blob: 956a9594420ebdcedf44f66631f662cb152c1a80 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8#include <linux/capability.h>
9#include <linux/clocksource.h>
10#include <linux/workqueue.h>
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/kthread.h>
14#include <linux/math64.h>
15#include <linux/timex.h>
16#include <linux/time.h>
17#include <linux/mm.h>
18#include <linux/module.h>
19
20#include "tick-internal.h"
21
22/*
23 * NTP timekeeping variables:
24 */
25
26DEFINE_RAW_SPINLOCK(ntp_lock);
27
28
29/* USER_HZ period (usecs): */
30unsigned long tick_usec = TICK_USEC;
31
32/* ACTHZ period (nsecs): */
33unsigned long tick_nsec;
34
35static u64 tick_length;
36static u64 tick_length_base;
37
38#define MAX_TICKADJ 500LL /* usecs */
39#define MAX_TICKADJ_SCALED \
40 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
41
42/*
43 * phase-lock loop variables
44 */
45
46/*
47 * clock synchronization status
48 *
49 * (TIME_ERROR prevents overwriting the CMOS clock)
50 */
51static int time_state = TIME_OK;
52
53/* clock status bits: */
54static int time_status = STA_UNSYNC;
55
56/* TAI offset (secs): */
57static long time_tai;
58
59/* time adjustment (nsecs): */
60static s64 time_offset;
61
62/* pll time constant: */
63static long time_constant = 2;
64
65/* maximum error (usecs): */
66static long time_maxerror = NTP_PHASE_LIMIT;
67
68/* estimated error (usecs): */
69static long time_esterror = NTP_PHASE_LIMIT;
70
71/* frequency offset (scaled nsecs/secs): */
72static s64 time_freq;
73
74/* time at last adjustment (secs): */
75static long time_reftime;
76
77static long time_adjust;
78
79/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
80static s64 ntp_tick_adj;
81
82#ifdef CONFIG_NTP_PPS
83
84/*
85 * The following variables are used when a pulse-per-second (PPS) signal
86 * is available. They establish the engineering parameters of the clock
87 * discipline loop when controlled by the PPS signal.
88 */
89#define PPS_VALID 10 /* PPS signal watchdog max (s) */
90#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
91#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
92#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
93#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
94 increase pps_shift or consecutive bad
95 intervals to decrease it */
96#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
97
98static int pps_valid; /* signal watchdog counter */
99static long pps_tf[3]; /* phase median filter */
100static long pps_jitter; /* current jitter (ns) */
101static struct timespec pps_fbase; /* beginning of the last freq interval */
102static int pps_shift; /* current interval duration (s) (shift) */
103static int pps_intcnt; /* interval counter */
104static s64 pps_freq; /* frequency offset (scaled ns/s) */
105static long pps_stabil; /* current stability (scaled ns/s) */
106
107/*
108 * PPS signal quality monitors
109 */
110static long pps_calcnt; /* calibration intervals */
111static long pps_jitcnt; /* jitter limit exceeded */
112static long pps_stbcnt; /* stability limit exceeded */
113static long pps_errcnt; /* calibration errors */
114
115
116/* PPS kernel consumer compensates the whole phase error immediately.
117 * Otherwise, reduce the offset by a fixed factor times the time constant.
118 */
119static inline s64 ntp_offset_chunk(s64 offset)
120{
121 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
122 return offset;
123 else
124 return shift_right(offset, SHIFT_PLL + time_constant);
125}
126
127static inline void pps_reset_freq_interval(void)
128{
129 /* the PPS calibration interval may end
130 surprisingly early */
131 pps_shift = PPS_INTMIN;
132 pps_intcnt = 0;
133}
134
135/**
136 * pps_clear - Clears the PPS state variables
137 *
138 * Must be called while holding a write on the ntp_lock
139 */
140static inline void pps_clear(void)
141{
142 pps_reset_freq_interval();
143 pps_tf[0] = 0;
144 pps_tf[1] = 0;
145 pps_tf[2] = 0;
146 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
147 pps_freq = 0;
148}
149
150/* Decrease pps_valid to indicate that another second has passed since
151 * the last PPS signal. When it reaches 0, indicate that PPS signal is
152 * missing.
