v); | 
|  | 207 | v = (u32)(Z.lo >> 32); | 
|  | 208 | PUTU32(p + 8, v); | 
|  | 209 | v = (u32)(Z.lo); | 
|  | 210 | PUTU32(p + 12, v); | 
|  | 211 | # endif | 
|  | 212 | } else { | 
|  | 213 | Xi[0] = Z.hi; | 
|  | 214 | Xi[1] = Z.lo; | 
|  | 215 | } | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | # define GCM_MUL(ctx)      gcm_gmult_8bit(ctx->Xi.u,ctx->Htable) | 
|  | 219 |  | 
|  | 220 | #elif   TABLE_BITS==4 | 
|  | 221 |  | 
|  | 222 | static void gcm_init_4bit(u128 Htable[16], u64 H[2]) | 
|  | 223 | { | 
|  | 224 | u128 V; | 
|  | 225 | # if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 226 | int i; | 
|  | 227 | # endif | 
|  | 228 |  | 
|  | 229 | Htable[0].hi = 0; | 
|  | 230 | Htable[0].lo = 0; | 
|  | 231 | V.hi = H[0]; | 
|  | 232 | V.lo = H[1]; | 
|  | 233 |  | 
|  | 234 | # if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 235 | for (Htable[8] = V, i = 4; i > 0; i >>= 1) { | 
|  | 236 | REDUCE1BIT(V); | 
|  | 237 | Htable[i] = V; | 
|  | 238 | } | 
|  | 239 |  | 
|  | 240 | for (i = 2; i < 16; i <<= 1) { | 
|  | 241 | u128 *Hi = Htable + i; | 
|  | 242 | int j; | 
|  | 243 | for (V = *Hi, j = 1; j < i; ++j) { | 
|  | 244 | Hi[j].hi = V.hi ^ Htable[j].hi; | 
|  | 245 | Hi[j].lo = V.lo ^ Htable[j].lo; | 
|  | 246 | } | 
|  | 247 | } | 
|  | 248 | # else | 
|  | 249 | Htable[8] = V; | 
|  | 250 | REDUCE1BIT(V); | 
|  | 251 | Htable[4] = V; | 
|  | 252 | REDUCE1BIT(V); | 
|  | 253 | Htable[2] = V; | 
|  | 254 | REDUCE1BIT(V); | 
|  | 255 | Htable[1] = V; | 
|  | 256 | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; | 
|  | 257 | V = Htable[4]; | 
|  | 258 | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; | 
|  | 259 | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; | 
|  | 260 | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; | 
|  | 261 | V = Htable[8]; | 
|  | 262 | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; | 
|  | 263 | Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; | 
|  | 264 | Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; | 
|  | 265 | Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; | 
|  | 266 | Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; | 
|  | 267 | Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; | 
|  | 268 | Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; | 
|  | 269 | # endif | 
|  | 270 | # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) | 
|  | 271 | /* | 
|  | 272 | * ARM assembler expects specific dword order in Htable. | 
|  | 273 | */ | 
|  | 274 | { | 
|  | 275 | int j; | 
|  | 276 | const union { | 
|  | 277 | long one; | 
|  | 278 | char little; | 
|  | 279 | } is_endian = { 1 }; | 
|  | 280 |  | 
|  | 281 | if (is_endian.little) | 
|  | 282 | for (j = 0; j < 16; ++j) { | 
|  | 283 | V = Htable[j]; | 
|  | 284 | Htable[j].hi = V.lo; | 
|  | 285 | Htable[j].lo = V.hi; | 
|  | 286 | } else | 
|  | 287 | for (j = 0; j < 16; ++j) { | 
|  | 288 | V = Htable[j]; | 
|  | 289 | Htable[j].hi = V.lo << 32 | V.lo >> 32; | 
|  | 290 | Htable[j].lo = V.hi << 32 | V.hi >> 32; | 
|  | 291 | } | 
|  | 292 | } | 
|  | 293 | # endif | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | # ifndef GHASH_ASM | 
|  | 297 | static const size_t rem_4bit[16] = { | 
|  | 298 | PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), | 
|  | 299 | PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), | 
|  | 300 | PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), | 
|  | 301 | PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) | 
|  | 302 | }; | 
|  | 303 |  | 
|  | 304 | static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) | 
|  | 305 | { | 
|  | 306 | u128 Z; | 
|  | 307 | int cnt = 15; | 
|  | 308 | size_t rem, nlo, nhi; | 
|  | 309 | const union { | 
|  | 310 | long one; | 
|  | 311 | char little; | 
|  | 312 | } is_endian = { 1 }; | 
|  | 313 |  | 
|  | 314 | nlo = ((const u8 *)Xi)[15]; | 
|  | 315 | nhi = nlo >> 4; | 
|  | 316 | nlo &= 0xf; | 
|  | 317 |  | 
|  | 318 | Z.hi = Htable[nlo].hi; | 
|  | 319 | Z.lo = Htable[nlo].lo; | 
|  | 320 |  | 
|  | 321 | while (1) { | 
|  | 322 | rem = (size_t)Z.lo & 0xf; | 
|  | 323 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | 324 | Z.hi = (Z.hi >> 4); | 
|  | 325 | if (sizeof(size_t) == 8) | 
|  | 326 | Z.hi ^= rem_4bit[rem]; | 
|  | 327 | else | 
|  | 328 | Z.hi ^= (u64)rem_4bit[rem] << 32; | 
|  | 329 |  | 
|  | 330 | Z.hi ^= Htable[nhi].hi; | 
|  | 331 | Z.lo ^= Htable[nhi].lo; | 
|  | 332 |  | 
|  | 333 | if (--cnt < 0) | 
|  | 334 | break; | 
|  | 335 |  | 
|  | 336 | nlo = ((const u8 *)Xi)[cnt]; | 
|  | 337 | nhi = nlo >> 4; | 
|  | 338 | nlo &= 0xf; | 
|  | 339 |  | 
|  | 340 | rem = (size_t)Z.lo & 0xf; | 
|  | 341 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | 342 | Z.hi = (Z.hi >> 4); | 
|  | 343 | if (sizeof(size_t) == 8) | 
|  | 344 | Z.hi ^= rem_4bit[rem]; | 
|  | 345 | else | 
|  | 346 | Z.hi ^= (u64)rem_4bit[rem] << 32; | 
|  | 347 |  | 
|  | 348 | Z.hi ^= Htable[nlo].hi; | 
|  | 349 | Z.lo ^= Htable[nlo].lo; | 
|  | 350 | } | 
|  | 351 |  | 
|  | 352 | if (is_endian.little) { | 
|  | 353 | #  ifdef BSWAP8 | 
|  | 354 | Xi[0] = BSWAP8(Z.hi); | 
|  | 355 | Xi[1] = BSWAP8(Z.lo); | 
|  | 356 | #  else | 
|  | 357 | u8 *p = (u8 *)Xi; | 
|  | 358 | u32 v; | 
|  | 359 | v = (u32)(Z.hi >> 32); | 
|  | 360 | PUTU32(p, v); | 
|  | 361 | v = (u32)(Z.hi); | 
|  | 362 | PUTU32(p + 4, v); | 
|  | 363 | v = (u32)(Z.lo >> 32); | 
|  | 364 | PUTU32(p + 8, v); | 
|  | 365 | v = (u32)(Z.lo); | 
|  | 366 | PUTU32(p + 12, v); | 
|  | 367 | #  endif | 
|  | 368 | } else { | 
|  | 369 | Xi[0] = Z.hi; | 
|  | 370 | Xi[1] = Z.lo; | 
|  | 371 | } | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | #  if !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 375 | /* | 
|  | 376 | * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for | 
|  | 377 | * details... Compiler-generated code doesn't seem to give any | 
|  | 378 | * performance improvement, at least not on x86[_64]. It's here | 
|  | 379 | * mostly as reference and a placeholder for possible future | 
|  | 380 | * non-trivial optimization[s]... | 
|  | 381 | */ | 
|  | 382 | static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], | 
|  | 383 | const u8 *inp, size_t len) | 
|  | 384 | { | 
|  | 385 | u128 Z; | 
|  | 386 | int cnt; | 
|  | 387 | size_t rem, nlo, nhi; | 
|  | 388 | const union { | 
|  | 389 | long one; | 
|  | 390 | char little; | 
|  | 391 | } is_endian = { 1 }; | 
|  | 392 |  | 
|  | 393 | #   if 1 | 
|  | 394 | do { | 
|  | 395 | cnt = 15; | 
|  | 396 | nlo = ((const u8 *)Xi)[15]; | 
|  | 397 | nlo ^= inp[15]; | 
|  | 398 | nhi = nlo >> 4; | 
|  | 399 | nlo &= 0xf; | 
|  | 400 |  | 
|  | 401 | Z.hi = Htable[nlo].hi; | 
|  | 402 | Z.lo = Htable[nlo].lo; | 
|  | 403 |  | 
|  | 404 | while (1) { | 
|  | 405 | rem = (size_t)Z.lo & 0xf; | 
|  | 406 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | 407 | Z.hi = (Z.hi >> 4); | 
|  | 408 | if (sizeof(size_t) == 8) | 
|  | 409 | Z.hi ^= rem_4bit[rem]; | 
|  | 410 | else | 
|  | 411 | Z.hi ^= (u64)rem_4bit[rem] << 32; | 
|  | 412 |  | 
|  | 413 | Z.hi ^= Htable[nhi].hi; | 
|  | 414 | Z.lo ^= Htable[nhi].lo; | 
|  | 415 |  | 
|  | 416 | if (--cnt < 0) | 
|  | 417 | break; | 
|  | 418 |  | 
|  | 419 | nlo = ((const u8 *)Xi)[cnt]; | 
|  | 420 | nlo ^= inp[cnt]; | 
|  | 421 | nhi = nlo >> 4; | 
|  | 422 | nlo &= 0xf; | 
|  | 423 |  | 
|  | 424 | rem = (size_t)Z.lo & 0xf; | 
|  | 425 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | 426 | Z.hi = (Z.hi >> 4); | 
