blob: 7f3bde5c50fe3ac32784bf89c976349fff7b4835 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
37#include <linux/mempolicy.h>
38#include <linux/mm.h>
39#include <linux/memory.h>
40#include <linux/export.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
45#include <linux/rcupdate.h>
46#include <linux/sched.h>
47#include <linux/seq_file.h>
48#include <linux/security.h>
49#include <linux/slab.h>
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <linux/atomic.h>
59#include <linux/mutex.h>
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
62
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
76int number_of_cpusets __read_mostly;
77
78/* Forward declare cgroup structures */
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
91struct cpuset {
92 struct cgroup_subsys_state css;
93
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
98 struct cpuset *parent; /* my parent */
99
100 struct fmeter fmeter; /* memory_pressure filter */
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
104
105 /* for custom sched domain */
106 int relax_domain_level;
107
108 /* used for walking a cpuset hierarchy */
109 struct list_head stack_list;
110};
111
112/* Retrieve the cpuset for a cgroup */
113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114{
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117}
118
119/* Retrieve the cpuset for a task */
120static inline struct cpuset *task_cs(struct task_struct *task)
121{
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124}
125
126#ifdef CONFIG_NUMA
127static inline bool task_has_mempolicy(struct task_struct *task)
128{
129 return task->mempolicy;
130}
131#else
132static inline bool task_has_mempolicy(struct task_struct *task)
133{
134 return false;
135}
136#endif
137
138
139/* bits in struct cpuset flags field */
140typedef enum {
141 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE,
143 CS_MEM_HARDWALL,
144 CS_MEMORY_MIGRATE,
145 CS_SCHED_LOAD_BALANCE,
146 CS_SPREAD_PAGE,
147 CS_SPREAD_SLAB,
148} cpuset_flagbits_t;
149
150/* convenient tests for these bits */
151static inline int is_cpu_exclusive(const struct cpuset *cs)
152{
153 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
154}
155
156static inline int is_mem_exclusive(const struct cpuset *cs)
157{
158 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
159}
160
161static inline int is_mem_hardwall(const struct cpuset *cs)
162{
163 return test_bit(CS_MEM_HARDWALL, &cs->flags);
164}
165
166static inline int is_sched_load_balance(const struct cpuset *cs)
167{
168 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
169}
170
171static inline int is_memory_migrate(const struct cpuset *cs)
172{
173 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
174}
175
176static inline int is_spread_page(const struct cpuset *cs)
177{
178 return test_bit(CS_SPREAD_PAGE, &cs->flags);
179}
180
181static inline int is_spread_slab(const struct cpuset *cs)
182{
183 return test_bit(CS_SPREAD_SLAB, &cs->flags);
184}
185
186static struct cpuset top_cpuset = {
187 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
188};
189
190/*
191 * There are two global mutexes guarding cpuset structures. The first
192 * is the main control groups cgroup_mutex, accessed via
193 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
194 * callback_mutex, below. They can nest. It is ok to first take
195 * cgroup_mutex, then nest callback_mutex. We also require taking
196 * task_lock() when dereferencing a task's cpuset pointer. See "The
197 * task_lock() exception", at the end of this comment.
198 *
199 * A task must hold both mutexes to modify cpusets. If a task
200 * holds cgroup_mutex, then it blocks others wanting that mutex,
201 * ensuring that it is the only task able to also acquire callback_mutex
202 * and be able to modify cpusets. It can perform various checks on
203 * the cpuset structure first, knowing nothing will change. It can
204 * also allocate memory while just holding cgroup_mutex. While it is
205 * performing these checks, various callback routines can briefly
206 * acquire callback_mutex to query cpusets. Once it is ready to make
207 * the changes, it takes callback_mutex, blocking everyone else.
208 *
209 * Calls to the kernel memory allocator can not be made while holding
210 * callback_mutex, as that would risk double tripping on callback_mutex
211 * from one of the callbacks into the cpuset code from within
212 * __alloc_pages().
213 *
214 * If a task is only holding callback_mutex, then it has read-only
215 * access to cpusets.
216 *
217 * Now, the task_struct fields mems_allowed and mempolicy may be changed
218 * by other task, we use alloc_lock in the task_struct fields to protect
219 * them.
220 *
221 * The cpuset_common_file_read() handlers only hold callback_mutex across
222 * small pieces of code, such as when reading out possibly multi-word
223 * cpumasks and nodemasks.
224 *
225 * Accessing a task's cpuset should be done in accordance with the
226 * guidelines for accessing subsystem state in kernel/cgroup.c
227 */
228
229static DEFINE_MUTEX(callback_mutex);
230
231/*
232 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
233 * buffers. They are statically allocated to prevent using excess stack
234 * when calling cpuset_print_task_mems_allowed().
235 */
236#define CPUSET_NAME_LEN (128)
237#define CPUSET_NODELIST_LEN (256)
238static char cpuset_name[CPUSET_NAME_LEN];
239static char cpuset_nodelist[CPUSET_NODELIST_LEN];
240static DEFINE_SPINLOCK(cpuset_buffer_lock);
241
242/*
243 * This is ugly, but preserves the userspace API for existing cpuset
244 * users. If someone tries to mount the "cpuset" filesystem, we
245 * silently switch it to mount "cgroup" instead
246 */
247static struct dentry *cpuset_mount(struct file_system_type *fs_type,
248 int flags, const char *unused_dev_name, void *data)
249{
250 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
251 struct dentry *ret = ERR_PTR(-ENODEV);
252 if (cgroup_fs) {
253 char mountopts[] =
254 "cpuset,noprefix,"
255 "release_agent=/sbin/cpuset_release_agent";
256 ret = cgroup_fs->mount(cgroup_fs, flags,
257 unused_dev_name, mountopts);
258 put_filesystem(cgroup_fs);
259 }
260 return ret;
261}
262
263static struct file_system_type cpuset_fs_type = {
264 .name = "cpuset",
265 .mount = cpuset_mount,
266};
267
268/*
269 * Return in pmask the portion of a cpusets's cpus_allowed that
270 * are online. If none are online, walk up the cpuset hierarchy
271 * until we find one that does have some online cpus. If we get
272 * all the way to the top and still haven't found any online cpus,
273 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
274 * task, return cpu_online_mask.
275 *
276 * One way or another, we guarantee to return some non-empty subset
277 * of cpu_online_mask.
278 *
279 * Call with callback_mutex held.
280 */
281
282static void guarantee_online_cpus(const struct cpuset *cs,
283 struct cpumask *pmask)
284{
285 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
286 cs = cs->parent;
287 if (cs)
288 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
289 else
290 cpumask_copy(pmask, cpu_online_mask);
291 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
292}
293
294/*
295 * Return in *pmask the portion of a cpusets's mems_allowed that
296 * are online, with memory. If none are online with memory, walk
297 * up the cpuset hierarchy until we find one that does have some
298 * online mems. If we get all the way to the top and still haven't
299 * found any online mems, return node_states[N_HIGH_MEMORY].
300 *
301 * One way or another, we guarantee to return some non-empty subset
302 * of node_states[N_HIGH_MEMORY].
303 *
304 * Call with callback_mutex held.
305 */
306
307static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
308{
309 while (cs && !nodes_intersects(cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]))
311 cs = cs->parent;
312 if (cs)
313 nodes_and(*pmask, cs->mems_allowed,
314 node_states[N_HIGH_MEMORY]);
315 else
316 *pmask = node_states[N_HIGH_MEMORY];
317 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
318}
319
320/*
321 * update task's spread flag if cpuset's page/slab spread flag is set
322 *
323 * Called with callback_mutex/cgroup_mutex held
324 */
325static void cpuset_update_task_spread_flag(struct cpuset *cs,
326 struct task_struct *tsk)
327{
328 if (is_spread_page(cs))
329 task_set_spread_page(tsk);
330 else
331 task_clear_spread_page(tsk);
332
333 if (is_spread_slab(cs))
334 task_set_spread_slab(tsk);
335 else
336 task_clear_spread_slab(tsk);
337}
338
339/*
340 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
341 *
342 * One cpuset is a subset of another if all its allowed CPUs and
343 * Memory Nodes are a subset of the other, and its exclusive flags
344 * are only set if the other's are set. Call holding cgroup_mutex.
345 */
346
347static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
348{
349 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
350 nodes_subset(p->mems_allowed, q->mems_allowed) &&
351 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
352 is_mem_exclusive(p) <= is_mem_exclusive(q);
353}
354
355/**
356 * alloc_trial_cpuset - allocate a trial cpuset
357 * @cs: the cpuset that the trial cpuset duplicates
358 */
359static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
360{
361 struct cpuset *trial;
362
363 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
364 if (!trial)
365 return NULL;
366
367 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
368 kfree(trial);
369 return NULL;
370 }
371 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
372
373 return trial;
374}
375
376/**
377 * free_trial_cpuset - free the trial cpuset
378 * @trial: the trial cpuset to be freed
379 */
380static void free_trial_cpuset(struct cpuset *trial)
381{
382 free_cpumask_var(trial->cpus_allowed);
383 kfree(trial);
384}
385
386/*
387 * validate_change() - Used to validate that any proposed cpuset change
388 * follows the structural rules for cpusets.
389 *
390 * If we replaced the flag and mask values of the current cpuset
391 * (cur) with those values in the trial cpuset (trial), would
392 * our various subset and exclusive rules still be valid? Presumes
393 * cgroup_mutex held.
394 *
395 * 'cur' is the address of an actual, in-use cpuset. Operations
396 * such as list traversal that depend on the actual address of the
397 * cpuset in the list must use cur below, not trial.