153 *
154 * Must be called while holding a write on the ntp_lock
155 */
156static inline void pps_dec_valid(void)
157{
158 if (pps_valid > 0)
159 pps_valid--;
160 else {
161 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 STA_PPSWANDER | STA_PPSERROR);
163 pps_clear();
164 }
165}
166
167static inline void pps_set_freq(s64 freq)
168{
169 pps_freq = freq;
170}
171
172static inline int is_error_status(int status)
173{
174 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
175 /* PPS signal lost when either PPS time or
176 * PPS frequency synchronization requested
177 */
178 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
179 && !(time_status & STA_PPSSIGNAL))
180 /* PPS jitter exceeded when
181 * PPS time synchronization requested */
182 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
183 == (STA_PPSTIME|STA_PPSJITTER))
184 /* PPS wander exceeded or calibration error when
185 * PPS frequency synchronization requested
186 */
187 || ((time_status & STA_PPSFREQ)
188 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
189}
190
191static inline void pps_fill_timex(struct timex *txc)
192{
193 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 txc->jitter = pps_jitter;
196 if (!(time_status & STA_NANO))
197 txc->jitter /= NSEC_PER_USEC;
198 txc->shift = pps_shift;
199 txc->stabil = pps_stabil;
200 txc->jitcnt = pps_jitcnt;
201 txc->calcnt = pps_calcnt;
202 txc->errcnt = pps_errcnt;
203 txc->stbcnt = pps_stbcnt;
204}
205
206#else /* !CONFIG_NTP_PPS */
207
208static inline s64 ntp_offset_chunk(s64 offset)
209{
210 return shift_right(offset, SHIFT_PLL + time_constant);
211}
212
213static inline void pps_reset_freq_interval(void) {}
214static inline void pps_clear(void) {}
215static inline void pps_dec_valid(void) {}
216static inline void pps_set_freq(s64 freq) {}
217
218static inline int is_error_status(int status)
219{
220 return status & (STA_UNSYNC|STA_CLOCKERR);
221}
222
223static inline void pps_fill_timex(struct timex *txc)
224{
225 /* PPS is not implemented, so these are zero */
226 txc->ppsfreq = 0;
227 txc->jitter = 0;
228 txc->shift = 0;
229 txc->stabil = 0;
230 txc->jitcnt = 0;
231 txc->calcnt = 0;
232 txc->errcnt = 0;
233 txc->stbcnt = 0;
234}
235
236#endif /* CONFIG_NTP_PPS */
237
238
239/**
240 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
241 *
242 */
243static inline int ntp_synced(void)
244{
245 return !(time_status & STA_UNSYNC);
246}
247
248
249/*
250 * NTP methods:
251 */
252
253/*
254 * Update (tick_length, tick_length_base, tick_nsec), based
255 * on (tick_usec, ntp_tick_adj, time_freq):
256 */
257static void ntp_update_frequency(void)
258{
259 u64 second_length;
260 u64 new_base;
261
262 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
263 << NTP_SCALE_SHIFT;
264
265 second_length += ntp_tick_adj;
266 second_length += time_freq;
267
268 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
270
271 /*
272 * Don't wait for the next second_overflow, apply
273 * the change to the tick length immediately:
274 */
275 tick_length += new_base - tick_length_base;
276 tick_length_base = new_base;
277}
278
279static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280{
281 time_status &= ~STA_MODE;
282
283 if (secs < MINSEC)
284 return 0;
285
286 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
287 return 0;
288
289 time_status |= STA_MODE;
290
291 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
292}
293
294static void ntp_update_offset(long offset)
295{
296 s64 freq_adj;
297 s64 offset64;
298 long secs;
299
300 if (!(time_status & STA_PLL))
301 return;
302
303 if (!(time_status & STA_NANO))
304 offset *= NSEC_PER_USEC;
305
306 /*
307 * Scale the phase adjustment and
308 * clamp to the operating range.
309 */
310 offset = min(offset, MAXPHASE);
311 offset = max(offset, -MAXPHASE);
312
313 /*
314 * Select how the frequency is to be controlled
315 * and in which mode (PLL or FLL).
