| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * linux/kernel/capability.c | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 1997  Andrew Main <zefram@fysh.org> | 
 | 5 |  * | 
 | 6 |  * Integrated into 2.1.97+,  Andrew G. Morgan <morgan@kernel.org> | 
 | 7 |  * 30 May 2002:	Cleanup, Robert M. Love <rml@tech9.net> | 
 | 8 |  */ | 
 | 9 |  | 
 | 10 | #include <linux/audit.h> | 
 | 11 | #include <linux/capability.h> | 
 | 12 | #include <linux/mm.h> | 
 | 13 | #include <linux/export.h> | 
 | 14 | #include <linux/security.h> | 
 | 15 | #include <linux/syscalls.h> | 
 | 16 | #include <linux/pid_namespace.h> | 
 | 17 | #include <linux/user_namespace.h> | 
 | 18 | #include <asm/uaccess.h> | 
 | 19 |  | 
 | 20 | /* | 
 | 21 |  * Leveraged for setting/resetting capabilities | 
 | 22 |  */ | 
 | 23 |  | 
 | 24 | const kernel_cap_t __cap_empty_set = CAP_EMPTY_SET; | 
 | 25 |  | 
 | 26 | EXPORT_SYMBOL(__cap_empty_set); | 
 | 27 |  | 
 | 28 | int file_caps_enabled = 1; | 
 | 29 |  | 
 | 30 | static int __init file_caps_disable(char *str) | 
 | 31 | { | 
 | 32 | 	file_caps_enabled = 0; | 
 | 33 | 	return 1; | 
 | 34 | } | 
 | 35 | __setup("no_file_caps", file_caps_disable); | 
 | 36 |  | 
 | 37 | /* | 
 | 38 |  * More recent versions of libcap are available from: | 
 | 39 |  * | 
 | 40 |  *   http://www.kernel.org/pub/linux/libs/security/linux-privs/ | 
 | 41 |  */ | 
 | 42 |  | 
 | 43 | static void warn_legacy_capability_use(void) | 
 | 44 | { | 
 | 45 | 	static int warned; | 
 | 46 | 	if (!warned) { | 
 | 47 | 		char name[sizeof(current->comm)]; | 
 | 48 |  | 
 | 49 | 		printk(KERN_INFO "warning: `%s' uses 32-bit capabilities" | 
 | 50 | 		       " (legacy support in use)\n", | 
 | 51 | 		       get_task_comm(name, current)); | 
 | 52 | 		warned = 1; | 
 | 53 | 	} | 
 | 54 | } | 
 | 55 |  | 
 | 56 | /* | 
 | 57 |  * Version 2 capabilities worked fine, but the linux/capability.h file | 
 | 58 |  * that accompanied their introduction encouraged their use without | 
 | 59 |  * the necessary user-space source code changes. As such, we have | 
 | 60 |  * created a version 3 with equivalent functionality to version 2, but | 
 | 61 |  * with a header change to protect legacy source code from using | 
 | 62 |  * version 2 when it wanted to use version 1. If your system has code | 
 | 63 |  * that trips the following warning, it is using version 2 specific | 
 | 64 |  * capabilities and may be doing so insecurely. | 
 | 65 |  * | 
 | 66 |  * The remedy is to either upgrade your version of libcap (to 2.10+, | 
 | 67 |  * if the application is linked against it), or recompile your | 
 | 68 |  * application with modern kernel headers and this warning will go | 
 | 69 |  * away. | 
 | 70 |  */ | 
 | 71 |  | 
 | 72 | static void warn_deprecated_v2(void) | 
 | 73 | { | 
 | 74 | 	static int warned; | 
 | 75 |  | 
 | 76 | 	if (!warned) { | 
 | 77 | 		char name[sizeof(current->comm)]; | 
 | 78 |  | 
 | 79 | 		printk(KERN_INFO "warning: `%s' uses deprecated v2" | 
 | 80 | 		       " capabilities in a way that may be insecure.\n", | 
 | 81 | 		       get_task_comm(name, current)); | 
 | 82 | 		warned = 1; | 
 | 83 | 	} | 
 | 84 | } | 
 | 85 |  | 
 | 86 | /* | 
 | 87 |  * Version check. Return the number of u32s in each capability flag | 
