| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/kernel/time/tick-sched.c | 
 | 3 |  * | 
 | 4 |  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
 | 5 |  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
 | 6 |  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner | 
 | 7 |  * | 
 | 8 |  *  No idle tick implementation for low and high resolution timers | 
 | 9 |  * | 
 | 10 |  *  Started by: Thomas Gleixner and Ingo Molnar | 
 | 11 |  * | 
 | 12 |  *  Distribute under GPLv2. | 
 | 13 |  */ | 
 | 14 | #include <linux/cpu.h> | 
 | 15 | #include <linux/err.h> | 
 | 16 | #include <linux/hrtimer.h> | 
 | 17 | #include <linux/interrupt.h> | 
 | 18 | #include <linux/kernel_stat.h> | 
 | 19 | #include <linux/percpu.h> | 
 | 20 | #include <linux/profile.h> | 
 | 21 | #include <linux/sched.h> | 
 | 22 | #include <linux/module.h> | 
 | 23 |  | 
 | 24 | #include <asm/irq_regs.h> | 
 | 25 |  | 
 | 26 | #include "tick-internal.h" | 
 | 27 |  | 
 | 28 | #ifdef CONFIG_SINGLECORE | 
 | 29 | #ifndef CONFIG_SYSTEM_RECOVERY | 
 | 30 | #ifndef USE_CPPS_KO | 
 | 31 | extern void linux_oss_tick_timer_function(void); | 
 | 32 | #endif | 
 | 33 | #endif | 
 | 34 | #endif | 
 | 35 |  | 
 | 36 | /* | 
 | 37 |  * Per cpu nohz control structure | 
 | 38 |  */ | 
 | 39 | static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); | 
 | 40 |  | 
 | 41 | /* | 
 | 42 |  * The time, when the last jiffy update happened. Protected by xtime_lock. | 
 | 43 |  */ | 
 | 44 | static ktime_t last_jiffies_update; | 
 | 45 |  | 
 | 46 | struct tick_sched *tick_get_tick_sched(int cpu) | 
 | 47 | { | 
 | 48 | 	return &per_cpu(tick_cpu_sched, cpu); | 
 | 49 | } | 
 | 50 |  | 
 | 51 | /* | 
 | 52 |  * Must be called with interrupts disabled ! | 
 | 53 |  */ | 
 | 54 | static void tick_do_update_jiffies64(ktime_t now) | 
 | 55 | { | 
 | 56 | 	unsigned long ticks = 0; | 
 | 57 | 	ktime_t delta; | 
 | 58 |  | 
 | 59 | 	/* | 
 | 60 | 	 * Do a quick check without holding xtime_lock: | 
 | 61 | 	 */ | 
 | 62 | 	delta = ktime_sub(now, last_jiffies_update); | 
 | 63 | 	if (delta.tv64 < tick_period.tv64) | 
 | 64 | 		return; | 
 | 65 |  | 
 | 66 | 	/* Reevalute with xtime_lock held */ | 
 | 67 | 	raw_spin_lock(&xtime_lock); | 
 | 68 | 	write_seqcount_begin(&xtime_seq); | 
 | 69 |  | 
 | 70 | 	delta = ktime_sub(now, last_jiffies_update); | 
 | 71 | 	if (delta.tv64 >= tick_period.tv64) { | 
 | 72 |  | 
 | 73 | 		delta = ktime_sub(delta, tick_period); | 
 | 74 | 		last_jiffies_update = ktime_add(last_jiffies_update, | 
 | 75 | 						tick_period); | 
 | 76 |  | 
 | 77 | 		/* Slow path for long timeouts */ | 
 | 78 | 		if (unlikely(delta.tv64 >= tick_period.tv64)) { | 
 | 79 | 			s64 incr = ktime_to_ns(tick_period); | 
 | 80 |  | 
 | 81 | 			ticks = ktime_divns(delta, incr); | 
 | 82 |  | 
 | 83 | 			last_jiffies_update = ktime_add_ns(last_jiffies_update, | 
 | 84 | 							   incr * ticks); | 
 | 85 | 		} | 
 | 86 | 		do_timer(++ticks); | 
 | 87 |  | 
 | 88 | 		/* Keep the tick_next_period variable up to date */ | 
 | 89 | 		tick_next_period = ktime_add(last_jiffies_update, tick_period); | 
 | 90 | 	} | 
 | 91 | 	write_seqcount_end(&xtime_seq); | 
 | 92 | 	raw_spin_unlock(&xtime_lock); | 
 | 93 | } | 
 | 94 |  | 
 | 95 | /* | 
 | 96 |  * Initialize and return retrieve the jiffies update. | 
 | 97 |  */ | 
 | 98 | static ktime_t tick_init_jiffy_update(void) | 
 | 99 | { | 
 | 100 | 	ktime_t period; | 
 | 101 |  | 
 | 102 | 	raw_spin_lock(&xtime_lock); | 
 | 103 | 	write_seqcount_begin(&xtime_seq); | 
 | 104 | 	/* Did we start the jiffies update yet ? */ | 
 | 105 | 	if (last_jiffies_update.tv64 == 0) | 
 | 106 | 		last_jiffies_update = tick_next_period; | 
 | 107 | 	period = last_jiffies_update; | 
 | 108 | 	write_seqcount_end(&xtime_seq); | 
 | 109 | 	raw_spin_unlock(&xtime_lock); | 
 | 110 | 	return period; | 
 | 111 | } | 
 | 112 |  | 
 | 113 | /* | 
 | 114 |  * NOHZ - aka dynamic tick functionality | 
 | 115 |  */ | 
 | 116 | #ifdef CONFIG_NO_HZ | 
 | 117 | /* | 
 | 118 |  * NO HZ enabled ? | 
 | 119 |  */ | 
 | 120 | static int tick_nohz_enabled __read_mostly  = 1; | 
 | 121 |  | 
 | 122 | /* | 
 | 123 |  * Enable / Disable tickless mode | 
 | 124 |  */ | 
 | 125 | static int __init setup_tick_nohz(char *str) | 
 | 126 | { | 
 | 127 | 	if (!strcmp(str, "off")) | 
 | 128 | 		tick_nohz_enabled = 0; | 
 | 129 | 	else if (!strcmp(str, "on")) | 
 | 130 | 		tick_nohz_enabled = 1; | 
 | 131 | 	else | 
 | 132 | 		return 0; | 