316 */
317 secs = get_seconds() - time_reftime;
318 if (unlikely(time_status & STA_FREQHOLD))
319 secs = 0;
320
321 time_reftime = get_seconds();
322
323 offset64 = offset;
324 freq_adj = ntp_update_offset_fll(offset64, secs);
325
326 /*
327 * Clamp update interval to reduce PLL gain with low
328 * sampling rate (e.g. intermittent network connection)
329 * to avoid instability.
330 */
331 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
332 secs = 1 << (SHIFT_PLL + 1 + time_constant);
333
334 freq_adj += (offset64 * secs) <<
335 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
336
337 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
338
339 time_freq = max(freq_adj, -MAXFREQ_SCALED);
340
341 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
342}
343
344/**
345 * ntp_clear - Clears the NTP state variables
346 */
347void ntp_clear(void)
348{
349 unsigned long flags;
350
351 raw_spin_lock_irqsave(&ntp_lock, flags);
352
353 time_adjust = 0; /* stop active adjtime() */
354 time_status |= STA_UNSYNC;
355 time_maxerror = NTP_PHASE_LIMIT;
356 time_esterror = NTP_PHASE_LIMIT;
357
358 ntp_update_frequency();
359
360 tick_length = tick_length_base;
361 time_offset = 0;
362
363 /* Clear PPS state variables */
364 pps_clear();
365 raw_spin_unlock_irqrestore(&ntp_lock, flags);
366
367}
368
369
370u64 ntp_tick_length(void)
371{
372 unsigned long flags;
373 s64 ret;
374
375 raw_spin_lock_irqsave(&ntp_lock, flags);
376 ret = tick_length;
377 raw_spin_unlock_irqrestore(&ntp_lock, flags);
378 return ret;
379}
380
381
382/*
383 * this routine handles the overflow of the microsecond field
384 *
385 * The tricky bits of code to handle the accurate clock support
386 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
387 * They were originally developed for SUN and DEC kernels.
388 * All the kudos should go to Dave for this stuff.
389 *
390 * Also handles leap second processing, and returns leap offset
391 */
392int second_overflow(unsigned long secs)
393{
394 s64 delta;
395 int leap = 0;
396 unsigned long flags;
397
398 raw_spin_lock_irqsave(&ntp_lock, flags);
399
400 /*
401 * Leap second processing. If in leap-insert state at the end of the
402 * day, the system clock is set back one second; if in leap-delete
403 * state, the system clock is set ahead one second.
404 */
405 switch (time_state) {
406 case TIME_OK:
407 if (time_status & STA_INS)
408 time_state = TIME_INS;
409 else if (time_status & STA_DEL)
410 time_state = TIME_DEL;
411 break;
412 case TIME_INS:
413 if (!(time_status & STA_INS))
414 time_state = TIME_OK;
415 else if (secs % 86400 == 0) {
416 leap = -1;
417 time_state = TIME_OOP;
418 time_tai++;
419 printk(KERN_NOTICE
420 "Clock: inserting leap second 23:59:60 UTC\n");
421 }
422 break;
423 case TIME_DEL:
424 if (!(time_status & STA_DEL))
425 time_state = TIME_OK;
426 else if ((secs + 1) % 86400 == 0) {
427 leap = 1;
428 time_tai--;
429 time_state = TIME_WAIT;
430 printk(KERN_NOTICE
431 "Clock: deleting leap second 23:59:59 UTC\n");
432 }
433 break;
434 case TIME_OOP:
435 time_state = TIME_WAIT;
436 break;
437
438 case TIME_WAIT:
439 if (!(time_status & (STA_INS | STA_DEL)))
440 time_state = TIME_OK;
441 break;
442 }
443
444
445 /* Bump the maxerror field */
446 time_maxerror += MAXFREQ / NSEC_PER_USEC;
447 if (time_maxerror > NTP_PHASE_LIMIT) {
448 time_maxerror = NTP_PHASE_LIMIT;
449 time_status |= STA_UNSYNC;
450 }
451
452 /* Compute the phase adjustment for the next second */
453 tick_length = tick_length_base;
454
455 delta = ntp_offset_chunk(time_offset);
456 time_offset -= delta;
457 tick_length += delta;
458
459 /* Check PPS signal */
460 pps_dec_valid();
461
462 if (!time_adjust)
463 goto out;
464
465 if (time_adjust > MAX_TICKADJ) {
466 time_adjust -= MAX_TICKADJ;
467 tick_length += MAX_TICKADJ_SCALED;
468 goto out;
469 }
470
471 if (time_adjust < -MAX_TICKADJ) {
472 time_adjust += MAX_TICKADJ;
473 tick_length -= MAX_TICKADJ_SCALED;
474 goto out;
475 }
476
477 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
478 << NTP_SCALE_SHIFT;
479 time_adjust = 0;
480
481
482
483out:
484 raw_spin_unlock_irqrestore(&ntp_lock, flags);
485
486 return leap;
487}
488
489#ifdef CONFIG_GENERIC_CMOS_UPDATE
490
491static void sync_cmos_clock(struct work_struct *work);
492
493static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
494
495static void sync_cmos_clock(struct work_struct *work)
496{
497 struct timespec now, next;
498 int fail = 1;
499
500 /*
501 * If we have an externally synchronized Linux clock, then update
502 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
503 * called as close as possible to 500 ms before the new second starts.