 | 88 |  * array, or a negative value on error. | 
 | 89 |  */ | 
 | 90 | static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy) | 
 | 91 | { | 
 | 92 | 	__u32 version; | 
 | 93 |  | 
 | 94 | 	if (get_user(version, &header->version)) | 
 | 95 | 		return -EFAULT; | 
 | 96 |  | 
 | 97 | 	switch (version) { | 
 | 98 | 	case _LINUX_CAPABILITY_VERSION_1: | 
 | 99 | 		warn_legacy_capability_use(); | 
 | 100 | 		*tocopy = _LINUX_CAPABILITY_U32S_1; | 
 | 101 | 		break; | 
 | 102 | 	case _LINUX_CAPABILITY_VERSION_2: | 
 | 103 | 		warn_deprecated_v2(); | 
 | 104 | 		/* | 
 | 105 | 		 * fall through - v3 is otherwise equivalent to v2. | 
 | 106 | 		 */ | 
 | 107 | 	case _LINUX_CAPABILITY_VERSION_3: | 
 | 108 | 		*tocopy = _LINUX_CAPABILITY_U32S_3; | 
 | 109 | 		break; | 
 | 110 | 	default: | 
 | 111 | 		if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version)) | 
 | 112 | 			return -EFAULT; | 
 | 113 | 		return -EINVAL; | 
 | 114 | 	} | 
 | 115 |  | 
 | 116 | 	return 0; | 
 | 117 | } | 
 | 118 |  | 
 | 119 | /* | 
 | 120 |  * The only thing that can change the capabilities of the current | 
 | 121 |  * process is the current process. As such, we can't be in this code | 
 | 122 |  * at the same time as we are in the process of setting capabilities | 
 | 123 |  * in this process. The net result is that we can limit our use of | 
 | 124 |  * locks to when we are reading the caps of another process. | 
 | 125 |  */ | 
 | 126 | static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp, | 
 | 127 | 				     kernel_cap_t *pIp, kernel_cap_t *pPp) | 
 | 128 | { | 
 | 129 | 	int ret; | 
 | 130 |  | 
 | 131 | 	if (pid && (pid != task_pid_vnr(current))) { | 
 | 132 | 		struct task_struct *target; | 
 | 133 |  | 
 | 134 | 		rcu_read_lock(); | 
 | 135 |  | 
 | 136 | 		target = find_task_by_vpid(pid); | 
 | 137 | 		if (!target) | 
 | 138 | 			ret = -ESRCH; | 
 | 139 | 		else | 
 | 140 | 			ret = security_capget(target, pEp, pIp, pPp); | 
 | 141 |  | 
 | 142 | 		rcu_read_unlock(); | 
 | 143 | 	} else | 
 | 144 | 		ret = security_capget(current, pEp, pIp, pPp); | 
 | 145 |  | 
 | 146 | 	return ret; | 
 | 147 | } | 
 | 148 |  | 
 | 149 | /** | 
 | 150 |  * sys_capget - get the capabilities of a given process. | 
 | 151 |  * @header: pointer to struct that contains capability version and | 
 | 152 |  *	target pid data | 
 | 153 |  * @dataptr: pointer to struct that contains the effective, permitted, | 
 | 154 |  *	and inheritable capabilities that are returned | 
 | 155 |  * | 
 | 156 |  * Returns 0 on success and < 0 on error. | 
 | 157 |  */ | 
 | 158 | SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr) | 
 | 159 | { | 
 | 160 | 	int ret = 0; | 
 | 161 | 	pid_t pid; | 
 | 162 | 	unsigned tocopy; | 
 | 163 | 	kernel_cap_t pE, pI, pP; | 
 | 164 |  | 
 | 165 | 	ret = cap_validate_magic(header, &tocopy); | 
 | 166 | 	if ((dataptr == NULL) || (ret != 0)) | 
 | 167 | 		return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret; | 
 | 168 |  | 
 | 169 | 	if (get_user(pid, &header->pid)) | 
 | 170 | 		return -EFAULT; | 
 | 171 |  | 
 | 172 | 	if (pid < 0) | 
 | 173 | 		return -EINVAL; | 
 | 174 |  | 
 | 175 | 	ret = cap_get_target_pid(pid, &pE, &pI, &pP); | 
