| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2002-2005, Instant802 Networks, Inc. | 
|  | 3 | * Copyright 2005-2006, Devicescape Software, Inc. | 
|  | 4 | * Copyright 2007	Johannes Berg <johannes@sipsolutions.net> | 
|  | 5 | * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com> | 
|  | 6 | * | 
|  | 7 | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | 8 | * purpose with or without fee is hereby granted, provided that the above | 
|  | 9 | * copyright notice and this permission notice appear in all copies. | 
|  | 10 | * | 
|  | 11 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | 12 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | 13 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
|  | 14 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | 15 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  | 16 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  | 17 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  | 18 | */ | 
|  | 19 |  | 
|  | 20 |  | 
|  | 21 | /** | 
|  | 22 | * DOC: Wireless regulatory infrastructure | 
|  | 23 | * | 
|  | 24 | * The usual implementation is for a driver to read a device EEPROM to | 
|  | 25 | * determine which regulatory domain it should be operating under, then | 
|  | 26 | * looking up the allowable channels in a driver-local table and finally | 
|  | 27 | * registering those channels in the wiphy structure. | 
|  | 28 | * | 
|  | 29 | * Another set of compliance enforcement is for drivers to use their | 
|  | 30 | * own compliance limits which can be stored on the EEPROM. The host | 
|  | 31 | * driver or firmware may ensure these are used. | 
|  | 32 | * | 
|  | 33 | * In addition to all this we provide an extra layer of regulatory | 
|  | 34 | * conformance. For drivers which do not have any regulatory | 
|  | 35 | * information CRDA provides the complete regulatory solution. | 
|  | 36 | * For others it provides a community effort on further restrictions | 
|  | 37 | * to enhance compliance. | 
|  | 38 | * | 
|  | 39 | * Note: When number of rules --> infinity we will not be able to | 
|  | 40 | * index on alpha2 any more, instead we'll probably have to | 
|  | 41 | * rely on some SHA1 checksum of the regdomain for example. | 
|  | 42 | * | 
|  | 43 | */ | 
|  | 44 |  | 
|  | 45 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | 46 |  | 
|  | 47 | #include <linux/kernel.h> | 
|  | 48 | #include <linux/export.h> | 
|  | 49 | #include <linux/slab.h> | 
|  | 50 | #include <linux/list.h> | 
|  | 51 | #include <linux/random.h> | 
|  | 52 | #include <linux/ctype.h> | 
|  | 53 | #include <linux/nl80211.h> | 
|  | 54 | #include <linux/platform_device.h> | 
|  | 55 | #include <linux/moduleparam.h> | 
|  | 56 | #include <net/cfg80211.h> | 
|  | 57 | #include "core.h" | 
|  | 58 | #include "reg.h" | 
|  | 59 | #include "regdb.h" | 
|  | 60 | #include "nl80211.h" | 
|  | 61 |  | 
|  | 62 | #ifdef CONFIG_CFG80211_REG_DEBUG | 
|  | 63 | #define REG_DBG_PRINT(format, args...)			\ | 
|  | 64 | printk(KERN_DEBUG pr_fmt(format), ##args) | 
|  | 65 | #else | 
|  | 66 | #define REG_DBG_PRINT(args...) | 
|  | 67 | #endif | 
|  | 68 |  | 
|  | 69 | static struct regulatory_request core_request_world = { | 
|  | 70 | .initiator = NL80211_REGDOM_SET_BY_CORE, | 
|  | 71 | .alpha2[0] = '0', | 
|  | 72 | .alpha2[1] = '0', | 
|  | 73 | .intersect = false, | 
|  | 74 | .processed = true, | 
|  | 75 | .country_ie_env = ENVIRON_ANY, | 
|  | 76 | }; | 
|  | 77 |  | 
|  | 78 | /* Receipt of information from last regulatory request */ | 
|  | 79 | static struct regulatory_request *last_request = &core_request_world; | 
|  | 80 |  | 
|  | 81 | /* To trigger userspace events */ | 
|  | 82 | static struct platform_device *reg_pdev; | 
|  | 83 |  | 
|  | 84 | static struct device_type reg_device_type = { | 
|  | 85 | .uevent = reg_device_uevent, | 
|  | 86 | }; | 
|  | 87 |  | 
|  | 88 | /* | 
|  | 89 | * Central wireless core regulatory domains, we only need two, | 
|  | 90 | * the current one and a world regulatory domain in case we have no | 
|  | 91 | * information to give us an alpha2 | 
|  | 92 | */ | 
|  | 93 | const struct ieee80211_regdomain *cfg80211_regdomain; | 
|  | 94 |  | 
|  | 95 | /* | 
|  | 96 | * Protects static reg.c components: | 
|  | 97 | *     - cfg80211_world_regdom | 
|  | 98 | *     - cfg80211_regdom | 
|  | 99 | *     - last_request | 
|  | 100 | */ | 
|  | 101 | static DEFINE_MUTEX(reg_mutex); | 
|  | 102 |  | 
|  | 103 | static inline void assert_reg_lock(void) | 
|  | 104 | { | 
|  | 105 | lockdep_assert_held(®_mutex); | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | /* Used to queue up regulatory hints */ | 
|  | 109 | static LIST_HEAD(reg_requests_list); | 
|  | 110 | static spinlock_t reg_requests_lock; | 
|  | 111 |  | 
|  | 112 | /* Used to queue up beacon hints for review */ | 
|  | 113 | static LIST_HEAD(reg_pending_beacons); | 
|  | 114 | static spinlock_t reg_pending_beacons_lock; | 
|  | 115 |  | 
|  | 116 | /* Used to keep track of processed beacon hints */ | 
|  | 117 | static LIST_HEAD(reg_beacon_list); | 
|  | 118 |  | 
|  | 119 | struct reg_beacon { | 
|  | 120 | struct list_head list; | 
|  | 121 | struct ieee80211_channel chan; | 
|  | 122 | }; | 
|  | 123 |  | 
|  | 124 | static void reg_todo(struct work_struct *work); | 
|  | 125 | static DECLARE_WORK(reg_work, reg_todo); | 
|  | 126 |  | 
|  | 127 | static void reg_timeout_work(struct work_struct *work); | 
|  | 128 | static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work); | 
|  | 129 |  | 
|  | 130 | /* We keep a static world regulatory domain in case of the absence of CRDA */ | 
|  | 131 | static const struct ieee80211_regdomain world_regdom = { | 
|  | 132 | .n_reg_rules = 5, | 
|  | 133 | .alpha2 =  "00", | 
|  | 134 | .reg_rules = { | 
|  | 135 | /* IEEE 802.11b/g, channels 1..11 */ | 
|  | 136 | REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), | 
|  | 137 | /* IEEE 802.11b/g, channels 12..13. */ | 
|  | 138 | REG_RULE(2467-10, 2472+10, 40, 6, 20, | 
|  | 139 | NL80211_RRF_PASSIVE_SCAN | | 
|  | 140 | NL80211_RRF_NO_IBSS), | 
|  | 141 | /* IEEE 802.11 channel 14 - Only JP enables | 
|  | 142 | * this and for 802.11b only */ | 
|  | 143 | REG_RULE(2484-10, 2484+10, 20, 6, 20, | 
|  | 144 | NL80211_RRF_PASSIVE_SCAN | | 
|  | 145 | NL80211_RRF_NO_IBSS | | 
|  | 146 | NL80211_RRF_NO_OFDM), | 
|  | 147 | /* IEEE 802.11a, channel 36..48 */ | 
|  | 148 | REG_RULE(5180-10, 5240+10, 40, 6, 20, | 
|  | 149 | NL80211_RRF_PASSIVE_SCAN | | 
|  | 150 | NL80211_RRF_NO_IBSS), | 
|  | 151 |  | 
|  | 152 | /* NB: 5260 MHz - 5700 MHz requies DFS */ | 
|  | 153 |  | 
|  | 154 | /* IEEE 802.11a, channel 149..165 */ | 
|  | 155 | REG_RULE(5745-10, 5825+10, 40, 6, 20, | 
|  | 156 | NL80211_RRF_PASSIVE_SCAN | | 
|  | 157 | NL80211_RRF_NO_IBSS), | 
|  | 158 | } | 
|  | 159 | }; | 
|  | 160 |  | 
|  | 161 | static const struct ieee80211_regdomain *cfg80211_world_regdom = | 
|  | 162 | &world_regdom; | 
|  | 163 |  | 
|  | 164 | static char *ieee80211_regdom = "00"; | 
|  | 165 | static char user_alpha2[2]; | 
|  | 166 |  | 
|  | 167 | module_param(ieee80211_regdom, charp, 0444); | 
|  | 168 | MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code"); | 
|  | 169 |  | 
|  | 170 | static void reset_regdomains(bool full_reset) | 
|  | 171 | { | 
|  | 172 | /* avoid freeing static information or freeing something twice */ | 
|  | 173 | if (cfg80211_regdomain == cfg80211_world_regdom) | 
|  | 174 | cfg80211_regdomain = NULL; | 
|  | 175 | if (cfg80211_world_regdom == &world_regdom) | 
|  | 176 | cfg80211_world_regdom = NULL; | 
|  | 177 | if (cfg80211_regdomain == &world_regdom) | 
|  | 178 | cfg80211_regdomain = NULL; | 
|  | 179 |  | 
|  | 180 | kfree(cfg80211_regdomain); | 
|  | 181 | kfree(cfg80211_world_regdom); | 
|  | 182 |  | 
|  | 183 | cfg80211_world_regdom = &world_regdom; | 
|  | 184 | cfg80211_regdomain = NULL; | 
|  | 185 |  | 
|  | 186 | if (!full_reset) | 
|  | 187 | return; | 
|  | 188 |  | 
|  | 189 | if (last_request != &core_request_world) | 
|  | 190 | kfree(last_request); | 
|  | 191 | last_request = &core_request_world; | 
|  | 192 | } | 
|  | 193 |  | 
|  | 194 | /* | 
|  | 195 | * Dynamic world regulatory domain requested by the wireless | 
|  | 196 | * core upon initialization | 
|  | 197 | */ | 
|  | 198 | static void update_world_regdomain(const struct ieee80211_regdomain *rd) | 
|  | 199 | { | 
|  | 200 | BUG_ON(!last_request); | 
|  | 201 |  | 
|  | 202 | reset_regdomains(false); | 
|  | 203 |  | 
|  | 204 | cfg80211_world_regdom = rd; | 
|  | 205 | cfg80211_regdomain = rd; | 
|  | 206 | } | 
|  | 207 |  | 
|  | 208 | bool is_world_regdom(const char *alpha2) | 
|  | 209 | { | 
|  | 210 | if (!alpha2) | 
|  | 211 | return false; | 
|  | 212 | if (alpha2[0] == '0' && alpha2[1] == '0') | 
|  | 213 | return true; | 
|  | 214 | return false; | 
|  | 215 | } | 
|  | 216 |  | 
|  | 217 | static bool is_alpha2_set(const char *alpha2) | 
|  | 218 | { | 
|  | 219 | if (!alpha2) | 
|  | 220 | return false; | 
|  | 221 | if (alpha2[0] != 0 && alpha2[1] != 0) | 
|  | 222 | return true; | 
|  | 223 | return false; | 
|  | 224 | } | 
|  | 225 |  | 
|  | 226 | static bool is_unknown_alpha2(const char *alpha2) | 
|  | 227 | { | 
|  | 228 | if (!alpha2) | 
|  | 229 | return false; | 
|  | 230 | /* | 
|  | 231 | * Special case where regulatory domain was built by driver | 
|  | 232 | * but a specific alpha2 cannot be determined | 
|  | 233 | */ | 
|  | 234 | if (alpha2[0] == '9' && alpha2[1] == '9') | 
|  | 235 | return true; | 
|  | 236 | return false; | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | static bool is_intersected_alpha2(const char *alpha2) | 
|  | 240 | { | 
|  | 241 | if (!alpha2) | 
|  | 242 | return false; | 
|  | 243 | /* | 
|  | 244 | * Special case where regulatory domain is the | 
|  | 245 | * result of an intersection between two regulatory domain | 
|  | 246 | * structures | 
|  | 247 | */ | 
|  | 248 | if (alpha2[0] == '9' && alpha2[1] == '8') | 
|  | 249 | return true; | 
|  | 250 | return false; | 
|  | 251 | } | 
|  | 252 |  | 
|  | 253 | static bool is_an_alpha2(const char *alpha2) | 
|  | 254 | { | 
|  | 255 | if (!alpha2) | 
|  | 256 | return false; | 
|  | 257 | if (isalpha(alpha2[0]) && isalpha(alpha2[1])) | 
|  | 258 | return true; | 
|  | 259 | return false; | 
|  | 260 | } | 
|  | 261 |  | 