504 * This code is run on a timer. If the clock is set, that timer
505 * may not expire at the correct time. Thus, we adjust...
506 */
507 if (!ntp_synced()) {
508 /*
509 * Not synced, exit, do not restart a timer (if one is
510 * running, let it run out).
511 */
512 return;
513 }
514
515 getnstimeofday(&now);
516 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
517 fail = update_persistent_clock(now);
518
519 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
520 if (next.tv_nsec <= 0)
521 next.tv_nsec += NSEC_PER_SEC;
522
523 if (!fail)
524 next.tv_sec = 659;
525 else
526 next.tv_sec = 0;
527
528 if (next.tv_nsec >= NSEC_PER_SEC) {
529 next.tv_sec++;
530 next.tv_nsec -= NSEC_PER_SEC;
531 }
532 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
533}
534
535#ifdef CONFIG_PREEMPT_RT_FULL
536/*
537 * RT can not call schedule_delayed_work from real interrupt context.
538 * Need to make a thread to do the real work.
539 */
540static struct task_struct *cmos_delay_thread;
541static bool do_cmos_delay;
542
543static int run_cmos_delay(void *ignore)
544{
545 while (!kthread_should_stop()) {
546 set_current_state(TASK_INTERRUPTIBLE);
547 if (do_cmos_delay) {
548 do_cmos_delay = false;
549 schedule_delayed_work(&sync_cmos_work, 0);
550 }
551 schedule();
552 }
553 __set_current_state(TASK_RUNNING);
554 return 0;
555}
556
557static void notify_cmos_timer(void)
558{
559 do_cmos_delay = true;
560 /* Make visible before waking up process */
561 smp_wmb();
562 wake_up_process(cmos_delay_thread);
563}
564
565static __init int create_cmos_delay_thread(void)
566{
567 cmos_delay_thread = kthread_run(run_cmos_delay, NULL, "kcmosdelayd");
568 BUG_ON(!cmos_delay_thread);
569 return 0;
570}
571early_initcall(create_cmos_delay_thread);
572#else
573static void notify_cmos_timer(void)
574{
575 schedule_delayed_work(&sync_cmos_work, 0);
576}
577#endif /* CONFIG_PREEMPT_RT_FULL */
578
579#else
580static inline void notify_cmos_timer(void) { }
581#endif
582
583
584/*
585 * Propagate a new txc->status value into the NTP state:
586 */
587static inline void process_adj_status(struct timex *txc, struct timespec *ts)
588{
589 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
590 time_state = TIME_OK;
591 time_status = STA_UNSYNC;
592 /* restart PPS frequency calibration */
593 pps_reset_freq_interval();
594 }
595
596 /*
597 * If we turn on PLL adjustments then reset the
598 * reference time to current time.