 | 176 | 	if (!ret) { | 
 | 177 | 		struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; | 
 | 178 | 		unsigned i; | 
 | 179 |  | 
 | 180 | 		for (i = 0; i < tocopy; i++) { | 
 | 181 | 			kdata[i].effective = pE.cap[i]; | 
 | 182 | 			kdata[i].permitted = pP.cap[i]; | 
 | 183 | 			kdata[i].inheritable = pI.cap[i]; | 
 | 184 | 		} | 
 | 185 |  | 
 | 186 | 		/* | 
 | 187 | 		 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S, | 
 | 188 | 		 * we silently drop the upper capabilities here. This | 
 | 189 | 		 * has the effect of making older libcap | 
 | 190 | 		 * implementations implicitly drop upper capability | 
 | 191 | 		 * bits when they perform a: capget/modify/capset | 
 | 192 | 		 * sequence. | 
 | 193 | 		 * | 
 | 194 | 		 * This behavior is considered fail-safe | 
 | 195 | 		 * behavior. Upgrading the application to a newer | 
 | 196 | 		 * version of libcap will enable access to the newer | 
 | 197 | 		 * capabilities. | 
 | 198 | 		 * | 
 | 199 | 		 * An alternative would be to return an error here | 
 | 200 | 		 * (-ERANGE), but that causes legacy applications to | 
 | 201 | 		 * unexpectidly fail; the capget/modify/capset aborts | 
 | 202 | 		 * before modification is attempted and the application | 
 | 203 | 		 * fails. | 
 | 204 | 		 */ | 
 | 205 | 		if (copy_to_user(dataptr, kdata, tocopy | 
 | 206 | 				 * sizeof(struct __user_cap_data_struct))) { | 
 | 207 | 			return -EFAULT; | 
 | 208 | 		} | 
 | 209 | 	} | 
 | 210 |  | 
 | 211 | 	return ret; | 
 | 212 | } | 
 | 213 |  | 
 | 214 | /** | 
 | 215 |  * sys_capset - set capabilities for a process or (*) a group of processes | 
 | 216 |  * @header: pointer to struct that contains capability version and | 
 | 217 |  *	target pid data | 
 | 218 |  * @data: pointer to struct that contains the effective, permitted, | 
 | 219 |  *	and inheritable capabilities | 
 | 220 |  * | 
 | 221 |  * Set capabilities for the current process only.  The ability to any other | 
 | 222 |  * process(es) has been deprecated and removed. | 
 | 223 |  * | 
 | 224 |  * The restrictions on setting capabilities are specified as: | 
 | 225 |  * | 
 | 226 |  * I: any raised capabilities must be a subset of the old permitted | 
 | 227 |  * P: any raised capabilities must be a subset of the old permitted | 
 | 228 |  * E: must be set to a subset of new permitted | 
 | 229 |  * | 
 | 230 |  * Returns 0 on success and < 0 on error. | 
 | 231 |  */ | 
 | 232 | SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data) | 
 | 233 | { | 
 | 234 | 	struct __user_cap_data_struct kdata[_KERNEL_CAPABILITY_U32S]; | 
 | 235 | 	unsigned i, tocopy, copybytes; | 
 | 236 | 	kernel_cap_t inheritable, permitted, effective; | 
 | 237 | 	struct cred *new; | 
 | 238 | 	int ret; | 
 | 239 | 	pid_t pid; | 
 | 240 |  | 
 | 241 | 	ret = cap_validate_magic(header, &tocopy); | 
 | 242 | 	if (ret != 0) | 
 | 243 | 		return ret; | 
 | 244 |  | 
 | 245 | 	if (get_user(pid, &header->pid)) | 
 | 246 | 		return -EFAULT; | 
 | 247 |  | 
 | 248 | 	/* may only affect current now */ | 
 | 249 | 	if (pid != 0 && pid != task_pid_vnr(current)) | 
 | 250 | 		return -EPERM; | 
 | 251 |  | 
 | 252 | 	copybytes = tocopy * sizeof(struct __user_cap_data_struct); | 