|  | 427 | if (sizeof(size_t) == 8) | 
|  | 428 | Z.hi ^= rem_4bit[rem]; | 
|  | 429 | else | 
|  | 430 | Z.hi ^= (u64)rem_4bit[rem] << 32; | 
|  | 431 |  | 
|  | 432 | Z.hi ^= Htable[nlo].hi; | 
|  | 433 | Z.lo ^= Htable[nlo].lo; | 
|  | 434 | } | 
|  | 435 | #   else | 
|  | 436 | /* | 
|  | 437 | * Extra 256+16 bytes per-key plus 512 bytes shared tables | 
|  | 438 | * [should] give ~50% improvement... One could have PACK()-ed | 
|  | 439 | * the rem_8bit even here, but the priority is to minimize | 
|  | 440 | * cache footprint... | 
|  | 441 | */ | 
|  | 442 | u128 Hshr4[16];             /* Htable shifted right by 4 bits */ | 
|  | 443 | u8 Hshl4[16];               /* Htable shifted left by 4 bits */ | 
|  | 444 | static const unsigned short rem_8bit[256] = { | 
|  | 445 | 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E, | 
|  | 446 | 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E, | 
|  | 447 | 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E, | 
|  | 448 | 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E, | 
|  | 449 | 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E, | 
|  | 450 | 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E, | 
|  | 451 | 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E, | 
|  | 452 | 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E, | 
|  | 453 | 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE, | 
|  | 454 | 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE, | 
|  | 455 | 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE, | 
|  | 456 | 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE, | 
|  | 457 | 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E, | 
|  | 458 | 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E, | 
|  | 459 | 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE, | 
|  | 460 | 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE, | 
|  | 461 | 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E, | 
|  | 462 | 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E, | 
|  | 463 | 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E, | 
|  | 464 | 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E, | 
|  | 465 | 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E, | 
|  | 466 | 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E, | 
|  | 467 | 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E, | 
|  | 468 | 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E, | 
|  | 469 | 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE, | 
|  | 470 | 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE, | 
|  | 471 | 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE, | 
|  | 472 | 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE, | 
|  | 473 | 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E, | 
|  | 474 | 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E, | 
|  | 475 | 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE, | 
|  | 476 | 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE | 
|  | 477 | }; | 
|  | 478 | /* | 
|  | 479 | * This pre-processing phase slows down procedure by approximately | 
|  | 480 | * same time as it makes each loop spin faster. In other words | 
|  | 481 | * single block performance is approximately same as straightforward | 
|  | 482 | * "4-bit" implementation, and then it goes only faster... | 
|  | 483 | */ | 
|  | 484 | for (cnt = 0; cnt < 16; ++cnt) { | 
|  | 485 | Z.hi = Htable[cnt].hi; | 
|  | 486 | Z.lo = Htable[cnt].lo; | 
|  | 487 | Hshr4[cnt].lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | 488 | Hshr4[cnt].hi = (Z.hi >> 4); | 
|  | 489 | Hshl4[cnt] = (u8)(Z.lo << 4); | 
|  | 490 | } | 
|  | 491 |  | 
|  | 492 | do { | 
|  | 493 | for (Z.lo = 0, Z.hi = 0, cnt = 15; cnt; --cnt) { | 
|  | 494 | nlo = ((const u8 *)Xi)[cnt]; | 
|  | 495 | nlo ^= inp[cnt]; | 
|  | 496 | nhi = nlo >> 4; | 
|  | 497 | nlo &= 0xf; | 
|  | 498 |  | 
|  | 499 | Z.hi ^= Htable[nlo].hi; | 
|  | 500 | Z.lo ^= Htable[nlo].lo; | 
|  | 501 |  | 
|  | 502 | rem = (size_t)Z.lo & 0xff; | 
|  | 503 |  | 
|  | 504 | Z.lo = (Z.hi << 56) | (Z.lo >> 8); | 
|  | 505 | Z.hi = (Z.hi >> 8); | 
|  | 506 |  | 
|  | 507 | Z.hi ^= Hshr4[nhi].hi; | 
|  | 508 | Z.lo ^= Hshr4[nhi].lo; | 
|  | 509 | Z.hi ^= (u64)rem_8bit[rem ^ Hshl4[nhi]] << 48; | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | nlo = ((const u8 *)Xi)[0]; | 
|  | 513 | nlo ^= inp[0]; | 
|  | 514 | nhi = nlo >> 4; | 
|  | 515 | nlo &= 0xf; | 
|  | 516 |  | 
|  | 517 | Z.hi ^= Htable[nlo].hi; | 
|  | 518 | Z.lo ^= Htable[nlo].lo; | 
|  | 519 |  | 
|  | 520 | rem = (size_t)Z.lo & 0xf; | 
|  | 521 |  | 
|  | 522 | Z.lo = (Z.hi << 60) | (Z.lo >> 4); | 
|  | 523 | Z.hi = (Z.hi >> 4); | 
|  | 524 |  | 
|  | 525 | Z.hi ^= Htable[nhi].hi; | 
|  | 526 | Z.lo ^= Htable[nhi].lo; | 
|  | 527 | Z.hi ^= ((u64)rem_8bit[rem << 4]) << 48; | 
|  | 528 | #   endif | 
|  | 529 |  | 
|  | 530 | if (is_endian.little) { | 
|  | 531 | #   ifdef BSWAP8 | 
|  | 532 | Xi[0] = BSWAP8(Z.hi); | 
|  | 533 | Xi[1] = BSWAP8(Z.lo); | 
|  | 534 | #   else | 
|  | 535 | u8 *p = (u8 *)Xi; | 
|  | 536 | u32 v; | 
|  | 537 | v = (u32)(Z.hi >> 32); | 
|  | 538 | PUTU32(p, v); | 
|  | 539 | v = (u32)(Z.hi); | 
|  | 540 | PUTU32(p + 4, v); | 
|  | 541 | v = (u32)(Z.lo >> 32); | 
|  | 542 | PUTU32(p + 8, v); | 
|  | 543 | v = (u32)(Z.lo); | 
|  | 544 | PUTU32(p + 12, v); | 
|  | 545 | #   endif | 
|  | 546 | } else { | 
|  | 547 | Xi[0] = Z.hi; | 
|  | 548 | Xi[1] = Z.lo; | 
|  | 549 | } | 
|  | 550 | } while (inp += 16, len -= 16); | 
|  | 551 | } | 
|  | 552 | #  endif | 
|  | 553 | # else | 
|  | 554 | void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); | 
|  | 555 | void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 556 | size_t len); | 
|  | 557 | # endif | 
|  | 558 |  | 
|  | 559 | # define GCM_MUL(ctx)      gcm_gmult_4bit(ctx->Xi.u,ctx->Htable) | 
|  | 560 | # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 561 | #  define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len) | 
|  | 562 | /* | 
|  | 563 | * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing | 
|  | 564 | * effect. In other words idea is to hash data while it's still in L1 cache | 
|  | 565 | * after encryption pass... | 
|  | 566 | */ | 
|  | 567 | #  define GHASH_CHUNK       (3*1024) | 
|  | 568 | # endif | 
|  | 569 |  | 
|  | 570 | #else                           /* TABLE_BITS */ | 
|  | 571 |  | 
|  | 572 | static void gcm_gmult_1bit(u64 Xi[2], const u64 H[2]) | 
|  | 573 | { | 
|  | 574 | u128 V, Z = { 0, 0 }; | 
|  | 575 | long X; | 
|  | 576 | int i, j; | 
|  | 577 | const long *xi = (const long *)Xi; | 
|  | 578 | const union { | 
|  | 579 | long one; | 
|  | 580 | char little; | 
|  | 581 | } is_endian = { 1 }; | 
|  | 582 |  | 
|  | 583 | V.hi = H[0];                /* H is in host byte order, no byte swapping */ | 
|  | 584 | V.lo = H[1]; | 
|  | 585 |  | 
|  | 586 | for (j = 0; j < 16 / sizeof(long); ++j) { | 
|  | 587 | if (is_endian.little) { | 
|  | 588 | if (sizeof(long) == 8) { | 
|  | 589 | # ifdef BSWAP8 | 
|  | 590 | X = (long)(BSWAP8(xi[j])); | 
|  | 591 | # else | 
|  | 592 | const u8 *p = (const u8 *)(xi + j); | 
|  | 593 | X = (long)((u64)GETU32(p) << 32 | GETU32(p + 4)); | 
|  | 594 | # endif | 
|  | 595 | } else { | 
|  | 596 | const u8 *p = (const u8 *)(xi + j); | 
|  | 597 | X = (long)GETU32(p); | 
|  | 598 | } | 
|  | 599 | } else | 
|  | 600 | X = xi[j]; | 
|  | 601 |  | 