599 */
600 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
601 time_reftime = get_seconds();
602
603 /* only set allowed bits */
604 time_status &= STA_RONLY;
605 time_status |= txc->status & ~STA_RONLY;
606
607}
608/*
609 * Called with the xtime lock held, so we can access and modify
610 * all the global NTP state:
611 */
612static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
613{
614 if (txc->modes & ADJ_STATUS)
615 process_adj_status(txc, ts);
616
617 if (txc->modes & ADJ_NANO)
618 time_status |= STA_NANO;
619
620 if (txc->modes & ADJ_MICRO)
621 time_status &= ~STA_NANO;
622
623 if (txc->modes & ADJ_FREQUENCY) {
624 time_freq = txc->freq * PPM_SCALE;
625 time_freq = min(time_freq, MAXFREQ_SCALED);
626 time_freq = max(time_freq, -MAXFREQ_SCALED);
627 /* update pps_freq */
628 pps_set_freq(time_freq);
629 }
630
631 if (txc->modes & ADJ_MAXERROR)
632 time_maxerror = txc->maxerror;
633
634 if (txc->modes & ADJ_ESTERROR)
635 time_esterror = txc->esterror;
636
637 if (txc->modes & ADJ_TIMECONST) {
638 time_constant = txc->constant;
639 if (!(time_status & STA_NANO))
640 time_constant += 4;
641 time_constant = min(time_constant, (long)MAXTC);
642 time_constant = max(time_constant, 0l);
643 }
644
645 if (txc->modes & ADJ_TAI && txc->constant > 0)
646 time_tai = txc->constant;
647
648 if (txc->modes & ADJ_OFFSET)
649 ntp_update_offset(txc->offset);
650
651 if (txc->modes & ADJ_TICK)
652 tick_usec = txc->tick;
653
654 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
655 ntp_update_frequency();
656}
657
658/*
659 * adjtimex mainly allows reading (and writing, if superuser) of
660 * kernel time-keeping variables. used by xntpd.
661 */
662int do_adjtimex(struct timex *txc)
663{
664 struct timespec ts;
665 int result;
666
667 /* Validate the data before disabling interrupts */
668 if (txc->modes & ADJ_ADJTIME) {
669 /* singleshot must not be used with any other mode bits */
670 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
671 return -EINVAL;
672 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
673 !capable(CAP_SYS_TIME))
674 return -EPERM;
675 } else {
676 /* In order to modify anything, you gotta be super-user! */
677 if (txc->modes && !capable(CAP_SYS_TIME))
678 return -EPERM;
679
680 /*
681 * if the quartz is off by more than 10% then
682 * something is VERY wrong!
683 */
684 if (txc->modes & ADJ_TICK &&
685 (txc->tick < 900000/USER_HZ ||
686 txc->tick > 1100000/USER_HZ))
687 return -EINVAL;
688 }
689
690 if (txc->modes & ADJ_SETOFFSET) {
691 struct timespec delta;
692 delta.tv_sec = txc->time.tv_sec;
693 delta.tv_nsec = txc->time.tv_usec;
694 if (!capable(CAP_SYS_TIME))
695 return -EPERM;
696 if (!(txc->modes & ADJ_NANO))
697 delta.tv_nsec *= 1000;
698 result = timekeeping_inject_offset(&delta);
699 if (result)
700 return result;
701 }
702
703 /*
704 * Check for potential multiplication overflows that can
705 * only happen on 64-bit systems:
706 */
707 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
708 if (LLONG_MIN / PPM_SCALE > txc->freq)
709 return -EINVAL;
710 if (LLONG_MAX / PPM_SCALE < txc->freq)
711 return -EINVAL;
712 }
713
714 getnstimeofday(&ts);
715
716 raw_spin_lock_irq(&ntp_lock);
717
718 if (txc->modes & ADJ_ADJTIME) {
719 long save_adjust = time_adjust;
720
721 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
722 /* adjtime() is independent from ntp_adjtime() */
723 time_adjust = txc->offset;
724 ntp_update_frequency();
725 }
726 txc->offset = save_adjust;
727 } else {
728
729 /* If there are input parameters, then process them: */
730 if (txc->modes)
731 process_adjtimex_modes(txc, &ts);
732
733 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
734 NTP_SCALE_SHIFT);
735 if (!(time_status & STA_NANO))
736 txc->offset /= NSEC_PER_USEC;
737 }
738
