| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* mpn_mul_n -- Multiply two natural numbers of length n. | 
|  | 2 |  | 
|  | 3 | Copyright (C) 1991-2016 Free Software Foundation, Inc. | 
|  | 4 |  | 
|  | 5 | This file is part of the GNU MP Library. | 
|  | 6 |  | 
|  | 7 | The GNU MP Library is free software; you can redistribute it and/or modify | 
|  | 8 | it under the terms of the GNU Lesser General Public License as published by | 
|  | 9 | the Free Software Foundation; either version 2.1 of the License, or (at your | 
|  | 10 | option) any later version. | 
|  | 11 |  | 
|  | 12 | The GNU MP Library is distributed in the hope that it will be useful, but | 
|  | 13 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | 14 | or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public | 
|  | 15 | License for more details. | 
|  | 16 |  | 
|  | 17 | You should have received a copy of the GNU Lesser General Public License | 
|  | 18 | along with the GNU MP Library; see the file COPYING.LIB.  If not, see | 
|  | 19 | <http://www.gnu.org/licenses/>.  */ | 
|  | 20 |  | 
|  | 21 | #include <gmp.h> | 
|  | 22 | #include "gmp-impl.h" | 
|  | 23 |  | 
|  | 24 | /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), | 
|  | 25 | both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are | 
|  | 26 | always stored.  Return the most significant limb. | 
|  | 27 |  | 
|  | 28 | Argument constraints: | 
|  | 29 | 1. PRODP != UP and PRODP != VP, i.e. the destination | 
|  | 30 | must be distinct from the multiplier and the multiplicand.  */ | 
|  | 31 |  | 
|  | 32 | /* If KARATSUBA_THRESHOLD is not already defined, define it to a | 
|  | 33 | value which is good on most machines.  */ | 
|  | 34 | #ifndef KARATSUBA_THRESHOLD | 
|  | 35 | #define KARATSUBA_THRESHOLD 32 | 
|  | 36 | #endif | 
|  | 37 |  | 
|  | 38 | /* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */ | 
|  | 39 | #if KARATSUBA_THRESHOLD < 2 | 
|  | 40 | #undef KARATSUBA_THRESHOLD | 
|  | 41 | #define KARATSUBA_THRESHOLD 2 | 
|  | 42 | #endif | 
|  | 43 |  | 
|  | 44 | /* Handle simple cases with traditional multiplication. | 
|  | 45 |  | 
|  | 46 | This is the most critical code of multiplication.  All multiplies rely | 
|  | 47 | on this, both small and huge.  Small ones arrive here immediately.  Huge | 
|  | 48 | ones arrive here as this is the base case for Karatsuba's recursive | 
|  | 49 | algorithm below.  */ | 
|  | 50 |  | 
|  | 51 | void | 
|  | 52 | impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) | 
|  | 53 | { | 
|  | 54 | mp_size_t i; | 
|  | 55 | mp_limb_t cy_limb; | 
|  | 56 | mp_limb_t v_limb; | 
|  | 57 |  | 
|  | 58 | /* Multiply by the first limb in V separately, as the result can be | 
|  | 59 | stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
|  | 60 | v_limb = vp[0]; | 
|  | 61 | if (v_limb <= 1) | 
|  | 62 | { | 
|  | 63 | if (v_limb == 1) | 
|  | 64 | MPN_COPY (prodp, up, size); | 
|  | 65 | else | 
|  | 66 | MPN_ZERO (prodp, size); | 
|  | 67 | cy_limb = 0; | 
|  | 68 | } | 
|  | 69 | else | 
|  | 70 | cy_limb = mpn_mul_1 (prodp, up, size, v_limb); | 
|  | 71 |  | 
|  | 72 | prodp[size] = cy_limb; | 
|  | 73 | prodp++; | 
|  | 74 |  | 
|  | 75 | /* For each iteration in the outer loop, multiply one limb from | 
|  | 76 | U with one limb from V, and add it to PROD.  */ | 
|  | 77 | for (i = 1; i < size; i++) | 
|  | 78 | { | 
|  | 79 | v_limb = vp[i]; | 
|  | 80 | if (v_limb <= 1) | 
|  | 81 | { | 
|  | 82 | cy_limb = 0; | 
|  | 83 | if (v_limb == 1) | 
|  | 84 | cy_limb = mpn_add_n (prodp, prodp, up, size); | 
|  | 85 | } | 
|  | 86 | else | 
