blob: e00cbea6add08458175bef633a6f21b6933374b7 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15#include <linux/errno.h>
16#include <linux/stddef.h>
17#include <linux/slab.h>
18#include <linux/export.h>
19#include <linux/string.h>
20#include <linux/relay.h>
21#include <linux/vmalloc.h>
22#include <linux/mm.h>
23#include <linux/cpu.h>
24#include <linux/splice.h>
25
26/* list of open channels, for cpu hotplug */
27static DEFINE_MUTEX(relay_channels_mutex);
28static LIST_HEAD(relay_channels);
29
30/*
31 * close() vm_op implementation for relay file mapping.
32 */
33static void relay_file_mmap_close(struct vm_area_struct *vma)
34{
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37}
38
39/*
40 * fault() vm_op implementation for relay file mapping.
41 */
42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43{
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58}
59
60/*
61 * vm_ops for relay file mappings.
62 */
63static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66};
67
68/*
69 * allocate an array of pointers of struct page
70 */
71static struct page **relay_alloc_page_array(unsigned int n_pages)
72{
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
77}
78
79/*
80 * free an array of pointers of struct page
81 */
82static void relay_free_page_array(struct page **array)
83{
84 if (is_vmalloc_addr(array))
85 vfree(array);
86 else
87 kfree(array);
88}
89
90/**
91 * relay_mmap_buf: - mmap channel buffer to process address space
92 * @buf: relay channel buffer
93 * @vma: vm_area_struct describing memory to be mapped
94 *
95 * Returns 0 if ok, negative on error
96 *
97 * Caller should already have grabbed mmap_sem.
98 */
99static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
100{
101 unsigned long length = vma->vm_end - vma->vm_start;
102 struct file *filp = vma->vm_file;
103
104 if (!buf)
105 return -EBADF;
106
107 if (length != (unsigned long)buf->chan->alloc_size)
108 return -EINVAL;
109
110 vma->vm_ops = &relay_file_mmap_ops;
111 vma->vm_flags |= VM_DONTEXPAND;
112 vma->vm_private_data = buf;
113 buf->chan->cb->buf_mapped(buf, filp);
114
115 return 0;
116}
117
118/**
119 * relay_alloc_buf - allocate a channel buffer
120 * @buf: the buffer struct
121 * @size: total size of the buffer
122 *
123 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
124 * passed in size will get page aligned, if it isn't already.
125 */
126static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
127{
128 void *mem;
129 unsigned int i, j, n_pages;
130
131 *size = PAGE_ALIGN(*size);
132 n_pages = *size >> PAGE_SHIFT;
133
134 buf->page_array = relay_alloc_page_array(n_pages);
135 if (!buf->page_array)
136 return NULL;
137
138 for (i = 0; i < n_pages; i++) {
139 buf->page_array[i] = alloc_page(GFP_KERNEL);
140 if (unlikely(!buf->page_array[i]))
141 goto depopulate;
142 set_page_private(buf->page_array[i], (unsigned long)buf);
143 }
144 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
145 if (!mem)
146 goto depopulate;
147
148 memset(mem, 0, *size);
149 buf->page_count = n_pages;
150 return mem;
151
152depopulate:
153 for (j = 0; j < i; j++)
154 __free_page(buf->page_array[j]);
155 relay_free_page_array(buf->page_array);
156 return NULL;
157}
158
159/**
160 * relay_create_buf - allocate and initialize a channel buffer
161 * @chan: the relay channel
162 *
163 * Returns channel buffer if successful, %NULL otherwise.
164 */
165static struct rchan_buf *relay_create_buf(struct rchan *chan)
166{
167 struct rchan_buf *buf;
168
169 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
170 return NULL;
171
172 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
173 if (!buf)
174 return NULL;
175 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
176 if (!buf->padding)
177 goto free_buf;
178
179 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
180 if (!buf->start)
181 goto free_buf;
182
183 buf->chan = chan;
184 kref_get(&buf->chan->kref);
185 return buf;
186
187free_buf:
188 kfree(buf->padding);
189 kfree(buf);
190 return NULL;
191}
192
193/**
194 * relay_destroy_channel - free the channel struct
195 * @kref: target kernel reference that contains the relay channel
196 *
197 * Should only be called from kref_put().
198 */
199static void relay_destroy_channel(struct kref *kref)
200{
201 struct rchan *chan = container_of(kref, struct rchan, kref);
202 kfree(chan);
203}
204
205/**
206 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
207 * @buf: the buffer struct
208 */
209static void relay_destroy_buf(struct rchan_buf *buf)
210{
211 struct rchan *chan = buf->chan;
212 unsigned int i;
213
214 if (likely(buf->start)) {
215 vunmap(buf->start);
216 for (i = 0; i < buf->page_count; i++)
217 __free_page(buf->page_array[i]);
218 relay_free_page_array(buf->page_array);
219 }
220 chan->buf[buf->cpu] = NULL;
221 kfree(buf->padding);
222 kfree(buf);
223 kref_put(&chan->kref, relay_destroy_channel);
224}
225
226/**
227 * relay_remove_buf - remove a channel buffer
228 * @kref: target kernel reference that contains the relay buffer
229 *
230 * Removes the file from the fileystem, which also frees the
231 * rchan_buf_struct and the channel buffer. Should only be called from
232 * kref_put().