398 *
399 * 'trial' is the address of bulk structure copy of cur, with
400 * perhaps one or more of the fields cpus_allowed, mems_allowed,
401 * or flags changed to new, trial values.
402 *
403 * Return 0 if valid, -errno if not.
404 */
405
406static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
407{
408 struct cgroup *cont;
409 struct cpuset *c, *par;
410
411 /* Each of our child cpusets must be a subset of us */
412 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
413 if (!is_cpuset_subset(cgroup_cs(cont), trial))
414 return -EBUSY;
415 }
416
417 /* Remaining checks don't apply to root cpuset */
418 if (cur == &top_cpuset)
419 return 0;
420
421 par = cur->parent;
422
423 /* We must be a subset of our parent cpuset */
424 if (!is_cpuset_subset(trial, par))
425 return -EACCES;
426
427 /*
428 * If either I or some sibling (!= me) is exclusive, we can't
429 * overlap
430 */
431 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
432 c = cgroup_cs(cont);
433 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
434 c != cur &&
435 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
436 return -EINVAL;
437 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
438 c != cur &&
439 nodes_intersects(trial->mems_allowed, c->mems_allowed))
440 return -EINVAL;
441 }
442
443 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
444 if (cgroup_task_count(cur->css.cgroup)) {
445 if (cpumask_empty(trial->cpus_allowed) ||
446 nodes_empty(trial->mems_allowed)) {
447 return -ENOSPC;
448 }
449 }
450
451 return 0;
452}
453
454#ifdef CONFIG_SMP
455/*
456 * Helper routine for generate_sched_domains().
457 * Do cpusets a, b have overlapping cpus_allowed masks?
458 */
459static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
460{
461 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
462}
463
464static void
465update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
466{
467 if (dattr->relax_domain_level < c->relax_domain_level)
468 dattr->relax_domain_level = c->relax_domain_level;
469 return;
470}
471
472static void
473update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
474{
475 LIST_HEAD(q);
476
477 list_add(&c->stack_list, &q);
478 while (!list_empty(&q)) {
479 struct cpuset *cp;
480 struct cgroup *cont;
481 struct cpuset *child;
482
483 cp = list_first_entry(&q, struct cpuset, stack_list);
484 list_del(q.next);
485
486 if (cpumask_empty(cp->cpus_allowed))
487 continue;
488
489 if (is_sched_load_balance(cp))
490 update_domain_attr(dattr, cp);
491
492 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
493 child = cgroup_cs(cont);
494 list_add_tail(&child->stack_list, &q);
495 }
496 }
497}
498
499/*
500 * generate_sched_domains()
501 *
502 * This function builds a partial partition of the systems CPUs
503 * A 'partial partition' is a set of non-overlapping subsets whose
504 * union is a subset of that set.
505 * The output of this function needs to be passed to kernel/sched.c
506 * partition_sched_domains() routine, which will rebuild the scheduler's
507 * load balancing domains (sched domains) as specified by that partial
508 * partition.
509 *
510 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
511 * for a background explanation of this.
512 *
513 * Does not return errors, on the theory that the callers of this
514 * routine would rather not worry about failures to rebuild sched
515 * domains when operating in the severe memory shortage situations
516 * that could cause allocation failures below.
517 *
518 * Must be called with cgroup_lock held.
519 *
520 * The three key local variables below are:
521 * q - a linked-list queue of cpuset pointers, used to implement a
522 * top-down scan of all cpusets. This scan loads a pointer
523 * to each cpuset marked is_sched_load_balance into the
524 * array 'csa'. For our purposes, rebuilding the schedulers
525 * sched domains, we can ignore !is_sched_load_balance cpusets.
526 * csa - (for CpuSet Array) Array of pointers to all the cpusets
527 * that need to be load balanced, for convenient iterative
528 * access by the subsequent code that finds the best partition,
529 * i.e the set of domains (subsets) of CPUs such that the
530 * cpus_allowed of every cpuset marked is_sched_load_balance
531 * is a subset of one of these domains, while there are as
532 * many such domains as possible, each as small as possible.
533 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
534 * the kernel/sched.c routine partition_sched_domains() in a
535 * convenient format, that can be easily compared to the prior
536 * value to determine what partition elements (sched domains)
537 * were changed (added or removed.)
538 *
539 * Finding the best partition (set of domains):
540 * The triple nested loops below over i, j, k scan over the
541 * load balanced cpusets (using the array of cpuset pointers in
542 * csa[]) looking for pairs of cpusets that have overlapping
543 * cpus_allowed, but which don't have the same 'pn' partition
544 * number and gives them in the same partition number. It keeps
545 * looping on the 'restart' label until it can no longer find
546 * any such pairs.
547 *
548 * The union of the cpus_allowed masks from the set of
549 * all cpusets having the same 'pn' value then form the one
550 * element of the partition (one sched domain) to be passed to
551 * partition_sched_domains().
552 */
553static int generate_sched_domains(cpumask_var_t **domains,
554 struct sched_domain_attr **attributes)
555{
556 LIST_HEAD(q); /* queue of cpusets to be scanned */
557 struct cpuset *cp; /* scans q */
558 struct cpuset **csa; /* array of all cpuset ptrs */
559 int csn; /* how many cpuset ptrs in csa so far */
560 int i, j, k; /* indices for partition finding loops */
561 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
562 struct sched_domain_attr *dattr; /* attributes for custom domains */
563 int ndoms = 0; /* number of sched domains in result */
564 int nslot; /* next empty doms[] struct cpumask slot */
565
566 doms = NULL;
567 dattr = NULL;
568 csa = NULL;
569
570 /* Special case for the 99% of systems with one, full, sched domain */
571 if (is_sched_load_balance(&top_cpuset)) {
572 ndoms = 1;
573 doms = alloc_sched_domains(ndoms);
574 if (!doms)
575 goto done;
576
577 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
578 if (dattr) {
579 *dattr = SD_ATTR_INIT;
580 update_domain_attr_tree(dattr, &top_cpuset);
581 }
582 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
583
584 goto done;
585 }
586
587 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
588 if (!csa)
589 goto done;
590 csn = 0;
591
592 list_add(&top_cpuset.stack_list, &q);
593 while (!list_empty(&q)) {
594 struct cgroup *cont;
595 struct cpuset *child; /* scans child cpusets of cp */
596
597 cp = list_first_entry(&q, struct cpuset, stack_list);
598 list_del(q.next);
599
600 if (cpumask_empty(cp->cpus_allowed))
601 continue;
602
603 /*
604 * All child cpusets contain a subset of the parent's cpus, so
605 * just skip them, and then we call update_domain_attr_tree()
606 * to calc relax_domain_level of the corresponding sched
607 * domain.
608 */
609 if (is_sched_load_balance(cp)) {
610 csa[csn++] = cp;
611 continue;
612 }
613
614 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
615 child = cgroup_cs(cont);
616 list_add_tail(&child->stack_list, &q);
617 }
618 }
619
620 for (i = 0; i < csn; i++)
621 csa[i]->pn = i;
622 ndoms = csn;
623
624restart:
625 /* Find the best partition (set of sched domains) */
626 for (i = 0; i < csn; i++) {
627 struct cpuset *a = csa[i];
628 int apn = a->pn;
629
630 for (j = 0; j < csn; j++) {
631 struct cpuset *b = csa[j];
632 int bpn = b->pn;
633
634 if (apn != bpn && cpusets_overlap(a, b)) {
635 for (k = 0; k < csn; k++) {
636 struct cpuset *c = csa[k];
637
638 if (c->pn == bpn)
639 c->pn = apn;
640 }
641 ndoms--; /* one less element */
642 goto restart;
643 }
644 }
645 }
646
647 /*
648 * Now we know how many domains to create.
649 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
650 */
651 doms = alloc_sched_domains(ndoms);
652 if (!doms)
653 goto done;
654
655 /*
656 * The rest of the code, including the scheduler, can deal with
657 * dattr==NULL case. No need to abort if alloc fails.
658 */
659 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
660
661 for (nslot = 0, i = 0; i < csn; i++) {
662 struct cpuset *a = csa[i];
663 struct cpumask *dp;
664 int apn = a->pn;
665
666 if (apn < 0) {
667 /* Skip completed partitions */
668 continue;
669 }
670
671 dp = doms[nslot];
672
673 if (nslot == ndoms) {
674 static int warnings = 10;
675 if (warnings) {
676 printk(KERN_WARNING
677 "rebuild_sched_domains confused:"
678 " nslot %d, ndoms %d, csn %d, i %d,"
679 " apn %d\n",
680 nslot, ndoms, csn, i, apn);
681 warnings--;
682 }
683 continue;
684 }
685
686 cpumask_clear(dp);
687 if (dattr)
688 *(dattr + nslot) = SD_ATTR_INIT;
689 for (j = i; j < csn; j++) {
690 struct cpuset *b = csa[j];
691
692 if (apn == b->pn) {
693 cpumask_or(dp, dp, b->cpus_allowed);
694 if (dattr)
695 update_domain_attr_tree(dattr + nslot, b);
696
697 /* Done with this partition */
698 b->pn = -1;
699 }
700 }
701 nslot++;
702 }
703 BUG_ON(nslot != ndoms);
704
705done:
706 kfree(csa);
707
708 /*
709 * Fallback to the default domain if kmalloc() failed.
710 * See comments in partition_sched_domains().
711 */
712 if (doms == NULL)
713 ndoms = 1;
714
715 *domains = doms;
716 *attributes = dattr;
717 return ndoms;
718}
719
720/*
721 * Rebuild scheduler domains.
722 *
723 * Call with neither cgroup_mutex held nor within get_online_cpus().