|  | 87 | cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); | 
|  | 88 |  | 
|  | 89 | prodp[size] = cy_limb; | 
|  | 90 | prodp++; | 
|  | 91 | } | 
|  | 92 | } | 
|  | 93 |  | 
|  | 94 | void | 
|  | 95 | impn_mul_n (mp_ptr prodp, | 
|  | 96 | mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace) | 
|  | 97 | { | 
|  | 98 | if ((size & 1) != 0) | 
|  | 99 | { | 
|  | 100 | /* The size is odd, the code code below doesn't handle that. | 
|  | 101 | Multiply the least significant (size - 1) limbs with a recursive | 
|  | 102 | call, and handle the most significant limb of S1 and S2 | 
|  | 103 | separately.  */ | 
|  | 104 | /* A slightly faster way to do this would be to make the Karatsuba | 
|  | 105 | code below behave as if the size were even, and let it check for | 
|  | 106 | odd size in the end.  I.e., in essence move this code to the end. | 
|  | 107 | Doing so would save us a recursive call, and potentially make the | 
|  | 108 | stack grow a lot less.  */ | 
|  | 109 |  | 
|  | 110 | mp_size_t esize = size - 1;	/* even size */ | 
|  | 111 | mp_limb_t cy_limb; | 
|  | 112 |  | 
|  | 113 | MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace); | 
|  | 114 | cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]); | 
|  | 115 | prodp[esize + esize] = cy_limb; | 
|  | 116 | cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]); | 
|  | 117 |  | 
|  | 118 | prodp[esize + size] = cy_limb; | 
|  | 119 | } | 
|  | 120 | else | 
|  | 121 | { | 
|  | 122 | /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. | 
|  | 123 |  | 
|  | 124 | Split U in two pieces, U1 and U0, such that | 
|  | 125 | U = U0 + U1*(B**n), | 
|  | 126 | and V in V1 and V0, such that | 
|  | 127 | V = V0 + V1*(B**n). | 
|  | 128 |  | 
|  | 129 | UV is then computed recursively using the identity | 
|  | 130 |  | 
|  | 131 | 2n   n          n                     n | 
|  | 132 | UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V | 
|  | 133 | 1 1        1  0   0  1              0 0 | 
|  | 134 |  | 
|  | 135 | Where B = 2**BITS_PER_MP_LIMB.  */ | 
|  | 136 |  | 
|  | 137 | mp_size_t hsize = size >> 1; | 
|  | 138 | mp_limb_t cy; | 
|  | 139 | int negflg; | 
|  | 140 |  | 
|  | 141 | /*** Product H.	 ________________  ________________ | 
|  | 142 | |_____U1 x V1____||____U0 x V0_____|  */ | 
|  | 143 | /* Put result in upper part of PROD and pass low part of TSPACE | 
|  | 144 | as new TSPACE.  */ | 
|  | 145 | MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace); | 
|  | 146 |  | 
|  | 147 | /*** Product M.	 ________________ | 
|  | 148 | |_(U1-U0)(V0-V1)_|  */ | 
|  | 149 | if (mpn_cmp (up + hsize, up, hsize) >= 0) | 
|  | 150 | { | 
|  | 151 | mpn_sub_n (prodp, up + hsize, up, hsize); | 
|  | 152 | negflg = 0; | 
|  | 153 | } | 
|  | 154 | else | 
|  | 155 | { | 
|  | 156 | mpn_sub_n (prodp, up, up + hsize, hsize); | 
|  | 157 | negflg = 1; | 
|  | 158 | } | 
|  | 159 | if (mpn_cmp (vp + hsize, vp, hsize) >= 0) | 
|  | 160 | { | 
|  | 161 | mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize); | 
|  | 162 | negflg ^= 1; | 
|  | 163 | } | 
|  | 164 | else | 
|  | 165 | { | 
|  | 166 | mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize); | 
|  | 167 | /* No change of NEGFLG.  */ | 
|  | 168 | } | 
|  | 169 | /* Read temporary operands from low part of PROD. | 
|  | 170 | Put result in low part of TSPACE using upper part of TSPACE | 
|  | 171 | as new TSPACE.  */ | 
|  | 172 | MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size); | 
|  | 173 |  | 
|  | 174 | /*** Add/copy product H.  */ | 
|  | 175 | MPN_COPY (prodp + hsize, prodp + size, hsize); | 