 | 253 | 	if (copybytes > sizeof(kdata)) | 
 | 254 | 		return -EFAULT; | 
 | 255 |  | 
 | 256 | 	if (copy_from_user(&kdata, data, copybytes)) | 
 | 257 | 		return -EFAULT; | 
 | 258 |  | 
 | 259 | 	for (i = 0; i < tocopy; i++) { | 
 | 260 | 		effective.cap[i] = kdata[i].effective; | 
 | 261 | 		permitted.cap[i] = kdata[i].permitted; | 
 | 262 | 		inheritable.cap[i] = kdata[i].inheritable; | 
 | 263 | 	} | 
 | 264 | 	while (i < _KERNEL_CAPABILITY_U32S) { | 
 | 265 | 		effective.cap[i] = 0; | 
 | 266 | 		permitted.cap[i] = 0; | 
 | 267 | 		inheritable.cap[i] = 0; | 
 | 268 | 		i++; | 
 | 269 | 	} | 
 | 270 |  | 
 | 271 | 	new = prepare_creds(); | 
 | 272 | 	if (!new) | 
 | 273 | 		return -ENOMEM; | 
 | 274 |  | 
 | 275 | 	ret = security_capset(new, current_cred(), | 
 | 276 | 			      &effective, &inheritable, &permitted); | 
 | 277 | 	if (ret < 0) | 
 | 278 | 		goto error; | 
 | 279 |  | 
 | 280 | 	audit_log_capset(pid, new, current_cred()); | 
 | 281 |  | 
 | 282 | 	return commit_creds(new); | 
 | 283 |  | 
 | 284 | error: | 
 | 285 | 	abort_creds(new); | 
 | 286 | 	return ret; | 
 | 287 | } | 
 | 288 |  | 
 | 289 | /** | 
 | 290 |  * has_ns_capability - Does a task have a capability in a specific user ns | 
 | 291 |  * @t: The task in question | 
 | 292 |  * @ns: target user namespace | 
 | 293 |  * @cap: The capability to be tested for | 
 | 294 |  * | 
 | 295 |  * Return true if the specified task has the given superior capability | 
 | 296 |  * currently in effect to the specified user namespace, false if not. | 
 | 297 |  * | 
 | 298 |  * Note that this does not set PF_SUPERPRIV on the task. | 
 | 299 |  */ | 
 | 300 | bool has_ns_capability(struct task_struct *t, | 
 | 301 | 		       struct user_namespace *ns, int cap) | 
 | 302 | { | 
 | 303 | 	int ret; | 
 | 304 |  | 
 | 305 | 	rcu_read_lock(); | 
 | 306 | 	ret = security_capable(__task_cred(t), ns, cap); | 
 | 307 | 	rcu_read_unlock(); | 
 | 308 |  | 
 | 309 | 	return (ret == 0); | 
 | 310 | } | 
 | 311 |  | 
 | 312 | /** | 
 | 313 |  * has_capability - Does a task have a capability in init_user_ns | 
 | 314 |  * @t: The task in question | 
 | 315 |  * @cap: The capability to be tested for | 
 | 316 |  * | 
 | 317 |  * Return true if the specified task has the given superior capability | 
 | 318 |  * currently in effect to the initial user namespace, false if not. | 
 | 319 |  * | 
 | 320 |  * Note that this does not set PF_SUPERPRIV on the task. | 
 | 321 |  */ | 
 | 322 | bool has_capability(struct task_struct *t, int cap) | 
 | 323 | { | 
 | 324 | 	return has_ns_capability(t, &init_user_ns, cap); | 
 | 325 | } | 
 | 326 |  | 
 | 327 | /** | 
 | 328 |  * has_ns_capability_noaudit - Does a task have a capability (unaudited) | 
 | 329 |  * in a specific user ns. | 
 | 330 |  * @t: The task in question | 
 | 331 |  * @ns: target user namespace | 
 | 332 |  * @cap: The capability to be tested for | 
 | 333 |  * | 
 | 334 |  * Return true if the specified task has the given superior capability | 
 | 335 |  * currently in effect to the specified user namespace, false if not. | 
 | 336 |  * Do not write an audit message for the check. | 
 | 337 |  * | 
 | 338 |  * Note that this does not set PF_SUPERPRIV on the task. | 
 | 339 |  */ | 