724 * Takes both cgroup_mutex and get_online_cpus().
725 *
726 * Cannot be directly called from cpuset code handling changes
727 * to the cpuset pseudo-filesystem, because it cannot be called
728 * from code that already holds cgroup_mutex.
729 */
730static void do_rebuild_sched_domains(struct work_struct *unused)
731{
732 struct sched_domain_attr *attr;
733 cpumask_var_t *doms;
734 int ndoms;
735
736 get_online_cpus();
737
738 /* Generate domain masks and attrs */
739 cgroup_lock();
740 ndoms = generate_sched_domains(&doms, &attr);
741 cgroup_unlock();
742
743 /* Have scheduler rebuild the domains */
744 partition_sched_domains(ndoms, doms, attr);
745
746 put_online_cpus();
747}
748#else /* !CONFIG_SMP */
749static void do_rebuild_sched_domains(struct work_struct *unused)
750{
751}
752
753static int generate_sched_domains(cpumask_var_t **domains,
754 struct sched_domain_attr **attributes)
755{
756 *domains = NULL;
757 return 1;
758}
759#endif /* CONFIG_SMP */
760
761static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
762
763/*
764 * Rebuild scheduler domains, asynchronously via workqueue.
765 *
766 * If the flag 'sched_load_balance' of any cpuset with non-empty
767 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
768 * which has that flag enabled, or if any cpuset with a non-empty
769 * 'cpus' is removed, then call this routine to rebuild the
770 * scheduler's dynamic sched domains.
771 *
772 * The rebuild_sched_domains() and partition_sched_domains()
773 * routines must nest cgroup_lock() inside get_online_cpus(),
774 * but such cpuset changes as these must nest that locking the
775 * other way, holding cgroup_lock() for much of the code.
776 *
777 * So in order to avoid an ABBA deadlock, the cpuset code handling
778 * these user changes delegates the actual sched domain rebuilding
779 * to a separate workqueue thread, which ends up processing the
780 * above do_rebuild_sched_domains() function.
781 */
782static void async_rebuild_sched_domains(void)
783{
784 queue_work(cpuset_wq, &rebuild_sched_domains_work);
785}
786
787/*
788 * Accomplishes the same scheduler domain rebuild as the above
789 * async_rebuild_sched_domains(), however it directly calls the
790 * rebuild routine synchronously rather than calling it via an
791 * asynchronous work thread.
792 *
793 * This can only be called from code that is not holding
794 * cgroup_mutex (not nested in a cgroup_lock() call.)
795 */
796void rebuild_sched_domains(void)
797{
798 do_rebuild_sched_domains(NULL);
799}
800
801/**
802 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
803 * @tsk: task to test
804 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
805 *
806 * Call with cgroup_mutex held. May take callback_mutex during call.
807 * Called for each task in a cgroup by cgroup_scan_tasks().
808 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
809 * words, if its mask is not equal to its cpuset's mask).
810 */
811static int cpuset_test_cpumask(struct task_struct *tsk,
812 struct cgroup_scanner *scan)
813{
814 return !cpumask_equal(&tsk->cpus_allowed,
815 (cgroup_cs(scan->cg))->cpus_allowed);
816}
817
818/**
819 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
820 * @tsk: task to test
821 * @scan: struct cgroup_scanner containing the cgroup of the task
822 *
823 * Called by cgroup_scan_tasks() for each task in a cgroup whose
824 * cpus_allowed mask needs to be changed.
825 *
826 * We don't need to re-check for the cgroup/cpuset membership, since we're
827 * holding cgroup_lock() at this point.
828 */
829static void cpuset_change_cpumask(struct task_struct *tsk,
830 struct cgroup_scanner *scan)
831{
832 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
833}
834
835/**
836 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
837 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
838 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
839 *
840 * Called with cgroup_mutex held
841 *
842 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
843 * calling callback functions for each.
844 *
845 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
846 * if @heap != NULL.
847 */
848static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
849{
850 struct cgroup_scanner scan;
851
852 scan.cg = cs->css.cgroup;
853 scan.test_task = cpuset_test_cpumask;
854 scan.process_task = cpuset_change_cpumask;
855 scan.heap = heap;
856 cgroup_scan_tasks(&scan);
857}
858
859/**
860 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
861 * @cs: the cpuset to consider
862 * @buf: buffer of cpu numbers written to this cpuset
863 */
864static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
865 const char *buf)
866{
867 struct ptr_heap heap;
868 int retval;
869 int is_load_balanced;
870
871 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
872 if (cs == &top_cpuset)
873 return -EACCES;
874
875 /*
876 * An empty cpus_allowed is ok only if the cpuset has no tasks.
877 * Since cpulist_parse() fails on an empty mask, we special case
878 * that parsing. The validate_change() call ensures that cpusets
879 * with tasks have cpus.
880 */
881 if (!*buf) {
882 cpumask_clear(trialcs->cpus_allowed);
883 } else {
884 retval = cpulist_parse(buf, trialcs->cpus_allowed);
885 if (retval < 0)
886 return retval;
887
888 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
889 return -EINVAL;
890 }
891 retval = validate_change(cs, trialcs);
892 if (retval < 0)
893 return retval;
894
895 /* Nothing to do if the cpus didn't change */
896 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
897 return 0;
898
899 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
900 if (retval)
901 return retval;
902
903 is_load_balanced = is_sched_load_balance(trialcs);
904
905 mutex_lock(&callback_mutex);
906 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
907 mutex_unlock(&callback_mutex);
908
909 /*
910 * Scan tasks in the cpuset, and update the cpumasks of any
911 * that need an update.
912 */
913 update_tasks_cpumask(cs, &heap);
914
915 heap_free(&heap);
916
917 if (is_load_balanced)
918 async_rebuild_sched_domains();
919 return 0;
920}
921
922/*
923 * cpuset_migrate_mm
924 *
925 * Migrate memory region from one set of nodes to another.
926 *
927 * Temporarilly set tasks mems_allowed to target nodes of migration,
928 * so that the migration code can allocate pages on these nodes.
929 *
930 * Call holding cgroup_mutex, so current's cpuset won't change
931 * during this call, as manage_mutex holds off any cpuset_attach()
932 * calls. Therefore we don't need to take task_lock around the
933 * call to guarantee_online_mems(), as we know no one is changing
934 * our task's cpuset.
935 *
936 * While the mm_struct we are migrating is typically from some
937 * other task, the task_struct mems_allowed that we are hacking
938 * is for our current task, which must allocate new pages for that
939 * migrating memory region.
940 */
941
942static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
943 const nodemask_t *to)
944{
945 struct task_struct *tsk = current;
946
947 tsk->mems_allowed = *to;
948
949 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
950
951 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
952}
953
954/*
955 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
956 * @tsk: the task to change
957 * @newmems: new nodes that the task will be set
958 *
959 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
960 * we structure updates as setting all new allowed nodes, then clearing newly
961 * disallowed ones.
962 */
963static void cpuset_change_task_nodemask(struct task_struct *tsk,
964 nodemask_t *newmems)
965{
966 bool need_loop;
967
968 /*
969 * Allow tasks that have access to memory reserves because they have
970 * been OOM killed to get memory anywhere.
971 */
972 if (unlikely(test_thread_flag(TIF_MEMDIE)))
973 return;
974 if (current->flags & PF_EXITING) /* Let dying task have memory */
975 return;
976
977 task_lock(tsk);
978 /*
979 * Determine if a loop is necessary if another thread is doing
980 * get_mems_allowed(). If at least one node remains unchanged and
981 * tsk does not have a mempolicy, then an empty nodemask will not be
982 * possible when mems_allowed is larger than a word.
983 */
984 need_loop = task_has_mempolicy(tsk) ||
985 !nodes_intersects(*newmems, tsk->mems_allowed);
986
987 if (need_loop) {
988 local_irq_disable();
989 write_seqcount_begin(&tsk->mems_allowed_seq);
990 }
991
992 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
993 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
994
995 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
996 tsk->mems_allowed = *newmems;
997
998 if (need_loop) {
999 write_seqcount_end(&tsk->mems_allowed_seq);
1000 local_irq_enable();
1001 }
1002
1003 task_unlock(tsk);
1004}
1005
1006/*
1007 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1008 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1009 * memory_migrate flag is set. Called with cgroup_mutex held.
1010 */
1011static void cpuset_change_nodemask(struct task_struct *p,
1012 struct cgroup_scanner *scan)
1013{
1014 struct mm_struct *mm;
1015 struct cpuset *cs;
1016 int migrate;
1017 const nodemask_t *oldmem = scan->data;
1018 static nodemask_t newmems; /* protected by cgroup_mutex */
1019
1020 cs = cgroup_cs(scan->cg);
1021 guarantee_online_mems(cs, &newmems);
1022
1023 cpuset_change_task_nodemask(p, &newmems);
1024
1025 mm = get_task_mm(p);
1026 if (!mm)
1027 return;
1028
1029 migrate = is_memory_migrate(cs);
1030
1031 mpol_rebind_mm(mm, &cs->mems_allowed);
1032 if (migrate)
1033 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1034 mmput(mm);
1035}
1036
1037static void *cpuset_being_rebound;
1038
1039/**
1040 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1041 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1042 * @oldmem: old mems_allowed of cpuset cs
1043 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1044 *
1045 * Called with cgroup_mutex held
1046 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1047 * if @heap != NULL.