|  | 262 | static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y) | 
|  | 263 | { | 
|  | 264 | if (!alpha2_x || !alpha2_y) | 
|  | 265 | return false; | 
|  | 266 | if (alpha2_x[0] == alpha2_y[0] && | 
|  | 267 | alpha2_x[1] == alpha2_y[1]) | 
|  | 268 | return true; | 
|  | 269 | return false; | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | static bool regdom_changes(const char *alpha2) | 
|  | 273 | { | 
|  | 274 | assert_cfg80211_lock(); | 
|  | 275 |  | 
|  | 276 | if (!cfg80211_regdomain) | 
|  | 277 | return true; | 
|  | 278 | if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2)) | 
|  | 279 | return false; | 
|  | 280 | return true; | 
|  | 281 | } | 
|  | 282 |  | 
|  | 283 | /* | 
|  | 284 | * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets | 
|  | 285 | * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER | 
|  | 286 | * has ever been issued. | 
|  | 287 | */ | 
|  | 288 | static bool is_user_regdom_saved(void) | 
|  | 289 | { | 
|  | 290 | if (user_alpha2[0] == '9' && user_alpha2[1] == '7') | 
|  | 291 | return false; | 
|  | 292 |  | 
|  | 293 | /* This would indicate a mistake on the design */ | 
|  | 294 | if (WARN((!is_world_regdom(user_alpha2) && | 
|  | 295 | !is_an_alpha2(user_alpha2)), | 
|  | 296 | "Unexpected user alpha2: %c%c\n", | 
|  | 297 | user_alpha2[0], | 
|  | 298 | user_alpha2[1])) | 
|  | 299 | return false; | 
|  | 300 |  | 
|  | 301 | return true; | 
|  | 302 | } | 
|  | 303 |  | 
|  | 304 | static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd, | 
|  | 305 | const struct ieee80211_regdomain *src_regd) | 
|  | 306 | { | 
|  | 307 | struct ieee80211_regdomain *regd; | 
|  | 308 | int size_of_regd = 0; | 
|  | 309 | unsigned int i; | 
|  | 310 |  | 
|  | 311 | size_of_regd = sizeof(struct ieee80211_regdomain) + | 
|  | 312 | ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule)); | 
|  | 313 |  | 
|  | 314 | regd = kzalloc(size_of_regd, GFP_KERNEL); | 
|  | 315 | if (!regd) | 
|  | 316 | return -ENOMEM; | 
|  | 317 |  | 
|  | 318 | memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain)); | 
|  | 319 |  | 
|  | 320 | for (i = 0; i < src_regd->n_reg_rules; i++) | 
|  | 321 | memcpy(®d->reg_rules[i], &src_regd->reg_rules[i], | 
|  | 322 | sizeof(struct ieee80211_reg_rule)); | 
|  | 323 |  | 
|  | 324 | *dst_regd = regd; | 
|  | 325 | return 0; | 
|  | 326 | } | 
|  | 327 |  | 
|  | 328 | #ifdef CONFIG_CFG80211_INTERNAL_REGDB | 
|  | 329 | struct reg_regdb_search_request { | 
|  | 330 | char alpha2[2]; | 
|  | 331 | struct list_head list; | 
|  | 332 | }; | 
|  | 333 |  | 
|  | 334 | static LIST_HEAD(reg_regdb_search_list); | 
|  | 335 | static DEFINE_MUTEX(reg_regdb_search_mutex); | 
|  | 336 |  | 
|  | 337 | static void reg_regdb_search(struct work_struct *work) | 
|  | 338 | { | 
|  | 339 | struct reg_regdb_search_request *request; | 
|  | 340 | const struct ieee80211_regdomain *curdom, *regdom; | 
|  | 341 | int i, r; | 
|  | 342 | bool set_reg = false; | 
|  | 343 |  | 
|  | 344 | mutex_lock(&cfg80211_mutex); | 
|  | 345 |  | 
|  | 346 | mutex_lock(®_regdb_search_mutex); | 
|  | 347 | while (!list_empty(®_regdb_search_list)) { | 
|  | 348 | request = list_first_entry(®_regdb_search_list, | 
|  | 349 | struct reg_regdb_search_request, | 
|  | 350 | list); | 
|  | 351 | list_del(&request->list); | 
|  | 352 |  | 
|  | 353 | for (i=0; i<reg_regdb_size; i++) { | 
|  | 354 | curdom = reg_regdb[i]; | 
|  | 355 |  | 
|  | 356 | if (!memcmp(request->alpha2, curdom->alpha2, 2)) { | 
|  | 357 | r = reg_copy_regd(®dom, curdom); | 
|  | 358 | if (r) | 
|  | 359 | break; | 
|  | 360 | set_reg = true; | 
|  | 361 | break; | 
|  | 362 | } | 
|  | 363 | } | 
|  | 364 |  | 
|  | 365 | kfree(request); | 
|  | 366 | } | 
|  | 367 | mutex_unlock(®_regdb_search_mutex); | 
|  | 368 |  | 
|  | 369 | if (set_reg) | 
|  | 370 | set_regdom(regdom); | 
|  | 371 |  | 
|  | 372 | mutex_unlock(&cfg80211_mutex); | 
|  | 373 | } | 
|  | 374 |  | 
|  | 375 | static DECLARE_WORK(reg_regdb_work, reg_regdb_search); | 
|  | 376 |  | 
|  | 377 | static void reg_regdb_query(const char *alpha2) | 
|  | 378 | { | 
|  | 379 | struct reg_regdb_search_request *request; | 
|  | 380 |  | 
|  | 381 | if (!alpha2) | 
|  | 382 | return; | 
|  | 383 |  | 
|  | 384 | request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL); | 
|  | 385 | if (!request) | 
|  | 386 | return; | 
|  | 387 |  | 
|  | 388 | memcpy(request->alpha2, alpha2, 2); | 
|  | 389 |  | 
|  | 390 | mutex_lock(®_regdb_search_mutex); | 
|  | 391 | list_add_tail(&request->list, ®_regdb_search_list); | 
|  | 392 | mutex_unlock(®_regdb_search_mutex); | 
|  | 393 |  | 
|  | 394 | schedule_work(®_regdb_work); | 
|  | 395 | } | 
|  | 396 |  | 
|  | 397 | /* Feel free to add any other sanity checks here */ | 
|  | 398 | static void reg_regdb_size_check(void) | 
|  | 399 | { | 
|  | 400 | /* We should ideally BUILD_BUG_ON() but then random builds would fail */ | 
|  | 401 | WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it..."); | 
|  | 402 | } | 
|  | 403 | #else | 
|  | 404 | static inline void reg_regdb_size_check(void) {} | 
|  | 405 | static inline void reg_regdb_query(const char *alpha2) {} | 
|  | 406 | #endif /* CONFIG_CFG80211_INTERNAL_REGDB */ | 
|  | 407 |  | 
|  | 408 | /* | 
|  | 409 | * This lets us keep regulatory code which is updated on a regulatory | 
|  | 410 | * basis in userspace. Country information is filled in by | 
|  | 411 | * reg_device_uevent | 
|  | 412 | */ | 
|  | 413 | static int call_crda(const char *alpha2) | 
|  | 414 | { | 
|  | 415 | if (!is_world_regdom((char *) alpha2)) | 
|  | 416 | pr_info("Calling CRDA for country: %c%c\n", | 
|  | 417 | alpha2[0], alpha2[1]); | 
|  | 418 | else | 
|  | 419 | pr_info("Calling CRDA to update world regulatory domain\n"); | 
|  | 420 |  | 
|  | 421 | /* query internal regulatory database (if it exists) */ | 
|  | 422 | reg_regdb_query(alpha2); | 
|  | 423 |  | 
|  | 424 | return kobject_uevent(®_pdev->dev.kobj, KOBJ_CHANGE); | 
|  | 425 | } | 
|  | 426 |  | 
|  | 427 | /* Used by nl80211 before kmalloc'ing our regulatory domain */ | 
|  | 428 | bool reg_is_valid_request(const char *alpha2) | 
|  | 429 | { | 
|  | 430 | assert_cfg80211_lock(); | 
|  | 431 |  | 
|  | 432 | if (!last_request) | 
|  | 433 | return false; | 
|  | 434 |  | 
|  | 435 | return alpha2_equal(last_request->alpha2, alpha2); | 
|  | 436 | } | 
|  | 437 |  | 
|  | 438 | /* Sanity check on a regulatory rule */ | 
|  | 439 | static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule) | 
|  | 440 | { | 
|  | 441 | const struct ieee80211_freq_range *freq_range = &rule->freq_range; | 
|  | 442 | u32 freq_diff; | 
|  | 443 |  | 
|  | 444 | if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0) | 
|  | 445 | return false; | 
|  | 446 |  | 
|  | 447 | if (freq_range->start_freq_khz > freq_range->end_freq_khz) | 
|  | 448 | return false; | 
|  | 449 |  | 
|  | 450 | freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; | 
|  | 451 |  | 
|  | 452 | if (freq_range->end_freq_khz <= freq_range->start_freq_khz || | 
|  | 453 | freq_range->max_bandwidth_khz > freq_diff) | 
|  | 454 | return false; | 
|  | 455 |  | 
|  | 456 | return true; | 
|  | 457 | } | 
|  | 458 |  | 
|  | 459 | static bool is_valid_rd(const struct ieee80211_regdomain *rd) | 
|  | 460 | { | 
|  | 461 | const struct ieee80211_reg_rule *reg_rule = NULL; | 
|  | 462 | unsigned int i; | 
|  | 463 |  | 
|  | 464 | if (!rd->n_reg_rules) | 
|  | 465 | return false; | 
|  | 466 |  | 
|  | 467 | if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES)) | 
|  | 468 | return false; | 
|  | 469 |  | 
|  | 470 | for (i = 0; i < rd->n_reg_rules; i++) { | 
|  | 471 | reg_rule = &rd->reg_rules[i]; | 
|  | 472 | if (!is_valid_reg_rule(reg_rule)) | 
|  | 473 | return false; | 
|  | 474 | } | 
|  | 475 |  | 
|  | 476 | return true; | 
|  | 477 | } | 
|  | 478 |  | 
|  | 479 | static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range, | 
|  | 480 | u32 center_freq_khz, | 
|  | 481 | u32 bw_khz) | 
|  | 482 | { | 
|  | 483 | u32 start_freq_khz, end_freq_khz; | 
|  | 484 |  | 
|  | 485 | start_freq_khz = center_freq_khz - (bw_khz/2); | 
|  | 486 | end_freq_khz = center_freq_khz + (bw_khz/2); | 
|  | 487 |  | 
|  | 488 | if (start_freq_khz >= freq_range->start_freq_khz && | 
|  | 489 | end_freq_khz <= freq_range->end_freq_khz) | 
|  | 490 | return true; | 
|  | 491 |  | 
|  | 492 | return false; | 
|  | 493 | } | 
|  | 494 |  | 
|  | 495 | /** | 
|  | 496 | * freq_in_rule_band - tells us if a frequency is in a frequency band | 
|  | 497 | * @freq_range: frequency rule we want to query | 
|  | 498 | * @freq_khz: frequency we are inquiring about | 
|  | 499 | * | 
|  | 500 | * This lets us know if a specific frequency rule is or is not relevant to | 
|  | 501 | * a specific frequency's band. Bands are device specific and artificial | 
|  | 502 | * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is | 
|  | 503 | * safe for now to assume that a frequency rule should not be part of a | 
|  | 504 | * frequency's band if the start freq or end freq are off by more than 2 GHz. | 
|  | 505 | * This resolution can be lowered and should be considered as we add | 
|  | 506 | * regulatory rule support for other "bands". | 
|  | 507 | **/ | 
|  | 508 | static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range, | 
|  | 509 | u32 freq_khz) | 
|  | 510 | { | 
|  | 511 | #define ONE_GHZ_IN_KHZ	1000000 | 
|  | 512 | if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) | 
|  | 513 | return true; | 
|  | 514 | if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ)) | 
|  | 515 | return true; | 
|  | 516 | return false; | 
|  | 517 | #undef ONE_GHZ_IN_KHZ | 
|  | 518 | } | 
|  | 519 |  | 
|  | 520 | /* | 
|  | 521 | * Helper for regdom_intersect(), this does the real | 
|  | 522 | * mathematical intersection fun | 
|  | 523 | */ | 
|  | 524 | static int reg_rules_intersect( | 
|  | 525 | const struct ieee80211_reg_rule *rule1, | 
|  | 526 | const struct ieee80211_reg_rule *rule2, | 
|  | 527 | struct ieee80211_reg_rule *intersected_rule) | 
|  | 528 | { | 
|  | 529 | const struct ieee80211_freq_range *freq_range1, *freq_range2; | 
|  | 530 | struct ieee80211_freq_range *freq_range; | 
|  | 531 | const struct ieee80211_power_rule *power_rule1, *power_rule2; | 
|  | 532 | struct ieee80211_power_rule *power_rule; | 