233 */
234static void relay_remove_buf(struct kref *kref)
235{
236 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
237 buf->chan->cb->remove_buf_file(buf->dentry);
238 relay_destroy_buf(buf);
239}
240
241/**
242 * relay_buf_empty - boolean, is the channel buffer empty?
243 * @buf: channel buffer
244 *
245 * Returns 1 if the buffer is empty, 0 otherwise.
246 */
247static int relay_buf_empty(struct rchan_buf *buf)
248{
249 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
250}
251
252/**
253 * relay_buf_full - boolean, is the channel buffer full?
254 * @buf: channel buffer
255 *
256 * Returns 1 if the buffer is full, 0 otherwise.
257 */
258int relay_buf_full(struct rchan_buf *buf)
259{
260 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
261 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
262}
263EXPORT_SYMBOL_GPL(relay_buf_full);
264
265/*
266 * High-level relay kernel API and associated functions.
267 */
268
269/*
270 * rchan_callback implementations defining default channel behavior. Used
271 * in place of corresponding NULL values in client callback struct.
272 */
273
274/*
275 * subbuf_start() default callback. Does nothing.
276 */
277static int subbuf_start_default_callback (struct rchan_buf *buf,
278 void *subbuf,
279 void *prev_subbuf,
280 size_t prev_padding)
281{
282 if (relay_buf_full(buf))
283 return 0;
284
285 return 1;
286}
287
288/*
289 * buf_mapped() default callback. Does nothing.
290 */
291static void buf_mapped_default_callback(struct rchan_buf *buf,
292 struct file *filp)
293{
294}
295
296/*
297 * buf_unmapped() default callback. Does nothing.
298 */
299static void buf_unmapped_default_callback(struct rchan_buf *buf,
300 struct file *filp)
301{
302}
303
304/*
305 * create_buf_file_create() default callback. Does nothing.
306 */
307static struct dentry *create_buf_file_default_callback(const char *filename,
308 struct dentry *parent,
309 umode_t mode,
310 struct rchan_buf *buf,
311 int *is_global)
312{
313 return NULL;
314}
315
316/*
317 * remove_buf_file() default callback. Does nothing.
318 */
319static int remove_buf_file_default_callback(struct dentry *dentry)
320{
321 return -EINVAL;
322}
323
324/* relay channel default callbacks */
325static struct rchan_callbacks default_channel_callbacks = {
326 .subbuf_start = subbuf_start_default_callback,
327 .buf_mapped = buf_mapped_default_callback,
328 .buf_unmapped = buf_unmapped_default_callback,
329 .create_buf_file = create_buf_file_default_callback,
330 .remove_buf_file = remove_buf_file_default_callback,
331};
332
333/**
334 * wakeup_readers - wake up readers waiting on a channel
335 * @data: contains the channel buffer
336 *
337 * This is the timer function used to defer reader waking.
338 */
339static void wakeup_readers(unsigned long data)
340{
341 struct rchan_buf *buf = (struct rchan_buf *)data;
342 wake_up_interruptible(&buf->read_wait);
343 /*
344 * Stupid polling for now:
345 */
346 mod_timer(&buf->timer, jiffies + 1);
347}
348
349/**
350 * __relay_reset - reset a channel buffer
351 * @buf: the channel buffer
352 * @init: 1 if this is a first-time initialization
353 *
354 * See relay_reset() for description of effect.
355 */
356static void __relay_reset(struct rchan_buf *buf, unsigned int init)
357{
358 size_t i;
359
360 if (init) {
361 init_waitqueue_head(&buf->read_wait);
362 kref_init(&buf->kref);
363 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
364 mod_timer(&buf->timer, jiffies + 1);
365 } else
366 del_timer_sync(&buf->timer);
367
368 buf->subbufs_produced = 0;
369 buf->subbufs_consumed = 0;
370 buf->bytes_consumed = 0;
371 buf->finalized = 0;
372 buf->data = buf->start;
373 buf->offset = 0;
374
375 for (i = 0; i < buf->chan->n_subbufs; i++)
376 buf->padding[i] = 0;
377
378 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
379}
380
381/**
382 * relay_reset - reset the channel
383 * @chan: the channel
384 *
385 * This has the effect of erasing all data from all channel buffers
386 * and restarting the channel in its initial state. The buffers
387 * are not freed, so any mappings are still in effect.
388 *
389 * NOTE. Care should be taken that the channel isn't actually
390 * being used by anything when this call is made.