1048 */
1049static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1050 struct ptr_heap *heap)
1051{
1052 struct cgroup_scanner scan;
1053
1054 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1055
1056 scan.cg = cs->css.cgroup;
1057 scan.test_task = NULL;
1058 scan.process_task = cpuset_change_nodemask;
1059 scan.heap = heap;
1060 scan.data = (nodemask_t *)oldmem;
1061
1062 /*
1063 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1064 * take while holding tasklist_lock. Forks can happen - the
1065 * mpol_dup() cpuset_being_rebound check will catch such forks,
1066 * and rebind their vma mempolicies too. Because we still hold
1067 * the global cgroup_mutex, we know that no other rebind effort
1068 * will be contending for the global variable cpuset_being_rebound.
1069 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1070 * is idempotent. Also migrate pages in each mm to new nodes.
1071 */
1072 cgroup_scan_tasks(&scan);
1073
1074 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1075 cpuset_being_rebound = NULL;
1076}
1077
1078/*
1079 * Handle user request to change the 'mems' memory placement
1080 * of a cpuset. Needs to validate the request, update the
1081 * cpusets mems_allowed, and for each task in the cpuset,
1082 * update mems_allowed and rebind task's mempolicy and any vma
1083 * mempolicies and if the cpuset is marked 'memory_migrate',
1084 * migrate the tasks pages to the new memory.
1085 *
1086 * Call with cgroup_mutex held. May take callback_mutex during call.
1087 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1088 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1089 * their mempolicies to the cpusets new mems_allowed.
1090 */
1091static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1092 const char *buf)
1093{
1094 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1095 int retval;
1096 struct ptr_heap heap;
1097
1098 if (!oldmem)
1099 return -ENOMEM;
1100
1101 /*
1102 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1103 * it's read-only
1104 */
1105 if (cs == &top_cpuset) {
1106 retval = -EACCES;
1107 goto done;
1108 }
1109
1110 /*
1111 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1112 * Since nodelist_parse() fails on an empty mask, we special case
1113 * that parsing. The validate_change() call ensures that cpusets
1114 * with tasks have memory.
1115 */
1116 if (!*buf) {
1117 nodes_clear(trialcs->mems_allowed);
1118 } else {
1119 retval = nodelist_parse(buf, trialcs->mems_allowed);
1120 if (retval < 0)
1121 goto done;
1122
1123 if (!nodes_subset(trialcs->mems_allowed,
1124 node_states[N_HIGH_MEMORY])) {
1125 retval = -EINVAL;
1126 goto done;
1127 }
1128 }
1129 *oldmem = cs->mems_allowed;
1130 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1131 retval = 0; /* Too easy - nothing to do */
1132 goto done;
1133 }
1134 retval = validate_change(cs, trialcs);
1135 if (retval < 0)
1136 goto done;
1137
1138 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1139 if (retval < 0)
1140 goto done;
1141
1142 mutex_lock(&callback_mutex);
1143 cs->mems_allowed = trialcs->mems_allowed;
1144 mutex_unlock(&callback_mutex);
1145
1146 update_tasks_nodemask(cs, oldmem, &heap);
1147
1148 heap_free(&heap);
1149done:
1150 NODEMASK_FREE(oldmem);
1151 return retval;
1152}
1153
1154int current_cpuset_is_being_rebound(void)
1155{
1156 int ret;
1157
1158 rcu_read_lock();
1159 ret = task_cs(current) == cpuset_being_rebound;
1160 rcu_read_unlock();
1161
1162 return ret;
1163}
1164
1165static int update_relax_domain_level(struct cpuset *cs, s64 val)
1166{
1167#ifdef CONFIG_SMP
1168 if (val < -1 || val >= sched_domain_level_max)
1169 return -EINVAL;
1170#endif
1171
1172 if (val != cs->relax_domain_level) {
1173 cs->relax_domain_level = val;
1174 if (!cpumask_empty(cs->cpus_allowed) &&
1175 is_sched_load_balance(cs))
1176 async_rebuild_sched_domains();
1177 }
1178
1179 return 0;
1180}
1181
1182/*
1183 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1184 * @tsk: task to be updated
1185 * @scan: struct cgroup_scanner containing the cgroup of the task
1186 *
1187 * Called by cgroup_scan_tasks() for each task in a cgroup.
1188 *
1189 * We don't need to re-check for the cgroup/cpuset membership, since we're
1190 * holding cgroup_lock() at this point.
1191 */
1192static void cpuset_change_flag(struct task_struct *tsk,
1193 struct cgroup_scanner *scan)
1194{
1195 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1196}
1197
1198/*
1199 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1200 * @cs: the cpuset in which each task's spread flags needs to be changed
1201 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1202 *
1203 * Called with cgroup_mutex held
1204 *
1205 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1206 * calling callback functions for each.
1207 *
1208 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1209 * if @heap != NULL.
1210 */
1211static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1212{
1213 struct cgroup_scanner scan;
1214
1215 scan.cg = cs->css.cgroup;
1216 scan.test_task = NULL;
1217 scan.process_task = cpuset_change_flag;
1218 scan.heap = heap;
1219 cgroup_scan_tasks(&scan);
1220}
1221
1222/*
1223 * update_flag - read a 0 or a 1 in a file and update associated flag
1224 * bit: the bit to update (see cpuset_flagbits_t)
1225 * cs: the cpuset to update
1226 * turning_on: whether the flag is being set or cleared
1227 *
1228 * Call with cgroup_mutex held.
1229 */
1230
1231static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1232 int turning_on)
1233{
1234 struct cpuset *trialcs;
1235 int balance_flag_changed;
1236 int spread_flag_changed;
1237 struct ptr_heap heap;
1238 int err;
1239
1240 trialcs = alloc_trial_cpuset(cs);
1241 if (!trialcs)
1242 return -ENOMEM;
1243
1244 if (turning_on)
1245 set_bit(bit, &trialcs->flags);
1246 else
1247 clear_bit(bit, &trialcs->flags);
1248
1249 err = validate_change(cs, trialcs);
1250 if (err < 0)
1251 goto out;
1252
1253 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1254 if (err < 0)
1255 goto out;
1256
1257 balance_flag_changed = (is_sched_load_balance(cs) !=
1258 is_sched_load_balance(trialcs));
1259
1260 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1261 || (is_spread_page(cs) != is_spread_page(trialcs)));
1262
1263 mutex_lock(&callback_mutex);
1264 cs->flags = trialcs->flags;
1265 mutex_unlock(&callback_mutex);
1266
1267 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1268 async_rebuild_sched_domains();
1269
1270 if (spread_flag_changed)
1271 update_tasks_flags(cs, &heap);
1272 heap_free(&heap);
1273out:
1274 free_trial_cpuset(trialcs);
1275 return err;
1276}
1277
1278/*
1279 * Frequency meter - How fast is some event occurring?
1280 *
1281 * These routines manage a digitally filtered, constant time based,
1282 * event frequency meter. There are four routines:
1283 * fmeter_init() - initialize a frequency meter.
1284 * fmeter_markevent() - called each time the event happens.
1285 * fmeter_getrate() - returns the recent rate of such events.
1286 * fmeter_update() - internal routine used to update fmeter.
1287 *
1288 * A common data structure is passed to each of these routines,
1289 * which is used to keep track of the state required to manage the
1290 * frequency meter and its digital filter.
1291 *
1292 * The filter works on the number of events marked per unit time.
1293 * The filter is single-pole low-pass recursive (IIR). The time unit
1294 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1295 * simulate 3 decimal digits of precision (multiplied by 1000).
1296 *
1297 * With an FM_COEF of 933, and a time base of 1 second, the filter
1298 * has a half-life of 10 seconds, meaning that if the events quit
1299 * happening, then the rate returned from the fmeter_getrate()
1300 * will be cut in half each 10 seconds, until it converges to zero.
1301 *
1302 * It is not worth doing a real infinitely recursive filter. If more
1303 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1304 * just compute FM_MAXTICKS ticks worth, by which point the level
1305 * will be stable.
1306 *
1307 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1308 * arithmetic overflow in the fmeter_update() routine.
1309 *
1310 * Given the simple 32 bit integer arithmetic used, this meter works
1311 * best for reporting rates between one per millisecond (msec) and
1312 * one per 32 (approx) seconds. At constant rates faster than one
1313 * per msec it maxes out at values just under 1,000,000. At constant
1314 * rates between one per msec, and one per second it will stabilize
1315 * to a value N*1000, where N is the rate of events per second.
1316 * At constant rates between one per second and one per 32 seconds,
1317 * it will be choppy, moving up on the seconds that have an event,
1318 * and then decaying until the next event. At rates slower than
1319 * about one in 32 seconds, it decays all the way back to zero between
1320 * each event.
1321 */
1322
1323#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1324#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1325#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1326#define FM_SCALE 1000 /* faux fixed point scale */
1327
1328/* Initialize a frequency meter */
1329static void fmeter_init(struct fmeter *fmp)
1330{
1331 fmp->cnt = 0;
1332 fmp->val = 0;
1333 fmp->time = 0;
1334 spin_lock_init(&fmp->lock);
1335}
1336
1337/* Internal meter update - process cnt events and update value */
1338static void fmeter_update(struct fmeter *fmp)
1339{
1340 time_t now = get_seconds();
1341 time_t ticks = now - fmp->time;
1342
1343 if (ticks == 0)
1344 return;
1345
1346 ticks = min(FM_MAXTICKS, ticks);
1347 while (ticks-- > 0)
1348 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1349 fmp->time = now;
1350
1351 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1352 fmp->cnt = 0;
1353}
1354
1355/* Process any previous ticks, then bump cnt by one (times scale). */
1356static void fmeter_markevent(struct fmeter *fmp)
1357{
1358 spin_lock(&fmp->lock);
1359 fmeter_update(fmp);
1360 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1361 spin_unlock(&fmp->lock);
1362}
1363
1364/* Process any previous ticks, then return current value. */
1365static int fmeter_getrate(struct fmeter *fmp)
1366{
1367 int val;
1368
1369 spin_lock(&fmp->lock);
1370 fmeter_update(fmp);
1371 val = fmp->val;
1372 spin_unlock(&fmp->lock);
1373 return val;
1374}
1375
1376/*
1377 * Protected by cgroup_lock. The nodemasks must be stored globally because
1378 * dynamically allocating them is not allowed in can_attach, and they must
1379 * persist until attach.