|  | 176 | cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); | 
|  | 177 |  | 
|  | 178 | /*** Add product M (if NEGFLG M is a negative number).  */ | 
|  | 179 | if (negflg) | 
|  | 180 | cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); | 
|  | 181 | else | 
|  | 182 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); | 
|  | 183 |  | 
|  | 184 | /*** Product L.	 ________________  ________________ | 
|  | 185 | |________________||____U0 x V0_____|  */ | 
|  | 186 | /* Read temporary operands from low part of PROD. | 
|  | 187 | Put result in low part of TSPACE using upper part of TSPACE | 
|  | 188 | as new TSPACE.  */ | 
|  | 189 | MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size); | 
|  | 190 |  | 
|  | 191 | /*** Add/copy Product L (twice).  */ | 
|  | 192 |  | 
|  | 193 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); | 
|  | 194 | if (cy) | 
|  | 195 | mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); | 
|  | 196 |  | 
|  | 197 | MPN_COPY (prodp, tspace, hsize); | 
|  | 198 | cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); | 
|  | 199 | if (cy) | 
|  | 200 | mpn_add_1 (prodp + size, prodp + size, size, 1); | 
|  | 201 | } | 
|  | 202 | } | 
|  | 203 |  | 
|  | 204 | void | 
|  | 205 | impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size) | 
|  | 206 | { | 
|  | 207 | mp_size_t i; | 
|  | 208 | mp_limb_t cy_limb; | 
|  | 209 | mp_limb_t v_limb; | 
|  | 210 |  | 
|  | 211 | /* Multiply by the first limb in V separately, as the result can be | 
|  | 212 | stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
|  | 213 | v_limb = up[0]; | 
|  | 214 | if (v_limb <= 1) | 
|  | 215 | { | 
|  | 216 | if (v_limb == 1) | 
|  | 217 | MPN_COPY (prodp, up, size); | 
|  | 218 | else | 
|  | 219 | MPN_ZERO (prodp, size); | 
|  | 220 | cy_limb = 0; | 
|  | 221 | } | 
|  | 222 | else | 
|  | 223 | cy_limb = mpn_mul_1 (prodp, up, size, v_limb); | 
|  | 224 |  | 
|  | 225 | prodp[size] = cy_limb; | 
|  | 226 | prodp++; | 
|  | 227 |  | 
|  | 228 | /* For each iteration in the outer loop, multiply one limb from | 
|  | 229 | U with one limb from V, and add it to PROD.  */ | 
|  | 230 | for (i = 1; i < size; i++) | 
|  | 231 | { | 
|  | 232 | v_limb = up[i]; | 
|  | 233 | if (v_limb <= 1) | 
|  | 234 | { | 
|  | 235 | cy_limb = 0; | 
|  | 236 | if (v_limb == 1) | 
|  | 237 | cy_limb = mpn_add_n (prodp, prodp, up, size); | 
|  | 238 | } | 
|  | 239 | else | 
|  | 240 | cy_limb = mpn_addmul_1 (prodp, up, size, v_limb); | 
|  | 241 |  | 
|  | 242 | prodp[size] = cy_limb; | 
|  | 243 | prodp++; | 
|  | 244 | } | 
|  | 245 | } | 
|  | 246 |  | 
|  | 247 | void | 
|  | 248 | impn_sqr_n (mp_ptr prodp, | 
|  | 249 | mp_srcptr up, mp_size_t size, mp_ptr tspace) | 
|  | 250 | { | 
|  | 251 | if ((size & 1) != 0) | 
|  | 252 | { | 
|  | 253 | /* The size is odd, the code code below doesn't handle that. | 
|  | 254 | Multiply the least significant (size - 1) limbs with a recursive | 
|  | 255 | call, and handle the most significant limb of S1 and S2 | 
|  | 256 | separately.  */ | 
|  | 257 | /* A slightly faster way to do this would be to make the Karatsuba | 
|  | 258 | code below behave as if the size were even, and let it check for | 
|  | 259 | odd size in the end.  I.e., in essence move this code to the end. | 
|  | 260 | Doing so would save us a recursive call, and potentially make the | 
|  | 261 | stack grow a lot less.  */ | 
|  | 262 |  | 
|  | 263 | mp_size_t esize = size - 1;	/* even size */ | 
|  | 264 | mp_limb_t cy_limb; | 
|  | 265 |  | 
|  | 266 | MPN_SQR_N_RECURSE (prodp, up, esize, tspace); | 