 | 133 | 	return 1; | 
 | 134 | } | 
 | 135 |  | 
 | 136 | __setup("nohz=", setup_tick_nohz); | 
 | 137 |  | 
 | 138 | /** | 
 | 139 |  * tick_nohz_update_jiffies - update jiffies when idle was interrupted | 
 | 140 |  * | 
 | 141 |  * Called from interrupt entry when the CPU was idle | 
 | 142 |  * | 
 | 143 |  * In case the sched_tick was stopped on this CPU, we have to check if jiffies | 
 | 144 |  * must be updated. Otherwise an interrupt handler could use a stale jiffy | 
 | 145 |  * value. We do this unconditionally on any cpu, as we don't know whether the | 
 | 146 |  * cpu, which has the update task assigned is in a long sleep. | 
 | 147 |  */ | 
 | 148 | static void tick_nohz_update_jiffies(ktime_t now) | 
 | 149 | { | 
 | 150 | 	int cpu = smp_processor_id(); | 
 | 151 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 152 | 	unsigned long flags; | 
 | 153 |  | 
 | 154 | 	ts->idle_waketime = now; | 
 | 155 |  | 
 | 156 | 	local_irq_save(flags); | 
 | 157 | 	tick_do_update_jiffies64(now); | 
 | 158 | 	local_irq_restore(flags); | 
 | 159 |  | 
 | 160 | 	touch_softlockup_watchdog(); | 
 | 161 | } | 
 | 162 |  | 
 | 163 | /* | 
 | 164 |  * Updates the per cpu time idle statistics counters | 
 | 165 |  */ | 
 | 166 | static void | 
 | 167 | update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time) | 
 | 168 | { | 
 | 169 | 	ktime_t delta; | 
 | 170 |  | 
 | 171 | 	if (ts->idle_active) { | 
 | 172 | 		delta = ktime_sub(now, ts->idle_entrytime); | 
 | 173 | 		if (nr_iowait_cpu(cpu) > 0) | 
 | 174 | 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); | 
 | 175 | 		else | 
 | 176 | 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | 
 | 177 | 		ts->idle_entrytime = now; | 
 | 178 | 	} | 
 | 179 |  | 
 | 180 | 	if (last_update_time) | 
 | 181 | 		*last_update_time = ktime_to_us(now); | 
 | 182 |  | 
 | 183 | } | 
 | 184 |  | 
 | 185 | static void tick_nohz_stop_idle(int cpu, ktime_t now) | 
 | 186 | { | 
 | 187 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 188 |  | 
 | 189 | 	update_ts_time_stats(cpu, ts, now, NULL); | 
 | 190 | 	ts->idle_active = 0; | 
 | 191 |  | 
 | 192 | 	sched_clock_idle_wakeup_event(0); | 
 | 193 | } | 
 | 194 |  | 
 | 195 | static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts) | 
 | 196 | { | 
 | 197 | 	ktime_t now = ktime_get(); | 
 | 198 |  | 
 | 199 | 	ts->idle_entrytime = now; | 
 | 200 | 	ts->idle_active = 1; | 
 | 201 | 	sched_clock_idle_sleep_event(); | 
 | 202 | 	return now; | 
 | 203 | } | 
 | 204 |  | 
 | 205 | /** | 
 | 206 |  * get_cpu_idle_time_us - get the total idle time of a cpu | 
 | 207 |  * @cpu: CPU number to query | 
 | 208 |  * @last_update_time: variable to store update time in. Do not update | 
 | 209 |  * counters if NULL. | 
 | 210 |  * | 
 | 211 |  * Return the cummulative idle time (since boot) for a given | 
 | 212 |  * CPU, in microseconds. | 
 | 213 |  * | 
 | 214 |  * This time is measured via accounting rather than sampling, | 
 | 215 |  * and is as accurate as ktime_get() is. | 
 | 216 |  * | 
 | 217 |  * This function returns -1 if NOHZ is not enabled. | 
 | 218 |  */ | 
 | 219 | u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) | 
 | 220 | { | 
 | 221 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 222 | 	ktime_t now, idle; | 
 | 223 |  | 
 | 224 | 	if (!tick_nohz_enabled) | 
 | 225 | 		return -1; | 
 | 226 |  | 
 | 227 | 	now = ktime_get(); | 
 | 228 | 	if (last_update_time) { | 
 | 229 | 		update_ts_time_stats(cpu, ts, now, last_update_time); | 
 | 230 | 		idle = ts->idle_sleeptime; | 
 | 231 | 	} else { | 
 | 232 | 		if (ts->idle_active && !nr_iowait_cpu(cpu)) { | 
 | 233 | 			ktime_t delta = ktime_sub(now, ts->idle_entrytime); | 
 | 234 |  | 
 | 235 | 			idle = ktime_add(ts->idle_sleeptime, delta); | 
 | 236 | 		} else { | 
 | 237 | 			idle = ts->idle_sleeptime; | 
 | 238 | 		} | 
 | 239 | 	} | 
 | 240 |  | 
 | 241 | 	return ktime_to_us(idle); | 
 | 242 |  | 
 | 243 | } | 
 | 244 | EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); | 
 | 245 |  | 
 | 246 | /** | 
 | 247 |  * get_cpu_iowait_time_us - get the total iowait time of a cpu | 
 | 248 |  * @cpu: CPU number to query | 
 | 249 |  * @last_update_time: variable to store update time in. Do not update | 
 | 250 |  * counters if NULL. | 
 | 251 |  * | 
 | 252 |  * Return the cummulative iowait time (since boot) for a given | 
 | 253 |  * CPU, in microseconds. | 
 | 254 |  * | 
 | 255 |  * This time is measured via accounting rather than sampling, | 