1380 */
1381static cpumask_var_t cpus_attach;
1382static nodemask_t cpuset_attach_nodemask_from;
1383static nodemask_t cpuset_attach_nodemask_to;
1384
1385/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1386static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1387{
1388 struct cpuset *cs = cgroup_cs(cgrp);
1389 struct task_struct *task;
1390 int ret;
1391
1392 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1393 return -ENOSPC;
1394
1395 cgroup_taskset_for_each(task, cgrp, tset) {
1396 /*
1397 * Kthreads bound to specific cpus cannot be moved to a new
1398 * cpuset; we cannot change their cpu affinity and
1399 * isolating such threads by their set of allowed nodes is
1400 * unnecessary. Thus, cpusets are not applicable for such
1401 * threads. This prevents checking for success of
1402 * set_cpus_allowed_ptr() on all attached tasks before
1403 * cpus_allowed may be changed.
1404 */
1405 if (task->flags & PF_THREAD_BOUND)
1406 return -EINVAL;
1407 if ((ret = security_task_setscheduler(task)))
1408 return ret;
1409 }
1410
1411 /* prepare for attach */
1412 if (cs == &top_cpuset)
1413 cpumask_copy(cpus_attach, cpu_possible_mask);
1414 else
1415 guarantee_online_cpus(cs, cpus_attach);
1416
1417 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1418
1419 return 0;
1420}
1421
1422static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1423{
1424 struct mm_struct *mm;
1425 struct task_struct *task;
1426 struct task_struct *leader = cgroup_taskset_first(tset);
1427 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1428 struct cpuset *cs = cgroup_cs(cgrp);
1429 struct cpuset *oldcs = cgroup_cs(oldcgrp);
1430
1431 cgroup_taskset_for_each(task, cgrp, tset) {
1432 /*
1433 * can_attach beforehand should guarantee that this doesn't
1434 * fail. TODO: have a better way to handle failure here
1435 */
1436 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1437
1438 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1439 cpuset_update_task_spread_flag(cs, task);
1440 }
1441
1442 /*
1443 * Change mm, possibly for multiple threads in a threadgroup. This is
1444 * expensive and may sleep.
1445 */
1446 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1447 cpuset_attach_nodemask_to = cs->mems_allowed;
1448 mm = get_task_mm(leader);
1449 if (mm) {
1450 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1451 if (is_memory_migrate(cs))
1452 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1453 &cpuset_attach_nodemask_to);
1454 mmput(mm);
1455 }
1456}
1457
1458/* The various types of files and directories in a cpuset file system */
1459
1460typedef enum {
1461 FILE_MEMORY_MIGRATE,
1462 FILE_CPULIST,
1463 FILE_MEMLIST,
1464 FILE_CPU_EXCLUSIVE,
1465 FILE_MEM_EXCLUSIVE,
1466 FILE_MEM_HARDWALL,
1467 FILE_SCHED_LOAD_BALANCE,
1468 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1469 FILE_MEMORY_PRESSURE_ENABLED,
1470 FILE_MEMORY_PRESSURE,
1471 FILE_SPREAD_PAGE,
1472 FILE_SPREAD_SLAB,
1473} cpuset_filetype_t;
1474
1475static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1476{
1477 int retval = 0;
1478 struct cpuset *cs = cgroup_cs(cgrp);
1479 cpuset_filetype_t type = cft->private;
1480
1481 if (!cgroup_lock_live_group(cgrp))
1482 return -ENODEV;
1483
1484 switch (type) {
1485 case FILE_CPU_EXCLUSIVE:
1486 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1487 break;
1488 case FILE_MEM_EXCLUSIVE:
1489 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1490 break;
1491 case FILE_MEM_HARDWALL:
1492 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1493 break;
1494 case FILE_SCHED_LOAD_BALANCE:
1495 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1496 break;
1497 case FILE_MEMORY_MIGRATE:
1498 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1499 break;
1500 case FILE_MEMORY_PRESSURE_ENABLED:
1501 cpuset_memory_pressure_enabled = !!val;
1502 break;
1503 case FILE_MEMORY_PRESSURE:
1504 retval = -EACCES;
1505 break;
1506 case FILE_SPREAD_PAGE:
1507 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1508 break;
1509 case FILE_SPREAD_SLAB:
1510 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1511 break;
1512 default:
1513 retval = -EINVAL;
1514 break;
1515 }
1516 cgroup_unlock();
1517 return retval;
1518}
1519
1520static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1521{
1522 int retval = 0;
1523 struct cpuset *cs = cgroup_cs(cgrp);
1524 cpuset_filetype_t type = cft->private;
1525
1526 if (!cgroup_lock_live_group(cgrp))
1527 return -ENODEV;
1528
1529 switch (type) {
1530 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1531 retval = update_relax_domain_level(cs, val);
1532 break;
1533 default:
1534 retval = -EINVAL;
1535 break;
1536 }
1537 cgroup_unlock();
1538 return retval;
1539}
1540
1541/*
1542 * Common handling for a write to a "cpus" or "mems" file.
1543 */
1544static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1545 const char *buf)
1546{
1547 int retval = 0;
1548 struct cpuset *cs = cgroup_cs(cgrp);
1549 struct cpuset *trialcs;
1550
1551 if (!cgroup_lock_live_group(cgrp))
1552 return -ENODEV;
1553
1554 trialcs = alloc_trial_cpuset(cs);
1555 if (!trialcs) {
1556 retval = -ENOMEM;
1557 goto out;
1558 }
1559
1560 switch (cft->private) {
1561 case FILE_CPULIST:
1562 retval = update_cpumask(cs, trialcs, buf);
1563 break;
1564 case FILE_MEMLIST:
1565 retval = update_nodemask(cs, trialcs, buf);
1566 break;
1567 default:
1568 retval = -EINVAL;
1569 break;
1570 }
1571
1572 free_trial_cpuset(trialcs);
1573out:
1574 cgroup_unlock();
1575 return retval;
1576}
1577
1578/*
1579 * These ascii lists should be read in a single call, by using a user
1580 * buffer large enough to hold the entire map. If read in smaller
1581 * chunks, there is no guarantee of atomicity. Since the display format
1582 * used, list of ranges of sequential numbers, is variable length,
1583 * and since these maps can change value dynamically, one could read
1584 * gibberish by doing partial reads while a list was changing.
1585 * A single large read to a buffer that crosses a page boundary is
1586 * ok, because the result being copied to user land is not recomputed
1587 * across a page fault.