|  | 267 | cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]); | 
|  | 268 | prodp[esize + esize] = cy_limb; | 
|  | 269 | cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]); | 
|  | 270 |  | 
|  | 271 | prodp[esize + size] = cy_limb; | 
|  | 272 | } | 
|  | 273 | else | 
|  | 274 | { | 
|  | 275 | mp_size_t hsize = size >> 1; | 
|  | 276 | mp_limb_t cy; | 
|  | 277 |  | 
|  | 278 | /*** Product H.	 ________________  ________________ | 
|  | 279 | |_____U1 x U1____||____U0 x U0_____|  */ | 
|  | 280 | /* Put result in upper part of PROD and pass low part of TSPACE | 
|  | 281 | as new TSPACE.  */ | 
|  | 282 | MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace); | 
|  | 283 |  | 
|  | 284 | /*** Product M.	 ________________ | 
|  | 285 | |_(U1-U0)(U0-U1)_|  */ | 
|  | 286 | if (mpn_cmp (up + hsize, up, hsize) >= 0) | 
|  | 287 | { | 
|  | 288 | mpn_sub_n (prodp, up + hsize, up, hsize); | 
|  | 289 | } | 
|  | 290 | else | 
|  | 291 | { | 
|  | 292 | mpn_sub_n (prodp, up, up + hsize, hsize); | 
|  | 293 | } | 
|  | 294 |  | 
|  | 295 | /* Read temporary operands from low part of PROD. | 
|  | 296 | Put result in low part of TSPACE using upper part of TSPACE | 
|  | 297 | as new TSPACE.  */ | 
|  | 298 | MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size); | 
|  | 299 |  | 
|  | 300 | /*** Add/copy product H.  */ | 
|  | 301 | MPN_COPY (prodp + hsize, prodp + size, hsize); | 
|  | 302 | cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize); | 
|  | 303 |  | 
|  | 304 | /*** Add product M (if NEGFLG M is a negative number).  */ | 
|  | 305 | cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size); | 
|  | 306 |  | 
|  | 307 | /*** Product L.	 ________________  ________________ | 
|  | 308 | |________________||____U0 x U0_____|  */ | 
|  | 309 | /* Read temporary operands from low part of PROD. | 
|  | 310 | Put result in low part of TSPACE using upper part of TSPACE | 
|  | 311 | as new TSPACE.  */ | 
|  | 312 | MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size); | 
|  | 313 |  | 
|  | 314 | /*** Add/copy Product L (twice).  */ | 
|  | 315 |  | 
|  | 316 | cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size); | 
|  | 317 | if (cy) | 
|  | 318 | mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy); | 
|  | 319 |  | 
|  | 320 | MPN_COPY (prodp, tspace, hsize); | 
|  | 321 | cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); | 
|  | 322 | if (cy) | 
|  | 323 | mpn_add_1 (prodp + size, prodp + size, size, 1); | 
|  | 324 | } | 
|  | 325 | } | 
|  | 326 |  | 
|  | 327 | /* This should be made into an inline function in gmp.h.  */ | 
|  | 328 | void | 
|  | 329 | mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size) | 
|  | 330 | { | 
|  | 331 | TMP_DECL (marker); | 
|  | 332 | TMP_MARK (marker); | 
|  | 333 | if (up == vp) | 
|  | 334 | { | 
|  | 335 | if (size < KARATSUBA_THRESHOLD) | 
|  | 336 | { | 
|  | 337 | impn_sqr_n_basecase (prodp, up, size); | 
|  | 338 | } | 
|  | 339 | else | 
|  | 340 | { | 
|  | 341 | mp_ptr tspace; | 
|  | 342 | tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); | 
|  | 343 | impn_sqr_n (prodp, up, size, tspace); | 
|  | 344 | } | 
|  | 345 | } | 
|  | 346 | else | 
|  | 347 | { | 
|  | 348 | if (size < KARATSUBA_THRESHOLD) | 
|  | 349 | { | 
|  | 350 | impn_mul_n_basecase (prodp, up, vp, size); | 
|  | 351 | } | 
|  | 352 | else | 
|  | 353 | { | 
|  | 354 | mp_ptr tspace; | 
|  | 355 | tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB); | 
|  | 356 | impn_mul_n (prodp, up, vp, size, tspace); | 
|  | 357 | } | 
|  | 358 | } | 
|  | 359 | TMP_FREE (marker); | 
|  | 360 | } |