739 result = time_state; /* mostly `TIME_OK' */
740 /* check for errors */
741 if (is_error_status(time_status))
742 result = TIME_ERROR;
743
744 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
745 PPM_SCALE_INV, NTP_SCALE_SHIFT);
746 txc->maxerror = time_maxerror;
747 txc->esterror = time_esterror;
748 txc->status = time_status;
749 txc->constant = time_constant;
750 txc->precision = 1;
751 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
752 txc->tick = tick_usec;
753 txc->tai = time_tai;
754
755 /* fill PPS status fields */
756 pps_fill_timex(txc);
757
758 raw_spin_unlock_irq(&ntp_lock);
759
760 txc->time.tv_sec = ts.tv_sec;
761 txc->time.tv_usec = ts.tv_nsec;
762 if (!(time_status & STA_NANO))
763 txc->time.tv_usec /= NSEC_PER_USEC;
764
765 notify_cmos_timer();
766
767 return result;
768}
769
770#ifdef CONFIG_NTP_PPS
771
772/* actually struct pps_normtime is good old struct timespec, but it is
773 * semantically different (and it is the reason why it was invented):
774 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
775 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
776struct pps_normtime {
777 __kernel_time_t sec; /* seconds */
778 long nsec; /* nanoseconds */
779};
780
781/* normalize the timestamp so that nsec is in the
782 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
783static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
784{
785 struct pps_normtime norm = {
786 .sec = ts.tv_sec,
787 .nsec = ts.tv_nsec
788 };
789
790 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
791 norm.nsec -= NSEC_PER_SEC;
792 norm.sec++;
793 }
794
795 return norm;
796}
797
798/* get current phase correction and jitter */
799static inline long pps_phase_filter_get(long *jitter)
800{
801 *jitter = pps_tf[0] - pps_tf[1];
802 if (*jitter < 0)
803 *jitter = -*jitter;
804
805 /* TODO: test various filters */
806 return pps_tf[0];
807}
808
809/* add the sample to the phase filter */
810static inline void pps_phase_filter_add(long err)
811{
812 pps_tf[2] = pps_tf[1];
813 pps_tf[1] = pps_tf[0];
814 pps_tf[0] = err;
815}
816
817/* decrease frequency calibration interval length.
818 * It is halved after four consecutive unstable intervals.
819 */
820static inline void pps_dec_freq_interval(void)
821{
822 if (--pps_intcnt <= -PPS_INTCOUNT) {
823 pps_intcnt = -PPS_INTCOUNT;
824 if (pps_shift > PPS_INTMIN) {
825 pps_shift--;
826 pps_intcnt = 0;
827 }
828 }
829}
830
831/* increase frequency calibration interval length.
832 * It is doubled after four consecutive stable intervals.
833 */
834static inline void pps_inc_freq_interval(void)
835{
836 if (++pps_intcnt >= PPS_INTCOUNT) {
837 pps_intcnt = PPS_INTCOUNT;
838 if (pps_shift < PPS_INTMAX) {
839 pps_shift++;
840 pps_intcnt = 0;
841 }
842 }
843}
844
845/* update clock frequency based on MONOTONIC_RAW clock PPS signal
846 * timestamps
847 *
848 * At the end of the calibration interval the difference between the
849 * first and last MONOTONIC_RAW clock timestamps divided by the length
850 * of the interval becomes the frequency update. If the interval was
851 * too long, the data are discarded.
852 * Returns the difference between old and new frequency values.
853 */
854static long hardpps_update_freq(struct pps_normtime freq_norm)
855{
856 long delta, delta_mod;
857 s64 ftemp;
858
859 /* check if the frequency interval was too long */
860 if (freq_norm.sec > (2 << pps_shift)) {
861 time_status |= STA_PPSERROR;
862 pps_errcnt++;
863 pps_dec_freq_interval();
864 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
865 freq_norm.sec);
866 return 0;
867 }
868
869 /* here the raw frequency offset and wander (stability) is
870 * calculated. If the wander is less than the wander threshold
871 * the interval is increased; otherwise it is decreased.