|  | 533 | u32 freq_diff; | 
|  | 534 |  | 
|  | 535 | freq_range1 = &rule1->freq_range; | 
|  | 536 | freq_range2 = &rule2->freq_range; | 
|  | 537 | freq_range = &intersected_rule->freq_range; | 
|  | 538 |  | 
|  | 539 | power_rule1 = &rule1->power_rule; | 
|  | 540 | power_rule2 = &rule2->power_rule; | 
|  | 541 | power_rule = &intersected_rule->power_rule; | 
|  | 542 |  | 
|  | 543 | freq_range->start_freq_khz = max(freq_range1->start_freq_khz, | 
|  | 544 | freq_range2->start_freq_khz); | 
|  | 545 | freq_range->end_freq_khz = min(freq_range1->end_freq_khz, | 
|  | 546 | freq_range2->end_freq_khz); | 
|  | 547 | freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz, | 
|  | 548 | freq_range2->max_bandwidth_khz); | 
|  | 549 |  | 
|  | 550 | freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz; | 
|  | 551 | if (freq_range->max_bandwidth_khz > freq_diff) | 
|  | 552 | freq_range->max_bandwidth_khz = freq_diff; | 
|  | 553 |  | 
|  | 554 | power_rule->max_eirp = min(power_rule1->max_eirp, | 
|  | 555 | power_rule2->max_eirp); | 
|  | 556 | power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain, | 
|  | 557 | power_rule2->max_antenna_gain); | 
|  | 558 |  | 
|  | 559 | intersected_rule->flags = (rule1->flags | rule2->flags); | 
|  | 560 |  | 
|  | 561 | if (!is_valid_reg_rule(intersected_rule)) | 
|  | 562 | return -EINVAL; | 
|  | 563 |  | 
|  | 564 | return 0; | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | /** | 
|  | 568 | * regdom_intersect - do the intersection between two regulatory domains | 
|  | 569 | * @rd1: first regulatory domain | 
|  | 570 | * @rd2: second regulatory domain | 
|  | 571 | * | 
|  | 572 | * Use this function to get the intersection between two regulatory domains. | 
|  | 573 | * Once completed we will mark the alpha2 for the rd as intersected, "98", | 
|  | 574 | * as no one single alpha2 can represent this regulatory domain. | 
|  | 575 | * | 
|  | 576 | * Returns a pointer to the regulatory domain structure which will hold the | 
|  | 577 | * resulting intersection of rules between rd1 and rd2. We will | 
|  | 578 | * kzalloc() this structure for you. | 
|  | 579 | */ | 
|  | 580 | static struct ieee80211_regdomain *regdom_intersect( | 
|  | 581 | const struct ieee80211_regdomain *rd1, | 
|  | 582 | const struct ieee80211_regdomain *rd2) | 
|  | 583 | { | 
|  | 584 | int r, size_of_regd; | 
|  | 585 | unsigned int x, y; | 
|  | 586 | unsigned int num_rules = 0, rule_idx = 0; | 
|  | 587 | const struct ieee80211_reg_rule *rule1, *rule2; | 
|  | 588 | struct ieee80211_reg_rule *intersected_rule; | 
|  | 589 | struct ieee80211_regdomain *rd; | 
|  | 590 | /* This is just a dummy holder to help us count */ | 
|  | 591 | struct ieee80211_reg_rule irule; | 
|  | 592 |  | 
|  | 593 | /* Uses the stack temporarily for counter arithmetic */ | 
|  | 594 | intersected_rule = &irule; | 
|  | 595 |  | 
|  | 596 | memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule)); | 
|  | 597 |  | 
|  | 598 | if (!rd1 || !rd2) | 
|  | 599 | return NULL; | 
|  | 600 |  | 
|  | 601 | /* | 
|  | 602 | * First we get a count of the rules we'll need, then we actually | 
|  | 603 | * build them. This is to so we can malloc() and free() a | 
|  | 604 | * regdomain once. The reason we use reg_rules_intersect() here | 
|  | 605 | * is it will return -EINVAL if the rule computed makes no sense. | 
|  | 606 | * All rules that do check out OK are valid. | 
|  | 607 | */ | 
|  | 608 |  | 
|  | 609 | for (x = 0; x < rd1->n_reg_rules; x++) { | 
|  | 610 | rule1 = &rd1->reg_rules[x]; | 
|  | 611 | for (y = 0; y < rd2->n_reg_rules; y++) { | 
|  | 612 | rule2 = &rd2->reg_rules[y]; | 
|  | 613 | if (!reg_rules_intersect(rule1, rule2, | 
|  | 614 | intersected_rule)) | 
|  | 615 | num_rules++; | 
|  | 616 | memset(intersected_rule, 0, | 
|  | 617 | sizeof(struct ieee80211_reg_rule)); | 
|  | 618 | } | 
|  | 619 | } | 
|  | 620 |  | 
|  | 621 | if (!num_rules) | 
|  | 622 | return NULL; | 
|  | 623 |  | 
|  | 624 | size_of_regd = sizeof(struct ieee80211_regdomain) + | 
|  | 625 | ((num_rules + 1) * sizeof(struct ieee80211_reg_rule)); | 
|  | 626 |  | 
|  | 627 | rd = kzalloc(size_of_regd, GFP_KERNEL); | 
|  | 628 | if (!rd) | 
|  | 629 | return NULL; | 
|  | 630 |  | 
|  | 631 | for (x = 0; x < rd1->n_reg_rules; x++) { | 
|  | 632 | rule1 = &rd1->reg_rules[x]; | 
|  | 633 | for (y = 0; y < rd2->n_reg_rules; y++) { | 
|  | 634 | rule2 = &rd2->reg_rules[y]; | 
|  | 635 | /* | 
|  | 636 | * This time around instead of using the stack lets | 
|  | 637 | * write to the target rule directly saving ourselves | 
|  | 638 | * a memcpy() | 
|  | 639 | */ | 
|  | 640 | intersected_rule = &rd->reg_rules[rule_idx]; | 
|  | 641 | r = reg_rules_intersect(rule1, rule2, | 
|  | 642 | intersected_rule); | 
|  | 643 | /* | 
|  | 644 | * No need to memset here the intersected rule here as | 
|  | 645 | * we're not using the stack anymore | 
|  | 646 | */ | 
|  | 647 | if (r) | 
|  | 648 | continue; | 
|  | 649 | rule_idx++; | 
|  | 650 | } | 
|  | 651 | } | 
|  | 652 |  | 
|  | 653 | if (rule_idx != num_rules) { | 
|  | 654 | kfree(rd); | 
|  | 655 | return NULL; | 
|  | 656 | } | 
|  | 657 |  | 
|  | 658 | rd->n_reg_rules = num_rules; | 
|  | 659 | rd->alpha2[0] = '9'; | 
|  | 660 | rd->alpha2[1] = '8'; | 
|  | 661 |  | 
|  | 662 | return rd; | 
|  | 663 | } | 
|  | 664 |  | 
|  | 665 | /* | 
|  | 666 | * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may | 
|  | 667 | * want to just have the channel structure use these | 
|  | 668 | */ | 
|  | 669 | static u32 map_regdom_flags(u32 rd_flags) | 
|  | 670 | { | 
|  | 671 | u32 channel_flags = 0; | 
|  | 672 | if (rd_flags & NL80211_RRF_PASSIVE_SCAN) | 
|  | 673 | channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN; | 
|  | 674 | if (rd_flags & NL80211_RRF_NO_IBSS) | 
|  | 675 | channel_flags |= IEEE80211_CHAN_NO_IBSS; | 
|  | 676 | if (rd_flags & NL80211_RRF_DFS) | 
|  | 677 | channel_flags |= IEEE80211_CHAN_RADAR; | 
|  | 678 | return channel_flags; | 
|  | 679 | } | 
|  | 680 |  | 
|  | 681 | static int freq_reg_info_regd(struct wiphy *wiphy, | 
|  | 682 | u32 center_freq, | 
|  | 683 | u32 desired_bw_khz, | 
|  | 684 | const struct ieee80211_reg_rule **reg_rule, | 
|  | 685 | const struct ieee80211_regdomain *custom_regd) | 
|  | 686 | { | 
|  | 687 | int i; | 
|  | 688 | bool band_rule_found = false; | 
|  | 689 | const struct ieee80211_regdomain *regd; | 
|  | 690 | bool bw_fits = false; | 
|  | 691 |  | 
|  | 692 | if (!desired_bw_khz) | 
|  | 693 | desired_bw_khz = MHZ_TO_KHZ(20); | 
|  | 694 |  | 
|  | 695 | regd = custom_regd ? custom_regd : cfg80211_regdomain; | 
|  | 696 |  | 
|  | 697 | /* | 
|  | 698 | * Follow the driver's regulatory domain, if present, unless a country | 
|  | 699 | * IE has been processed or a user wants to help complaince further | 
|  | 700 | */ | 
|  | 701 | if (!custom_regd && | 
|  | 702 | last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && | 
|  | 703 | last_request->initiator != NL80211_REGDOM_SET_BY_USER && | 
|  | 704 | wiphy->regd) | 
|  | 705 | regd = wiphy->regd; | 
|  | 706 |  | 
|  | 707 | if (!regd) | 
|  | 708 | return -EINVAL; | 
|  | 709 |  | 
|  | 710 | for (i = 0; i < regd->n_reg_rules; i++) { | 
|  | 711 | const struct ieee80211_reg_rule *rr; | 
|  | 712 | const struct ieee80211_freq_range *fr = NULL; | 
|  | 713 |  | 
|  | 714 | rr = ®d->reg_rules[i]; | 
|  | 715 | fr = &rr->freq_range; | 
|  | 716 |  | 
|  | 717 | /* | 
|  | 718 | * We only need to know if one frequency rule was | 
|  | 719 | * was in center_freq's band, that's enough, so lets | 
|  | 720 | * not overwrite it once found | 
|  | 721 | */ | 
|  | 722 | if (!band_rule_found) | 
|  | 723 | band_rule_found = freq_in_rule_band(fr, center_freq); | 
|  | 724 |  | 
|  | 725 | bw_fits = reg_does_bw_fit(fr, | 
|  | 726 | center_freq, | 
|  | 727 | desired_bw_khz); | 
|  | 728 |  | 
|  | 729 | if (band_rule_found && bw_fits) { | 
|  | 730 | *reg_rule = rr; | 
|  | 731 | return 0; | 
|  | 732 | } | 
|  | 733 | } | 
|  | 734 |  | 
|  | 735 | if (!band_rule_found) | 
|  | 736 | return -ERANGE; | 
|  | 737 |  | 
|  | 738 | return -EINVAL; | 
|  | 739 | } | 
|  | 740 |  | 
|  | 741 | int freq_reg_info(struct wiphy *wiphy, | 
|  | 742 | u32 center_freq, | 
|  | 743 | u32 desired_bw_khz, | 
|  | 744 | const struct ieee80211_reg_rule **reg_rule) | 
|  | 745 | { | 
|  | 746 | assert_cfg80211_lock(); | 
|  | 747 | return freq_reg_info_regd(wiphy, | 
|  | 748 | center_freq, | 
|  | 749 | desired_bw_khz, | 
|  | 750 | reg_rule, | 
|  | 751 | NULL); | 
|  | 752 | } | 
|  | 753 | EXPORT_SYMBOL(freq_reg_info); | 
|  | 754 |  | 
|  | 755 | #ifdef CONFIG_CFG80211_REG_DEBUG | 
|  | 756 | static const char *reg_initiator_name(enum nl80211_reg_initiator initiator) | 
|  | 757 | { | 
|  | 758 | switch (initiator) { | 
|  | 759 | case NL80211_REGDOM_SET_BY_CORE: | 
|  | 760 | return "Set by core"; | 
|  | 761 | case NL80211_REGDOM_SET_BY_USER: | 
|  | 762 | return "Set by user"; | 
|  | 763 | case NL80211_REGDOM_SET_BY_DRIVER: | 
|  | 764 | return "Set by driver"; | 
|  | 765 | case NL80211_REGDOM_SET_BY_COUNTRY_IE: | 
|  | 766 | return "Set by country IE"; | 
|  | 767 | default: | 
|  | 768 | WARN_ON(1); | 
|  | 769 | return "Set by bug"; | 
|  | 770 | } | 
|  | 771 | } | 
|  | 772 |  | 
|  | 773 | static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, | 
|  | 774 | u32 desired_bw_khz, | 
|  | 775 | const struct ieee80211_reg_rule *reg_rule) | 
|  | 776 | { | 
|  | 777 | const struct ieee80211_power_rule *power_rule; | 
|  | 778 | const struct ieee80211_freq_range *freq_range; | 
|  | 779 | char max_antenna_gain[32]; | 
|  | 780 |  | 
|  | 781 | power_rule = ®_rule->power_rule; | 
|  | 782 | freq_range = ®_rule->freq_range; | 
|  | 783 |  | 
|  | 784 | if (!power_rule->max_antenna_gain) | 
|  | 785 | snprintf(max_antenna_gain, 32, "N/A"); | 
|  | 786 | else | 
|  | 787 | snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain); | 
|  | 788 |  | 
|  | 789 | REG_DBG_PRINT("Updating information on frequency %d MHz " | 
|  | 790 | "for a %d MHz width channel with regulatory rule:\n", | 
|  | 791 | chan->center_freq, | 
|  | 792 | KHZ_TO_MHZ(desired_bw_khz)); | 
|  | 793 |  | 
|  | 794 | REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n", | 
|  | 795 | freq_range->start_freq_khz, | 
|  | 796 | freq_range->end_freq_khz, | 