 | 256 |  * and is as accurate as ktime_get() is. | 
 | 257 |  * | 
 | 258 |  * This function returns -1 if NOHZ is not enabled. | 
 | 259 |  */ | 
 | 260 | u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) | 
 | 261 | { | 
 | 262 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 263 | 	ktime_t now, iowait; | 
 | 264 |  | 
 | 265 | 	if (!tick_nohz_enabled) | 
 | 266 | 		return -1; | 
 | 267 |  | 
 | 268 | 	now = ktime_get(); | 
 | 269 | 	if (last_update_time) { | 
 | 270 | 		update_ts_time_stats(cpu, ts, now, last_update_time); | 
 | 271 | 		iowait = ts->iowait_sleeptime; | 
 | 272 | 	} else { | 
 | 273 | 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) { | 
 | 274 | 			ktime_t delta = ktime_sub(now, ts->idle_entrytime); | 
 | 275 |  | 
 | 276 | 			iowait = ktime_add(ts->iowait_sleeptime, delta); | 
 | 277 | 		} else { | 
 | 278 | 			iowait = ts->iowait_sleeptime; | 
 | 279 | 		} | 
 | 280 | 	} | 
 | 281 |  | 
 | 282 | 	return ktime_to_us(iowait); | 
 | 283 | } | 
 | 284 | EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); | 
 | 285 |  | 
 | 286 | static void tick_nohz_stop_sched_tick(struct tick_sched *ts) | 
 | 287 | { | 
 | 288 | 	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies; | 
 | 289 | 	ktime_t last_update, expires, now; | 
 | 290 | 	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; | 
 | 291 | 	u64 time_delta; | 
 | 292 | 	int cpu; | 
 | 293 |  | 
 | 294 | 	cpu = smp_processor_id(); | 
 | 295 | 	ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 296 |  | 
 | 297 | 	now = tick_nohz_start_idle(cpu, ts); | 
 | 298 |  | 
 | 299 | 	/* | 
 | 300 | 	 * If this cpu is offline and it is the one which updates | 
 | 301 | 	 * jiffies, then give up the assignment and let it be taken by | 
 | 302 | 	 * the cpu which runs the tick timer next. If we don't drop | 
 | 303 | 	 * this here the jiffies might be stale and do_timer() never | 
 | 304 | 	 * invoked. | 
 | 305 | 	 */ | 
 | 306 | 	if (unlikely(!cpu_online(cpu))) { | 
 | 307 | 		if (cpu == tick_do_timer_cpu) | 
 | 308 | 			tick_do_timer_cpu = TICK_DO_TIMER_NONE; | 
 | 309 | 	} | 
 | 310 |  | 
 | 311 | 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) { | 
 | 312 | 		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ }; | 
 | 313 | 		return; | 
 | 314 | 	} | 
 | 315 |  | 
 | 316 | 	if (need_resched()) | 
 | 317 | 		return; | 
 | 318 |  | 
 | 319 | 	if (unlikely(local_softirq_pending() && cpu_online(cpu))) { | 
 | 320 | 		softirq_check_pending_idle(); | 
 | 321 | 		return; | 
 | 322 | 	} | 
 | 323 |  | 
 | 324 | 	ts->idle_calls++; | 
 | 325 | 	/* Read jiffies and the time when jiffies were updated last */ | 
 | 326 | 	do { | 
 | 327 | 		seq = read_seqcount_begin(&xtime_seq); | 
 | 328 | 		last_update = last_jiffies_update; | 
 | 329 | 		last_jiffies = jiffies; | 
 | 330 | 		time_delta = timekeeping_max_deferment(); | 
 | 331 | 	} while (read_seqcount_retry(&xtime_seq, seq)); | 
 | 332 |  | 
 | 333 | 	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) || | 
 | 334 | 	    arch_needs_cpu(cpu)) { | 
 | 335 | 		next_jiffies = last_jiffies + 1; | 
 | 336 | 		delta_jiffies = 1; | 
 | 337 | 	} else { | 
 | 338 | 		/* Get the next timer wheel timer */ | 
 | 339 | 		next_jiffies = get_next_timer_interrupt(last_jiffies); | 
 | 340 | 		delta_jiffies = next_jiffies - last_jiffies; | 
 | 341 | 	} | 
 | 342 | 	/* | 
 | 343 | 	 * Do not stop the tick, if we are only one off | 
 | 344 | 	 * or if the cpu is required for rcu | 
 | 345 | 	 */ | 
 | 346 | 	if (!ts->tick_stopped && delta_jiffies == 1) | 
 | 347 | 		goto out; | 
 | 348 |  | 
 | 349 | 	/* Schedule the tick, if we are at least one jiffie off */ | 
 | 350 | 	if ((long)delta_jiffies >= 1) { | 
 | 351 |  | 
 | 352 | 		/* | 
 | 353 | 		 * If this cpu is the one which updates jiffies, then | 
 | 354 | 		 * give up the assignment and let it be taken by the | 
 | 355 | 		 * cpu which runs the tick timer next, which might be | 
 | 356 | 		 * this cpu as well. If we don't drop this here the | 
 | 357 | 		 * jiffies might be stale and do_timer() never | 
 | 358 | 		 * invoked. Keep track of the fact that it was the one | 
 | 359 | 		 * which had the do_timer() duty last. If this cpu is | 
 | 360 | 		 * the one which had the do_timer() duty last, we | 
 | 361 | 		 * limit the sleep time to the timekeeping | 
 | 362 | 		 * max_deferement value which we retrieved | 
 | 363 | 		 * above. Otherwise we can sleep as long as we want. | 