|  | 602 | for (i = 0; i < 8 * sizeof(long); ++i, X <<= 1) { | 
|  | 603 | u64 M = (u64)(X >> (8 * sizeof(long) - 1)); | 
|  | 604 | Z.hi ^= V.hi & M; | 
|  | 605 | Z.lo ^= V.lo & M; | 
|  | 606 |  | 
|  | 607 | REDUCE1BIT(V); | 
|  | 608 | } | 
|  | 609 | } | 
|  | 610 |  | 
|  | 611 | if (is_endian.little) { | 
|  | 612 | # ifdef BSWAP8 | 
|  | 613 | Xi[0] = BSWAP8(Z.hi); | 
|  | 614 | Xi[1] = BSWAP8(Z.lo); | 
|  | 615 | # else | 
|  | 616 | u8 *p = (u8 *)Xi; | 
|  | 617 | u32 v; | 
|  | 618 | v = (u32)(Z.hi >> 32); | 
|  | 619 | PUTU32(p, v); | 
|  | 620 | v = (u32)(Z.hi); | 
|  | 621 | PUTU32(p + 4, v); | 
|  | 622 | v = (u32)(Z.lo >> 32); | 
|  | 623 | PUTU32(p + 8, v); | 
|  | 624 | v = (u32)(Z.lo); | 
|  | 625 | PUTU32(p + 12, v); | 
|  | 626 | # endif | 
|  | 627 | } else { | 
|  | 628 | Xi[0] = Z.hi; | 
|  | 629 | Xi[1] = Z.lo; | 
|  | 630 | } | 
|  | 631 | } | 
|  | 632 |  | 
|  | 633 | # define GCM_MUL(ctx)      gcm_gmult_1bit(ctx->Xi.u,ctx->H.u) | 
|  | 634 |  | 
|  | 635 | #endif | 
|  | 636 |  | 
|  | 637 | #if     TABLE_BITS==4 && (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) | 
|  | 638 | # if    !defined(I386_ONLY) && \ | 
|  | 639 | (defined(__i386)        || defined(__i386__)    || \ | 
|  | 640 | defined(__x86_64)      || defined(__x86_64__)  || \ | 
|  | 641 | defined(_M_IX86)       || defined(_M_AMD64)    || defined(_M_X64)) | 
|  | 642 | #  define GHASH_ASM_X86_OR_64 | 
|  | 643 | #  define GCM_FUNCREF_4BIT | 
|  | 644 | extern unsigned int OPENSSL_ia32cap_P[]; | 
|  | 645 |  | 
|  | 646 | void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); | 
|  | 647 | void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); | 
|  | 648 | void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 649 | size_t len); | 
|  | 650 |  | 
|  | 651 | #  if defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
|  | 652 | #   define gcm_init_avx   gcm_init_clmul | 
|  | 653 | #   define gcm_gmult_avx  gcm_gmult_clmul | 
|  | 654 | #   define gcm_ghash_avx  gcm_ghash_clmul | 
|  | 655 | #  else | 
|  | 656 | void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); | 
|  | 657 | void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); | 
|  | 658 | void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 659 | size_t len); | 
|  | 660 | #  endif | 
|  | 661 |  | 
|  | 662 | #  if   defined(__i386) || defined(__i386__) || defined(_M_IX86) | 
|  | 663 | #   define GHASH_ASM_X86 | 
|  | 664 | void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); | 
|  | 665 | void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 666 | size_t len); | 
|  | 667 |  | 
|  | 668 | void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); | 
|  | 669 | void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 670 | size_t len); | 
|  | 671 | #  endif | 
|  | 672 | # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) | 
|  | 673 | #  include "arm_arch.h" | 
|  | 674 | #  if __ARM_MAX_ARCH__>=7 | 
|  | 675 | #   define GHASH_ASM_ARM | 
|  | 676 | #   define GCM_FUNCREF_4BIT | 
|  | 677 | #   define PMULL_CAPABLE        (OPENSSL_armcap_P & ARMV8_PMULL) | 
|  | 678 | #   if defined(__arm__) || defined(__arm) | 
|  | 679 | #    define NEON_CAPABLE        (OPENSSL_armcap_P & ARMV7_NEON) | 
|  | 680 | #   endif | 
|  | 681 | void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); | 
|  | 682 | void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); | 
|  | 683 | void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 684 | size_t len); | 
|  | 685 | void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); | 
|  | 686 | void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); | 
|  | 687 | void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 688 | size_t len); | 
|  | 689 | #  endif | 
|  | 690 | # elif defined(__sparc__) || defined(__sparc) | 
|  | 691 | #  include "sparc_arch.h" | 
|  | 692 | #  define GHASH_ASM_SPARC | 
|  | 693 | #  define GCM_FUNCREF_4BIT | 
|  | 694 | extern unsigned int OPENSSL_sparcv9cap_P[]; | 
|  | 695 | void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); | 
|  | 696 | void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); | 
|  | 697 | void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 698 | size_t len); | 
|  | 699 | # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) | 
|  | 700 | #  include "ppc_arch.h" | 
|  | 701 | #  define GHASH_ASM_PPC | 
|  | 702 | #  define GCM_FUNCREF_4BIT | 
|  | 703 | void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); | 
|  | 704 | void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); | 
|  | 705 | void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, | 
|  | 706 | size_t len); | 
|  | 707 | # endif | 
|  | 708 | #endif | 
|  | 709 |  | 
|  | 710 | #ifdef GCM_FUNCREF_4BIT | 
|  | 711 | # undef  GCM_MUL | 
|  | 712 | # define GCM_MUL(ctx)           (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable) | 
|  | 713 | # ifdef GHASH | 
|  | 714 | #  undef  GHASH | 
|  | 715 | #  define GHASH(ctx,in,len)     (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len) | 
|  | 716 | # endif | 
|  | 717 | #endif | 
|  | 718 |  | 
|  | 719 | void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) | 
|  | 720 | { | 
|  | 721 | const union { | 
|  | 722 | long one; | 
|  | 723 | char little; | 
|  | 724 | } is_endian = { 1 }; | 
|  | 725 |  | 
|  | 726 | memset(ctx, 0, sizeof(*ctx)); | 
|  | 727 | ctx->block = block; | 
|  | 728 | ctx->key = key; | 
|  | 729 |  | 
|  | 730 | (*block) (ctx->H.c, ctx->H.c, key); | 
|  | 731 |  | 
|  | 732 | if (is_endian.little) { | 
|  | 733 | /* H is stored in host byte order */ | 
|  | 734 | #ifdef BSWAP8 | 
|  | 735 | ctx->H.u[0] = BSWAP8(ctx->H.u[0]); | 
|  | 736 | ctx->H.u[1] = BSWAP8(ctx->H.u[1]); | 
|  | 737 | #else | 
|  | 738 | u8 *p = ctx->H.c; | 
|  | 739 | u64 hi, lo; | 
|  | 740 | hi = (u64)GETU32(p) << 32 | GETU32(p + 4); | 
|  | 741 | lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); | 
|  | 742 | ctx->H.u[0] = hi; | 
|  | 743 | ctx->H.u[1] = lo; | 
|  | 744 | #endif | 
|  | 745 | } | 
|  | 746 | #if     TABLE_BITS==8 | 
|  | 747 | gcm_init_8bit(ctx->Htable, ctx->H.u); | 
|  | 748 | #elif   TABLE_BITS==4 | 
|  | 749 | # if    defined(GHASH) | 
|  | 750 | #  define CTX__GHASH(f) (ctx->ghash = (f)) | 
|  | 751 | # else | 
|  | 752 | #  define CTX__GHASH(f) (ctx->ghash = NULL) | 
|  | 753 | # endif | 
|  | 754 | # if    defined(GHASH_ASM_X86_OR_64) | 
|  | 755 | #  if   !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) | 
|  | 756 | if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ | 
|  | 757 | if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ | 
|  | 758 | gcm_init_avx(ctx->Htable, ctx->H.u); | 
|  | 759 | ctx->gmult = gcm_gmult_avx; | 
|  | 760 | CTX__GHASH(gcm_ghash_avx); | 
|  | 761 | } else { | 
|  | 762 | gcm_init_clmul(ctx->Htable, ctx->H.u); | 
|  | 763 | ctx->gmult = gcm_gmult_clmul; | 
|  | 764 | CTX__GHASH(gcm_ghash_clmul); | 
|  | 765 | } | 
|  | 766 | return; | 
|  | 767 | } | 
|  | 768 | #  endif | 
|  | 769 | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | 770 | #  if   defined(GHASH_ASM_X86)  /* x86 only */ | 
|  | 771 | #   if  defined(OPENSSL_IA32_SSE2) | 
|  | 772 | if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ | 
|  | 773 | #   else | 
|  | 774 | if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ | 
|  | 775 | #   endif | 
|  | 776 | ctx->gmult = gcm_gmult_4bit_mmx; | 
|  | 777 | CTX__GHASH(gcm_ghash_4bit_mmx); | 