|  | 797 | freq_range->max_bandwidth_khz, | 
|  | 798 | max_antenna_gain, | 
|  | 799 | power_rule->max_eirp); | 
|  | 800 | } | 
|  | 801 | #else | 
|  | 802 | static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan, | 
|  | 803 | u32 desired_bw_khz, | 
|  | 804 | const struct ieee80211_reg_rule *reg_rule) | 
|  | 805 | { | 
|  | 806 | return; | 
|  | 807 | } | 
|  | 808 | #endif | 
|  | 809 |  | 
|  | 810 | /* | 
|  | 811 | * Note that right now we assume the desired channel bandwidth | 
|  | 812 | * is always 20 MHz for each individual channel (HT40 uses 20 MHz | 
|  | 813 | * per channel, the primary and the extension channel). To support | 
|  | 814 | * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a | 
|  | 815 | * new ieee80211_channel.target_bw and re run the regulatory check | 
|  | 816 | * on the wiphy with the target_bw specified. Then we can simply use | 
|  | 817 | * that below for the desired_bw_khz below. | 
|  | 818 | */ | 
|  | 819 | static void handle_channel(struct wiphy *wiphy, | 
|  | 820 | enum nl80211_reg_initiator initiator, | 
|  | 821 | enum ieee80211_band band, | 
|  | 822 | unsigned int chan_idx) | 
|  | 823 | { | 
|  | 824 | int r; | 
|  | 825 | u32 flags, bw_flags = 0; | 
|  | 826 | u32 desired_bw_khz = MHZ_TO_KHZ(20); | 
|  | 827 | const struct ieee80211_reg_rule *reg_rule = NULL; | 
|  | 828 | const struct ieee80211_power_rule *power_rule = NULL; | 
|  | 829 | const struct ieee80211_freq_range *freq_range = NULL; | 
|  | 830 | struct ieee80211_supported_band *sband; | 
|  | 831 | struct ieee80211_channel *chan; | 
|  | 832 | struct wiphy *request_wiphy = NULL; | 
|  | 833 |  | 
|  | 834 | assert_cfg80211_lock(); | 
|  | 835 |  | 
|  | 836 | request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); | 
|  | 837 |  | 
|  | 838 | sband = wiphy->bands[band]; | 
|  | 839 | BUG_ON(chan_idx >= sband->n_channels); | 
|  | 840 | chan = &sband->channels[chan_idx]; | 
|  | 841 |  | 
|  | 842 | flags = chan->orig_flags; | 
|  | 843 |  | 
|  | 844 | r = freq_reg_info(wiphy, | 
|  | 845 | MHZ_TO_KHZ(chan->center_freq), | 
|  | 846 | desired_bw_khz, | 
|  | 847 | ®_rule); | 
|  | 848 |  | 
|  | 849 | if (r) { | 
|  | 850 | /* | 
|  | 851 | * We will disable all channels that do not match our | 
|  | 852 | * received regulatory rule unless the hint is coming | 
|  | 853 | * from a Country IE and the Country IE had no information | 
|  | 854 | * about a band. The IEEE 802.11 spec allows for an AP | 
|  | 855 | * to send only a subset of the regulatory rules allowed, | 
|  | 856 | * so an AP in the US that only supports 2.4 GHz may only send | 
|  | 857 | * a country IE with information for the 2.4 GHz band | 
|  | 858 | * while 5 GHz is still supported. | 
|  | 859 | */ | 
|  | 860 | if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && | 
|  | 861 | r == -ERANGE) | 
|  | 862 | return; | 
|  | 863 |  | 
|  | 864 | REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq); | 
|  | 865 | chan->flags |= IEEE80211_CHAN_DISABLED; | 
|  | 866 | return; | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); | 
|  | 870 |  | 
|  | 871 | power_rule = ®_rule->power_rule; | 
|  | 872 | freq_range = ®_rule->freq_range; | 
|  | 873 |  | 
|  | 874 | if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) | 
|  | 875 | bw_flags = IEEE80211_CHAN_NO_HT40; | 
|  | 876 |  | 
|  | 877 | if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && | 
|  | 878 | request_wiphy && request_wiphy == wiphy && | 
|  | 879 | request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { | 
|  | 880 | /* | 
|  | 881 | * This guarantees the driver's requested regulatory domain | 
|  | 882 | * will always be used as a base for further regulatory | 
|  | 883 | * settings | 
|  | 884 | */ | 
|  | 885 | chan->flags = chan->orig_flags = | 
|  | 886 | map_regdom_flags(reg_rule->flags) | bw_flags; | 
|  | 887 | chan->max_antenna_gain = chan->orig_mag = | 
|  | 888 | (int) MBI_TO_DBI(power_rule->max_antenna_gain); | 
|  | 889 | chan->max_power = chan->orig_mpwr = | 
|  | 890 | (int) MBM_TO_DBM(power_rule->max_eirp); | 
|  | 891 | return; | 
|  | 892 | } | 
|  | 893 |  | 
|  | 894 | chan->beacon_found = false; | 
|  | 895 | chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags); | 
|  | 896 | chan->max_antenna_gain = min(chan->orig_mag, | 
|  | 897 | (int) MBI_TO_DBI(power_rule->max_antenna_gain)); | 
|  | 898 | chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp); | 
|  | 899 | if (chan->orig_mpwr) { | 
|  | 900 | /* | 
|  | 901 | * Devices that have their own custom regulatory domain | 
|  | 902 | * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the | 
|  | 903 | * passed country IE power settings. | 
|  | 904 | */ | 
|  | 905 | if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE && | 
|  | 906 | wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && | 
|  | 907 | wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) | 
|  | 908 | chan->max_power = chan->max_reg_power; | 
|  | 909 | else | 
|  | 910 | chan->max_power = min(chan->orig_mpwr, | 
|  | 911 | chan->max_reg_power); | 
|  | 912 | } else | 
|  | 913 | chan->max_power = chan->max_reg_power; | 
|  | 914 | } | 
|  | 915 |  | 
|  | 916 | static void handle_band(struct wiphy *wiphy, | 
|  | 917 | enum ieee80211_band band, | 
|  | 918 | enum nl80211_reg_initiator initiator) | 
|  | 919 | { | 
|  | 920 | unsigned int i; | 
|  | 921 | struct ieee80211_supported_band *sband; | 
|  | 922 |  | 
|  | 923 | BUG_ON(!wiphy->bands[band]); | 
|  | 924 | sband = wiphy->bands[band]; | 
|  | 925 |  | 
|  | 926 | for (i = 0; i < sband->n_channels; i++) | 
|  | 927 | handle_channel(wiphy, initiator, band, i); | 
|  | 928 | } | 
|  | 929 |  | 
|  | 930 | static bool ignore_reg_update(struct wiphy *wiphy, | 
|  | 931 | enum nl80211_reg_initiator initiator) | 
|  | 932 | { | 
|  | 933 | if (!last_request) { | 
|  | 934 | REG_DBG_PRINT("Ignoring regulatory request %s since " | 
|  | 935 | "last_request is not set\n", | 
|  | 936 | reg_initiator_name(initiator)); | 
|  | 937 | return true; | 
|  | 938 | } | 
|  | 939 |  | 
|  | 940 | if (initiator == NL80211_REGDOM_SET_BY_CORE && | 
|  | 941 | wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) { | 
|  | 942 | REG_DBG_PRINT("Ignoring regulatory request %s " | 
|  | 943 | "since the driver uses its own custom " | 
|  | 944 | "regulatory domain\n", | 
|  | 945 | reg_initiator_name(initiator)); | 
|  | 946 | return true; | 
|  | 947 | } | 
|  | 948 |  | 
|  | 949 | /* | 
|  | 950 | * wiphy->regd will be set once the device has its own | 
|  | 951 | * desired regulatory domain set | 
|  | 952 | */ | 
|  | 953 | if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd && | 
|  | 954 | initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && | 
|  | 955 | !is_world_regdom(last_request->alpha2)) { | 
|  | 956 | REG_DBG_PRINT("Ignoring regulatory request %s " | 
|  | 957 | "since the driver requires its own regulatory " | 
|  | 958 | "domain to be set first\n", | 
|  | 959 | reg_initiator_name(initiator)); | 
|  | 960 | return true; | 
|  | 961 | } | 
|  | 962 |  | 
|  | 963 | return false; | 
|  | 964 | } | 
|  | 965 |  | 
|  | 966 | static void handle_reg_beacon(struct wiphy *wiphy, | 
|  | 967 | unsigned int chan_idx, | 
|  | 968 | struct reg_beacon *reg_beacon) | 
|  | 969 | { | 
|  | 970 | struct ieee80211_supported_band *sband; | 
|  | 971 | struct ieee80211_channel *chan; | 
|  | 972 | bool channel_changed = false; | 
|  | 973 | struct ieee80211_channel chan_before; | 
|  | 974 |  | 
|  | 975 | assert_cfg80211_lock(); | 
|  | 976 |  | 
|  | 977 | sband = wiphy->bands[reg_beacon->chan.band]; | 
|  | 978 | chan = &sband->channels[chan_idx]; | 
|  | 979 |  | 
|  | 980 | if (likely(chan->center_freq != reg_beacon->chan.center_freq)) | 
|  | 981 | return; | 
|  | 982 |  | 
|  | 983 | if (chan->beacon_found) | 
|  | 984 | return; | 
|  | 985 |  | 
|  | 986 | chan->beacon_found = true; | 
|  | 987 |  | 
|  | 988 | if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS) | 
|  | 989 | return; | 
|  | 990 |  | 
|  | 991 | chan_before.center_freq = chan->center_freq; | 
|  | 992 | chan_before.flags = chan->flags; | 
|  | 993 |  | 
|  | 994 | if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) { | 
|  | 995 | chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; | 
|  | 996 | channel_changed = true; | 
|  | 997 | } | 
|  | 998 |  | 
|  | 999 | if (chan->flags & IEEE80211_CHAN_NO_IBSS) { | 
|  | 1000 | chan->flags &= ~IEEE80211_CHAN_NO_IBSS; | 
|  | 1001 | channel_changed = true; | 
|  | 1002 | } | 
|  | 1003 |  | 
|  | 1004 | if (channel_changed) | 
|  | 1005 | nl80211_send_beacon_hint_event(wiphy, &chan_before, chan); | 
|  | 1006 | } | 
|  | 1007 |  | 
|  | 1008 | /* | 
|  | 1009 | * Called when a scan on a wiphy finds a beacon on | 
|  | 1010 | * new channel | 
|  | 1011 | */ | 
|  | 1012 | static void wiphy_update_new_beacon(struct wiphy *wiphy, | 
|  | 1013 | struct reg_beacon *reg_beacon) | 
|  | 1014 | { | 
|  | 1015 | unsigned int i; | 
|  | 1016 | struct ieee80211_supported_band *sband; | 
|  | 1017 |  | 
|  | 1018 | assert_cfg80211_lock(); | 
|  | 1019 |  | 
|  | 1020 | if (!wiphy->bands[reg_beacon->chan.band]) | 
|  | 1021 | return; | 
|  | 1022 |  | 
|  | 1023 | sband = wiphy->bands[reg_beacon->chan.band]; | 
|  | 1024 |  | 
|  | 1025 | for (i = 0; i < sband->n_channels; i++) | 
|  | 1026 | handle_reg_beacon(wiphy, i, reg_beacon); | 
|  | 1027 | } | 
|  | 1028 |  | 
|  | 1029 | /* | 
|  | 1030 | * Called upon reg changes or a new wiphy is added | 
|  | 1031 | */ | 
|  | 1032 | static void wiphy_update_beacon_reg(struct wiphy *wiphy) | 
|  | 1033 | { | 
|  | 1034 | unsigned int i; | 
|  | 1035 | struct ieee80211_supported_band *sband; | 
|  | 1036 | struct reg_beacon *reg_beacon; | 
|  | 1037 |  | 
|  | 1038 | assert_cfg80211_lock(); | 
|  | 1039 |  | 
|  | 1040 | if (list_empty(®_beacon_list)) | 
|  | 1041 | return; | 
|  | 1042 |  | 
|  | 1043 | list_for_each_entry(reg_beacon, ®_beacon_list, list) { | 
|  | 1044 | if (!wiphy->bands[reg_beacon->chan.band]) | 
|  | 1045 | continue; | 
|  | 1046 | sband = wiphy->bands[reg_beacon->chan.band]; | 
|  | 1047 | for (i = 0; i < sband->n_channels; i++) | 
|  | 1048 | handle_reg_beacon(wiphy, i, reg_beacon); | 
|  | 1049 | } | 
|  | 1050 | } | 
|  | 1051 |  | 
|  | 1052 | static bool reg_is_world_roaming(struct wiphy *wiphy) | 
|  | 1053 | { | 