 | 364 | 		 */ | 
 | 365 | 		if (cpu == tick_do_timer_cpu) { | 
 | 366 | 			tick_do_timer_cpu = TICK_DO_TIMER_NONE; | 
 | 367 | 			ts->do_timer_last = 1; | 
 | 368 | 		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) { | 
 | 369 | 			time_delta = KTIME_MAX; | 
 | 370 | 			ts->do_timer_last = 0; | 
 | 371 | 		} else if (!ts->do_timer_last) { | 
 | 372 | 			time_delta = KTIME_MAX; | 
 | 373 | 		} | 
 | 374 |  | 
 | 375 | 		/* | 
 | 376 | 		 * calculate the expiry time for the next timer wheel | 
 | 377 | 		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals | 
 | 378 | 		 * that there is no timer pending or at least extremely | 
 | 379 | 		 * far into the future (12 days for HZ=1000). In this | 
 | 380 | 		 * case we set the expiry to the end of time. | 
 | 381 | 		 */ | 
 | 382 | 		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) { | 
 | 383 | 			/* | 
 | 384 | 			 * Calculate the time delta for the next timer event. | 
 | 385 | 			 * If the time delta exceeds the maximum time delta | 
 | 386 | 			 * permitted by the current clocksource then adjust | 
 | 387 | 			 * the time delta accordingly to ensure the | 
 | 388 | 			 * clocksource does not wrap. | 
 | 389 | 			 */ | 
 | 390 | 			time_delta = min_t(u64, time_delta, | 
 | 391 | 					   tick_period.tv64 * delta_jiffies); | 
 | 392 | 		} | 
 | 393 |  | 
 | 394 | 		if (time_delta < KTIME_MAX) | 
 | 395 | 			expires = ktime_add_ns(last_update, time_delta); | 
 | 396 | 		else | 
 | 397 | 			expires.tv64 = KTIME_MAX; | 
 | 398 |  | 
 | 399 | 		/* Skip reprogram of event if its not changed */ | 
 | 400 | 		if (ts->tick_stopped && ktime_equal(expires, dev->next_event)) | 
 | 401 | 			goto out; | 
 | 402 |  | 
 | 403 | 		/* | 
 | 404 | 		 * nohz_stop_sched_tick can be called several times before | 
 | 405 | 		 * the nohz_restart_sched_tick is called. This happens when | 
 | 406 | 		 * interrupts arrive which do not cause a reschedule. In the | 
 | 407 | 		 * first call we save the current tick time, so we can restart | 
 | 408 | 		 * the scheduler tick in nohz_restart_sched_tick. | 
 | 409 | 		 */ | 
 | 410 | 		if (!ts->tick_stopped) { | 
 | 411 | 			select_nohz_load_balancer(1); | 
 | 412 | 			calc_load_enter_idle(); | 
 | 413 |  | 
 | 414 | 			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer); | 
 | 415 | 			ts->tick_stopped = 1; | 
 | 416 | 			ts->idle_jiffies = last_jiffies; | 
 | 417 | 		} | 
 | 418 |  | 
 | 419 | 		ts->idle_sleeps++; | 
 | 420 |  | 
 | 421 | 		/* Mark expires */ | 
 | 422 | 		ts->idle_expires = expires; | 
 | 423 |  | 
 | 424 | 		/* | 
 | 425 | 		 * If the expiration time == KTIME_MAX, then | 
 | 426 | 		 * in this case we simply stop the tick timer. | 
 | 427 | 		 */ | 
 | 428 | 		 if (unlikely(expires.tv64 == KTIME_MAX)) { | 
 | 429 | 			if (ts->nohz_mode == NOHZ_MODE_HIGHRES) | 
 | 430 | 				hrtimer_cancel(&ts->sched_timer); | 
 | 431 | 			goto out; | 
 | 432 | 		} | 
 | 433 |  | 
 | 434 | 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { | 
 | 435 | 			hrtimer_start(&ts->sched_timer, expires, | 
 | 436 | 				      HRTIMER_MODE_ABS_PINNED); | 
 | 437 | 			/* Check, if the timer was already in the past */ | 
 | 438 | 			if (hrtimer_active(&ts->sched_timer)) | 
 | 439 | 				goto out; | 
 | 440 | 		} else if (!tick_program_event(expires, 0)) | 
 | 441 | 				goto out; | 
 | 442 | 		/* | 
 | 443 | 		 * We are past the event already. So we crossed a | 
 | 444 | 		 * jiffie boundary. Update jiffies and raise the | 
 | 445 | 		 * softirq. | 
 | 446 | 		 */ | 
 | 447 | 		tick_do_update_jiffies64(ktime_get()); | 
 | 448 | 	} | 
 | 449 | 	raise_softirq_irqoff(TIMER_SOFTIRQ); | 
 | 450 | out: | 
 | 451 | 	ts->next_jiffies = next_jiffies; | 
 | 452 | 	ts->last_jiffies = last_jiffies; | 
 | 453 | 	ts->sleep_length = ktime_sub(dev->next_event, now); | 
 | 454 | } | 
 | 455 |  | 
 | 456 | /** | 
 | 457 |  * tick_nohz_idle_enter - stop the idle tick from the idle task | 
 | 458 |  * | 
 | 459 |  * When the next event is more than a tick into the future, stop the idle tick | 
 | 460 |  * Called when we start the idle loop. | 
 | 461 |  * | 
 | 462 |  * The arch is responsible of calling: | 
 | 463 |  * | 
 | 464 |  * - rcu_idle_enter() after its last use of RCU before the CPU is put | 
 | 465 |  *  to sleep. | 
 | 466 |  * - rcu_idle_exit() before the first use of RCU after the CPU is woken up. | 
 | 467 |  */ | 
 | 468 | void tick_nohz_idle_enter(void) | 
 | 469 | { | 
 | 470 | 	struct tick_sched *ts; | 