|  | 778 | } else { | 
|  | 779 | ctx->gmult = gcm_gmult_4bit_x86; | 
|  | 780 | CTX__GHASH(gcm_ghash_4bit_x86); | 
|  | 781 | } | 
|  | 782 | #  else | 
|  | 783 | ctx->gmult = gcm_gmult_4bit; | 
|  | 784 | CTX__GHASH(gcm_ghash_4bit); | 
|  | 785 | #  endif | 
|  | 786 | # elif  defined(GHASH_ASM_ARM) | 
|  | 787 | #  ifdef PMULL_CAPABLE | 
|  | 788 | if (PMULL_CAPABLE) { | 
|  | 789 | gcm_init_v8(ctx->Htable, ctx->H.u); | 
|  | 790 | ctx->gmult = gcm_gmult_v8; | 
|  | 791 | CTX__GHASH(gcm_ghash_v8); | 
|  | 792 | } else | 
|  | 793 | #  endif | 
|  | 794 | #  ifdef NEON_CAPABLE | 
|  | 795 | if (NEON_CAPABLE) { | 
|  | 796 | gcm_init_neon(ctx->Htable, ctx->H.u); | 
|  | 797 | ctx->gmult = gcm_gmult_neon; | 
|  | 798 | CTX__GHASH(gcm_ghash_neon); | 
|  | 799 | } else | 
|  | 800 | #  endif | 
|  | 801 | { | 
|  | 802 | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | 803 | ctx->gmult = gcm_gmult_4bit; | 
|  | 804 | CTX__GHASH(gcm_ghash_4bit); | 
|  | 805 | } | 
|  | 806 | # elif  defined(GHASH_ASM_SPARC) | 
|  | 807 | if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { | 
|  | 808 | gcm_init_vis3(ctx->Htable, ctx->H.u); | 
|  | 809 | ctx->gmult = gcm_gmult_vis3; | 
|  | 810 | CTX__GHASH(gcm_ghash_vis3); | 
|  | 811 | } else { | 
|  | 812 | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | 813 | ctx->gmult = gcm_gmult_4bit; | 
|  | 814 | CTX__GHASH(gcm_ghash_4bit); | 
|  | 815 | } | 
|  | 816 | # elif  defined(GHASH_ASM_PPC) | 
|  | 817 | if (OPENSSL_ppccap_P & PPC_CRYPTO207) { | 
|  | 818 | gcm_init_p8(ctx->Htable, ctx->H.u); | 
|  | 819 | ctx->gmult = gcm_gmult_p8; | 
|  | 820 | CTX__GHASH(gcm_ghash_p8); | 
|  | 821 | } else { | 
|  | 822 | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | 823 | ctx->gmult = gcm_gmult_4bit; | 
|  | 824 | CTX__GHASH(gcm_ghash_4bit); | 
|  | 825 | } | 
|  | 826 | # else | 
|  | 827 | gcm_init_4bit(ctx->Htable, ctx->H.u); | 
|  | 828 | # endif | 
|  | 829 | # undef CTX__GHASH | 
|  | 830 | #endif | 
|  | 831 | } | 
|  | 832 |  | 
|  | 833 | void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, | 
|  | 834 | size_t len) | 
|  | 835 | { | 
|  | 836 | const union { | 
|  | 837 | long one; | 
|  | 838 | char little; | 
|  | 839 | } is_endian = { 1 }; | 
|  | 840 | unsigned int ctr; | 
|  | 841 | #ifdef GCM_FUNCREF_4BIT | 
|  | 842 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | 843 | #endif | 
|  | 844 |  | 
|  | 845 | ctx->len.u[0] = 0;          /* AAD length */ | 
|  | 846 | ctx->len.u[1] = 0;          /* message length */ | 
|  | 847 | ctx->ares = 0; | 
|  | 848 | ctx->mres = 0; | 
|  | 849 |  | 
|  | 850 | if (len == 12) { | 
|  | 851 | memcpy(ctx->Yi.c, iv, 12); | 
|  | 852 | ctx->Yi.c[12] = 0; | 
|  | 853 | ctx->Yi.c[13] = 0; | 
|  | 854 | ctx->Yi.c[14] = 0; | 
|  | 855 | ctx->Yi.c[15] = 1; | 
|  | 856 | ctr = 1; | 
|  | 857 | } else { | 
|  | 858 | size_t i; | 
|  | 859 | u64 len0 = len; | 
|  | 860 |  | 
|  | 861 | /* Borrow ctx->Xi to calculate initial Yi */ | 
|  | 862 | ctx->Xi.u[0] = 0; | 
|  | 863 | ctx->Xi.u[1] = 0; | 
|  | 864 |  | 
|  | 865 | while (len >= 16) { | 
|  | 866 | for (i = 0; i < 16; ++i) | 
|  | 867 | ctx->Xi.c[i] ^= iv[i]; | 
|  | 868 | GCM_MUL(ctx); | 
|  | 869 | iv += 16; | 
|  | 870 | len -= 16; | 
|  | 871 | } | 
|  | 872 | if (len) { | 
|  | 873 | for (i = 0; i < len; ++i) | 
|  | 874 | ctx->Xi.c[i] ^= iv[i]; | 
|  | 875 | GCM_MUL(ctx); | 
|  | 876 | } | 
|  | 877 | len0 <<= 3; | 
|  | 878 | if (is_endian.little) { | 
|  | 879 | #ifdef BSWAP8 | 
|  | 880 | ctx->Xi.u[1] ^= BSWAP8(len0); | 
|  | 881 | #else | 
|  | 882 | ctx->Xi.c[8] ^= (u8)(len0 >> 56); | 
|  | 883 | ctx->Xi.c[9] ^= (u8)(len0 >> 48); | 
|  | 884 | ctx->Xi.c[10] ^= (u8)(len0 >> 40); | 
|  | 885 | ctx->Xi.c[11] ^= (u8)(len0 >> 32); | 
|  | 886 | ctx->Xi.c[12] ^= (u8)(len0 >> 24); | 
|  | 887 | ctx->Xi.c[13] ^= (u8)(len0 >> 16); | 
|  | 888 | ctx->Xi.c[14] ^= (u8)(len0 >> 8); | 
|  | 889 | ctx->Xi.c[15] ^= (u8)(len0); | 
|  | 890 | #endif | 
|  | 891 | } else { | 
|  | 892 | ctx->Xi.u[1] ^= len0; | 
|  | 893 | } | 
|  | 894 |  | 
|  | 895 | GCM_MUL(ctx); | 
|  | 896 |  | 
|  | 897 | if (is_endian.little) | 
|  | 898 | #ifdef BSWAP4 | 
|  | 899 | ctr = BSWAP4(ctx->Xi.d[3]); | 
|  | 900 | #else | 
|  | 901 | ctr = GETU32(ctx->Xi.c + 12); | 
|  | 902 | #endif | 
|  | 903 | else | 
|  | 904 | ctr = ctx->Xi.d[3]; | 
|  | 905 |  | 
|  | 906 | /* Copy borrowed Xi to Yi */ | 
|  | 907 | ctx->Yi.u[0] = ctx->Xi.u[0]; | 
|  | 908 | ctx->Yi.u[1] = ctx->Xi.u[1]; | 
|  | 909 | } | 
|  | 910 |  | 
|  | 911 | ctx->Xi.u[0] = 0; | 
|  | 912 | ctx->Xi.u[1] = 0; | 
|  | 913 |  | 
|  | 914 | (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); | 
|  | 915 | ++ctr; | 
|  | 916 | if (is_endian.little) | 
|  | 917 | #ifdef BSWAP4 | 
|  | 918 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 919 | #else | 
|  | 920 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 921 | #endif | 
|  | 922 | else | 
|  | 923 | ctx->Yi.d[3] = ctr; | 
|  | 924 | } | 
|  | 925 |  | 
|  | 926 | int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, | 
|  | 927 | size_t len) | 
|  | 928 | { | 
|  | 929 | size_t i; | 
|  | 930 | unsigned int n; | 
|  | 931 | u64 alen = ctx->len.u[0]; | 
|  | 932 | #ifdef GCM_FUNCREF_4BIT | 
|  | 933 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | 934 | # ifdef GHASH | 
|  | 935 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | 936 | const u8 *inp, size_t len) = ctx->ghash; | 
|  | 937 | # endif | 
|  | 938 | #endif | 
|  | 939 |  | 
|  | 940 | if (ctx->len.u[1]) | 
|  | 941 | return -2; | 
|  | 942 |  | 
|  | 943 | alen += len; | 
|  | 944 | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) | 
|  | 945 | return -1; | 
|  | 946 | ctx->len.u[0] = alen; | 
|  | 947 |  | 
|  | 948 | n = ctx->ares; | 
|  | 949 | if (n) { | 
|  | 950 | while (n && len) { | 
|  | 951 | ctx->Xi.c[n] ^= *(aad++); | 
|  | 952 | --len; | 
|  | 953 | n = (n + 1) % 16; | 
|  | 954 | } | 
|  | 955 | if (n == 0) | 
|  | 956 | GCM_MUL(ctx); | 
|  | 957 | else { | 
|  | 958 | ctx->ares = n; | 
|  | 959 | return 0; | 
|  | 960 | } | 
|  | 961 | } | 
|  | 962 | #ifdef GHASH | 
|  | 963 | if ((i = (len & (size_t)-16))) { | 
|  | 964 | GHASH(ctx, aad, i); | 
|  | 965 | aad += i; | 
|  | 966 | len -= i; | 
|  | 967 | } | 
|  | 968 | #else | 
|  | 969 | while (len >= 16) { | 
|  | 970 | for (i = 0; i < 16; ++i) | 
|  | 971 | ctx->Xi.c[i] ^= aad[i]; | 
|  | 972 | GCM_MUL(ctx); | 
|  | 973 | aad += 16; | 
|  | 974 | len -= 16; | 
|  | 975 | } | 
|  | 976 | #endif | 
|  | 977 | if (len) { | 
|  | 978 | n = (unsigned int)len; | 
|  | 979 | for (i = 0; i < len; ++i) | 
|  | 980 | ctx->Xi.c[i] ^= aad[i]; | 
|  | 981 | } | 
|  | 982 |  | 
|  | 983 | ctx->ares = n; | 
|  | 984 | return 0; | 
|  | 985 | } | 
|  | 986 |  | 
|  | 987 | int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, | 
|  | 988 | const unsigned char *in, unsigned char *out, | 
|  | 989 | size_t len) | 
|  | 990 | { | 
|  | 991 | const union { | 
|  | 992 | long one; | 
|  | 993 | char little; | 
|  | 994 | } is_endian = { 1 }; | 
|  | 995 | unsigned int n, ctr, mres; | 
|  | 996 | size_t i; | 
|  | 997 | u64 mlen = ctx->len.u[1]; | 
|  | 998 | block128_f block = ctx->block; | 
|  | 999 | void *key = ctx->key; | 
|  | 1000 | #ifdef GCM_FUNCREF_4BIT | 
|  | 1001 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | 1002 | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1003 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | 1004 | const u8 *inp, size_t len) = ctx->ghash; | 