|  | 1054 | if (is_world_regdom(cfg80211_regdomain->alpha2) || | 
|  | 1055 | (wiphy->regd && is_world_regdom(wiphy->regd->alpha2))) | 
|  | 1056 | return true; | 
|  | 1057 | if (last_request && | 
|  | 1058 | last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE && | 
|  | 1059 | wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) | 
|  | 1060 | return true; | 
|  | 1061 | return false; | 
|  | 1062 | } | 
|  | 1063 |  | 
|  | 1064 | /* Reap the advantages of previously found beacons */ | 
|  | 1065 | static void reg_process_beacons(struct wiphy *wiphy) | 
|  | 1066 | { | 
|  | 1067 | /* | 
|  | 1068 | * Means we are just firing up cfg80211, so no beacons would | 
|  | 1069 | * have been processed yet. | 
|  | 1070 | */ | 
|  | 1071 | if (!last_request) | 
|  | 1072 | return; | 
|  | 1073 | if (!reg_is_world_roaming(wiphy)) | 
|  | 1074 | return; | 
|  | 1075 | wiphy_update_beacon_reg(wiphy); | 
|  | 1076 | } | 
|  | 1077 |  | 
|  | 1078 | static bool is_ht40_not_allowed(struct ieee80211_channel *chan) | 
|  | 1079 | { | 
|  | 1080 | if (!chan) | 
|  | 1081 | return true; | 
|  | 1082 | if (chan->flags & IEEE80211_CHAN_DISABLED) | 
|  | 1083 | return true; | 
|  | 1084 | /* This would happen when regulatory rules disallow HT40 completely */ | 
|  | 1085 | if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40))) | 
|  | 1086 | return true; | 
|  | 1087 | return false; | 
|  | 1088 | } | 
|  | 1089 |  | 
|  | 1090 | static void reg_process_ht_flags_channel(struct wiphy *wiphy, | 
|  | 1091 | enum ieee80211_band band, | 
|  | 1092 | unsigned int chan_idx) | 
|  | 1093 | { | 
|  | 1094 | struct ieee80211_supported_band *sband; | 
|  | 1095 | struct ieee80211_channel *channel; | 
|  | 1096 | struct ieee80211_channel *channel_before = NULL, *channel_after = NULL; | 
|  | 1097 | unsigned int i; | 
|  | 1098 |  | 
|  | 1099 | assert_cfg80211_lock(); | 
|  | 1100 |  | 
|  | 1101 | sband = wiphy->bands[band]; | 
|  | 1102 | BUG_ON(chan_idx >= sband->n_channels); | 
|  | 1103 | channel = &sband->channels[chan_idx]; | 
|  | 1104 |  | 
|  | 1105 | if (is_ht40_not_allowed(channel)) { | 
|  | 1106 | channel->flags |= IEEE80211_CHAN_NO_HT40; | 
|  | 1107 | return; | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | /* | 
|  | 1111 | * We need to ensure the extension channels exist to | 
|  | 1112 | * be able to use HT40- or HT40+, this finds them (or not) | 
|  | 1113 | */ | 
|  | 1114 | for (i = 0; i < sband->n_channels; i++) { | 
|  | 1115 | struct ieee80211_channel *c = &sband->channels[i]; | 
|  | 1116 | if (c->center_freq == (channel->center_freq - 20)) | 
|  | 1117 | channel_before = c; | 
|  | 1118 | if (c->center_freq == (channel->center_freq + 20)) | 
|  | 1119 | channel_after = c; | 
|  | 1120 | } | 
|  | 1121 |  | 
|  | 1122 | /* | 
|  | 1123 | * Please note that this assumes target bandwidth is 20 MHz, | 
|  | 1124 | * if that ever changes we also need to change the below logic | 
|  | 1125 | * to include that as well. | 
|  | 1126 | */ | 
|  | 1127 | if (is_ht40_not_allowed(channel_before)) | 
|  | 1128 | channel->flags |= IEEE80211_CHAN_NO_HT40MINUS; | 
|  | 1129 | else | 
|  | 1130 | channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS; | 
|  | 1131 |  | 
|  | 1132 | if (is_ht40_not_allowed(channel_after)) | 
|  | 1133 | channel->flags |= IEEE80211_CHAN_NO_HT40PLUS; | 
|  | 1134 | else | 
|  | 1135 | channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS; | 
|  | 1136 | } | 
|  | 1137 |  | 
|  | 1138 | static void reg_process_ht_flags_band(struct wiphy *wiphy, | 
|  | 1139 | enum ieee80211_band band) | 
|  | 1140 | { | 
|  | 1141 | unsigned int i; | 
|  | 1142 | struct ieee80211_supported_band *sband; | 
|  | 1143 |  | 
|  | 1144 | BUG_ON(!wiphy->bands[band]); | 
|  | 1145 | sband = wiphy->bands[band]; | 
|  | 1146 |  | 
|  | 1147 | for (i = 0; i < sband->n_channels; i++) | 
|  | 1148 | reg_process_ht_flags_channel(wiphy, band, i); | 
|  | 1149 | } | 
|  | 1150 |  | 
|  | 1151 | static void reg_process_ht_flags(struct wiphy *wiphy) | 
|  | 1152 | { | 
|  | 1153 | enum ieee80211_band band; | 
|  | 1154 |  | 
|  | 1155 | if (!wiphy) | 
|  | 1156 | return; | 
|  | 1157 |  | 
|  | 1158 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) { | 
|  | 1159 | if (wiphy->bands[band]) | 
|  | 1160 | reg_process_ht_flags_band(wiphy, band); | 
|  | 1161 | } | 
|  | 1162 |  | 
|  | 1163 | } | 
|  | 1164 |  | 
|  | 1165 | static void wiphy_update_regulatory(struct wiphy *wiphy, | 
|  | 1166 | enum nl80211_reg_initiator initiator) | 
|  | 1167 | { | 
|  | 1168 | enum ieee80211_band band; | 
|  | 1169 |  | 
|  | 1170 | assert_reg_lock(); | 
|  | 1171 |  | 
|  | 1172 | if (ignore_reg_update(wiphy, initiator)) | 
|  | 1173 | return; | 
|  | 1174 |  | 
|  | 1175 | last_request->dfs_region = cfg80211_regdomain->dfs_region; | 
|  | 1176 |  | 
|  | 1177 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) { | 
|  | 1178 | if (wiphy->bands[band]) | 
|  | 1179 | handle_band(wiphy, band, initiator); | 
|  | 1180 | } | 
|  | 1181 |  | 
|  | 1182 | reg_process_beacons(wiphy); | 
|  | 1183 | reg_process_ht_flags(wiphy); | 
|  | 1184 | if (wiphy->reg_notifier) | 
|  | 1185 | wiphy->reg_notifier(wiphy, last_request); | 
|  | 1186 | } | 
|  | 1187 |  | 
|  | 1188 | void regulatory_update(struct wiphy *wiphy, | 
|  | 1189 | enum nl80211_reg_initiator setby) | 
|  | 1190 | { | 
|  | 1191 | mutex_lock(®_mutex); | 
|  | 1192 | wiphy_update_regulatory(wiphy, setby); | 
|  | 1193 | mutex_unlock(®_mutex); | 
|  | 1194 | } | 
|  | 1195 |  | 
|  | 1196 | static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator) | 
|  | 1197 | { | 
|  | 1198 | struct cfg80211_registered_device *rdev; | 
|  | 1199 | struct wiphy *wiphy; | 
|  | 1200 |  | 
|  | 1201 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) { | 
|  | 1202 | wiphy = &rdev->wiphy; | 
|  | 1203 | wiphy_update_regulatory(wiphy, initiator); | 
|  | 1204 | /* | 
|  | 1205 | * Regulatory updates set by CORE are ignored for custom | 
|  | 1206 | * regulatory cards. Let us notify the changes to the driver, | 
|  | 1207 | * as some drivers used this to restore its orig_* reg domain. | 
|  | 1208 | */ | 
|  | 1209 | if (initiator == NL80211_REGDOM_SET_BY_CORE && | 
|  | 1210 | wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY && | 
|  | 1211 | wiphy->reg_notifier) | 
|  | 1212 | wiphy->reg_notifier(wiphy, last_request); | 
|  | 1213 | } | 
|  | 1214 | } | 
|  | 1215 |  | 
|  | 1216 | static void handle_channel_custom(struct wiphy *wiphy, | 
|  | 1217 | enum ieee80211_band band, | 
|  | 1218 | unsigned int chan_idx, | 
|  | 1219 | const struct ieee80211_regdomain *regd) | 
|  | 1220 | { | 
|  | 1221 | int r; | 
|  | 1222 | u32 desired_bw_khz = MHZ_TO_KHZ(20); | 
|  | 1223 | u32 bw_flags = 0; | 
|  | 1224 | const struct ieee80211_reg_rule *reg_rule = NULL; | 
|  | 1225 | const struct ieee80211_power_rule *power_rule = NULL; | 
|  | 1226 | const struct ieee80211_freq_range *freq_range = NULL; | 
|  | 1227 | struct ieee80211_supported_band *sband; | 
|  | 1228 | struct ieee80211_channel *chan; | 
|  | 1229 |  | 
|  | 1230 | assert_reg_lock(); | 
|  | 1231 |  | 
|  | 1232 | sband = wiphy->bands[band]; | 
|  | 1233 | BUG_ON(chan_idx >= sband->n_channels); | 
|  | 1234 | chan = &sband->channels[chan_idx]; | 
|  | 1235 |  | 
|  | 1236 | r = freq_reg_info_regd(wiphy, | 
|  | 1237 | MHZ_TO_KHZ(chan->center_freq), | 
|  | 1238 | desired_bw_khz, | 
|  | 1239 | ®_rule, | 
|  | 1240 | regd); | 
|  | 1241 |  | 
|  | 1242 | if (r) { | 
|  | 1243 | REG_DBG_PRINT("Disabling freq %d MHz as custom " | 
|  | 1244 | "regd has no rule that fits a %d MHz " | 
|  | 1245 | "wide channel\n", | 
|  | 1246 | chan->center_freq, | 
|  | 1247 | KHZ_TO_MHZ(desired_bw_khz)); | 
|  | 1248 | chan->flags = IEEE80211_CHAN_DISABLED; | 
|  | 1249 | return; | 
|  | 1250 | } | 
|  | 1251 |  | 
|  | 1252 | chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule); | 
|  | 1253 |  | 
|  | 1254 | power_rule = ®_rule->power_rule; | 
|  | 1255 | freq_range = ®_rule->freq_range; | 
|  | 1256 |  | 
|  | 1257 | if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40)) | 
|  | 1258 | bw_flags = IEEE80211_CHAN_NO_HT40; | 
|  | 1259 |  | 
|  | 1260 | chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags; | 
|  | 1261 | chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain); | 
|  | 1262 | chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp); | 
|  | 1263 | } | 
|  | 1264 |  | 
|  | 1265 | static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band, | 
|  | 1266 | const struct ieee80211_regdomain *regd) | 
|  | 1267 | { | 
|  | 1268 | unsigned int i; | 
|  | 1269 | struct ieee80211_supported_band *sband; | 
|  | 1270 |  | 
|  | 1271 | BUG_ON(!wiphy->bands[band]); | 
|  | 1272 | sband = wiphy->bands[band]; | 
|  | 1273 |  | 
|  | 1274 | for (i = 0; i < sband->n_channels; i++) | 
|  | 1275 | handle_channel_custom(wiphy, band, i, regd); | 
|  | 1276 | } | 
|  | 1277 |  | 
|  | 1278 | /* Used by drivers prior to wiphy registration */ | 
|  | 1279 | void wiphy_apply_custom_regulatory(struct wiphy *wiphy, | 
|  | 1280 | const struct ieee80211_regdomain *regd) | 
|  | 1281 | { | 
|  | 1282 | enum ieee80211_band band; | 
|  | 1283 | unsigned int bands_set = 0; | 
|  | 1284 |  | 
|  | 1285 | mutex_lock(®_mutex); | 
|  | 1286 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) { | 
|  | 1287 | if (!wiphy->bands[band]) | 
|  | 1288 | continue; | 
|  | 1289 | handle_band_custom(wiphy, band, regd); | 
|  | 1290 | bands_set++; | 
|  | 1291 | } | 
|  | 1292 | mutex_unlock(®_mutex); | 
|  | 1293 |  | 
|  | 1294 | /* | 
|  | 1295 | * no point in calling this if it won't have any effect | 
|  | 1296 | * on your device's supportd bands. | 
|  | 1297 | */ | 
|  | 1298 | WARN_ON(!bands_set); | 
|  | 1299 | } | 
|  | 1300 | EXPORT_SYMBOL(wiphy_apply_custom_regulatory); | 
|  | 1301 |  | 
|  | 1302 | /* | 
|  | 1303 | * Return value which can be used by ignore_request() to indicate | 
|  | 1304 | * it has been determined we should intersect two regulatory domains | 
|  | 1305 | */ | 
|  | 1306 | #define REG_INTERSECT	1 | 
|  | 1307 |  | 
|  | 1308 | /* This has the logic which determines when a new request | 
|  | 1309 | * should be ignored. */ | 
|  | 1310 | static int ignore_request(struct wiphy *wiphy, | 
|  | 1311 | struct regulatory_request *pending_request) | 
|  | 1312 | { | 