 | 471 |  | 
 | 472 | 	WARN_ON_ONCE(irqs_disabled()); | 
 | 473 |  | 
 | 474 | 	/* | 
 | 475 |  	 * Update the idle state in the scheduler domain hierarchy | 
 | 476 |  	 * when tick_nohz_stop_sched_tick() is called from the idle loop. | 
 | 477 |  	 * State will be updated to busy during the first busy tick after | 
 | 478 |  	 * exiting idle. | 
 | 479 |  	 */ | 
 | 480 | 	set_cpu_sd_state_idle(); | 
 | 481 |  | 
 | 482 | 	local_irq_disable(); | 
 | 483 |  | 
 | 484 | 	ts = &__get_cpu_var(tick_cpu_sched); | 
 | 485 | 	/* | 
 | 486 | 	 * set ts->inidle unconditionally. even if the system did not | 
 | 487 | 	 * switch to nohz mode the cpu frequency governers rely on the | 
 | 488 | 	 * update of the idle time accounting in tick_nohz_start_idle(). | 
 | 489 | 	 */ | 
 | 490 | 	ts->inidle = 1; | 
 | 491 | 	tick_nohz_stop_sched_tick(ts); | 
 | 492 |  | 
 | 493 | 	local_irq_enable(); | 
 | 494 | } | 
 | 495 |  | 
 | 496 | /** | 
 | 497 |  * tick_nohz_irq_exit - update next tick event from interrupt exit | 
 | 498 |  * | 
 | 499 |  * When an interrupt fires while we are idle and it doesn't cause | 
 | 500 |  * a reschedule, it may still add, modify or delete a timer, enqueue | 
 | 501 |  * an RCU callback, etc... | 
 | 502 |  * So we need to re-calculate and reprogram the next tick event. | 
 | 503 |  */ | 
 | 504 | void tick_nohz_irq_exit(void) | 
 | 505 | { | 
 | 506 | 	unsigned long flags; | 
 | 507 | 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
 | 508 |  | 
 | 509 | 	if (!ts->inidle) | 
 | 510 | 		return; | 
 | 511 |  | 
 | 512 | 	local_irq_save(flags); | 
 | 513 |  | 
 | 514 | 	tick_nohz_stop_sched_tick(ts); | 
 | 515 |  | 
 | 516 | 	local_irq_restore(flags); | 
 | 517 | } | 
 | 518 |  | 
 | 519 | /** | 
 | 520 |  * tick_nohz_get_sleep_length - return the length of the current sleep | 
 | 521 |  * | 
 | 522 |  * Called from power state control code with interrupts disabled | 
 | 523 |  */ | 
 | 524 | ktime_t tick_nohz_get_sleep_length(void) | 
 | 525 | { | 
 | 526 | 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
 | 527 |  | 
 | 528 | 	return ts->sleep_length; | 
 | 529 | } | 
 | 530 |  | 
 | 531 | static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) | 
 | 532 | { | 
 | 533 | 	hrtimer_cancel(&ts->sched_timer); | 
 | 534 | 	hrtimer_set_expires(&ts->sched_timer, ts->idle_tick); | 
 | 535 |  | 
 | 536 | 	while (1) { | 
 | 537 | 		/* Forward the time to expire in the future */ | 
 | 538 | 		hrtimer_forward(&ts->sched_timer, now, tick_period); | 
 | 539 |  | 
 | 540 | 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { | 
 | 541 | 			hrtimer_start_expires(&ts->sched_timer, | 
 | 542 | 					      HRTIMER_MODE_ABS_PINNED); | 
 | 543 | 			/* Check, if the timer was already in the past */ | 
 | 544 | 			if (hrtimer_active(&ts->sched_timer)) | 
 | 545 | 				break; | 
 | 546 | 		} else { | 
 | 547 | 			if (!tick_program_event( | 
 | 548 | 				hrtimer_get_expires(&ts->sched_timer), 0)) | 
 | 549 | 				break; | 
 | 550 | 		} | 
 | 551 | 		/* Reread time and update jiffies */ | 
 | 552 | 		now = ktime_get(); | 
 | 553 | 		tick_do_update_jiffies64(now); | 
 | 554 | 	} | 
 | 555 | } | 
 | 556 |  | 
 | 557 | /** | 
 | 558 |  * tick_nohz_idle_exit - restart the idle tick from the idle task | 
 | 559 |  * | 
 | 560 |  * Restart the idle tick when the CPU is woken up from idle | 
 | 561 |  * This also exit the RCU extended quiescent state. The CPU | 
 | 562 |  * can use RCU again after this function is called. | 
 | 563 |  */ | 
 | 564 | void tick_nohz_idle_exit(void) | 
 | 565 | { | 
 | 566 | 	int cpu = smp_processor_id(); | 
 | 567 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 568 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING | 
 | 569 | 	unsigned long ticks; | 
 | 570 | #endif | 
 | 571 | 	ktime_t now; | 
 | 572 |  | 
 | 573 | 	local_irq_disable(); | 
 | 574 |  | 
 | 575 | 	WARN_ON_ONCE(!ts->inidle); | 
 | 576 |  | 
 | 577 | 	ts->inidle = 0; | 
 | 578 |  | 
 | 579 | 	if (ts->idle_active || ts->tick_stopped) | 
 | 580 | 		now = ktime_get(); | 
 | 581 |  | 
 | 582 | 	if (ts->idle_active) | 
 | 583 | 		tick_nohz_stop_idle(cpu, now); | 
 | 584 |  | 
 | 585 | 	if (!ts->tick_stopped) { | 
 | 586 | 		local_irq_enable(); | 
 | 587 | 		return; | 
 | 588 | 	} | 
 | 589 |  | 
 | 590 | 	/* Update jiffies first */ | 
 | 591 | 	select_nohz_load_balancer(0); | 
 | 592 | 	tick_do_update_jiffies64(now); | 
 | 593 | 	update_cpu_load_nohz(); | 
 | 594 |  | 