391 */
392void relay_reset(struct rchan *chan)
393{
394 unsigned int i;
395
396 if (!chan)
397 return;
398
399 if (chan->is_global && chan->buf[0]) {
400 __relay_reset(chan->buf[0], 0);
401 return;
402 }
403
404 mutex_lock(&relay_channels_mutex);
405 for_each_possible_cpu(i)
406 if (chan->buf[i])
407 __relay_reset(chan->buf[i], 0);
408 mutex_unlock(&relay_channels_mutex);
409}
410EXPORT_SYMBOL_GPL(relay_reset);
411
412static inline void relay_set_buf_dentry(struct rchan_buf *buf,
413 struct dentry *dentry)
414{
415 buf->dentry = dentry;
416 buf->dentry->d_inode->i_size = buf->early_bytes;
417}
418
419static struct dentry *relay_create_buf_file(struct rchan *chan,
420 struct rchan_buf *buf,
421 unsigned int cpu)
422{
423 struct dentry *dentry;
424 char *tmpname;
425
426 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
427 if (!tmpname)
428 return NULL;
429 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
430
431 /* Create file in fs */
432 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
433 S_IRUSR, buf,
434 &chan->is_global);
435
436 kfree(tmpname);
437
438 return dentry;
439}
440
441/*
442 * relay_open_buf - create a new relay channel buffer
443 *
444 * used by relay_open() and CPU hotplug.
445 */
446static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
447{
448 struct rchan_buf *buf = NULL;
449 struct dentry *dentry;
450
451 if (chan->is_global)
452 return chan->buf[0];
453
454 buf = relay_create_buf(chan);
455 if (!buf)
456 return NULL;
457
458 if (chan->has_base_filename) {
459 dentry = relay_create_buf_file(chan, buf, cpu);
460 if (!dentry)
461 goto free_buf;
462 relay_set_buf_dentry(buf, dentry);
463 }
464
465 buf->cpu = cpu;
466 __relay_reset(buf, 1);
467
468 if(chan->is_global) {
469 chan->buf[0] = buf;
470 buf->cpu = 0;
471 }
472
473 return buf;
474
475free_buf:
476 relay_destroy_buf(buf);
477 return NULL;
478}
479
480/**
481 * relay_close_buf - close a channel buffer
482 * @buf: channel buffer
483 *
484 * Marks the buffer finalized and restores the default callbacks.
485 * The channel buffer and channel buffer data structure are then freed
486 * automatically when the last reference is given up.
487 */
488static void relay_close_buf(struct rchan_buf *buf)
489{
490 buf->finalized = 1;
491 del_timer_sync(&buf->timer);
492 kref_put(&buf->kref, relay_remove_buf);
493}
494
495static void setup_callbacks(struct rchan *chan,
496 struct rchan_callbacks *cb)
497{
498 if (!cb) {
499 chan->cb = &default_channel_callbacks;
500 return;
501 }
502
503 if (!cb->subbuf_start)
504 cb->subbuf_start = subbuf_start_default_callback;
505 if (!cb->buf_mapped)
506 cb->buf_mapped = buf_mapped_default_callback;
507 if (!cb->buf_unmapped)
508 cb->buf_unmapped = buf_unmapped_default_callback;
509 if (!cb->create_buf_file)
510 cb->create_buf_file = create_buf_file_default_callback;
511 if (!cb->remove_buf_file)
512 cb->remove_buf_file = remove_buf_file_default_callback;
513 chan->cb = cb;
514}
515
516/**
517 * relay_hotcpu_callback - CPU hotplug callback
518 * @nb: notifier block
519 * @action: hotplug action to take
520 * @hcpu: CPU number
521 *
522 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
523 */
524static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
525 unsigned long action,
526 void *hcpu)
527{
528 unsigned int hotcpu = (unsigned long)hcpu;
529 struct rchan *chan;
530
531 switch(action) {
532 case CPU_UP_PREPARE:
533 case CPU_UP_PREPARE_FROZEN:
534 mutex_lock(&relay_channels_mutex);
535 list_for_each_entry(chan, &relay_channels, list) {
536 if (chan->buf[hotcpu])
537 continue;
538 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
539 if(!chan->buf[hotcpu]) {
540 printk(KERN_ERR
541 "relay_hotcpu_callback: cpu %d buffer "
542 "creation failed\n", hotcpu);
543 mutex_unlock(&relay_channels_mutex);
544 return notifier_from_errno(-ENOMEM);
545 }
546 }
547 mutex_unlock(&relay_channels_mutex);
548 break;
549 case CPU_DEAD:
550 case CPU_DEAD_FROZEN:
551 /* No need to flush the cpu : will be flushed upon
552 * final relay_flush() call. */
553 break;
554 }
555 return NOTIFY_OK;
556}
557
558/**
559 * relay_open - create a new relay channel
560 * @base_filename: base name of files to create, %NULL for buffering only
561 * @parent: dentry of parent directory, %NULL for root directory or buffer
562 * @subbuf_size: size of sub-buffers
563 * @n_subbufs: number of sub-buffers
564 * @cb: client callback functions
565 * @private_data: user-defined data
566 *
567 * Returns channel pointer if successful, %NULL otherwise.