|  | 1313 | struct wiphy *last_wiphy = NULL; | 
|  | 1314 |  | 
|  | 1315 | assert_cfg80211_lock(); | 
|  | 1316 |  | 
|  | 1317 | /* All initial requests are respected */ | 
|  | 1318 | if (!last_request) | 
|  | 1319 | return 0; | 
|  | 1320 |  | 
|  | 1321 | switch (pending_request->initiator) { | 
|  | 1322 | case NL80211_REGDOM_SET_BY_CORE: | 
|  | 1323 | return 0; | 
|  | 1324 | case NL80211_REGDOM_SET_BY_COUNTRY_IE: | 
|  | 1325 |  | 
|  | 1326 | last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); | 
|  | 1327 |  | 
|  | 1328 | if (unlikely(!is_an_alpha2(pending_request->alpha2))) | 
|  | 1329 | return -EINVAL; | 
|  | 1330 | if (last_request->initiator == | 
|  | 1331 | NL80211_REGDOM_SET_BY_COUNTRY_IE) { | 
|  | 1332 | if (last_wiphy != wiphy) { | 
|  | 1333 | /* | 
|  | 1334 | * Two cards with two APs claiming different | 
|  | 1335 | * Country IE alpha2s. We could | 
|  | 1336 | * intersect them, but that seems unlikely | 
|  | 1337 | * to be correct. Reject second one for now. | 
|  | 1338 | */ | 
|  | 1339 | if (regdom_changes(pending_request->alpha2)) | 
|  | 1340 | return -EOPNOTSUPP; | 
|  | 1341 | return -EALREADY; | 
|  | 1342 | } | 
|  | 1343 | /* | 
|  | 1344 | * Two consecutive Country IE hints on the same wiphy. | 
|  | 1345 | * This should be picked up early by the driver/stack | 
|  | 1346 | */ | 
|  | 1347 | if (WARN_ON(regdom_changes(pending_request->alpha2))) | 
|  | 1348 | return 0; | 
|  | 1349 | return -EALREADY; | 
|  | 1350 | } | 
|  | 1351 | return 0; | 
|  | 1352 | case NL80211_REGDOM_SET_BY_DRIVER: | 
|  | 1353 | if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) { | 
|  | 1354 | if (regdom_changes(pending_request->alpha2)) | 
|  | 1355 | return 0; | 
|  | 1356 | return -EALREADY; | 
|  | 1357 | } | 
|  | 1358 |  | 
|  | 1359 | /* | 
|  | 1360 | * This would happen if you unplug and plug your card | 
|  | 1361 | * back in or if you add a new device for which the previously | 
|  | 1362 | * loaded card also agrees on the regulatory domain. | 
|  | 1363 | */ | 
|  | 1364 | if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && | 
|  | 1365 | !regdom_changes(pending_request->alpha2)) | 
|  | 1366 | return -EALREADY; | 
|  | 1367 |  | 
|  | 1368 | return REG_INTERSECT; | 
|  | 1369 | case NL80211_REGDOM_SET_BY_USER: | 
|  | 1370 | if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) | 
|  | 1371 | return REG_INTERSECT; | 
|  | 1372 | /* | 
|  | 1373 | * If the user knows better the user should set the regdom | 
|  | 1374 | * to their country before the IE is picked up | 
|  | 1375 | */ | 
|  | 1376 | if (last_request->initiator == NL80211_REGDOM_SET_BY_USER && | 
|  | 1377 | last_request->intersect) | 
|  | 1378 | return -EOPNOTSUPP; | 
|  | 1379 | /* | 
|  | 1380 | * Process user requests only after previous user/driver/core | 
|  | 1381 | * requests have been processed | 
|  | 1382 | */ | 
|  | 1383 | if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE || | 
|  | 1384 | last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || | 
|  | 1385 | last_request->initiator == NL80211_REGDOM_SET_BY_USER) { | 
|  | 1386 | if (regdom_changes(last_request->alpha2)) | 
|  | 1387 | return -EAGAIN; | 
|  | 1388 | } | 
|  | 1389 |  | 
|  | 1390 | if (!regdom_changes(pending_request->alpha2)) | 
|  | 1391 | return -EALREADY; | 
|  | 1392 |  | 
|  | 1393 | return 0; | 
|  | 1394 | } | 
|  | 1395 |  | 
|  | 1396 | return -EINVAL; | 
|  | 1397 | } | 
|  | 1398 |  | 
|  | 1399 | static void reg_set_request_processed(void) | 
|  | 1400 | { | 
|  | 1401 | bool need_more_processing = false; | 
|  | 1402 |  | 
|  | 1403 | last_request->processed = true; | 
|  | 1404 |  | 
|  | 1405 | spin_lock(®_requests_lock); | 
|  | 1406 | if (!list_empty(®_requests_list)) | 
|  | 1407 | need_more_processing = true; | 
|  | 1408 | spin_unlock(®_requests_lock); | 
|  | 1409 |  | 
|  | 1410 | if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) | 
|  | 1411 | cancel_delayed_work(®_timeout); | 
|  | 1412 |  | 
|  | 1413 | if (need_more_processing) | 
|  | 1414 | schedule_work(®_work); | 
|  | 1415 | } | 
|  | 1416 |  | 
|  | 1417 | /** | 
|  | 1418 | * __regulatory_hint - hint to the wireless core a regulatory domain | 
|  | 1419 | * @wiphy: if the hint comes from country information from an AP, this | 
|  | 1420 | *	is required to be set to the wiphy that received the information | 
|  | 1421 | * @pending_request: the regulatory request currently being processed | 
|  | 1422 | * | 
|  | 1423 | * The Wireless subsystem can use this function to hint to the wireless core | 
|  | 1424 | * what it believes should be the current regulatory domain. | 
|  | 1425 | * | 
|  | 1426 | * Returns zero if all went fine, %-EALREADY if a regulatory domain had | 
|  | 1427 | * already been set or other standard error codes. | 
|  | 1428 | * | 
|  | 1429 | * Caller must hold &cfg80211_mutex and ®_mutex | 
|  | 1430 | */ | 
|  | 1431 | static int __regulatory_hint(struct wiphy *wiphy, | 
|  | 1432 | struct regulatory_request *pending_request) | 
|  | 1433 | { | 
|  | 1434 | bool intersect = false; | 
|  | 1435 | int r = 0; | 
|  | 1436 |  | 
|  | 1437 | assert_cfg80211_lock(); | 
|  | 1438 |  | 
|  | 1439 | r = ignore_request(wiphy, pending_request); | 
|  | 1440 |  | 
|  | 1441 | if (r == REG_INTERSECT) { | 
|  | 1442 | if (pending_request->initiator == | 
|  | 1443 | NL80211_REGDOM_SET_BY_DRIVER) { | 
|  | 1444 | r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); | 
|  | 1445 | if (r) { | 
|  | 1446 | kfree(pending_request); | 
|  | 1447 | return r; | 
|  | 1448 | } | 
|  | 1449 | } | 
|  | 1450 | intersect = true; | 
|  | 1451 | } else if (r) { | 
|  | 1452 | /* | 
|  | 1453 | * If the regulatory domain being requested by the | 
|  | 1454 | * driver has already been set just copy it to the | 
|  | 1455 | * wiphy | 
|  | 1456 | */ | 
|  | 1457 | if (r == -EALREADY && | 
|  | 1458 | pending_request->initiator == | 
|  | 1459 | NL80211_REGDOM_SET_BY_DRIVER) { | 
|  | 1460 | r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain); | 
|  | 1461 | if (r) { | 
|  | 1462 | kfree(pending_request); | 
|  | 1463 | return r; | 
|  | 1464 | } | 
|  | 1465 | r = -EALREADY; | 
|  | 1466 | goto new_request; | 
|  | 1467 | } | 
|  | 1468 | kfree(pending_request); | 
|  | 1469 | return r; | 
|  | 1470 | } | 
|  | 1471 |  | 
|  | 1472 | new_request: | 
|  | 1473 | if (last_request != &core_request_world) | 
|  | 1474 | kfree(last_request); | 
|  | 1475 |  | 
|  | 1476 | last_request = pending_request; | 
|  | 1477 | last_request->intersect = intersect; | 
|  | 1478 |  | 
|  | 1479 | pending_request = NULL; | 
|  | 1480 |  | 
|  | 1481 | if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) { | 
|  | 1482 | user_alpha2[0] = last_request->alpha2[0]; | 
|  | 1483 | user_alpha2[1] = last_request->alpha2[1]; | 
|  | 1484 | } | 
|  | 1485 |  | 
|  | 1486 | /* When r == REG_INTERSECT we do need to call CRDA */ | 
|  | 1487 | if (r < 0) { | 
|  | 1488 | /* | 
|  | 1489 | * Since CRDA will not be called in this case as we already | 
|  | 1490 | * have applied the requested regulatory domain before we just | 
|  | 1491 | * inform userspace we have processed the request | 
|  | 1492 | */ | 
|  | 1493 | if (r == -EALREADY) { | 
|  | 1494 | nl80211_send_reg_change_event(last_request); | 
|  | 1495 | reg_set_request_processed(); | 
|  | 1496 | } | 
|  | 1497 | return r; | 
|  | 1498 | } | 
|  | 1499 |  | 
|  | 1500 | return call_crda(last_request->alpha2); | 
|  | 1501 | } | 
|  | 1502 |  | 
|  | 1503 | /* This processes *all* regulatory hints */ | 
|  | 1504 | static void reg_process_hint(struct regulatory_request *reg_request, | 
|  | 1505 | enum nl80211_reg_initiator reg_initiator) | 
|  | 1506 | { | 
|  | 1507 | int r = 0; | 
|  | 1508 | struct wiphy *wiphy = NULL; | 
|  | 1509 |  | 
|  | 1510 | BUG_ON(!reg_request->alpha2); | 
|  | 1511 |  | 
|  | 1512 | if (wiphy_idx_valid(reg_request->wiphy_idx)) | 
|  | 1513 | wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx); | 
|  | 1514 |  | 
|  | 1515 | if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER && | 
|  | 1516 | !wiphy) { | 
|  | 1517 | kfree(reg_request); | 
|  | 1518 | return; | 
|  | 1519 | } | 
|  | 1520 |  | 
|  | 1521 | r = __regulatory_hint(wiphy, reg_request); | 
|  | 1522 | /* This is required so that the orig_* parameters are saved */ | 
|  | 1523 | if (r == -EALREADY && wiphy && | 
|  | 1524 | wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) { | 
|  | 1525 | wiphy_update_regulatory(wiphy, reg_initiator); | 
|  | 1526 | return; | 
|  | 1527 | } | 
|  | 1528 |  | 
|  | 1529 | /* | 
|  | 1530 | * We only time out user hints, given that they should be the only | 
|  | 1531 | * source of bogus requests. | 
|  | 1532 | */ | 
|  | 1533 | if (r != -EALREADY && | 
|  | 1534 | reg_initiator == NL80211_REGDOM_SET_BY_USER) | 
|  | 1535 | schedule_delayed_work(®_timeout, msecs_to_jiffies(3142)); | 
|  | 1536 | } | 
|  | 1537 |  | 
|  | 1538 | /* | 
|  | 1539 | * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* | 
|  | 1540 | * Regulatory hints come on a first come first serve basis and we | 
|  | 1541 | * must process each one atomically. | 
|  | 1542 | */ | 
|  | 1543 | static void reg_process_pending_hints(void) | 
|  | 1544 | { | 
|  | 1545 | struct regulatory_request *reg_request; | 
|  | 1546 |  | 
|  | 1547 | mutex_lock(&cfg80211_mutex); | 
|  | 1548 | mutex_lock(®_mutex); | 
|  | 1549 |  | 
|  | 1550 | /* When last_request->processed becomes true this will be rescheduled */ | 
|  | 1551 | if (last_request && !last_request->processed) { | 
|  | 1552 | REG_DBG_PRINT("Pending regulatory request, waiting " | 
|  | 1553 | "for it to be processed...\n"); | 
|  | 1554 | goto out; | 
|  | 1555 | } | 
|  | 1556 |  | 
|  | 1557 | spin_lock(®_requests_lock); | 
|  | 1558 |  | 
|  | 1559 | if (list_empty(®_requests_list)) { | 
|  | 1560 | spin_unlock(®_requests_lock); | 
|  | 1561 | goto out; | 
|  | 1562 | } | 
|  | 1563 |  | 
|  | 1564 | reg_request = list_first_entry(®_requests_list, | 
|  | 1565 | struct regulatory_request, | 
|  | 1566 | list); | 
|  | 1567 | list_del_init(®_request->list); | 
|  | 1568 |  | 
|  | 1569 | spin_unlock(®_requests_lock); | 
|  | 1570 |  | 
|  | 1571 | reg_process_hint(reg_request, reg_request->initiator); | 
|  | 1572 |  | 
|  | 1573 | out: | 
|  | 1574 | mutex_unlock(®_mutex); | 
|  | 1575 | mutex_unlock(&cfg80211_mutex); | 