 | 340 | bool has_ns_capability_noaudit(struct task_struct *t, | 
 | 341 | 			       struct user_namespace *ns, int cap) | 
 | 342 | { | 
 | 343 | 	int ret; | 
 | 344 |  | 
 | 345 | 	rcu_read_lock(); | 
 | 346 | 	ret = security_capable_noaudit(__task_cred(t), ns, cap); | 
 | 347 | 	rcu_read_unlock(); | 
 | 348 |  | 
 | 349 | 	return (ret == 0); | 
 | 350 | } | 
 | 351 |  | 
 | 352 | /** | 
 | 353 |  * has_capability_noaudit - Does a task have a capability (unaudited) in the | 
 | 354 |  * initial user ns | 
 | 355 |  * @t: The task in question | 
 | 356 |  * @cap: The capability to be tested for | 
 | 357 |  * | 
 | 358 |  * Return true if the specified task has the given superior capability | 
 | 359 |  * currently in effect to init_user_ns, false if not.  Don't write an | 
 | 360 |  * audit message for the check. | 
 | 361 |  * | 
 | 362 |  * Note that this does not set PF_SUPERPRIV on the task. | 
 | 363 |  */ | 
 | 364 | bool has_capability_noaudit(struct task_struct *t, int cap) | 
 | 365 | { | 
 | 366 | 	return has_ns_capability_noaudit(t, &init_user_ns, cap); | 
 | 367 | } | 
 | 368 |  | 
 | 369 | /** | 
 | 370 |  * ns_capable - Determine if the current task has a superior capability in effect | 
 | 371 |  * @ns:  The usernamespace we want the capability in | 
 | 372 |  * @cap: The capability to be tested for | 
 | 373 |  * | 
 | 374 |  * Return true if the current task has the given superior capability currently | 
 | 375 |  * available for use, false if not. | 
 | 376 |  * | 
 | 377 |  * This sets PF_SUPERPRIV on the task if the capability is available on the | 
 | 378 |  * assumption that it's about to be used. | 
 | 379 |  */ | 
 | 380 | bool ns_capable(struct user_namespace *ns, int cap) | 
 | 381 | { | 
 | 382 | 	if (unlikely(!cap_valid(cap))) { | 
 | 383 | 		printk(KERN_CRIT "capable() called with invalid cap=%u\n", cap); | 
 | 384 | 		BUG(); | 
 | 385 | 	} | 
 | 386 |  | 
 | 387 | 	if (security_capable(current_cred(), ns, cap) == 0) { | 
 | 388 | 		current->flags |= PF_SUPERPRIV; | 
 | 389 | 		return true; | 
 | 390 | 	} | 
 | 391 | 	return false; | 
 | 392 | } | 
 | 393 | EXPORT_SYMBOL(ns_capable); | 
 | 394 |  | 
 | 395 | /** | 
 | 396 |  * capable - Determine if the current task has a superior capability in effect | 
 | 397 |  * @cap: The capability to be tested for | 
 | 398 |  * | 
 | 399 |  * Return true if the current task has the given superior capability currently | 
 | 400 |  * available for use, false if not. | 
 | 401 |  * | 
 | 402 |  * This sets PF_SUPERPRIV on the task if the capability is available on the | 
 | 403 |  * assumption that it's about to be used. | 
 | 404 |  */ | 
 | 405 | bool capable(int cap) | 
 | 406 | { | 
 | 407 | 	return ns_capable(&init_user_ns, cap); | 
 | 408 | } | 
 | 409 | EXPORT_SYMBOL(capable); | 
 | 410 |  | 
 | 411 | /** | 
 | 412 |  * nsown_capable - Check superior capability to one's own user_ns | 
 | 413 |  * @cap: The capability in question | 
 | 414 |  * | 
 | 415 |  * Return true if the current task has the given superior capability | 
 | 416 |  * targeted at its own user namespace. | 
 | 417 |  */ | 
 | 418 | bool nsown_capable(int cap) | 
 | 419 | { | 
 | 420 | 	return ns_capable(current_user_ns(), cap); | 
 | 421 | } |