1588 */
1589
1590static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1591{
1592 size_t count;
1593
1594 mutex_lock(&callback_mutex);
1595 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1596 mutex_unlock(&callback_mutex);
1597
1598 return count;
1599}
1600
1601static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1602{
1603 size_t count;
1604
1605 mutex_lock(&callback_mutex);
1606 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1607 mutex_unlock(&callback_mutex);
1608
1609 return count;
1610}
1611
1612static ssize_t cpuset_common_file_read(struct cgroup *cont,
1613 struct cftype *cft,
1614 struct file *file,
1615 char __user *buf,
1616 size_t nbytes, loff_t *ppos)
1617{
1618 struct cpuset *cs = cgroup_cs(cont);
1619 cpuset_filetype_t type = cft->private;
1620 char *page;
1621 ssize_t retval = 0;
1622 char *s;
1623
1624 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1625 return -ENOMEM;
1626
1627 s = page;
1628
1629 switch (type) {
1630 case FILE_CPULIST:
1631 s += cpuset_sprintf_cpulist(s, cs);
1632 break;
1633 case FILE_MEMLIST:
1634 s += cpuset_sprintf_memlist(s, cs);
1635 break;
1636 default:
1637 retval = -EINVAL;
1638 goto out;
1639 }
1640 *s++ = '\n';
1641
1642 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1643out:
1644 free_page((unsigned long)page);
1645 return retval;
1646}
1647
1648static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1649{
1650 struct cpuset *cs = cgroup_cs(cont);
1651 cpuset_filetype_t type = cft->private;
1652 switch (type) {
1653 case FILE_CPU_EXCLUSIVE:
1654 return is_cpu_exclusive(cs);
1655 case FILE_MEM_EXCLUSIVE:
1656 return is_mem_exclusive(cs);
1657 case FILE_MEM_HARDWALL:
1658 return is_mem_hardwall(cs);
1659 case FILE_SCHED_LOAD_BALANCE:
1660 return is_sched_load_balance(cs);
1661 case FILE_MEMORY_MIGRATE:
1662 return is_memory_migrate(cs);
1663 case FILE_MEMORY_PRESSURE_ENABLED:
1664 return cpuset_memory_pressure_enabled;
1665 case FILE_MEMORY_PRESSURE:
1666 return fmeter_getrate(&cs->fmeter);
1667 case FILE_SPREAD_PAGE:
1668 return is_spread_page(cs);
1669 case FILE_SPREAD_SLAB:
1670 return is_spread_slab(cs);
1671 default:
1672 BUG();
1673 }
1674
1675 /* Unreachable but makes gcc happy */
1676 return 0;
1677}
1678
1679static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1680{
1681 struct cpuset *cs = cgroup_cs(cont);
1682 cpuset_filetype_t type = cft->private;
1683 switch (type) {
1684 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1685 return cs->relax_domain_level;
1686 default:
1687 BUG();
1688 }
1689
1690 /* Unrechable but makes gcc happy */
1691 return 0;
1692}
1693
1694
1695/*
1696 * for the common functions, 'private' gives the type of file
1697 */
1698
1699static struct cftype files[] = {
1700 {
1701 .name = "cpus",
1702 .read = cpuset_common_file_read,
1703 .write_string = cpuset_write_resmask,
1704 .max_write_len = (100U + 6 * NR_CPUS),
1705 .private = FILE_CPULIST,
1706 },
1707
1708 {
1709 .name = "mems",
1710 .read = cpuset_common_file_read,
1711 .write_string = cpuset_write_resmask,
1712 .max_write_len = (100U + 6 * MAX_NUMNODES),
1713 .private = FILE_MEMLIST,
1714 },
1715
1716 {
1717 .name = "cpu_exclusive",
1718 .read_u64 = cpuset_read_u64,
1719 .write_u64 = cpuset_write_u64,
1720 .private = FILE_CPU_EXCLUSIVE,
1721 },
1722
1723 {
1724 .name = "mem_exclusive",
1725 .read_u64 = cpuset_read_u64,
1726 .write_u64 = cpuset_write_u64,
1727 .private = FILE_MEM_EXCLUSIVE,
1728 },
1729
1730 {
1731 .name = "mem_hardwall",
1732 .read_u64 = cpuset_read_u64,
1733 .write_u64 = cpuset_write_u64,
1734 .private = FILE_MEM_HARDWALL,
1735 },
1736
1737 {
1738 .name = "sched_load_balance",
1739 .read_u64 = cpuset_read_u64,
1740 .write_u64 = cpuset_write_u64,
1741 .private = FILE_SCHED_LOAD_BALANCE,
1742 },
1743
1744 {
1745 .name = "sched_relax_domain_level",
1746 .read_s64 = cpuset_read_s64,
1747 .write_s64 = cpuset_write_s64,
1748 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1749 },
1750
1751 {
1752 .name = "memory_migrate",
1753 .read_u64 = cpuset_read_u64,
1754 .write_u64 = cpuset_write_u64,
1755 .private = FILE_MEMORY_MIGRATE,
1756 },
1757
1758 {
1759 .name = "memory_pressure",
1760 .read_u64 = cpuset_read_u64,
1761 .write_u64 = cpuset_write_u64,
1762 .private = FILE_MEMORY_PRESSURE,
1763 .mode = S_IRUGO,
1764 },
1765
1766 {
1767 .name = "memory_spread_page",
1768 .read_u64 = cpuset_read_u64,
1769 .write_u64 = cpuset_write_u64,
1770 .private = FILE_SPREAD_PAGE,
1771 },
1772
1773 {
1774 .name = "memory_spread_slab",
1775 .read_u64 = cpuset_read_u64,
1776 .write_u64 = cpuset_write_u64,
1777 .private = FILE_SPREAD_SLAB,
1778 },
1779};
1780
1781static struct cftype cft_memory_pressure_enabled = {
1782 .name = "memory_pressure_enabled",
1783 .read_u64 = cpuset_read_u64,
1784 .write_u64 = cpuset_write_u64,
1785 .private = FILE_MEMORY_PRESSURE_ENABLED,
1786};
1787
1788static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1789{
1790 int err;
1791
1792 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1793 if (err)
1794 return err;
1795 /* memory_pressure_enabled is in root cpuset only */
1796 if (!cont->parent)
1797 err = cgroup_add_file(cont, ss,
1798 &cft_memory_pressure_enabled);
1799 return err;
1800}
1801
1802/*
1803 * post_clone() is called during cgroup_create() when the
1804 * clone_children mount argument was specified. The cgroup
1805 * can not yet have any tasks.
1806 *
1807 * Currently we refuse to set up the cgroup - thereby
1808 * refusing the task to be entered, and as a result refusing
1809 * the sys_unshare() or clone() which initiated it - if any
1810 * sibling cpusets have exclusive cpus or mem.
1811 *
1812 * If this becomes a problem for some users who wish to
1813 * allow that scenario, then cpuset_post_clone() could be
1814 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1815 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1816 * held.
1817 */
1818static void cpuset_post_clone(struct cgroup *cgroup)
1819{
1820 struct cgroup *parent, *child;
1821 struct cpuset *cs, *parent_cs;
1822
1823 parent = cgroup->parent;
1824 list_for_each_entry(child, &parent->children, sibling) {
1825 cs = cgroup_cs(child);
1826 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1827 return;
1828 }
1829 cs = cgroup_cs(cgroup);
1830 parent_cs = cgroup_cs(parent);
1831
1832 mutex_lock(&callback_mutex);
1833 cs->mems_allowed = parent_cs->mems_allowed;
1834 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1835 mutex_unlock(&callback_mutex);
1836 return;
1837}
1838
1839/*
1840 * cpuset_create - create a cpuset
1841 * cont: control group that the new cpuset will be part of
1842 */
1843
1844static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont)
1845{
1846 struct cpuset *cs;
1847 struct cpuset *parent;
1848
1849 if (!cont->parent) {
1850 return &top_cpuset.css;
1851 }
1852 parent = cgroup_cs(cont->parent);
1853 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1854 if (!cs)
1855 return ERR_PTR(-ENOMEM);
1856 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1857 kfree(cs);
1858 return ERR_PTR(-ENOMEM);
1859 }
1860
1861 cs->flags = 0;
1862 if (is_spread_page(parent))
1863 set_bit(CS_SPREAD_PAGE, &cs->flags);
1864 if (is_spread_slab(parent))
1865 set_bit(CS_SPREAD_SLAB, &cs->flags);
1866 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1867 cpumask_clear(cs->cpus_allowed);
1868 nodes_clear(cs->mems_allowed);
1869 fmeter_init(&cs->fmeter);
1870 cs->relax_domain_level = -1;
1871
1872 cs->parent = parent;
1873 number_of_cpusets++;
1874 return &cs->css ;
1875}
1876
1877/*
1878 * If the cpuset being removed has its flag 'sched_load_balance'
1879 * enabled, then simulate turning sched_load_balance off, which
1880 * will call async_rebuild_sched_domains().
1881 */
1882
1883static void cpuset_destroy(struct cgroup *cont)
1884{
1885 struct cpuset *cs = cgroup_cs(cont);
1886
1887 if (is_sched_load_balance(cs))
1888 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1889
1890 number_of_cpusets--;
1891 free_cpumask_var(cs->cpus_allowed);
1892 kfree(cs);
1893}
1894
1895struct cgroup_subsys cpuset_subsys = {
1896 .name = "cpuset",
1897 .create = cpuset_create,
1898 .destroy = cpuset_destroy,
1899 .can_attach = cpuset_can_attach,
1900 .attach = cpuset_attach,
1901 .populate = cpuset_populate,
1902 .post_clone = cpuset_post_clone,
1903 .subsys_id = cpuset_subsys_id,
1904 .early_init = 1,
1905};
1906
1907/**
1908 * cpuset_init - initialize cpusets at system boot
1909 *
1910 * Description: Initialize top_cpuset and the cpuset internal file system,
1911 **/
1912
1913int __init cpuset_init(void)
1914{
1915 int err = 0;
1916
1917 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1918 BUG();
1919
1920 cpumask_setall(top_cpuset.cpus_allowed);
1921 nodes_setall(top_cpuset.mems_allowed);
1922
1923 fmeter_init(&top_cpuset.fmeter);
1924 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1925 top_cpuset.relax_domain_level = -1;
1926
1927 err = register_filesystem(&cpuset_fs_type);
1928 if (err < 0)
1929 return err;
1930
1931 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1932 BUG();
1933
1934 number_of_cpusets = 1;
1935 return 0;
1936}
1937
1938/**
1939 * cpuset_do_move_task - move a given task to another cpuset
1940 * @tsk: pointer to task_struct the task to move
1941 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1942 *
1943 * Called by cgroup_scan_tasks() for each task in a cgroup.
1944 * Return nonzero to stop the walk through the tasks.
1945 */
1946static void cpuset_do_move_task(struct task_struct *tsk,
1947 struct cgroup_scanner *scan)
1948{
1949 struct cgroup *new_cgroup = scan->data;
1950
1951 cgroup_attach_task(new_cgroup, tsk);
1952}
1953
1954/**
1955 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1956 * @from: cpuset in which the tasks currently reside
1957 * @to: cpuset to which the tasks will be moved
1958 *
1959 * Called with cgroup_mutex held
1960 * callback_mutex must not be held, as cpuset_attach() will take it.
1961 *
1962 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1963 * calling callback functions for each.
1964 */
1965static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1966{
1967 struct cgroup_scanner scan;
1968
1969 scan.cg = from->css.cgroup;
1970 scan.test_task = NULL; /* select all tasks in cgroup */
1971 scan.process_task = cpuset_do_move_task;
1972 scan.heap = NULL;
1973 scan.data = to->css.cgroup;
1974
1975 if (cgroup_scan_tasks(&scan))
1976 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1977 "cgroup_scan_tasks failed\n");
1978}
1979
1980/*
1981 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1982 * or memory nodes, we need to walk over the cpuset hierarchy,
1983 * removing that CPU or node from all cpusets. If this removes the
1984 * last CPU or node from a cpuset, then move the tasks in the empty
1985 * cpuset to its next-highest non-empty parent.
1986 *
1987 * Called with cgroup_mutex held
1988 * callback_mutex must not be held, as cpuset_attach() will take it.