|  | 1576 | } | 
|  | 1577 |  | 
|  | 1578 | /* Processes beacon hints -- this has nothing to do with country IEs */ | 
|  | 1579 | static void reg_process_pending_beacon_hints(void) | 
|  | 1580 | { | 
|  | 1581 | struct cfg80211_registered_device *rdev; | 
|  | 1582 | struct reg_beacon *pending_beacon, *tmp; | 
|  | 1583 |  | 
|  | 1584 | /* | 
|  | 1585 | * No need to hold the reg_mutex here as we just touch wiphys | 
|  | 1586 | * and do not read or access regulatory variables. | 
|  | 1587 | */ | 
|  | 1588 | mutex_lock(&cfg80211_mutex); | 
|  | 1589 |  | 
|  | 1590 | /* This goes through the _pending_ beacon list */ | 
|  | 1591 | spin_lock_bh(®_pending_beacons_lock); | 
|  | 1592 |  | 
|  | 1593 | if (list_empty(®_pending_beacons)) { | 
|  | 1594 | spin_unlock_bh(®_pending_beacons_lock); | 
|  | 1595 | goto out; | 
|  | 1596 | } | 
|  | 1597 |  | 
|  | 1598 | list_for_each_entry_safe(pending_beacon, tmp, | 
|  | 1599 | ®_pending_beacons, list) { | 
|  | 1600 |  | 
|  | 1601 | list_del_init(&pending_beacon->list); | 
|  | 1602 |  | 
|  | 1603 | /* Applies the beacon hint to current wiphys */ | 
|  | 1604 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) | 
|  | 1605 | wiphy_update_new_beacon(&rdev->wiphy, pending_beacon); | 
|  | 1606 |  | 
|  | 1607 | /* Remembers the beacon hint for new wiphys or reg changes */ | 
|  | 1608 | list_add_tail(&pending_beacon->list, ®_beacon_list); | 
|  | 1609 | } | 
|  | 1610 |  | 
|  | 1611 | spin_unlock_bh(®_pending_beacons_lock); | 
|  | 1612 | out: | 
|  | 1613 | mutex_unlock(&cfg80211_mutex); | 
|  | 1614 | } | 
|  | 1615 |  | 
|  | 1616 | static void reg_todo(struct work_struct *work) | 
|  | 1617 | { | 
|  | 1618 | reg_process_pending_hints(); | 
|  | 1619 | reg_process_pending_beacon_hints(); | 
|  | 1620 | } | 
|  | 1621 |  | 
|  | 1622 | static void queue_regulatory_request(struct regulatory_request *request) | 
|  | 1623 | { | 
|  | 1624 | if (isalpha(request->alpha2[0])) | 
|  | 1625 | request->alpha2[0] = toupper(request->alpha2[0]); | 
|  | 1626 | if (isalpha(request->alpha2[1])) | 
|  | 1627 | request->alpha2[1] = toupper(request->alpha2[1]); | 
|  | 1628 |  | 
|  | 1629 | spin_lock(®_requests_lock); | 
|  | 1630 | list_add_tail(&request->list, ®_requests_list); | 
|  | 1631 | spin_unlock(®_requests_lock); | 
|  | 1632 |  | 
|  | 1633 | schedule_work(®_work); | 
|  | 1634 | } | 
|  | 1635 |  | 
|  | 1636 | /* | 
|  | 1637 | * Core regulatory hint -- happens during cfg80211_init() | 
|  | 1638 | * and when we restore regulatory settings. | 
|  | 1639 | */ | 
|  | 1640 | static int regulatory_hint_core(const char *alpha2) | 
|  | 1641 | { | 
|  | 1642 | struct regulatory_request *request; | 
|  | 1643 |  | 
|  | 1644 | request = kzalloc(sizeof(struct regulatory_request), | 
|  | 1645 | GFP_KERNEL); | 
|  | 1646 | if (!request) | 
|  | 1647 | return -ENOMEM; | 
|  | 1648 |  | 
|  | 1649 | request->alpha2[0] = alpha2[0]; | 
|  | 1650 | request->alpha2[1] = alpha2[1]; | 
|  | 1651 | request->initiator = NL80211_REGDOM_SET_BY_CORE; | 
|  | 1652 |  | 
|  | 1653 | queue_regulatory_request(request); | 
|  | 1654 |  | 
|  | 1655 | return 0; | 
|  | 1656 | } | 
|  | 1657 |  | 
|  | 1658 | /* User hints */ | 
|  | 1659 | int regulatory_hint_user(const char *alpha2) | 
|  | 1660 | { | 
|  | 1661 | struct regulatory_request *request; | 
|  | 1662 |  | 
|  | 1663 | BUG_ON(!alpha2); | 
|  | 1664 |  | 
|  | 1665 | request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); | 
|  | 1666 | if (!request) | 
|  | 1667 | return -ENOMEM; | 
|  | 1668 |  | 
|  | 1669 | request->wiphy_idx = WIPHY_IDX_STALE; | 
|  | 1670 | request->alpha2[0] = alpha2[0]; | 
|  | 1671 | request->alpha2[1] = alpha2[1]; | 
|  | 1672 | request->initiator = NL80211_REGDOM_SET_BY_USER; | 
|  | 1673 |  | 
|  | 1674 | queue_regulatory_request(request); | 
|  | 1675 |  | 
|  | 1676 | return 0; | 
|  | 1677 | } | 
|  | 1678 |  | 
|  | 1679 | /* Driver hints */ | 
|  | 1680 | int regulatory_hint(struct wiphy *wiphy, const char *alpha2) | 
|  | 1681 | { | 
|  | 1682 | struct regulatory_request *request; | 
|  | 1683 |  | 
|  | 1684 | BUG_ON(!alpha2); | 
|  | 1685 | BUG_ON(!wiphy); | 
|  | 1686 |  | 
|  | 1687 | request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); | 
|  | 1688 | if (!request) | 
|  | 1689 | return -ENOMEM; | 
|  | 1690 |  | 
|  | 1691 | request->wiphy_idx = get_wiphy_idx(wiphy); | 
|  | 1692 |  | 
|  | 1693 | /* Must have registered wiphy first */ | 
|  | 1694 | BUG_ON(!wiphy_idx_valid(request->wiphy_idx)); | 
|  | 1695 |  | 
|  | 1696 | request->alpha2[0] = alpha2[0]; | 
|  | 1697 | request->alpha2[1] = alpha2[1]; | 
|  | 1698 | request->initiator = NL80211_REGDOM_SET_BY_DRIVER; | 
|  | 1699 |  | 
|  | 1700 | queue_regulatory_request(request); | 
|  | 1701 |  | 
|  | 1702 | return 0; | 
|  | 1703 | } | 
|  | 1704 | EXPORT_SYMBOL(regulatory_hint); | 
|  | 1705 |  | 
|  | 1706 | /* | 
|  | 1707 | * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and | 
|  | 1708 | * therefore cannot iterate over the rdev list here. | 
|  | 1709 | */ | 
|  | 1710 | void regulatory_hint_11d(struct wiphy *wiphy, | 
|  | 1711 | enum ieee80211_band band, | 
|  | 1712 | u8 *country_ie, | 
|  | 1713 | u8 country_ie_len) | 
|  | 1714 | { | 
|  | 1715 | char alpha2[2]; | 
|  | 1716 | enum environment_cap env = ENVIRON_ANY; | 
|  | 1717 | struct regulatory_request *request; | 
|  | 1718 |  | 
|  | 1719 | mutex_lock(®_mutex); | 
|  | 1720 |  | 
|  | 1721 | if (unlikely(!last_request)) | 
|  | 1722 | goto out; | 
|  | 1723 |  | 
|  | 1724 | /* IE len must be evenly divisible by 2 */ | 
|  | 1725 | if (country_ie_len & 0x01) | 
|  | 1726 | goto out; | 
|  | 1727 |  | 
|  | 1728 | if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN) | 
|  | 1729 | goto out; | 
|  | 1730 |  | 
|  | 1731 | alpha2[0] = country_ie[0]; | 
|  | 1732 | alpha2[1] = country_ie[1]; | 
|  | 1733 |  | 
|  | 1734 | if (country_ie[2] == 'I') | 
|  | 1735 | env = ENVIRON_INDOOR; | 
|  | 1736 | else if (country_ie[2] == 'O') | 
|  | 1737 | env = ENVIRON_OUTDOOR; | 
|  | 1738 |  | 
|  | 1739 | /* | 
|  | 1740 | * We will run this only upon a successful connection on cfg80211. | 
|  | 1741 | * We leave conflict resolution to the workqueue, where can hold | 
|  | 1742 | * cfg80211_mutex. | 
|  | 1743 | */ | 
|  | 1744 | if (likely(last_request->initiator == | 
|  | 1745 | NL80211_REGDOM_SET_BY_COUNTRY_IE && | 
|  | 1746 | wiphy_idx_valid(last_request->wiphy_idx))) | 
|  | 1747 | goto out; | 
|  | 1748 |  | 
|  | 1749 | request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL); | 
|  | 1750 | if (!request) | 
|  | 1751 | goto out; | 
|  | 1752 |  | 
|  | 1753 | request->wiphy_idx = get_wiphy_idx(wiphy); | 
|  | 1754 | request->alpha2[0] = alpha2[0]; | 
|  | 1755 | request->alpha2[1] = alpha2[1]; | 
|  | 1756 | request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE; | 
|  | 1757 | request->country_ie_env = env; | 
|  | 1758 |  | 
|  | 1759 | mutex_unlock(®_mutex); | 
|  | 1760 |  | 
|  | 1761 | queue_regulatory_request(request); | 
|  | 1762 |  | 
|  | 1763 | return; | 
|  | 1764 |  | 
|  | 1765 | out: | 
|  | 1766 | mutex_unlock(®_mutex); | 
|  | 1767 | } | 
|  | 1768 |  | 
|  | 1769 | static void restore_alpha2(char *alpha2, bool reset_user) | 
|  | 1770 | { | 
|  | 1771 | /* indicates there is no alpha2 to consider for restoration */ | 
|  | 1772 | alpha2[0] = '9'; | 
|  | 1773 | alpha2[1] = '7'; | 
|  | 1774 |  | 
|  | 1775 | /* The user setting has precedence over the module parameter */ | 
|  | 1776 | if (is_user_regdom_saved()) { | 
|  | 1777 | /* Unless we're asked to ignore it and reset it */ | 
|  | 1778 | if (reset_user) { | 
|  | 1779 | REG_DBG_PRINT("Restoring regulatory settings " | 
|  | 1780 | "including user preference\n"); | 
|  | 1781 | user_alpha2[0] = '9'; | 
|  | 1782 | user_alpha2[1] = '7'; | 
|  | 1783 |  | 
|  | 1784 | /* | 
|  | 1785 | * If we're ignoring user settings, we still need to | 
|  | 1786 | * check the module parameter to ensure we put things | 
|  | 1787 | * back as they were for a full restore. | 
|  | 1788 | */ | 
|  | 1789 | if (!is_world_regdom(ieee80211_regdom)) { | 
|  | 1790 | REG_DBG_PRINT("Keeping preference on " | 
|  | 1791 | "module parameter ieee80211_regdom: %c%c\n", | 
|  | 1792 | ieee80211_regdom[0], | 
|  | 1793 | ieee80211_regdom[1]); | 
|  | 1794 | alpha2[0] = ieee80211_regdom[0]; | 
|  | 1795 | alpha2[1] = ieee80211_regdom[1]; | 
|  | 1796 | } | 
|  | 1797 | } else { | 
|  | 1798 | REG_DBG_PRINT("Restoring regulatory settings " | 
|  | 1799 | "while preserving user preference for: %c%c\n", | 
|  | 1800 | user_alpha2[0], | 
|  | 1801 | user_alpha2[1]); | 
|  | 1802 | alpha2[0] = user_alpha2[0]; | 
|  | 1803 | alpha2[1] = user_alpha2[1]; | 
|  | 1804 | } | 
|  | 1805 | } else if (!is_world_regdom(ieee80211_regdom)) { | 
|  | 1806 | REG_DBG_PRINT("Keeping preference on " | 
|  | 1807 | "module parameter ieee80211_regdom: %c%c\n", | 
|  | 1808 | ieee80211_regdom[0], | 
|  | 1809 | ieee80211_regdom[1]); | 
|  | 1810 | alpha2[0] = ieee80211_regdom[0]; | 
|  | 1811 | alpha2[1] = ieee80211_regdom[1]; | 
|  | 1812 | } else | 
|  | 1813 | REG_DBG_PRINT("Restoring regulatory settings\n"); | 
|  | 1814 | } | 
|  | 1815 |  | 
|  | 1816 | static void restore_custom_reg_settings(struct wiphy *wiphy) | 
|  | 1817 | { | 
|  | 1818 | struct ieee80211_supported_band *sband; | 
|  | 1819 | enum ieee80211_band band; | 
|  | 1820 | struct ieee80211_channel *chan; | 
|  | 1821 | int i; | 
|  | 1822 |  | 
|  | 1823 | for (band = 0; band < IEEE80211_NUM_BANDS; band++) { | 
|  | 1824 | sband = wiphy->bands[band]; | 
|  | 1825 | if (!sband) | 
|  | 1826 | continue; | 
|  | 1827 | for (i = 0; i < sband->n_channels; i++) { | 
|  | 1828 | chan = &sband->channels[i]; | 
|  | 1829 | chan->flags = chan->orig_flags; | 
|  | 1830 | chan->max_antenna_gain = chan->orig_mag; | 
|  | 1831 | chan->max_power = chan->orig_mpwr; | 
|  | 1832 | } | 
|  | 1833 | } | 
|  | 1834 | } | 
|  | 1835 |  | 
|  | 1836 | /* | 
|  | 1837 | * Restoring regulatory settings involves ingoring any | 
|  | 1838 | * possibly stale country IE information and user regulatory | 
|  | 1839 | * settings if so desired, this includes any beacon hints | 
|  | 1840 | * learned as we could have traveled outside to another country | 
|  | 1841 | * after disconnection. To restore regulatory settings we do | 