872 */
873 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
874 freq_norm.sec);
875 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
876 pps_freq = ftemp;
877 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
878 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
879 time_status |= STA_PPSWANDER;
880 pps_stbcnt++;
881 pps_dec_freq_interval();
882 } else { /* good sample */
883 pps_inc_freq_interval();
884 }
885
886 /* the stability metric is calculated as the average of recent
887 * frequency changes, but is used only for performance
888 * monitoring
889 */
890 delta_mod = delta;
891 if (delta_mod < 0)
892 delta_mod = -delta_mod;
893 pps_stabil += (div_s64(((s64)delta_mod) <<
894 (NTP_SCALE_SHIFT - SHIFT_USEC),
895 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
896
897 /* if enabled, the system clock frequency is updated */
898 if ((time_status & STA_PPSFREQ) != 0 &&
899 (time_status & STA_FREQHOLD) == 0) {
900 time_freq = pps_freq;
901 ntp_update_frequency();
902 }
903
904 return delta;
905}
906
907/* correct REALTIME clock phase error against PPS signal */
908static void hardpps_update_phase(long error)
909{
910 long correction = -error;
911 long jitter;
912
913 /* add the sample to the median filter */
914 pps_phase_filter_add(correction);
915 correction = pps_phase_filter_get(&jitter);
916
917 /* Nominal jitter is due to PPS signal noise. If it exceeds the
918 * threshold, the sample is discarded; otherwise, if so enabled,
919 * the time offset is updated.
920 */
921 if (jitter > (pps_jitter << PPS_POPCORN)) {
922 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
923 jitter, (pps_jitter << PPS_POPCORN));
924 time_status |= STA_PPSJITTER;
925 pps_jitcnt++;
926 } else if (time_status & STA_PPSTIME) {
927 /* correct the time using the phase offset */
928 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
929 NTP_INTERVAL_FREQ);
930 /* cancel running adjtime() */
931 time_adjust = 0;
932 }
933 /* update jitter */
934 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
935}
936
937/*
938 * hardpps() - discipline CPU clock oscillator to external PPS signal
939 *
940 * This routine is called at each PPS signal arrival in order to
941 * discipline the CPU clock oscillator to the PPS signal. It takes two
942 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
943 * is used to correct clock phase error and the latter is used to
944 * correct the frequency.
945 *
946 * This code is based on David Mills's reference nanokernel
947 * implementation. It was mostly rewritten but keeps the same idea.
948 */
949void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
950{
951 struct pps_normtime pts_norm, freq_norm;
952 unsigned long flags;
953
954 pts_norm = pps_normalize_ts(*phase_ts);
955
956 raw_spin_lock_irqsave(&ntp_lock, flags);
957
958 /* clear the error bits, they will be set again if needed */
959 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
960
961 /* indicate signal presence */
962 time_status |= STA_PPSSIGNAL;
963 pps_valid = PPS_VALID;
964
965 /* when called for the first time,
966 * just start the frequency interval */
967 if (unlikely(pps_fbase.tv_sec == 0)) {
968 pps_fbase = *raw_ts;
969 raw_spin_unlock_irqrestore(&ntp_lock, flags);
970 return;
971 }
972
973 /* ok, now we have a base for frequency calculation */
974 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
975
976 /* check that the signal is in the range
977 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
978 if ((freq_norm.sec == 0) ||
979 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
980 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
981 time_status |= STA_PPSJITTER;
982 /* restart the frequency calibration interval */
983 pps_fbase = *raw_ts;
984 raw_spin_unlock_irqrestore(&ntp_lock, flags);
985 pr_err("hardpps: PPSJITTER: bad pulse\n");
986 return;
987 }
988
989 /* signal is ok */
990
991 /* check if the current frequency interval is finished */
992 if (freq_norm.sec >= (1 << pps_shift)) {
993 pps_calcnt++;
994 /* restart the frequency calibration interval */
995 pps_fbase = *raw_ts;
996 hardpps_update_freq(freq_norm);
997 }
998
999 hardpps_update_phase(pts_norm.nsec);
1000
1001 raw_spin_unlock_irqrestore(&ntp_lock, flags);
1002}
1003EXPORT_SYMBOL(hardpps);
1004
1005#endif /* CONFIG_NTP_PPS */
1006
1007static int __init ntp_tick_adj_setup(char *str)
1008{
1009 ntp_tick_adj = simple_strtol(str, NULL, 0);
1010 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1011
1012 return 1;
1013}
1014
1015__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1016
1017void __init ntp_init(void)
1018{
1019 ntp_clear();
1020}