568 *
569 * Creates a channel buffer for each cpu using the sizes and
570 * attributes specified. The created channel buffer files
571 * will be named base_filename0...base_filenameN-1. File
572 * permissions will be %S_IRUSR.
573 */
574struct rchan *relay_open(const char *base_filename,
575 struct dentry *parent,
576 size_t subbuf_size,
577 size_t n_subbufs,
578 struct rchan_callbacks *cb,
579 void *private_data)
580{
581 unsigned int i;
582 struct rchan *chan;
583
584 if (!(subbuf_size && n_subbufs))
585 return NULL;
586 if (subbuf_size > UINT_MAX / n_subbufs)
587 return NULL;
588
589 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
590 if (!chan)
591 return NULL;
592
593 chan->version = RELAYFS_CHANNEL_VERSION;
594 chan->n_subbufs = n_subbufs;
595 chan->subbuf_size = subbuf_size;
596 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
597 chan->parent = parent;
598 chan->private_data = private_data;
599 if (base_filename) {
600 chan->has_base_filename = 1;
601 strlcpy(chan->base_filename, base_filename, NAME_MAX);
602 }
603 setup_callbacks(chan, cb);
604 kref_init(&chan->kref);
605
606 mutex_lock(&relay_channels_mutex);
607 for_each_online_cpu(i) {
608 chan->buf[i] = relay_open_buf(chan, i);
609 if (!chan->buf[i])
610 goto free_bufs;
611 }
612 list_add(&chan->list, &relay_channels);
613 mutex_unlock(&relay_channels_mutex);
614
615 return chan;
616
617free_bufs:
618 for_each_possible_cpu(i) {
619 if (chan->buf[i])
620 relay_close_buf(chan->buf[i]);
621 }
622
623 kref_put(&chan->kref, relay_destroy_channel);
624 mutex_unlock(&relay_channels_mutex);
625 return NULL;
626}
627EXPORT_SYMBOL_GPL(relay_open);
628
629struct rchan_percpu_buf_dispatcher {
630 struct rchan_buf *buf;
631 struct dentry *dentry;
632};
633
634/* Called in atomic context. */
635static void __relay_set_buf_dentry(void *info)
636{
637 struct rchan_percpu_buf_dispatcher *p = info;
638
639 relay_set_buf_dentry(p->buf, p->dentry);
640}
641
642/**
643 * relay_late_setup_files - triggers file creation
644 * @chan: channel to operate on
645 * @base_filename: base name of files to create
646 * @parent: dentry of parent directory, %NULL for root directory
647 *
648 * Returns 0 if successful, non-zero otherwise.
649 *
650 * Use to setup files for a previously buffer-only channel.
651 * Useful to do early tracing in kernel, before VFS is up, for example.
652 */
653int relay_late_setup_files(struct rchan *chan,
654 const char *base_filename,
655 struct dentry *parent)
656{
657 int err = 0;
658 unsigned int i, curr_cpu;
659 unsigned long flags;
660 struct dentry *dentry;
661 struct rchan_percpu_buf_dispatcher disp;
662
663 if (!chan || !base_filename)
664 return -EINVAL;
665
666 strlcpy(chan->base_filename, base_filename, NAME_MAX);
667
668 mutex_lock(&relay_channels_mutex);
669 /* Is chan already set up? */
670 if (unlikely(chan->has_base_filename)) {
671 mutex_unlock(&relay_channels_mutex);
672 return -EEXIST;
673 }
674 chan->has_base_filename = 1;
675 chan->parent = parent;
676 curr_cpu = get_cpu();
677 /*
678 * The CPU hotplug notifier ran before us and created buffers with
679 * no files associated. So it's safe to call relay_setup_buf_file()
680 * on all currently online CPUs.
681 */
682 for_each_online_cpu(i) {
683 if (unlikely(!chan->buf[i])) {
684 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
685 err = -EINVAL;
686 break;
687 }
688
689 dentry = relay_create_buf_file(chan, chan->buf[i], i);
690 if (unlikely(!dentry)) {
691 err = -EINVAL;
692 break;
693 }
694
695 if (curr_cpu == i) {
696 local_irq_save(flags);
697 relay_set_buf_dentry(chan->buf[i], dentry);
698 local_irq_restore(flags);
699 } else {
700 disp.buf = chan->buf[i];
701 disp.dentry = dentry;
702 smp_mb();
703 /* relay_channels_mutex must be held, so wait. */
704 err = smp_call_function_single(i,
705 __relay_set_buf_dentry,
706 &disp, 1);
707 }
708 if (unlikely(err))
709 break;
710 }
711 put_cpu();
712 mutex_unlock(&relay_channels_mutex);
713
714 return err;
715}
716
717/**
718 * relay_switch_subbuf - switch to a new sub-buffer
719 * @buf: channel buffer
720 * @length: size of current event
721 *
722 * Returns either the length passed in or 0 if full.