|  | 1005 | # endif | 
|  | 1006 | #endif | 
|  | 1007 |  | 
|  | 1008 | mlen += len; | 
|  | 1009 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
|  | 1010 | return -1; | 
|  | 1011 | ctx->len.u[1] = mlen; | 
|  | 1012 |  | 
|  | 1013 | mres = ctx->mres; | 
|  | 1014 |  | 
|  | 1015 | if (ctx->ares) { | 
|  | 1016 | /* First call to encrypt finalizes GHASH(AAD) */ | 
|  | 1017 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1018 | if (len == 0) { | 
|  | 1019 | GCM_MUL(ctx); | 
|  | 1020 | ctx->ares = 0; | 
|  | 1021 | return 0; | 
|  | 1022 | } | 
|  | 1023 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); | 
|  | 1024 | ctx->Xi.u[0] = 0; | 
|  | 1025 | ctx->Xi.u[1] = 0; | 
|  | 1026 | mres = sizeof(ctx->Xi); | 
|  | 1027 | #else | 
|  | 1028 | GCM_MUL(ctx); | 
|  | 1029 | #endif | 
|  | 1030 | ctx->ares = 0; | 
|  | 1031 | } | 
|  | 1032 |  | 
|  | 1033 | if (is_endian.little) | 
|  | 1034 | #ifdef BSWAP4 | 
|  | 1035 | ctr = BSWAP4(ctx->Yi.d[3]); | 
|  | 1036 | #else | 
|  | 1037 | ctr = GETU32(ctx->Yi.c + 12); | 
|  | 1038 | #endif | 
|  | 1039 | else | 
|  | 1040 | ctr = ctx->Yi.d[3]; | 
|  | 1041 |  | 
|  | 1042 | n = mres % 16; | 
|  | 1043 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1044 | if (16 % sizeof(size_t) == 0) { /* always true actually */ | 
|  | 1045 | do { | 
|  | 1046 | if (n) { | 
|  | 1047 | # if defined(GHASH) | 
|  | 1048 | while (n && len) { | 
|  | 1049 | ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | 1050 | --len; | 
|  | 1051 | n = (n + 1) % 16; | 
|  | 1052 | } | 
|  | 1053 | if (n == 0) { | 
|  | 1054 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1055 | mres = 0; | 
|  | 1056 | } else { | 
|  | 1057 | ctx->mres = mres; | 
|  | 1058 | return 0; | 
|  | 1059 | } | 
|  | 1060 | # else | 
|  | 1061 | while (n && len) { | 
|  | 1062 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | 1063 | --len; | 
|  | 1064 | n = (n + 1) % 16; | 
|  | 1065 | } | 
|  | 1066 | if (n == 0) { | 
|  | 1067 | GCM_MUL(ctx); | 
|  | 1068 | mres = 0; | 
|  | 1069 | } else { | 
|  | 1070 | ctx->mres = n; | 
|  | 1071 | return 0; | 
|  | 1072 | } | 
|  | 1073 | # endif | 
|  | 1074 | } | 
|  | 1075 | # if defined(STRICT_ALIGNMENT) | 
|  | 1076 | if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) | 
|  | 1077 | break; | 
|  | 1078 | # endif | 
|  | 1079 | # if defined(GHASH) | 
|  | 1080 | if (len >= 16 && mres) { | 
|  | 1081 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1082 | mres = 0; | 
|  | 1083 | } | 
|  | 1084 | #  if defined(GHASH_CHUNK) | 
|  | 1085 | while (len >= GHASH_CHUNK) { | 
|  | 1086 | size_t j = GHASH_CHUNK; | 
|  | 1087 |  | 
|  | 1088 | while (j) { | 
|  | 1089 | size_t_aX *out_t = (size_t_aX *)out; | 
|  | 1090 | const size_t_aX *in_t = (const size_t_aX *)in; | 
|  | 1091 |  | 
|  | 1092 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1093 | ++ctr; | 
|  | 1094 | if (is_endian.little) | 
|  | 1095 | #   ifdef BSWAP4 | 
|  | 1096 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1097 | #   else | 
|  | 1098 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1099 | #   endif | 
|  | 1100 | else | 
|  | 1101 | ctx->Yi.d[3] = ctr; | 
|  | 1102 | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | 1103 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | 1104 | out += 16; | 
|  | 1105 | in += 16; | 
|  | 1106 | j -= 16; | 
|  | 1107 | } | 
|  | 1108 | GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); | 
|  | 1109 | len -= GHASH_CHUNK; | 
|  | 1110 | } | 
|  | 1111 | #  endif | 
|  | 1112 | if ((i = (len & (size_t)-16))) { | 
|  | 1113 | size_t j = i; | 
|  | 1114 |  | 
|  | 1115 | while (len >= 16) { | 
|  | 1116 | size_t_aX *out_t = (size_t_aX *)out; | 
|  | 1117 | const size_t_aX *in_t = (const size_t_aX *)in; | 
|  | 1118 |  | 
|  | 1119 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1120 | ++ctr; | 
|  | 1121 | if (is_endian.little) | 
|  | 1122 | #  ifdef BSWAP4 | 
|  | 1123 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1124 | #  else | 
|  | 1125 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1126 | #  endif | 
|  | 1127 | else | 
|  | 1128 | ctx->Yi.d[3] = ctr; | 
|  | 1129 | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | 1130 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | 1131 | out += 16; | 
|  | 1132 | in += 16; | 
|  | 1133 | len -= 16; | 
|  | 1134 | } | 
|  | 1135 | GHASH(ctx, out - j, j); | 
|  | 1136 | } | 
|  | 1137 | # else | 
|  | 1138 | while (len >= 16) { | 
|  | 1139 | size_t *out_t = (size_t *)out; | 
|  | 1140 | const size_t *in_t = (const size_t *)in; | 
|  | 1141 |  | 
|  | 1142 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1143 | ++ctr; | 
|  | 1144 | if (is_endian.little) | 
|  | 1145 | #  ifdef BSWAP4 | 
|  | 1146 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1147 | #  else | 
|  | 1148 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1149 | #  endif | 
|  | 1150 | else | 
|  | 1151 | ctx->Yi.d[3] = ctr; | 
|  | 1152 | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | 1153 | ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | 1154 | GCM_MUL(ctx); | 
|  | 1155 | out += 16; | 
|  | 1156 | in += 16; | 
|  | 1157 | len -= 16; | 
|  | 1158 | } | 
|  | 1159 | # endif | 
|  | 1160 | if (len) { | 
|  | 1161 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1162 | ++ctr; | 
|  | 1163 | if (is_endian.little) | 
|  | 1164 | # ifdef BSWAP4 | 
|  | 1165 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1166 | # else | 
|  | 1167 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1168 | # endif | 
|  | 1169 | else | 
|  | 1170 | ctx->Yi.d[3] = ctr; | 
|  | 1171 | # if defined(GHASH) | 
|  | 1172 | while (len--) { | 
|  | 1173 | ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | 1174 | ++n; | 
|  | 1175 | } | 
|  | 1176 | # else | 
|  | 1177 | while (len--) { | 
|  | 1178 | ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | 1179 | ++n; | 
|  | 1180 | } | 
|  | 1181 | mres = n; | 
|  | 1182 | # endif | 
|  | 1183 | } | 
|  | 1184 |  | 
|  | 1185 | ctx->mres = mres; | 
|  | 1186 | return 0; | 
|  | 1187 | } while (0); | 
|  | 1188 | } | 
|  | 1189 | #endif | 
|  | 1190 | for (i = 0; i < len; ++i) { | 
|  | 1191 | if (n == 0) { | 
|  | 1192 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1193 | ++ctr; | 
|  | 1194 | if (is_endian.little) | 
|  | 1195 | #ifdef BSWAP4 | 
|  | 1196 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1197 | #else | 
|  | 1198 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1199 | #endif | 
|  | 1200 | else | 
|  | 1201 | ctx->Yi.d[3] = ctr; | 
|  | 1202 | } | 
|  | 1203 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1204 | ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n]; | 
|  | 1205 | n = (n + 1) % 16; | 
|  | 1206 | if (mres == sizeof(ctx->Xn)) { | 
|  | 1207 | GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); | 
|  | 1208 | mres = 0; | 
|  | 1209 | } | 
|  | 1210 | #else | 
|  | 1211 | ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; | 
|  | 1212 | mres = n = (n + 1) % 16; | 
|  | 1213 | if (n == 0) | 
|  | 1214 | GCM_MUL(ctx); | 
|  | 1215 | #endif | 
|  | 1216 | } | 
|  | 1217 |  | 
|  | 1218 | ctx->mres = mres; | 
|  | 1219 | return 0; | 
|  | 1220 | } | 
|  | 1221 |  | 
|  | 1222 | int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, | 
|  | 1223 | const unsigned char *in, unsigned char *out, | 
|  | 1224 | size_t len) | 