1989 */
1990static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1991{
1992 struct cpuset *parent;
1993
1994 /*
1995 * The cgroup's css_sets list is in use if there are tasks
1996 * in the cpuset; the list is empty if there are none;
1997 * the cs->css.refcnt seems always 0.
1998 */
1999 if (list_empty(&cs->css.cgroup->css_sets))
2000 return;
2001
2002 /*
2003 * Find its next-highest non-empty parent, (top cpuset
2004 * has online cpus, so can't be empty).
2005 */
2006 parent = cs->parent;
2007 while (cpumask_empty(parent->cpus_allowed) ||
2008 nodes_empty(parent->mems_allowed))
2009 parent = parent->parent;
2010
2011 move_member_tasks_to_cpuset(cs, parent);
2012}
2013
2014/*
2015 * Walk the specified cpuset subtree and look for empty cpusets.
2016 * The tasks of such cpuset must be moved to a parent cpuset.
2017 *
2018 * Called with cgroup_mutex held. We take callback_mutex to modify
2019 * cpus_allowed and mems_allowed.
2020 *
2021 * This walk processes the tree from top to bottom, completing one layer
2022 * before dropping down to the next. It always processes a node before
2023 * any of its children.
2024 *
2025 * For now, since we lack memory hot unplug, we'll never see a cpuset
2026 * that has tasks along with an empty 'mems'. But if we did see such
2027 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2028 */
2029static void scan_for_empty_cpusets(struct cpuset *root)
2030{
2031 LIST_HEAD(queue);
2032 struct cpuset *cp; /* scans cpusets being updated */
2033 struct cpuset *child; /* scans child cpusets of cp */
2034 struct cgroup *cont;
2035 static nodemask_t oldmems; /* protected by cgroup_mutex */
2036
2037 list_add_tail((struct list_head *)&root->stack_list, &queue);
2038
2039 while (!list_empty(&queue)) {
2040 cp = list_first_entry(&queue, struct cpuset, stack_list);
2041 list_del(queue.next);
2042 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2043 child = cgroup_cs(cont);
2044 list_add_tail(&child->stack_list, &queue);
2045 }
2046
2047 /* Continue past cpusets with all cpus, mems online */
2048 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2049 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2050 continue;
2051
2052 oldmems = cp->mems_allowed;
2053
2054 /* Remove offline cpus and mems from this cpuset. */
2055 mutex_lock(&callback_mutex);
2056 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2057 cpu_active_mask);
2058 nodes_and(cp->mems_allowed, cp->mems_allowed,
2059 node_states[N_HIGH_MEMORY]);
2060 mutex_unlock(&callback_mutex);
2061
2062 /* Move tasks from the empty cpuset to a parent */
2063 if (cpumask_empty(cp->cpus_allowed) ||
2064 nodes_empty(cp->mems_allowed))
2065 remove_tasks_in_empty_cpuset(cp);
2066 else {
2067 update_tasks_cpumask(cp, NULL);
2068 update_tasks_nodemask(cp, &oldmems, NULL);
2069 }
2070 }
2071}
2072
2073/*
2074 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2075 * period. This is necessary in order to make cpusets transparent
2076 * (of no affect) on systems that are actively using CPU hotplug
2077 * but making no active use of cpusets.
2078 *
2079 * The only exception to this is suspend/resume, where we don't
2080 * modify cpusets at all.
2081 *
2082 * This routine ensures that top_cpuset.cpus_allowed tracks
2083 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2084 *
2085 * Called within get_online_cpus(). Needs to call cgroup_lock()
2086 * before calling generate_sched_domains().
2087 */
2088void cpuset_update_active_cpus(void)
2089{
2090 struct sched_domain_attr *attr;
2091 cpumask_var_t *doms;
2092 int ndoms;
2093
2094 cgroup_lock();
2095 mutex_lock(&callback_mutex);
2096 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2097 mutex_unlock(&callback_mutex);
2098 scan_for_empty_cpusets(&top_cpuset);
2099 ndoms = generate_sched_domains(&doms, &attr);
2100 cgroup_unlock();
2101
2102 /* Have scheduler rebuild the domains */
2103 partition_sched_domains(ndoms, doms, attr);
2104}
2105
2106#ifdef CONFIG_MEMORY_HOTPLUG
2107/*
2108 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2109 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2110 * See also the previous routine cpuset_track_online_cpus().
2111 */
2112static int cpuset_track_online_nodes(struct notifier_block *self,
2113 unsigned long action, void *arg)
2114{
2115 static nodemask_t oldmems; /* protected by cgroup_mutex */
2116
2117 cgroup_lock();
2118 switch (action) {
2119 case MEM_ONLINE:
2120 oldmems = top_cpuset.mems_allowed;
2121 mutex_lock(&callback_mutex);
2122 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2123 mutex_unlock(&callback_mutex);
2124 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2125 break;
2126 case MEM_OFFLINE:
2127 /*
2128 * needn't update top_cpuset.mems_allowed explicitly because
2129 * scan_for_empty_cpusets() will update it.
2130 */
2131 scan_for_empty_cpusets(&top_cpuset);
2132 break;
2133 default:
2134 break;
2135 }
2136 cgroup_unlock();
2137
2138 return NOTIFY_OK;
2139}
2140#endif
2141
2142/**
2143 * cpuset_init_smp - initialize cpus_allowed
2144 *
2145 * Description: Finish top cpuset after cpu, node maps are initialized
2146 **/
2147
2148void __init cpuset_init_smp(void)
2149{
2150 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2151 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2152
2153 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2154
2155 cpuset_wq = create_singlethread_workqueue("cpuset");
2156 BUG_ON(!cpuset_wq);
2157}
2158
2159/**
2160 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2161 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2162 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2163 *
2164 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2165 * attached to the specified @tsk. Guaranteed to return some non-empty
2166 * subset of cpu_online_mask, even if this means going outside the
2167 * tasks cpuset.
2168 **/
2169
2170void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2171{
2172 mutex_lock(&callback_mutex);
2173 task_lock(tsk);
2174 guarantee_online_cpus(task_cs(tsk), pmask);
2175 task_unlock(tsk);
2176 mutex_unlock(&callback_mutex);
2177}
2178
2179void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2180{
2181 const struct cpuset *cs;
2182
2183 rcu_read_lock();
2184 cs = task_cs(tsk);
2185 if (cs)
2186 do_set_cpus_allowed(tsk, cs->cpus_allowed);
2187 rcu_read_unlock();
2188
2189 /*
2190 * We own tsk->cpus_allowed, nobody can change it under us.
2191 *
2192 * But we used cs && cs->cpus_allowed lockless and thus can
2193 * race with cgroup_attach_task() or update_cpumask() and get
2194 * the wrong tsk->cpus_allowed. However, both cases imply the
2195 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2196 * which takes task_rq_lock().
2197 *
2198 * If we are called after it dropped the lock we must see all
2199 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2200 * set any mask even if it is not right from task_cs() pov,
2201 * the pending set_cpus_allowed_ptr() will fix things.
2202 *
2203 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2204 * if required.
2205 */
2206}
2207
2208void cpuset_init_current_mems_allowed(void)
2209{
2210 nodes_setall(current->mems_allowed);
2211}
2212
2213/**
2214 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2215 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2216 *
2217 * Description: Returns the nodemask_t mems_allowed of the cpuset
2218 * attached to the specified @tsk. Guaranteed to return some non-empty
2219 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2220 * tasks cpuset.
2221 **/
2222
2223nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2224{
2225 nodemask_t mask;
2226
2227 mutex_lock(&callback_mutex);
2228 task_lock(tsk);
2229 guarantee_online_mems(task_cs(tsk), &mask);
2230 task_unlock(tsk);
2231 mutex_unlock(&callback_mutex);
2232
2233 return mask;
2234}
2235
2236/**
2237 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2238 * @nodemask: the nodemask to be checked
2239 *
2240 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2241 */
2242int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2243{
2244 return nodes_intersects(*nodemask, current->mems_allowed);
2245}
2246
2247/*
2248 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2249 * mem_hardwall ancestor to the specified cpuset. Call holding
2250 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2251 * (an unusual configuration), then returns the root cpuset.
2252 */
2253static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2254{
2255 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2256 cs = cs->parent;
2257 return cs;
2258}
2259
2260/**
2261 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2262 * @node: is this an allowed node?
2263 * @gfp_mask: memory allocation flags
2264 *
2265 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2266 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2267 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2268 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2269 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2270 * flag, yes.
2271 * Otherwise, no.
2272 *
2273 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2274 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2275 * might sleep, and might allow a node from an enclosing cpuset.
2276 *
2277 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2278 * cpusets, and never sleeps.
2279 *
2280 * The __GFP_THISNODE placement logic is really handled elsewhere,
2281 * by forcibly using a zonelist starting at a specified node, and by
2282 * (in get_page_from_freelist()) refusing to consider the zones for
2283 * any node on the zonelist except the first. By the time any such
2284 * calls get to this routine, we should just shut up and say 'yes'.
2285 *
2286 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2287 * and do not allow allocations outside the current tasks cpuset
2288 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2289 * GFP_KERNEL allocations are not so marked, so can escape to the
2290 * nearest enclosing hardwalled ancestor cpuset.
2291 *
2292 * Scanning up parent cpusets requires callback_mutex. The
2293 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2294 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2295 * current tasks mems_allowed came up empty on the first pass over
2296 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2297 * cpuset are short of memory, might require taking the callback_mutex
2298 * mutex.