723 *
724 * Performs sub-buffer-switch tasks such as invoking callbacks,
725 * updating padding counts, waking up readers, etc.
726 */
727size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
728{
729 void *old, *new;
730 size_t old_subbuf, new_subbuf;
731
732 if (unlikely(length > buf->chan->subbuf_size))
733 goto toobig;
734
735 if (buf->offset != buf->chan->subbuf_size + 1) {
736 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
737 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
738 buf->padding[old_subbuf] = buf->prev_padding;
739 buf->subbufs_produced++;
740 if (buf->dentry)
741 buf->dentry->d_inode->i_size +=
742 buf->chan->subbuf_size -
743 buf->padding[old_subbuf];
744 else
745 buf->early_bytes += buf->chan->subbuf_size -
746 buf->padding[old_subbuf];
747 }
748
749 old = buf->data;
750 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
751 new = buf->start + new_subbuf * buf->chan->subbuf_size;
752 buf->offset = 0;
753 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
754 buf->offset = buf->chan->subbuf_size + 1;
755 return 0;
756 }
757 buf->data = new;
758 buf->padding[new_subbuf] = 0;
759
760 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
761 goto toobig;
762
763 return length;
764
765toobig:
766 buf->chan->last_toobig = length;
767 return 0;
768}
769EXPORT_SYMBOL_GPL(relay_switch_subbuf);
770
771/**
772 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
773 * @chan: the channel
774 * @cpu: the cpu associated with the channel buffer to update
775 * @subbufs_consumed: number of sub-buffers to add to current buf's count
776 *
777 * Adds to the channel buffer's consumed sub-buffer count.
778 * subbufs_consumed should be the number of sub-buffers newly consumed,
779 * not the total consumed.
780 *
781 * NOTE. Kernel clients don't need to call this function if the channel
782 * mode is 'overwrite'.
783 */
784void relay_subbufs_consumed(struct rchan *chan,
785 unsigned int cpu,
786 size_t subbufs_consumed)
787{
788 struct rchan_buf *buf;
789
790 if (!chan)
791 return;
792
793 if (cpu >= NR_CPUS || !chan->buf[cpu] ||
794 subbufs_consumed > chan->n_subbufs)
795 return;
796
797 buf = chan->buf[cpu];
798 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
799 buf->subbufs_consumed = buf->subbufs_produced;
800 else
801 buf->subbufs_consumed += subbufs_consumed;
802}
803EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
804
805/**
806 * relay_close - close the channel
807 * @chan: the channel
808 *
809 * Closes all channel buffers and frees the channel.
810 */
811void relay_close(struct rchan *chan)
812{
813 unsigned int i;
814
815 if (!chan)
816 return;
817
818 mutex_lock(&relay_channels_mutex);
819 if (chan->is_global && chan->buf[0])
820 relay_close_buf(chan->buf[0]);
821 else
822 for_each_possible_cpu(i)
823 if (chan->buf[i])
824 relay_close_buf(chan->buf[i]);
825
826 if (chan->last_toobig)
827 printk(KERN_WARNING "relay: one or more items not logged "
828 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
829 chan->last_toobig, chan->subbuf_size);
830
831 list_del(&chan->list);
832 kref_put(&chan->kref, relay_destroy_channel);
833 mutex_unlock(&relay_channels_mutex);
834}
835EXPORT_SYMBOL_GPL(relay_close);
836
837/**
838 * relay_flush - close the channel
839 * @chan: the channel
840 *
841 * Flushes all channel buffers, i.e. forces buffer switch.
842 */
843void relay_flush(struct rchan *chan)
844{
845 unsigned int i;
846
847 if (!chan)
848 return;
849
850 if (chan->is_global && chan->buf[0]) {
851 relay_switch_subbuf(chan->buf[0], 0);
852 return;
853 }
854
855 mutex_lock(&relay_channels_mutex);
856 for_each_possible_cpu(i)
857 if (chan->buf[i])
858 relay_switch_subbuf(chan->buf[i], 0);
859 mutex_unlock(&relay_channels_mutex);
860}
861EXPORT_SYMBOL_GPL(relay_flush);
862
863/**
864 * relay_file_open - open file op for relay files
865 * @inode: the inode
866 * @filp: the file
867 *
868 * Increments the channel buffer refcount.