|  | 1225 | { | 
|  | 1226 | const union { | 
|  | 1227 | long one; | 
|  | 1228 | char little; | 
|  | 1229 | } is_endian = { 1 }; | 
|  | 1230 | unsigned int n, ctr, mres; | 
|  | 1231 | size_t i; | 
|  | 1232 | u64 mlen = ctx->len.u[1]; | 
|  | 1233 | block128_f block = ctx->block; | 
|  | 1234 | void *key = ctx->key; | 
|  | 1235 | #ifdef GCM_FUNCREF_4BIT | 
|  | 1236 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | 1237 | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1238 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | 1239 | const u8 *inp, size_t len) = ctx->ghash; | 
|  | 1240 | # endif | 
|  | 1241 | #endif | 
|  | 1242 |  | 
|  | 1243 | mlen += len; | 
|  | 1244 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
|  | 1245 | return -1; | 
|  | 1246 | ctx->len.u[1] = mlen; | 
|  | 1247 |  | 
|  | 1248 | mres = ctx->mres; | 
|  | 1249 |  | 
|  | 1250 | if (ctx->ares) { | 
|  | 1251 | /* First call to decrypt finalizes GHASH(AAD) */ | 
|  | 1252 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1253 | if (len == 0) { | 
|  | 1254 | GCM_MUL(ctx); | 
|  | 1255 | ctx->ares = 0; | 
|  | 1256 | return 0; | 
|  | 1257 | } | 
|  | 1258 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); | 
|  | 1259 | ctx->Xi.u[0] = 0; | 
|  | 1260 | ctx->Xi.u[1] = 0; | 
|  | 1261 | mres = sizeof(ctx->Xi); | 
|  | 1262 | #else | 
|  | 1263 | GCM_MUL(ctx); | 
|  | 1264 | #endif | 
|  | 1265 | ctx->ares = 0; | 
|  | 1266 | } | 
|  | 1267 |  | 
|  | 1268 | if (is_endian.little) | 
|  | 1269 | #ifdef BSWAP4 | 
|  | 1270 | ctr = BSWAP4(ctx->Yi.d[3]); | 
|  | 1271 | #else | 
|  | 1272 | ctr = GETU32(ctx->Yi.c + 12); | 
|  | 1273 | #endif | 
|  | 1274 | else | 
|  | 1275 | ctr = ctx->Yi.d[3]; | 
|  | 1276 |  | 
|  | 1277 | n = mres % 16; | 
|  | 1278 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1279 | if (16 % sizeof(size_t) == 0) { /* always true actually */ | 
|  | 1280 | do { | 
|  | 1281 | if (n) { | 
|  | 1282 | # if defined(GHASH) | 
|  | 1283 | while (n && len) { | 
|  | 1284 | *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; | 
|  | 1285 | --len; | 
|  | 1286 | n = (n + 1) % 16; | 
|  | 1287 | } | 
|  | 1288 | if (n == 0) { | 
|  | 1289 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1290 | mres = 0; | 
|  | 1291 | } else { | 
|  | 1292 | ctx->mres = mres; | 
|  | 1293 | return 0; | 
|  | 1294 | } | 
|  | 1295 | # else | 
|  | 1296 | while (n && len) { | 
|  | 1297 | u8 c = *(in++); | 
|  | 1298 | *(out++) = c ^ ctx->EKi.c[n]; | 
|  | 1299 | ctx->Xi.c[n] ^= c; | 
|  | 1300 | --len; | 
|  | 1301 | n = (n + 1) % 16; | 
|  | 1302 | } | 
|  | 1303 | if (n == 0) { | 
|  | 1304 | GCM_MUL(ctx); | 
|  | 1305 | mres = 0; | 
|  | 1306 | } else { | 
|  | 1307 | ctx->mres = n; | 
|  | 1308 | return 0; | 
|  | 1309 | } | 
|  | 1310 | # endif | 
|  | 1311 | } | 
|  | 1312 | # if defined(STRICT_ALIGNMENT) | 
|  | 1313 | if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) | 
|  | 1314 | break; | 
|  | 1315 | # endif | 
|  | 1316 | # if defined(GHASH) | 
|  | 1317 | if (len >= 16 && mres) { | 
|  | 1318 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1319 | mres = 0; | 
|  | 1320 | } | 
|  | 1321 | #  if defined(GHASH_CHUNK) | 
|  | 1322 | while (len >= GHASH_CHUNK) { | 
|  | 1323 | size_t j = GHASH_CHUNK; | 
|  | 1324 |  | 
|  | 1325 | GHASH(ctx, in, GHASH_CHUNK); | 
|  | 1326 | while (j) { | 
|  | 1327 | size_t_aX *out_t = (size_t_aX *)out; | 
|  | 1328 | const size_t_aX *in_t = (const size_t_aX *)in; | 
|  | 1329 |  | 
|  | 1330 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1331 | ++ctr; | 
|  | 1332 | if (is_endian.little) | 
|  | 1333 | #   ifdef BSWAP4 | 
|  | 1334 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1335 | #   else | 
|  | 1336 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1337 | #   endif | 
|  | 1338 | else | 
|  | 1339 | ctx->Yi.d[3] = ctr; | 
|  | 1340 | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | 1341 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | 1342 | out += 16; | 
|  | 1343 | in += 16; | 
|  | 1344 | j -= 16; | 
|  | 1345 | } | 
|  | 1346 | len -= GHASH_CHUNK; | 
|  | 1347 | } | 
|  | 1348 | #  endif | 
|  | 1349 | if ((i = (len & (size_t)-16))) { | 
|  | 1350 | GHASH(ctx, in, i); | 
|  | 1351 | while (len >= 16) { | 
|  | 1352 | size_t_aX *out_t = (size_t_aX *)out; | 
|  | 1353 | const size_t_aX *in_t = (const size_t_aX *)in; | 
|  | 1354 |  | 
|  | 1355 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1356 | ++ctr; | 
|  | 1357 | if (is_endian.little) | 
|  | 1358 | #  ifdef BSWAP4 | 
|  | 1359 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1360 | #  else | 
|  | 1361 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1362 | #  endif | 
|  | 1363 | else | 
|  | 1364 | ctx->Yi.d[3] = ctr; | 
|  | 1365 | for (i = 0; i < 16 / sizeof(size_t); ++i) | 
|  | 1366 | out_t[i] = in_t[i] ^ ctx->EKi.t[i]; | 
|  | 1367 | out += 16; | 
|  | 1368 | in += 16; | 
|  | 1369 | len -= 16; | 
|  | 1370 | } | 
|  | 1371 | } | 
|  | 1372 | # else | 
|  | 1373 | while (len >= 16) { | 
|  | 1374 | size_t *out_t = (size_t *)out; | 
|  | 1375 | const size_t *in_t = (const size_t *)in; | 
|  | 1376 |  | 
|  | 1377 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1378 | ++ctr; | 
|  | 1379 | if (is_endian.little) | 
|  | 1380 | #  ifdef BSWAP4 | 
|  | 1381 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1382 | #  else | 
|  | 1383 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1384 | #  endif | 
|  | 1385 | else | 
|  | 1386 | ctx->Yi.d[3] = ctr; | 
|  | 1387 | for (i = 0; i < 16 / sizeof(size_t); ++i) { | 
|  | 1388 | size_t c = in_t[i]; | 
|  | 1389 | out_t[i] = c ^ ctx->EKi.t[i]; | 
|  | 1390 | ctx->Xi.t[i] ^= c; | 
|  | 1391 | } | 
|  | 1392 | GCM_MUL(ctx); | 
|  | 1393 | out += 16; | 
|  | 1394 | in += 16; | 
|  | 1395 | len -= 16; | 
|  | 1396 | } | 
|  | 1397 | # endif | 
|  | 1398 | if (len) { | 
|  | 1399 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1400 | ++ctr; | 
|  | 1401 | if (is_endian.little) | 
|  | 1402 | # ifdef BSWAP4 | 
|  | 1403 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1404 | # else | 
|  | 1405 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1406 | # endif | 
|  | 1407 | else | 
|  | 1408 | ctx->Yi.d[3] = ctr; | 
|  | 1409 | # if defined(GHASH) | 
|  | 1410 | while (len--) { | 
|  | 1411 | out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; | 
|  | 1412 | ++n; | 
|  | 1413 | } | 
|  | 1414 | # else | 
|  | 1415 | while (len--) { | 
|  | 1416 | u8 c = in[n]; | 
|  | 1417 | ctx->Xi.c[n] ^= c; | 
|  | 1418 | out[n] = c ^ ctx->EKi.c[n]; | 
|  | 1419 | ++n; | 
|  | 1420 | } | 
|  | 1421 | mres = n; | 
|  | 1422 | # endif | 
|  | 1423 | } | 
|  | 1424 |  | 
|  | 1425 | ctx->mres = mres; | 
|  | 1426 | return 0; | 
|  | 1427 | } while (0); | 
|  | 1428 | } | 
|  | 1429 | #endif | 
|  | 1430 | for (i = 0; i < len; ++i) { | 
|  | 1431 | u8 c; | 
|  | 1432 | if (n == 0) { | 
|  | 1433 | (*block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1434 | ++ctr; | 
|  | 1435 | if (is_endian.little) | 
|  | 1436 | #ifdef BSWAP4 | 
|  | 1437 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1438 | #else | 
|  | 1439 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1440 | #endif | 
|  | 1441 | else | 
|  | 1442 | ctx->Yi.d[3] = ctr; | 
|  | 1443 | } | 
|  | 1444 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1445 | out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n]; | 
|  | 1446 | n = (n + 1) % 16; | 