2299 *
2300 * The first call here from mm/page_alloc:get_page_from_freelist()
2301 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2302 * so no allocation on a node outside the cpuset is allowed (unless
2303 * in interrupt, of course).
2304 *
2305 * The second pass through get_page_from_freelist() doesn't even call
2306 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2307 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2308 * in alloc_flags. That logic and the checks below have the combined
2309 * affect that:
2310 * in_interrupt - any node ok (current task context irrelevant)
2311 * GFP_ATOMIC - any node ok
2312 * TIF_MEMDIE - any node ok
2313 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2314 * GFP_USER - only nodes in current tasks mems allowed ok.
2315 *
2316 * Rule:
2317 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2318 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2319 * the code that might scan up ancestor cpusets and sleep.
2320 */
2321int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2322{
2323 const struct cpuset *cs; /* current cpuset ancestors */
2324 int allowed; /* is allocation in zone z allowed? */
2325
2326 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2327 return 1;
2328 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2329 if (node_isset(node, current->mems_allowed))
2330 return 1;
2331 /*
2332 * Allow tasks that have access to memory reserves because they have
2333 * been OOM killed to get memory anywhere.
2334 */
2335 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2336 return 1;
2337 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2338 return 0;
2339
2340 if (current->flags & PF_EXITING) /* Let dying task have memory */
2341 return 1;
2342
2343 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2344 mutex_lock(&callback_mutex);
2345
2346 task_lock(current);
2347 cs = nearest_hardwall_ancestor(task_cs(current));
2348 allowed = node_isset(node, cs->mems_allowed);
2349 task_unlock(current);
2350
2351 mutex_unlock(&callback_mutex);
2352 return allowed;
2353}
2354
2355/*
2356 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2357 * @node: is this an allowed node?
2358 * @gfp_mask: memory allocation flags
2359 *
2360 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2361 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2362 * yes. If the task has been OOM killed and has access to memory reserves as
2363 * specified by the TIF_MEMDIE flag, yes.
2364 * Otherwise, no.
2365 *
2366 * The __GFP_THISNODE placement logic is really handled elsewhere,
2367 * by forcibly using a zonelist starting at a specified node, and by
2368 * (in get_page_from_freelist()) refusing to consider the zones for
2369 * any node on the zonelist except the first. By the time any such
2370 * calls get to this routine, we should just shut up and say 'yes'.
2371 *
2372 * Unlike the cpuset_node_allowed_softwall() variant, above,
2373 * this variant requires that the node be in the current task's
2374 * mems_allowed or that we're in interrupt. It does not scan up the
2375 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2376 * It never sleeps.
2377 */
2378int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2379{
2380 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2381 return 1;
2382 if (node_isset(node, current->mems_allowed))
2383 return 1;
2384 /*
2385 * Allow tasks that have access to memory reserves because they have
2386 * been OOM killed to get memory anywhere.
2387 */
2388 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2389 return 1;
2390 return 0;
2391}
2392
2393/**
2394 * cpuset_unlock - release lock on cpuset changes
2395 *
2396 * Undo the lock taken in a previous cpuset_lock() call.
2397 */
2398
2399void cpuset_unlock(void)
2400{
2401 mutex_unlock(&callback_mutex);
2402}
2403
2404/**
2405 * cpuset_mem_spread_node() - On which node to begin search for a file page
2406 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2407 *
2408 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2409 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2410 * and if the memory allocation used cpuset_mem_spread_node()
2411 * to determine on which node to start looking, as it will for
2412 * certain page cache or slab cache pages such as used for file
2413 * system buffers and inode caches, then instead of starting on the
2414 * local node to look for a free page, rather spread the starting
2415 * node around the tasks mems_allowed nodes.
2416 *
2417 * We don't have to worry about the returned node being offline
2418 * because "it can't happen", and even if it did, it would be ok.
2419 *
2420 * The routines calling guarantee_online_mems() are careful to
2421 * only set nodes in task->mems_allowed that are online. So it
2422 * should not be possible for the following code to return an
2423 * offline node. But if it did, that would be ok, as this routine
2424 * is not returning the node where the allocation must be, only
2425 * the node where the search should start. The zonelist passed to
2426 * __alloc_pages() will include all nodes. If the slab allocator
2427 * is passed an offline node, it will fall back to the local node.
2428 * See kmem_cache_alloc_node().
2429 */
2430
2431static int cpuset_spread_node(int *rotor)
2432{
2433 int node;
2434
2435 node = next_node(*rotor, current->mems_allowed);
2436 if (node == MAX_NUMNODES)
2437 node = first_node(current->mems_allowed);
2438 *rotor = node;
2439 return node;
2440}
2441
2442int cpuset_mem_spread_node(void)
2443{
2444 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2445 current->cpuset_mem_spread_rotor =
2446 node_random(&current->mems_allowed);
2447
2448 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2449}
2450
2451int cpuset_slab_spread_node(void)
2452{
2453 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2454 current->cpuset_slab_spread_rotor =
2455 node_random(&current->mems_allowed);
2456
2457 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2458}
2459
2460EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2461
2462/**
2463 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2464 * @tsk1: pointer to task_struct of some task.
2465 * @tsk2: pointer to task_struct of some other task.
2466 *
2467 * Description: Return true if @tsk1's mems_allowed intersects the
2468 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2469 * one of the task's memory usage might impact the memory available
2470 * to the other.
2471 **/
2472
2473int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2474 const struct task_struct *tsk2)
2475{
2476 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2477}
2478
2479/**
2480 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2481 * @task: pointer to task_struct of some task.
2482 *
2483 * Description: Prints @task's name, cpuset name, and cached copy of its
2484 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2485 * dereferencing task_cs(task).
2486 */
2487void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2488{
2489 struct dentry *dentry;
2490
2491 dentry = task_cs(tsk)->css.cgroup->dentry;
2492 spin_lock(&cpuset_buffer_lock);
2493
2494 if (!dentry) {
2495 strcpy(cpuset_name, "/");
2496 } else {
2497 spin_lock(&dentry->d_lock);
2498 strlcpy(cpuset_name, (const char *)dentry->d_name.name,
2499 CPUSET_NAME_LEN);
2500 spin_unlock(&dentry->d_lock);
2501 }
2502
2503 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2504 tsk->mems_allowed);
2505 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2506 tsk->comm, cpuset_name, cpuset_nodelist);
2507 spin_unlock(&cpuset_buffer_lock);
2508}
2509
2510/*
2511 * Collection of memory_pressure is suppressed unless
2512 * this flag is enabled by writing "1" to the special
2513 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2514 */
2515
2516int cpuset_memory_pressure_enabled __read_mostly;
2517
2518/**
2519 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2520 *
2521 * Keep a running average of the rate of synchronous (direct)
2522 * page reclaim efforts initiated by tasks in each cpuset.
2523 *
2524 * This represents the rate at which some task in the cpuset
2525 * ran low on memory on all nodes it was allowed to use, and
2526 * had to enter the kernels page reclaim code in an effort to
2527 * create more free memory by tossing clean pages or swapping
2528 * or writing dirty pages.
2529 *
2530 * Display to user space in the per-cpuset read-only file
2531 * "memory_pressure". Value displayed is an integer
2532 * representing the recent rate of entry into the synchronous
2533 * (direct) page reclaim by any task attached to the cpuset.
2534 **/
2535
2536void __cpuset_memory_pressure_bump(void)
2537{
2538 task_lock(current);
2539 fmeter_markevent(&task_cs(current)->fmeter);
2540 task_unlock(current);
2541}
2542
2543#ifdef CONFIG_PROC_PID_CPUSET
2544/*
2545 * proc_cpuset_show()
2546 * - Print tasks cpuset path into seq_file.
2547 * - Used for /proc/<pid>/cpuset.
2548 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2549 * doesn't really matter if tsk->cpuset changes after we read it,
2550 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2551 * anyway.
2552 */
2553static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2554{
2555 struct pid *pid;
2556 struct task_struct *tsk;
2557 char *buf;
2558 struct cgroup_subsys_state *css;
2559 int retval;
2560
2561 retval = -ENOMEM;
2562 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2563 if (!buf)
2564 goto out;
2565
2566 retval = -ESRCH;
2567 pid = m->private;
2568 tsk = get_pid_task(pid, PIDTYPE_PID);
2569 if (!tsk)
2570 goto out_free;
2571
2572 retval = -EINVAL;
2573 cgroup_lock();
2574 css = task_subsys_state(tsk, cpuset_subsys_id);
2575 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2576 if (retval < 0)
2577 goto out_unlock;
2578 seq_puts(m, buf);
2579 seq_putc(m, '\n');
2580out_unlock:
2581 cgroup_unlock();
2582 put_task_struct(tsk);
2583out_free:
2584 kfree(buf);
2585out:
2586 return retval;
2587}
2588
2589static int cpuset_open(struct inode *inode, struct file *file)
2590{
2591 struct pid *pid = PROC_I(inode)->pid;
2592 return single_open(file, proc_cpuset_show, pid);
2593}
2594
2595const struct file_operations proc_cpuset_operations = {
2596 .open = cpuset_open,
2597 .read = seq_read,
2598 .llseek = seq_lseek,
2599 .release = single_release,
2600};
2601#endif /* CONFIG_PROC_PID_CPUSET */
2602
2603/* Display task mems_allowed in /proc/<pid>/status file. */
2604void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2605{
2606 seq_printf(m, "Mems_allowed:\t");
2607 seq_nodemask(m, &task->mems_allowed);
2608 seq_printf(m, "\n");
2609 seq_printf(m, "Mems_allowed_list:\t");
2610 seq_nodemask_list(m, &task->mems_allowed);
2611 seq_printf(m, "\n");
2612}