 | 595 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING | 
 | 596 | 	/* | 
 | 597 | 	 * We stopped the tick in idle. Update process times would miss the | 
 | 598 | 	 * time we slept as update_process_times does only a 1 tick | 
 | 599 | 	 * accounting. Enforce that this is accounted to idle ! | 
 | 600 | 	 */ | 
 | 601 | 	ticks = jiffies - ts->idle_jiffies; | 
 | 602 | 	/* | 
 | 603 | 	 * We might be one off. Do not randomly account a huge number of ticks! | 
 | 604 | 	 */ | 
 | 605 | 	if (ticks && ticks < LONG_MAX) | 
 | 606 | 		account_idle_ticks(ticks); | 
 | 607 | #endif | 
 | 608 |  | 
 | 609 | 	calc_load_exit_idle(); | 
 | 610 | 	touch_softlockup_watchdog(); | 
 | 611 | 	/* | 
 | 612 | 	 * Cancel the scheduled timer and restore the tick | 
 | 613 | 	 */ | 
 | 614 | 	ts->tick_stopped  = 0; | 
 | 615 | 	ts->idle_exittime = now; | 
 | 616 |  | 
 | 617 | 	tick_nohz_restart(ts, now); | 
 | 618 |  | 
 | 619 | 	local_irq_enable(); | 
 | 620 | } | 
 | 621 |  | 
 | 622 | static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) | 
 | 623 | { | 
 | 624 | 	hrtimer_forward(&ts->sched_timer, now, tick_period); | 
 | 625 | 	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0); | 
 | 626 | } | 
 | 627 |  | 
 | 628 | /* | 
 | 629 |  * The nohz low res interrupt handler | 
 | 630 |  */ | 
 | 631 | static void tick_nohz_handler(struct clock_event_device *dev) | 
 | 632 | { | 
 | 633 | 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
 | 634 | 	struct pt_regs *regs = get_irq_regs(); | 
 | 635 | 	int cpu = smp_processor_id(); | 
 | 636 | 	ktime_t now = ktime_get(); | 
 | 637 |  | 
 | 638 | 	dev->next_event.tv64 = KTIME_MAX; | 
 | 639 |  | 
 | 640 | 	/* | 
 | 641 | 	 * Check if the do_timer duty was dropped. We don't care about | 
 | 642 | 	 * concurrency: This happens only when the cpu in charge went | 
 | 643 | 	 * into a long sleep. If two cpus happen to assign themself to | 
 | 644 | 	 * this duty, then the jiffies update is still serialized by | 
 | 645 | 	 * xtime_lock. | 
 | 646 | 	 */ | 
 | 647 | 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) | 
 | 648 | 		tick_do_timer_cpu = cpu; | 
 | 649 |  | 
 | 650 | 	/* Check, if the jiffies need an update */ | 
 | 651 | 	if (tick_do_timer_cpu == cpu) | 
 | 652 | 		tick_do_update_jiffies64(now); | 
 | 653 |  | 
 | 654 | 	/* | 
 | 655 | 	 * When we are idle and the tick is stopped, we have to touch | 
 | 656 | 	 * the watchdog as we might not schedule for a really long | 
 | 657 | 	 * time. This happens on complete idle SMP systems while | 
 | 658 | 	 * waiting on the login prompt. We also increment the "start | 
 | 659 | 	 * of idle" jiffy stamp so the idle accounting adjustment we | 
 | 660 | 	 * do when we go busy again does not account too much ticks. | 
 | 661 | 	 */ | 
 | 662 | 	if (ts->tick_stopped) { | 
 | 663 | 		touch_softlockup_watchdog(); | 
 | 664 | 		ts->idle_jiffies++; | 
 | 665 | 	} | 
 | 666 |  | 
 | 667 | 	update_process_times(user_mode(regs)); | 
 | 668 | 	profile_tick(CPU_PROFILING); | 
 | 669 |  | 
 | 670 | 	while (tick_nohz_reprogram(ts, now)) { | 
 | 671 | 		now = ktime_get(); | 
 | 672 | 		tick_do_update_jiffies64(now); | 
 | 673 | 	} | 
 | 674 | } | 
 | 675 |  | 
 | 676 | /** | 
 | 677 |  * tick_nohz_switch_to_nohz - switch to nohz mode | 
 | 678 |  */ | 
 | 679 | static void tick_nohz_switch_to_nohz(void) | 
 | 680 | { | 
 | 681 | 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
 | 682 | 	ktime_t next; | 
 | 683 |  | 
 | 684 | 	if (!tick_nohz_enabled) | 
 | 685 | 		return; | 
 | 686 |  | 
 | 687 | 	local_irq_disable(); | 
 | 688 | 	if (tick_switch_to_oneshot(tick_nohz_handler)) { | 
 | 689 | 		local_irq_enable(); | 
 | 690 | 		return; | 
 | 691 | 	} | 
 | 692 |  | 
 | 693 | 	ts->nohz_mode = NOHZ_MODE_LOWRES; | 
 | 694 |  | 
 | 695 | 	/* | 
 | 696 | 	 * Recycle the hrtimer in ts, so we can share the | 
 | 697 | 	 * hrtimer_forward with the highres code. | 
 | 698 | 	 */ | 
 | 699 | 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
 | 700 | 	/* Get the next period */ | 
 | 701 | 	next = tick_init_jiffy_update(); | 
 | 702 |  | 
 | 703 | 	for (;;) { | 
 | 704 | 		hrtimer_set_expires(&ts->sched_timer, next); | 
 | 705 | 		if (!tick_program_event(next, 0)) | 
 | 706 | 			break; | 
 | 707 | 		next = ktime_add(next, tick_period); | 
 | 708 | 	} | 
 | 709 | 	local_irq_enable(); | 
 | 710 | } | 
 | 711 |  | 
 | 712 | /* | 
 | 713 |  * When NOHZ is enabled and the tick is stopped, we need to kick the | 