869 */
870static int relay_file_open(struct inode *inode, struct file *filp)
871{
872 struct rchan_buf *buf = inode->i_private;
873 kref_get(&buf->kref);
874 filp->private_data = buf;
875
876 return nonseekable_open(inode, filp);
877}
878
879/**
880 * relay_file_mmap - mmap file op for relay files
881 * @filp: the file
882 * @vma: the vma describing what to map
883 *
884 * Calls upon relay_mmap_buf() to map the file into user space.
885 */
886static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
887{
888 struct rchan_buf *buf = filp->private_data;
889 return relay_mmap_buf(buf, vma);
890}
891
892/**
893 * relay_file_poll - poll file op for relay files
894 * @filp: the file
895 * @wait: poll table
896 *
897 * Poll implemention.
898 */
899static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
900{
901 unsigned int mask = 0;
902 struct rchan_buf *buf = filp->private_data;
903
904 if (buf->finalized)
905 return POLLERR;
906
907 if (filp->f_mode & FMODE_READ) {
908 poll_wait(filp, &buf->read_wait, wait);
909 if (!relay_buf_empty(buf))
910 mask |= POLLIN | POLLRDNORM;
911 }
912
913 return mask;
914}
915
916/**
917 * relay_file_release - release file op for relay files
918 * @inode: the inode
919 * @filp: the file
920 *
921 * Decrements the channel refcount, as the filesystem is
922 * no longer using it.
923 */
924static int relay_file_release(struct inode *inode, struct file *filp)
925{
926 struct rchan_buf *buf = filp->private_data;
927 kref_put(&buf->kref, relay_remove_buf);
928
929 return 0;
930}
931
932/*
933 * relay_file_read_consume - update the consumed count for the buffer
934 */
935static void relay_file_read_consume(struct rchan_buf *buf,
936 size_t read_pos,
937 size_t bytes_consumed)
938{
939 size_t subbuf_size = buf->chan->subbuf_size;
940 size_t n_subbufs = buf->chan->n_subbufs;
941 size_t read_subbuf;
942
943 if (buf->subbufs_produced == buf->subbufs_consumed &&
944 buf->offset == buf->bytes_consumed)
945 return;
946
947 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
948 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
949 buf->bytes_consumed = 0;
950 }
951
952 buf->bytes_consumed += bytes_consumed;
953 if (!read_pos)
954 read_subbuf = buf->subbufs_consumed % n_subbufs;
955 else
956 read_subbuf = read_pos / buf->chan->subbuf_size;
957 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
958 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
959 (buf->offset == subbuf_size))
960 return;
961 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
962 buf->bytes_consumed = 0;
963 }
964}
965
966/*
967 * relay_file_read_avail - boolean, are there unconsumed bytes available?
968 */
969static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
970{
971 size_t subbuf_size = buf->chan->subbuf_size;
972 size_t n_subbufs = buf->chan->n_subbufs;
973 size_t produced = buf->subbufs_produced;
974 size_t consumed = buf->subbufs_consumed;
975
976 relay_file_read_consume(buf, read_pos, 0);
977
978 consumed = buf->subbufs_consumed;
979
980 if (unlikely(buf->offset > subbuf_size)) {
981 if (produced == consumed)
982 return 0;
983 return 1;
984 }
985
986 if (unlikely(produced - consumed >= n_subbufs)) {
987 consumed = produced - n_subbufs + 1;
988 buf->subbufs_consumed = consumed;
989 buf->bytes_consumed = 0;
990 }
991
992 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
993 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
994
995 if (consumed > produced)
996 produced += n_subbufs * subbuf_size;
997
998 if (consumed == produced) {
999 if (buf->offset == subbuf_size &&
1000 buf->subbufs_produced > buf->subbufs_consumed)
1001 return 1;
1002 return 0;
1003 }
1004
1005 return 1;
1006}
1007
1008/**
1009 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1010 * @read_pos: file read position
1011 * @buf: relay channel buffer
1012 */
1013static size_t relay_file_read_subbuf_avail(size_t read_pos,
1014 struct rchan_buf *buf)
1015{
1016 size_t padding, avail = 0;
1017 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1018 size_t subbuf_size = buf->chan->subbuf_size;
1019
1020 write_subbuf = (buf->data - buf->start) / subbuf_size;
1021 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1022 read_subbuf = read_pos / subbuf_size;
1023 read_offset = read_pos % subbuf_size;
1024 padding = buf->padding[read_subbuf];
1025
1026 if (read_subbuf == write_subbuf) {
1027 if (read_offset + padding < write_offset)
1028 avail = write_offset - (read_offset + padding);
1029 } else
1030 avail = (subbuf_size - padding) - read_offset;
1031
1032 return avail;
1033}
1034
1035/**
1036 * relay_file_read_start_pos - find the first available byte to read
1037 * @read_pos: file read position
1038 * @buf: relay channel buffer
1039 *
1040 * If the @read_pos is in the middle of padding, return the
1041 * position of the first actually available byte, otherwise
1042 * return the original value.