|  | 1447 | if (mres == sizeof(ctx->Xn)) { | 
|  | 1448 | GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); | 
|  | 1449 | mres = 0; | 
|  | 1450 | } | 
|  | 1451 | #else | 
|  | 1452 | c = in[i]; | 
|  | 1453 | out[i] = c ^ ctx->EKi.c[n]; | 
|  | 1454 | ctx->Xi.c[n] ^= c; | 
|  | 1455 | mres = n = (n + 1) % 16; | 
|  | 1456 | if (n == 0) | 
|  | 1457 | GCM_MUL(ctx); | 
|  | 1458 | #endif | 
|  | 1459 | } | 
|  | 1460 |  | 
|  | 1461 | ctx->mres = mres; | 
|  | 1462 | return 0; | 
|  | 1463 | } | 
|  | 1464 |  | 
|  | 1465 | int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, | 
|  | 1466 | const unsigned char *in, unsigned char *out, | 
|  | 1467 | size_t len, ctr128_f stream) | 
|  | 1468 | { | 
|  | 1469 | #if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1470 | return CRYPTO_gcm128_encrypt(ctx, in, out, len); | 
|  | 1471 | #else | 
|  | 1472 | const union { | 
|  | 1473 | long one; | 
|  | 1474 | char little; | 
|  | 1475 | } is_endian = { 1 }; | 
|  | 1476 | unsigned int n, ctr, mres; | 
|  | 1477 | size_t i; | 
|  | 1478 | u64 mlen = ctx->len.u[1]; | 
|  | 1479 | void *key = ctx->key; | 
|  | 1480 | # ifdef GCM_FUNCREF_4BIT | 
|  | 1481 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | 1482 | #  ifdef GHASH | 
|  | 1483 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | 1484 | const u8 *inp, size_t len) = ctx->ghash; | 
|  | 1485 | #  endif | 
|  | 1486 | # endif | 
|  | 1487 |  | 
|  | 1488 | mlen += len; | 
|  | 1489 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
|  | 1490 | return -1; | 
|  | 1491 | ctx->len.u[1] = mlen; | 
|  | 1492 |  | 
|  | 1493 | mres = ctx->mres; | 
|  | 1494 |  | 
|  | 1495 | if (ctx->ares) { | 
|  | 1496 | /* First call to encrypt finalizes GHASH(AAD) */ | 
|  | 1497 | #if defined(GHASH) | 
|  | 1498 | if (len == 0) { | 
|  | 1499 | GCM_MUL(ctx); | 
|  | 1500 | ctx->ares = 0; | 
|  | 1501 | return 0; | 
|  | 1502 | } | 
|  | 1503 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); | 
|  | 1504 | ctx->Xi.u[0] = 0; | 
|  | 1505 | ctx->Xi.u[1] = 0; | 
|  | 1506 | mres = sizeof(ctx->Xi); | 
|  | 1507 | #else | 
|  | 1508 | GCM_MUL(ctx); | 
|  | 1509 | #endif | 
|  | 1510 | ctx->ares = 0; | 
|  | 1511 | } | 
|  | 1512 |  | 
|  | 1513 | if (is_endian.little) | 
|  | 1514 | # ifdef BSWAP4 | 
|  | 1515 | ctr = BSWAP4(ctx->Yi.d[3]); | 
|  | 1516 | # else | 
|  | 1517 | ctr = GETU32(ctx->Yi.c + 12); | 
|  | 1518 | # endif | 
|  | 1519 | else | 
|  | 1520 | ctr = ctx->Yi.d[3]; | 
|  | 1521 |  | 
|  | 1522 | n = mres % 16; | 
|  | 1523 | if (n) { | 
|  | 1524 | # if defined(GHASH) | 
|  | 1525 | while (n && len) { | 
|  | 1526 | ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | 1527 | --len; | 
|  | 1528 | n = (n + 1) % 16; | 
|  | 1529 | } | 
|  | 1530 | if (n == 0) { | 
|  | 1531 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1532 | mres = 0; | 
|  | 1533 | } else { | 
|  | 1534 | ctx->mres = mres; | 
|  | 1535 | return 0; | 
|  | 1536 | } | 
|  | 1537 | # else | 
|  | 1538 | while (n && len) { | 
|  | 1539 | ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; | 
|  | 1540 | --len; | 
|  | 1541 | n = (n + 1) % 16; | 
|  | 1542 | } | 
|  | 1543 | if (n == 0) { | 
|  | 1544 | GCM_MUL(ctx); | 
|  | 1545 | mres = 0; | 
|  | 1546 | } else { | 
|  | 1547 | ctx->mres = n; | 
|  | 1548 | return 0; | 
|  | 1549 | } | 
|  | 1550 | # endif | 
|  | 1551 | } | 
|  | 1552 | # if defined(GHASH) | 
|  | 1553 | if (len >= 16 && mres) { | 
|  | 1554 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1555 | mres = 0; | 
|  | 1556 | } | 
|  | 1557 | #  if defined(GHASH_CHUNK) | 
|  | 1558 | while (len >= GHASH_CHUNK) { | 
|  | 1559 | (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); | 
|  | 1560 | ctr += GHASH_CHUNK / 16; | 
|  | 1561 | if (is_endian.little) | 
|  | 1562 | #   ifdef BSWAP4 | 
|  | 1563 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1564 | #   else | 
|  | 1565 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1566 | #   endif | 
|  | 1567 | else | 
|  | 1568 | ctx->Yi.d[3] = ctr; | 
|  | 1569 | GHASH(ctx, out, GHASH_CHUNK); | 
|  | 1570 | out += GHASH_CHUNK; | 
|  | 1571 | in += GHASH_CHUNK; | 
|  | 1572 | len -= GHASH_CHUNK; | 
|  | 1573 | } | 
|  | 1574 | #  endif | 
|  | 1575 | # endif | 
|  | 1576 | if ((i = (len & (size_t)-16))) { | 
|  | 1577 | size_t j = i / 16; | 
|  | 1578 |  | 
|  | 1579 | (*stream) (in, out, j, key, ctx->Yi.c); | 
|  | 1580 | ctr += (unsigned int)j; | 
|  | 1581 | if (is_endian.little) | 
|  | 1582 | # ifdef BSWAP4 | 
|  | 1583 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1584 | # else | 
|  | 1585 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1586 | # endif | 
|  | 1587 | else | 
|  | 1588 | ctx->Yi.d[3] = ctr; | 
|  | 1589 | in += i; | 
|  | 1590 | len -= i; | 
|  | 1591 | # if defined(GHASH) | 
|  | 1592 | GHASH(ctx, out, i); | 
|  | 1593 | out += i; | 
|  | 1594 | # else | 
|  | 1595 | while (j--) { | 
|  | 1596 | for (i = 0; i < 16; ++i) | 
|  | 1597 | ctx->Xi.c[i] ^= out[i]; | 
|  | 1598 | GCM_MUL(ctx); | 
|  | 1599 | out += 16; | 
|  | 1600 | } | 
|  | 1601 | # endif | 
|  | 1602 | } | 
|  | 1603 | if (len) { | 
|  | 1604 | (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1605 | ++ctr; | 
|  | 1606 | if (is_endian.little) | 
|  | 1607 | # ifdef BSWAP4 | 
|  | 1608 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1609 | # else | 
|  | 1610 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1611 | # endif | 
|  | 1612 | else | 
|  | 1613 | ctx->Yi.d[3] = ctr; | 
|  | 1614 | while (len--) { | 
|  | 1615 | # if defined(GHASH) | 
|  | 1616 | ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | 1617 | # else | 
|  | 1618 | ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n]; | 
|  | 1619 | # endif | 
|  | 1620 | ++n; | 
|  | 1621 | } | 
|  | 1622 | } | 
|  | 1623 |  | 
|  | 1624 | ctx->mres = mres; | 
|  | 1625 | return 0; | 
|  | 1626 | #endif | 
|  | 1627 | } | 
|  | 1628 |  | 
|  | 1629 | int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, | 
|  | 1630 | const unsigned char *in, unsigned char *out, | 
|  | 1631 | size_t len, ctr128_f stream) | 
|  | 1632 | { | 
|  | 1633 | #if defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1634 | return CRYPTO_gcm128_decrypt(ctx, in, out, len); | 
|  | 1635 | #else | 
|  | 1636 | const union { | 
|  | 1637 | long one; | 
|  | 1638 | char little; | 
|  | 1639 | } is_endian = { 1 }; | 
|  | 1640 | unsigned int n, ctr, mres; | 
|  | 1641 | size_t i; | 
|  | 1642 | u64 mlen = ctx->len.u[1]; | 
|  | 1643 | void *key = ctx->key; | 
|  | 1644 | # ifdef GCM_FUNCREF_4BIT | 
|  | 1645 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | 1646 | #  ifdef GHASH | 
|  | 1647 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | 1648 | const u8 *inp, size_t len) = ctx->ghash; | 
|  | 1649 | #  endif | 
|  | 1650 | # endif | 
|  | 1651 |  | 
|  | 1652 | mlen += len; | 
|  | 1653 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) | 
|  | 1654 | return -1; | 
|  | 1655 | ctx->len.u[1] = mlen; | 
|  | 1656 |  | 
|  | 1657 | mres = ctx->mres; | 
|  | 1658 |  | 
|  | 1659 | if (ctx->ares) { | 
|  | 1660 | /* First call to decrypt finalizes GHASH(AAD) */ | 
|  | 1661 | # if defined(GHASH) | 
|  | 1662 | if (len == 0) { | 
|  | 1663 | GCM_MUL(ctx); | 
|  | 1664 | ctx->ares = 0; | 
|  | 1665 | return 0; | 
|  | 1666 | } | 
|  | 1667 | memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); | 
|  | 1668 | ctx->Xi.u[0] = 0; | 