 | 714 |  * tick timer from irq_enter() so that the jiffies update is kept | 
 | 715 |  * alive during long running softirqs. That's ugly as hell, but | 
 | 716 |  * correctness is key even if we need to fix the offending softirq in | 
 | 717 |  * the first place. | 
 | 718 |  * | 
 | 719 |  * Note, this is different to tick_nohz_restart. We just kick the | 
 | 720 |  * timer and do not touch the other magic bits which need to be done | 
 | 721 |  * when idle is left. | 
 | 722 |  */ | 
 | 723 | static void tick_nohz_kick_tick(int cpu, ktime_t now) | 
 | 724 | { | 
 | 725 | #if 0 | 
 | 726 | 	/* Switch back to 2.6.27 behaviour */ | 
 | 727 |  | 
 | 728 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 729 | 	ktime_t delta; | 
 | 730 |  | 
 | 731 | 	/* | 
 | 732 | 	 * Do not touch the tick device, when the next expiry is either | 
 | 733 | 	 * already reached or less/equal than the tick period. | 
 | 734 | 	 */ | 
 | 735 | 	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now); | 
 | 736 | 	if (delta.tv64 <= tick_period.tv64) | 
 | 737 | 		return; | 
 | 738 |  | 
 | 739 | 	tick_nohz_restart(ts, now); | 
 | 740 | #endif | 
 | 741 | } | 
 | 742 |  | 
 | 743 | static inline void tick_check_nohz(int cpu) | 
 | 744 | { | 
 | 745 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 746 | 	ktime_t now; | 
 | 747 |  | 
 | 748 | 	if (!ts->idle_active && !ts->tick_stopped) | 
 | 749 | 		return; | 
 | 750 | 	now = ktime_get(); | 
 | 751 | 	if (ts->idle_active) | 
 | 752 | 		tick_nohz_stop_idle(cpu, now); | 
 | 753 | 	if (ts->tick_stopped) { | 
 | 754 | 		tick_nohz_update_jiffies(now); | 
 | 755 | 		tick_nohz_kick_tick(cpu, now); | 
 | 756 | 	} | 
 | 757 | } | 
 | 758 |  | 
 | 759 | #else | 
 | 760 |  | 
 | 761 | static inline void tick_nohz_switch_to_nohz(void) { } | 
 | 762 | static inline void tick_check_nohz(int cpu) { } | 
 | 763 |  | 
 | 764 | #endif /* NO_HZ */ | 
 | 765 |  | 
 | 766 | /* | 
 | 767 |  * Called from irq_enter to notify about the possible interruption of idle() | 
 | 768 |  */ | 
 | 769 | void tick_check_idle(int cpu) | 
 | 770 | { | 
 | 771 | 	tick_check_oneshot_broadcast(cpu); | 
 | 772 | 	tick_check_nohz(cpu); | 
 | 773 | } | 
 | 774 |  | 
 | 775 | /* | 
 | 776 |  * High resolution timer specific code | 
 | 777 |  */ | 
 | 778 | #ifdef CONFIG_HIGH_RES_TIMERS | 
 | 779 | /* | 
 | 780 |  * We rearm the timer until we get disabled by the idle code. | 
 | 781 |  * Called with interrupts disabled and timer->base->cpu_base->lock held. | 
 | 782 |  */ | 
 | 783 | static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) | 
 | 784 | { | 
 | 785 | 	struct tick_sched *ts = | 
 | 786 | 		container_of(timer, struct tick_sched, sched_timer); | 
 | 787 | 	struct pt_regs *regs = get_irq_regs(); | 
 | 788 | 	ktime_t now = ktime_get(); | 
 | 789 | 	int cpu = smp_processor_id(); | 
 | 790 |  | 
 | 791 | #ifdef CONFIG_NO_HZ | 
 | 792 | 	/* | 
 | 793 | 	 * Check if the do_timer duty was dropped. We don't care about | 
 | 794 | 	 * concurrency: This happens only when the cpu in charge went | 
 | 795 | 	 * into a long sleep. If two cpus happen to assign themself to | 
 | 796 | 	 * this duty, then the jiffies update is still serialized by | 
 | 797 | 	 * xtime_lock. | 
 | 798 | 	 */ | 
 | 799 | 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) | 
 | 800 | 		tick_do_timer_cpu = cpu; | 
 | 801 | #endif | 
 | 802 |  | 
 | 803 | 	/* Check, if the jiffies need an update */ | 
 | 804 | 	if (tick_do_timer_cpu == cpu) | 
 | 805 | 		tick_do_update_jiffies64(now); | 
 | 806 |  | 
 | 807 | 	/* | 
 | 808 | 	 * Do not call, when we are not in irq context and have | 
 | 809 | 	 * no valid regs pointer | 
 | 810 | 	 */ | 
 | 811 | 	if (regs) { | 
 | 812 | 		/* | 
 | 813 | 		 * When we are idle and the tick is stopped, we have to touch | 
 | 814 | 		 * the watchdog as we might not schedule for a really long | 
 | 815 | 		 * time. This happens on complete idle SMP systems while | 
 | 816 | 		 * waiting on the login prompt. We also increment the "start of | 
 | 817 | 		 * idle" jiffy stamp so the idle accounting adjustment we do | 
 | 818 | 		 * when we go busy again does not account too much ticks. | 
 | 819 | 		 */ | 
 | 820 | 		if (ts->tick_stopped) { | 
 | 821 | 			touch_softlockup_watchdog(); | 
 | 822 | 			ts->idle_jiffies++; | 
 | 823 | 		} | 
 | 824 | 		update_process_times(user_mode(regs)); | 
 | 825 | 		profile_tick(CPU_PROFILING); | 
 | 826 | 	} | 
 | 827 | #ifdef CONFIG_SINGLECORE | 