1043 */
1044static size_t relay_file_read_start_pos(size_t read_pos,
1045 struct rchan_buf *buf)
1046{
1047 size_t read_subbuf, padding, padding_start, padding_end;
1048 size_t subbuf_size = buf->chan->subbuf_size;
1049 size_t n_subbufs = buf->chan->n_subbufs;
1050 size_t consumed = buf->subbufs_consumed % n_subbufs;
1051
1052 if (!read_pos)
xf.li7ccf8372024-03-07 00:08:02 -08001053 read_pos = (consumed * subbuf_size + buf->bytes_consumed)
1054 % (n_subbufs * subbuf_size);
lh9ed821d2023-04-07 01:36:19 -07001055 read_subbuf = read_pos / subbuf_size;
1056 padding = buf->padding[read_subbuf];
1057 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1058 padding_end = (read_subbuf + 1) * subbuf_size;
1059 if (read_pos >= padding_start && read_pos < padding_end) {
1060 read_subbuf = (read_subbuf + 1) % n_subbufs;
1061 read_pos = read_subbuf * subbuf_size;
1062 }
1063
1064 return read_pos;
1065}
1066
1067/**
1068 * relay_file_read_end_pos - return the new read position
1069 * @read_pos: file read position
1070 * @buf: relay channel buffer
1071 * @count: number of bytes to be read
1072 */
1073static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1074 size_t read_pos,
1075 size_t count)
1076{
1077 size_t read_subbuf, padding, end_pos;
1078 size_t subbuf_size = buf->chan->subbuf_size;
1079 size_t n_subbufs = buf->chan->n_subbufs;
1080
1081 read_subbuf = read_pos / subbuf_size;
1082 padding = buf->padding[read_subbuf];
1083 if (read_pos % subbuf_size + count + padding == subbuf_size)
1084 end_pos = (read_subbuf + 1) * subbuf_size;
1085 else
1086 end_pos = read_pos + count;
1087 if (end_pos >= subbuf_size * n_subbufs)
1088 end_pos = 0;
1089
1090 return end_pos;
1091}
1092
1093/*
1094 * subbuf_read_actor - read up to one subbuf's worth of data
1095 */
1096static int subbuf_read_actor(size_t read_start,
1097 struct rchan_buf *buf,
1098 size_t avail,
1099 read_descriptor_t *desc,
1100 read_actor_t actor)
1101{
1102 void *from;
1103 int ret = 0;
1104
1105 from = buf->start + read_start;
1106 ret = avail;
1107 if (copy_to_user(desc->arg.buf, from, avail)) {
1108 desc->error = -EFAULT;
1109 ret = 0;
1110 }
1111 desc->arg.data += ret;
1112 desc->written += ret;
1113 desc->count -= ret;
1114
1115 return ret;
1116}
1117
1118typedef int (*subbuf_actor_t) (size_t read_start,
1119 struct rchan_buf *buf,
1120 size_t avail,
1121 read_descriptor_t *desc,
1122 read_actor_t actor);
1123
1124/*
1125 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1126 */
1127static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1128 subbuf_actor_t subbuf_actor,
1129 read_actor_t actor,
1130 read_descriptor_t *desc)
1131{
1132 struct rchan_buf *buf = filp->private_data;
1133 size_t read_start, avail;
1134 int ret;
1135
1136 if (!desc->count)
1137 return 0;
1138
1139 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1140 do {
1141 if (!relay_file_read_avail(buf, *ppos))
1142 break;
1143
1144 read_start = relay_file_read_start_pos(*ppos, buf);
1145 avail = relay_file_read_subbuf_avail(read_start, buf);
1146 if (!avail)
1147 break;
1148
1149 avail = min(desc->count, avail);
1150 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1151 if (desc->error < 0)
1152 break;
1153
1154 if (ret) {
1155 relay_file_read_consume(buf, read_start, ret);
1156 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1157 }
1158 } while (desc->count && ret);
1159 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1160
1161 return desc->written;
1162}
1163
1164static ssize_t relay_file_read(struct file *filp,
1165 char __user *buffer,
1166 size_t count,
1167 loff_t *ppos)
1168{
1169 read_descriptor_t desc;
1170 desc.written = 0;
1171 desc.count = count;
1172 desc.arg.buf = buffer;
1173 desc.error = 0;
1174 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1175 NULL, &desc);
1176}
1177
1178static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1179{
1180 rbuf->bytes_consumed += bytes_consumed;
1181
1182 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1183 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1184 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1185 }
1186}
1187
1188static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1189 struct pipe_buffer *buf)
1190{
1191 struct rchan_buf *rbuf;
1192
1193 rbuf = (struct rchan_buf *)page_private(buf->page);
1194 relay_consume_bytes(rbuf, buf->private);
1195}
1196