|  | 1669 | ctx->Xi.u[1] = 0; | 
|  | 1670 | mres = sizeof(ctx->Xi); | 
|  | 1671 | # else | 
|  | 1672 | GCM_MUL(ctx); | 
|  | 1673 | # endif | 
|  | 1674 | ctx->ares = 0; | 
|  | 1675 | } | 
|  | 1676 |  | 
|  | 1677 | if (is_endian.little) | 
|  | 1678 | # ifdef BSWAP4 | 
|  | 1679 | ctr = BSWAP4(ctx->Yi.d[3]); | 
|  | 1680 | # else | 
|  | 1681 | ctr = GETU32(ctx->Yi.c + 12); | 
|  | 1682 | # endif | 
|  | 1683 | else | 
|  | 1684 | ctr = ctx->Yi.d[3]; | 
|  | 1685 |  | 
|  | 1686 | n = mres % 16; | 
|  | 1687 | if (n) { | 
|  | 1688 | # if defined(GHASH) | 
|  | 1689 | while (n && len) { | 
|  | 1690 | *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; | 
|  | 1691 | --len; | 
|  | 1692 | n = (n + 1) % 16; | 
|  | 1693 | } | 
|  | 1694 | if (n == 0) { | 
|  | 1695 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1696 | mres = 0; | 
|  | 1697 | } else { | 
|  | 1698 | ctx->mres = mres; | 
|  | 1699 | return 0; | 
|  | 1700 | } | 
|  | 1701 | # else | 
|  | 1702 | while (n && len) { | 
|  | 1703 | u8 c = *(in++); | 
|  | 1704 | *(out++) = c ^ ctx->EKi.c[n]; | 
|  | 1705 | ctx->Xi.c[n] ^= c; | 
|  | 1706 | --len; | 
|  | 1707 | n = (n + 1) % 16; | 
|  | 1708 | } | 
|  | 1709 | if (n == 0) { | 
|  | 1710 | GCM_MUL(ctx); | 
|  | 1711 | mres = 0; | 
|  | 1712 | } else { | 
|  | 1713 | ctx->mres = n; | 
|  | 1714 | return 0; | 
|  | 1715 | } | 
|  | 1716 | # endif | 
|  | 1717 | } | 
|  | 1718 | # if defined(GHASH) | 
|  | 1719 | if (len >= 16 && mres) { | 
|  | 1720 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1721 | mres = 0; | 
|  | 1722 | } | 
|  | 1723 | #  if defined(GHASH_CHUNK) | 
|  | 1724 | while (len >= GHASH_CHUNK) { | 
|  | 1725 | GHASH(ctx, in, GHASH_CHUNK); | 
|  | 1726 | (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); | 
|  | 1727 | ctr += GHASH_CHUNK / 16; | 
|  | 1728 | if (is_endian.little) | 
|  | 1729 | #   ifdef BSWAP4 | 
|  | 1730 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1731 | #   else | 
|  | 1732 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1733 | #   endif | 
|  | 1734 | else | 
|  | 1735 | ctx->Yi.d[3] = ctr; | 
|  | 1736 | out += GHASH_CHUNK; | 
|  | 1737 | in += GHASH_CHUNK; | 
|  | 1738 | len -= GHASH_CHUNK; | 
|  | 1739 | } | 
|  | 1740 | #  endif | 
|  | 1741 | # endif | 
|  | 1742 | if ((i = (len & (size_t)-16))) { | 
|  | 1743 | size_t j = i / 16; | 
|  | 1744 |  | 
|  | 1745 | # if defined(GHASH) | 
|  | 1746 | GHASH(ctx, in, i); | 
|  | 1747 | # else | 
|  | 1748 | while (j--) { | 
|  | 1749 | size_t k; | 
|  | 1750 | for (k = 0; k < 16; ++k) | 
|  | 1751 | ctx->Xi.c[k] ^= in[k]; | 
|  | 1752 | GCM_MUL(ctx); | 
|  | 1753 | in += 16; | 
|  | 1754 | } | 
|  | 1755 | j = i / 16; | 
|  | 1756 | in -= i; | 
|  | 1757 | # endif | 
|  | 1758 | (*stream) (in, out, j, key, ctx->Yi.c); | 
|  | 1759 | ctr += (unsigned int)j; | 
|  | 1760 | if (is_endian.little) | 
|  | 1761 | # ifdef BSWAP4 | 
|  | 1762 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1763 | # else | 
|  | 1764 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1765 | # endif | 
|  | 1766 | else | 
|  | 1767 | ctx->Yi.d[3] = ctr; | 
|  | 1768 | out += i; | 
|  | 1769 | in += i; | 
|  | 1770 | len -= i; | 
|  | 1771 | } | 
|  | 1772 | if (len) { | 
|  | 1773 | (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); | 
|  | 1774 | ++ctr; | 
|  | 1775 | if (is_endian.little) | 
|  | 1776 | # ifdef BSWAP4 | 
|  | 1777 | ctx->Yi.d[3] = BSWAP4(ctr); | 
|  | 1778 | # else | 
|  | 1779 | PUTU32(ctx->Yi.c + 12, ctr); | 
|  | 1780 | # endif | 
|  | 1781 | else | 
|  | 1782 | ctx->Yi.d[3] = ctr; | 
|  | 1783 | while (len--) { | 
|  | 1784 | # if defined(GHASH) | 
|  | 1785 | out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; | 
|  | 1786 | # else | 
|  | 1787 | u8 c = in[n]; | 
|  | 1788 | ctx->Xi.c[mres++] ^= c; | 
|  | 1789 | out[n] = c ^ ctx->EKi.c[n]; | 
|  | 1790 | # endif | 
|  | 1791 | ++n; | 
|  | 1792 | } | 
|  | 1793 | } | 
|  | 1794 |  | 
|  | 1795 | ctx->mres = mres; | 
|  | 1796 | return 0; | 
|  | 1797 | #endif | 
|  | 1798 | } | 
|  | 1799 |  | 
|  | 1800 | int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, | 
|  | 1801 | size_t len) | 
|  | 1802 | { | 
|  | 1803 | const union { | 
|  | 1804 | long one; | 
|  | 1805 | char little; | 
|  | 1806 | } is_endian = { 1 }; | 
|  | 1807 | u64 alen = ctx->len.u[0] << 3; | 
|  | 1808 | u64 clen = ctx->len.u[1] << 3; | 
|  | 1809 | #ifdef GCM_FUNCREF_4BIT | 
|  | 1810 | void (*gcm_gmult_p) (u64 Xi[2], const u128 Htable[16]) = ctx->gmult; | 
|  | 1811 | # if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1812 | void (*gcm_ghash_p) (u64 Xi[2], const u128 Htable[16], | 
|  | 1813 | const u8 *inp, size_t len) = ctx->ghash; | 
|  | 1814 | # endif | 
|  | 1815 | #endif | 
|  | 1816 |  | 
|  | 1817 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1818 | u128 bitlen; | 
|  | 1819 | unsigned int mres = ctx->mres; | 
|  | 1820 |  | 
|  | 1821 | if (mres) { | 
|  | 1822 | unsigned blocks = (mres + 15) & -16; | 
|  | 1823 |  | 
|  | 1824 | memset(ctx->Xn + mres, 0, blocks - mres); | 
|  | 1825 | mres = blocks; | 
|  | 1826 | if (mres == sizeof(ctx->Xn)) { | 
|  | 1827 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1828 | mres = 0; | 
|  | 1829 | } | 
|  | 1830 | } else if (ctx->ares) { | 
|  | 1831 | GCM_MUL(ctx); | 
|  | 1832 | } | 
|  | 1833 | #else | 
|  | 1834 | if (ctx->mres || ctx->ares) | 
|  | 1835 | GCM_MUL(ctx); | 
|  | 1836 | #endif | 
|  | 1837 |  | 
|  | 1838 | if (is_endian.little) { | 
|  | 1839 | #ifdef BSWAP8 | 
|  | 1840 | alen = BSWAP8(alen); | 
|  | 1841 | clen = BSWAP8(clen); | 
|  | 1842 | #else | 
|  | 1843 | u8 *p = ctx->len.c; | 
|  | 1844 |  | 
|  | 1845 | ctx->len.u[0] = alen; | 
|  | 1846 | ctx->len.u[1] = clen; | 
|  | 1847 |  | 
|  | 1848 | alen = (u64)GETU32(p) << 32 | GETU32(p + 4); | 
|  | 1849 | clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); | 
|  | 1850 | #endif | 
|  | 1851 | } | 
|  | 1852 |  | 
|  | 1853 | #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) | 
|  | 1854 | bitlen.hi = alen; | 
|  | 1855 | bitlen.lo = clen; | 
|  | 1856 | memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen)); | 
|  | 1857 | mres += sizeof(bitlen); | 
|  | 1858 | GHASH(ctx, ctx->Xn, mres); | 
|  | 1859 | #else | 
|  | 1860 | ctx->Xi.u[0] ^= alen; | 
|  | 1861 | ctx->Xi.u[1] ^= clen; | 
|  | 1862 | GCM_MUL(ctx); | 
|  | 1863 | #endif | 
|  | 1864 |  | 
|  | 1865 | ctx->Xi.u[0] ^= ctx->EK0.u[0]; | 
|  | 1866 | ctx->Xi.u[1] ^= ctx->EK0.u[1]; | 
|  | 1867 |  | 
|  | 1868 | if (tag && len <= sizeof(ctx->Xi)) | 
|  | 1869 | return CRYPTO_memcmp(ctx->Xi.c, tag, len); | 
|  | 1870 | else | 
|  | 1871 | return -1; | 
|  | 1872 | } | 
|  | 1873 |  | 
|  | 1874 | void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) | 
|  | 1875 | { | 
|  | 1876 | CRYPTO_gcm128_finish(ctx, NULL, 0); | 
|  | 1877 | memcpy(tag, ctx->Xi.c, | 
|  | 1878 | len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); | 
|  | 1879 | } | 
|  | 1880 |  | 
|  | 1881 | GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) | 
|  | 1882 | { | 
|  | 1883 | GCM128_CONTEXT *ret; | 
|  | 1884 |  | 
|  | 1885 | if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) | 
|  | 1886 | CRYPTO_gcm128_init(ret, key, block); | 
|  | 1887 |  | 
|  | 1888 | return ret; | 
|  | 1889 | } | 
|  | 1890 |  | 
|  | 1891 | void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) | 
|  | 1892 | { | 
|  | 1893 | OPENSSL_clear_free(ctx, sizeof(*ctx)); | 
|  | 1894 | } |