 | 828 | #ifndef CONFIG_SYSTEM_RECOVERY | 
 | 829 | #ifndef CONFIG_SYSTEM_CAP | 
 | 830 | 	#ifdef USE_CPPS_KO | 
 | 831 | 	if(cpps_callbacks.linux_oss_tick_timer_function) | 
 | 832 | 		cpps_callbacks.linux_oss_tick_timer_function(); | 
 | 833 | 	#else | 
 | 834 | 	linux_oss_tick_timer_function(); | 
 | 835 | 	#endif | 
 | 836 | #endif | 
 | 837 | #endif | 
 | 838 | #endif | 
 | 839 | 	hrtimer_forward(timer, now, tick_period); | 
 | 840 |  | 
 | 841 | 	return HRTIMER_RESTART; | 
 | 842 | } | 
 | 843 |  | 
 | 844 | static int sched_skew_tick; | 
 | 845 |  | 
 | 846 | static int __init skew_tick(char *str) | 
 | 847 | { | 
 | 848 | 	get_option(&str, &sched_skew_tick); | 
 | 849 |  | 
 | 850 | 	return 0; | 
 | 851 | } | 
 | 852 | early_param("skew_tick", skew_tick); | 
 | 853 |  | 
 | 854 | /** | 
 | 855 |  * tick_setup_sched_timer - setup the tick emulation timer | 
 | 856 |  */ | 
 | 857 | void tick_setup_sched_timer(void) | 
 | 858 | { | 
 | 859 | 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
 | 860 | 	ktime_t now = ktime_get(); | 
 | 861 |  | 
 | 862 | 	/* | 
 | 863 | 	 * Emulate tick processing via per-CPU hrtimers: | 
 | 864 | 	 */ | 
 | 865 | 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
 | 866 | 	ts->sched_timer.irqsafe = 1; | 
 | 867 | 	ts->sched_timer.function = tick_sched_timer; | 
 | 868 |  | 
 | 869 | 	/* Get the next period (per cpu) */ | 
 | 870 | 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update()); | 
 | 871 |  | 
 | 872 | 	/* Offset the tick to avert xtime_lock contention. */ | 
 | 873 | 	if (sched_skew_tick) { | 
 | 874 | 		u64 offset = ktime_to_ns(tick_period) >> 1; | 
 | 875 | 		do_div(offset, num_possible_cpus()); | 
 | 876 | 		offset *= smp_processor_id(); | 
 | 877 | 		hrtimer_add_expires_ns(&ts->sched_timer, offset); | 
 | 878 | 	} | 
 | 879 |  | 
 | 880 | 	for (;;) { | 
 | 881 | 		hrtimer_forward(&ts->sched_timer, now, tick_period); | 
 | 882 | 		hrtimer_start_expires(&ts->sched_timer, | 
 | 883 | 				      HRTIMER_MODE_ABS_PINNED); | 
 | 884 | 		/* Check, if the timer was already in the past */ | 
 | 885 | 		if (hrtimer_active(&ts->sched_timer)) | 
 | 886 | 			break; | 
 | 887 | 		now = ktime_get(); | 
 | 888 | 	} | 
 | 889 |  | 
 | 890 | #ifdef CONFIG_NO_HZ | 
 | 891 | 	if (tick_nohz_enabled) | 
 | 892 | 		ts->nohz_mode = NOHZ_MODE_HIGHRES; | 
 | 893 | #endif | 
 | 894 | } | 
 | 895 | #endif /* HIGH_RES_TIMERS */ | 
 | 896 |  | 
 | 897 | #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS | 
 | 898 | void tick_cancel_sched_timer(int cpu) | 
 | 899 | { | 
 | 900 | 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
 | 901 |  | 
 | 902 | # ifdef CONFIG_HIGH_RES_TIMERS | 
 | 903 | 	if (ts->sched_timer.base) | 
 | 904 | 		hrtimer_cancel(&ts->sched_timer); | 
 | 905 | # endif | 
 | 906 |  | 
 | 907 | 	memset(ts, 0, sizeof(*ts)); | 
 | 908 | } | 
 | 909 | #endif | 
 | 910 |  | 
 | 911 | /** | 
 | 912 |  * Async notification about clocksource changes | 
 | 913 |  */ | 
 | 914 | void tick_clock_notify(void) | 
 | 915 | { | 
 | 916 | 	int cpu; | 
 | 917 |  | 
 | 918 | 	for_each_possible_cpu(cpu) | 
 | 919 | 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); | 
 | 920 | } | 
 | 921 |  | 
 | 922 | /* | 
 | 923 |  * Async notification about clock event changes | 
 | 924 |  */ | 
 | 925 | void tick_oneshot_notify(void) | 
 | 926 | { | 
 | 927 | 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
 | 928 |  | 
 | 929 | 	set_bit(0, &ts->check_clocks); | 
 | 930 | } | 
 | 931 |  | 
 | 932 | /** | 
 | 933 |  * Check, if a change happened, which makes oneshot possible. | 
 | 934 |  * | 
 | 935 |  * Called cyclic from the hrtimer softirq (driven by the timer | 
 | 936 |  * softirq) allow_nohz signals, that we can switch into low-res nohz | 
 | 937 |  * mode, because high resolution timers are disabled (either compile | 
 | 938 |  * or runtime). | 
 | 939 |  */ | 
 | 940 | int tick_check_oneshot_change(int allow_nohz) | 
 | 941 | { | 
 | 942 | 	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
 | 943 |  | 
 | 944 | 	if (!test_and_clear_bit(0, &ts->check_clocks)) | 
 | 945 | 		return 0; | 
 | 946 |  | 
 | 947 | 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE) | 
 | 948 | 		return 0; | 
 | 949 |  | 
 | 950 | 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) | 
 | 951 | 		return 0; | 
 | 952 |  | 
 | 953 | 	if (!allow_nohz) | 
 | 954 | 		return 1; | 
 | 955 |  | 
 | 956 | 	tick_nohz_switch_to_nohz(); | 
 | 957 | 	return 0; | 
 | 958 | } |