1197static const struct pipe_buf_operations relay_pipe_buf_ops = {
1198 .can_merge = 0,
1199 .map = generic_pipe_buf_map,
1200 .unmap = generic_pipe_buf_unmap,
1201 .confirm = generic_pipe_buf_confirm,
1202 .release = relay_pipe_buf_release,
1203 .steal = generic_pipe_buf_steal,
1204 .get = generic_pipe_buf_get,
1205};
1206
1207static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1208{
1209}
1210
1211/*
1212 * subbuf_splice_actor - splice up to one subbuf's worth of data
1213 */
1214static ssize_t subbuf_splice_actor(struct file *in,
1215 loff_t *ppos,
1216 struct pipe_inode_info *pipe,
1217 size_t len,
1218 unsigned int flags,
1219 int *nonpad_ret)
1220{
1221 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1222 struct rchan_buf *rbuf = in->private_data;
1223 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1224 uint64_t pos = (uint64_t) *ppos;
1225 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1226 size_t read_start = (size_t) do_div(pos, alloc_size);
1227 size_t read_subbuf = read_start / subbuf_size;
1228 size_t padding = rbuf->padding[read_subbuf];
1229 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1230 struct page *pages[PIPE_DEF_BUFFERS];
1231 struct partial_page partial[PIPE_DEF_BUFFERS];
1232 struct splice_pipe_desc spd = {
1233 .pages = pages,
1234 .nr_pages = 0,
1235 .nr_pages_max = PIPE_DEF_BUFFERS,
1236 .partial = partial,
1237 .flags = flags,
1238 .ops = &relay_pipe_buf_ops,
1239 .spd_release = relay_page_release,
1240 };
1241 ssize_t ret;
1242
1243 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1244 return 0;
1245 if (splice_grow_spd(pipe, &spd))
1246 return -ENOMEM;
1247
1248 /*
1249 * Adjust read len, if longer than what is available
1250 */
1251 if (len > (subbuf_size - read_start % subbuf_size))
1252 len = subbuf_size - read_start % subbuf_size;
1253
1254 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1255 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1256 poff = read_start & ~PAGE_MASK;
1257 nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1258
1259 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1260 unsigned int this_len, this_end, private;
1261 unsigned int cur_pos = read_start + total_len;
1262
1263 if (!len)
1264 break;
1265
1266 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1267 private = this_len;
1268
1269 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1270 spd.partial[spd.nr_pages].offset = poff;
1271
1272 this_end = cur_pos + this_len;
1273 if (this_end >= nonpad_end) {
1274 this_len = nonpad_end - cur_pos;
1275 private = this_len + padding;
1276 }
1277 spd.partial[spd.nr_pages].len = this_len;
1278 spd.partial[spd.nr_pages].private = private;
1279
1280 len -= this_len;
1281 total_len += this_len;
1282 poff = 0;
1283 pidx = (pidx + 1) % subbuf_pages;
1284
1285 if (this_end >= nonpad_end) {
1286 spd.nr_pages++;
1287 break;
1288 }
1289 }
1290
1291 ret = 0;
1292 if (!spd.nr_pages)
1293 goto out;
1294
1295 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1296 if (ret < 0 || ret < total_len)
1297 goto out;
1298
1299 if (read_start + ret == nonpad_end)
1300 ret += padding;
1301
1302out:
1303 splice_shrink_spd(&spd);
1304 return ret;
1305}
1306
1307static ssize_t relay_file_splice_read(struct file *in,
1308 loff_t *ppos,
1309 struct pipe_inode_info *pipe,
1310 size_t len,
1311 unsigned int flags)
1312{
1313 ssize_t spliced;
1314 int ret;
1315 int nonpad_ret = 0;
1316
1317 ret = 0;
1318 spliced = 0;
1319
1320 while (len && !spliced) {
1321 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1322 if (ret < 0)
1323 break;
1324 else if (!ret) {
1325 if (flags & SPLICE_F_NONBLOCK)
1326 ret = -EAGAIN;
1327 break;
1328 }
1329
1330 *ppos += ret;
1331 if (ret > len)
1332 len = 0;
1333 else
1334 len -= ret;
1335 spliced += nonpad_ret;
1336 nonpad_ret = 0;
1337 }
1338
1339 if (spliced)
1340 return spliced;
1341
1342 return ret;
1343}
1344
1345const struct file_operations relay_file_operations = {
1346 .open = relay_file_open,
1347 .poll = relay_file_poll,
1348 .mmap = relay_file_mmap,
1349 .read = relay_file_read,
1350 .llseek = no_llseek,
1351 .release = relay_file_release,
1352 .splice_read = relay_file_splice_read,
1353};
1354EXPORT_SYMBOL_GPL(relay_file_operations);
1355
1356static __init int relay_init(void)
1357{
1358
1359 hotcpu_notifier(relay_hotcpu_callback, 0);
1360 return 0;
1361}
1362
1363early_initcall(relay_init);