|  | 1842 | * exactly what we did at bootup: | 
|  | 1843 | * | 
|  | 1844 | *   - send a core regulatory hint | 
|  | 1845 | *   - send a user regulatory hint if applicable | 
|  | 1846 | * | 
|  | 1847 | * Device drivers that send a regulatory hint for a specific country | 
|  | 1848 | * keep their own regulatory domain on wiphy->regd so that does does | 
|  | 1849 | * not need to be remembered. | 
|  | 1850 | */ | 
|  | 1851 | static void restore_regulatory_settings(bool reset_user) | 
|  | 1852 | { | 
|  | 1853 | char alpha2[2]; | 
|  | 1854 | char world_alpha2[2]; | 
|  | 1855 | struct reg_beacon *reg_beacon, *btmp; | 
|  | 1856 | struct regulatory_request *reg_request, *tmp; | 
|  | 1857 | LIST_HEAD(tmp_reg_req_list); | 
|  | 1858 | struct cfg80211_registered_device *rdev; | 
|  | 1859 |  | 
|  | 1860 | mutex_lock(&cfg80211_mutex); | 
|  | 1861 | mutex_lock(®_mutex); | 
|  | 1862 |  | 
|  | 1863 | reset_regdomains(true); | 
|  | 1864 | restore_alpha2(alpha2, reset_user); | 
|  | 1865 |  | 
|  | 1866 | /* | 
|  | 1867 | * If there's any pending requests we simply | 
|  | 1868 | * stash them to a temporary pending queue and | 
|  | 1869 | * add then after we've restored regulatory | 
|  | 1870 | * settings. | 
|  | 1871 | */ | 
|  | 1872 | spin_lock(®_requests_lock); | 
|  | 1873 | if (!list_empty(®_requests_list)) { | 
|  | 1874 | list_for_each_entry_safe(reg_request, tmp, | 
|  | 1875 | ®_requests_list, list) { | 
|  | 1876 | if (reg_request->initiator != | 
|  | 1877 | NL80211_REGDOM_SET_BY_USER) | 
|  | 1878 | continue; | 
|  | 1879 | list_del(®_request->list); | 
|  | 1880 | list_add_tail(®_request->list, &tmp_reg_req_list); | 
|  | 1881 | } | 
|  | 1882 | } | 
|  | 1883 | spin_unlock(®_requests_lock); | 
|  | 1884 |  | 
|  | 1885 | /* Clear beacon hints */ | 
|  | 1886 | spin_lock_bh(®_pending_beacons_lock); | 
|  | 1887 | if (!list_empty(®_pending_beacons)) { | 
|  | 1888 | list_for_each_entry_safe(reg_beacon, btmp, | 
|  | 1889 | ®_pending_beacons, list) { | 
|  | 1890 | list_del(®_beacon->list); | 
|  | 1891 | kfree(reg_beacon); | 
|  | 1892 | } | 
|  | 1893 | } | 
|  | 1894 | spin_unlock_bh(®_pending_beacons_lock); | 
|  | 1895 |  | 
|  | 1896 | if (!list_empty(®_beacon_list)) { | 
|  | 1897 | list_for_each_entry_safe(reg_beacon, btmp, | 
|  | 1898 | ®_beacon_list, list) { | 
|  | 1899 | list_del(®_beacon->list); | 
|  | 1900 | kfree(reg_beacon); | 
|  | 1901 | } | 
|  | 1902 | } | 
|  | 1903 |  | 
|  | 1904 | /* First restore to the basic regulatory settings */ | 
|  | 1905 | cfg80211_regdomain = cfg80211_world_regdom; | 
|  | 1906 | world_alpha2[0] = cfg80211_regdomain->alpha2[0]; | 
|  | 1907 | world_alpha2[1] = cfg80211_regdomain->alpha2[1]; | 
|  | 1908 |  | 
|  | 1909 | list_for_each_entry(rdev, &cfg80211_rdev_list, list) { | 
|  | 1910 | if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY) | 
|  | 1911 | restore_custom_reg_settings(&rdev->wiphy); | 
|  | 1912 | } | 
|  | 1913 |  | 
|  | 1914 | mutex_unlock(®_mutex); | 
|  | 1915 | mutex_unlock(&cfg80211_mutex); | 
|  | 1916 |  | 
|  | 1917 | regulatory_hint_core(world_alpha2); | 
|  | 1918 |  | 
|  | 1919 | /* | 
|  | 1920 | * This restores the ieee80211_regdom module parameter | 
|  | 1921 | * preference or the last user requested regulatory | 
|  | 1922 | * settings, user regulatory settings takes precedence. | 
|  | 1923 | */ | 
|  | 1924 | if (is_an_alpha2(alpha2)) | 
|  | 1925 | regulatory_hint_user(user_alpha2); | 
|  | 1926 |  | 
|  | 1927 | if (list_empty(&tmp_reg_req_list)) | 
|  | 1928 | return; | 
|  | 1929 |  | 
|  | 1930 | mutex_lock(&cfg80211_mutex); | 
|  | 1931 | mutex_lock(®_mutex); | 
|  | 1932 |  | 
|  | 1933 | spin_lock(®_requests_lock); | 
|  | 1934 | list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) { | 
|  | 1935 | REG_DBG_PRINT("Adding request for country %c%c back " | 
|  | 1936 | "into the queue\n", | 
|  | 1937 | reg_request->alpha2[0], | 
|  | 1938 | reg_request->alpha2[1]); | 
|  | 1939 | list_del(®_request->list); | 
|  | 1940 | list_add_tail(®_request->list, ®_requests_list); | 
|  | 1941 | } | 
|  | 1942 | spin_unlock(®_requests_lock); | 
|  | 1943 |  | 
|  | 1944 | mutex_unlock(®_mutex); | 
|  | 1945 | mutex_unlock(&cfg80211_mutex); | 
|  | 1946 |  | 
|  | 1947 | REG_DBG_PRINT("Kicking the queue\n"); | 
|  | 1948 |  | 
|  | 1949 | schedule_work(®_work); | 
|  | 1950 | } | 
|  | 1951 |  | 
|  | 1952 | void regulatory_hint_disconnect(void) | 
|  | 1953 | { | 
|  | 1954 | REG_DBG_PRINT("All devices are disconnected, going to " | 
|  | 1955 | "restore regulatory settings\n"); | 
|  | 1956 | restore_regulatory_settings(false); | 
|  | 1957 | } | 
|  | 1958 |  | 
|  | 1959 | static bool freq_is_chan_12_13_14(u16 freq) | 
|  | 1960 | { | 
|  | 1961 | if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) || | 
|  | 1962 | freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) || | 
|  | 1963 | freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ)) | 
|  | 1964 | return true; | 
|  | 1965 | return false; | 
|  | 1966 | } | 
|  | 1967 |  | 
|  | 1968 | int regulatory_hint_found_beacon(struct wiphy *wiphy, | 
|  | 1969 | struct ieee80211_channel *beacon_chan, | 
|  | 1970 | gfp_t gfp) | 
|  | 1971 | { | 
|  | 1972 | struct reg_beacon *reg_beacon; | 
|  | 1973 |  | 
|  | 1974 | if (likely((beacon_chan->beacon_found || | 
|  | 1975 | (beacon_chan->flags & IEEE80211_CHAN_RADAR) || | 
|  | 1976 | (beacon_chan->band == IEEE80211_BAND_2GHZ && | 
|  | 1977 | !freq_is_chan_12_13_14(beacon_chan->center_freq))))) | 
|  | 1978 | return 0; | 
|  | 1979 |  | 
|  | 1980 | reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp); | 
|  | 1981 | if (!reg_beacon) | 
|  | 1982 | return -ENOMEM; | 
|  | 1983 |  | 
|  | 1984 | REG_DBG_PRINT("Found new beacon on " | 
|  | 1985 | "frequency: %d MHz (Ch %d) on %s\n", | 
|  | 1986 | beacon_chan->center_freq, | 
|  | 1987 | ieee80211_frequency_to_channel(beacon_chan->center_freq), | 
|  | 1988 | wiphy_name(wiphy)); | 
|  | 1989 |  | 
|  | 1990 | memcpy(®_beacon->chan, beacon_chan, | 
|  | 1991 | sizeof(struct ieee80211_channel)); | 
|  | 1992 |  | 
|  | 1993 |  | 
|  | 1994 | /* | 
|  | 1995 | * Since we can be called from BH or and non-BH context | 
|  | 1996 | * we must use spin_lock_bh() | 
|  | 1997 | */ | 
|  | 1998 | spin_lock_bh(®_pending_beacons_lock); | 
|  | 1999 | list_add_tail(®_beacon->list, ®_pending_beacons); | 
|  | 2000 | spin_unlock_bh(®_pending_beacons_lock); | 
|  | 2001 |  | 
|  | 2002 | schedule_work(®_work); | 
|  | 2003 |  | 
|  | 2004 | return 0; | 
|  | 2005 | } | 
|  | 2006 |  | 
|  | 2007 | static void print_rd_rules(const struct ieee80211_regdomain *rd) | 
|  | 2008 | { | 
|  | 2009 | unsigned int i; | 
|  | 2010 | const struct ieee80211_reg_rule *reg_rule = NULL; | 
|  | 2011 | const struct ieee80211_freq_range *freq_range = NULL; | 
|  | 2012 | const struct ieee80211_power_rule *power_rule = NULL; | 
|  | 2013 |  | 
|  | 2014 | pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n"); | 
|  | 2015 |  | 
|  | 2016 | for (i = 0; i < rd->n_reg_rules; i++) { | 
|  | 2017 | reg_rule = &rd->reg_rules[i]; | 
|  | 2018 | freq_range = ®_rule->freq_range; | 
|  | 2019 | power_rule = ®_rule->power_rule; | 
|  | 2020 |  | 
|  | 2021 | /* | 
|  | 2022 | * There may not be documentation for max antenna gain | 
|  | 2023 | * in certain regions | 
|  | 2024 | */ | 
|  | 2025 | if (power_rule->max_antenna_gain) | 
|  | 2026 | pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n", | 
|  | 2027 | freq_range->start_freq_khz, | 
|  | 2028 | freq_range->end_freq_khz, | 
|  | 2029 | freq_range->max_bandwidth_khz, | 
|  | 2030 | power_rule->max_antenna_gain, | 
|  | 2031 | power_rule->max_eirp); | 
|  | 2032 | else | 
|  | 2033 | pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n", | 
|  | 2034 | freq_range->start_freq_khz, | 
|  | 2035 | freq_range->end_freq_khz, | 
|  | 2036 | freq_range->max_bandwidth_khz, | 
|  | 2037 | power_rule->max_eirp); | 
|  | 2038 | } | 
|  | 2039 | } | 
|  | 2040 |  | 
|  | 2041 | bool reg_supported_dfs_region(u8 dfs_region) | 
|  | 2042 | { | 
|  | 2043 | switch (dfs_region) { | 
|  | 2044 | case NL80211_DFS_UNSET: | 
|  | 2045 | case NL80211_DFS_FCC: | 
|  | 2046 | case NL80211_DFS_ETSI: | 
|  | 2047 | case NL80211_DFS_JP: | 
|  | 2048 | return true; | 
|  | 2049 | default: | 
|  | 2050 | REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n", | 
|  | 2051 | dfs_region); | 
|  | 2052 | return false; | 
|  | 2053 | } | 
|  | 2054 | } | 
|  | 2055 |  | 
|  | 2056 | static void print_dfs_region(u8 dfs_region) | 
|  | 2057 | { | 
|  | 2058 | if (!dfs_region) | 
|  | 2059 | return; | 
|  | 2060 |  | 
|  | 2061 | switch (dfs_region) { | 
|  | 2062 | case NL80211_DFS_FCC: | 
|  | 2063 | pr_info(" DFS Master region FCC"); | 
|  | 2064 | break; | 
|  | 2065 | case NL80211_DFS_ETSI: | 
|  | 2066 | pr_info(" DFS Master region ETSI"); | 
|  | 2067 | break; | 
|  | 2068 | case NL80211_DFS_JP: | 
|  | 2069 | pr_info(" DFS Master region JP"); | 
|  | 2070 | break; | 
|  | 2071 | default: | 
|  | 2072 | pr_info(" DFS Master region Uknown"); | 
|  | 2073 | break; | 
|  | 2074 | } | 
|  | 2075 | } | 
|  | 2076 |  | 
|  | 2077 | static void print_regdomain(const struct ieee80211_regdomain *rd) | 
|  | 2078 | { | 
|  | 2079 |  | 
|  | 2080 | if (is_intersected_alpha2(rd->alpha2)) { | 
|  | 2081 |  | 
|  | 2082 | if (last_request->initiator == | 
|  | 2083 | NL80211_REGDOM_SET_BY_COUNTRY_IE) { | 
|  | 2084 | struct cfg80211_registered_device *rdev; | 
|  | 2085 | rdev = cfg80211_rdev_by_wiphy_idx( | 
|  | 2086 | last_request->wiphy_idx); | 
|  | 2087 | if (rdev) { | 
|  | 2088 | pr_info("Current regulatory domain updated by AP to: %c%c\n", | 
|  | 2089 | rdev->country_ie_alpha2[0], | 
|  | 2090 | rdev->country_ie_alpha2[1]); | 
|  | 2091 | } else | 
|  | 2092 | pr_info("Current regulatory domain intersected:\n"); | 
|  | 2093 | } else | 
|  | 2094 | pr_info("Current regulatory domain intersected:\n"); | 
|  | 2095 | } else if (is_world_regdom(rd->alpha2)) | 
|  | 2096 | pr_info("World regulatory domain updated:\n"); | 
|  | 2097 | else { | 
|  | 2098 | if (is_unknown_alpha2(rd->alpha2)) | 
|  | 2099 | pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n"); | 
|  | 2100 | else | 
|  | 2101 | pr_info("Regulatory domain changed to country: %c%c\n", | 
|  | 2102 | rd->alpha2[0], rd->alpha2[1]); | 
|  | 2103 | } | 
|  | 2104 | print_dfs_region(rd->dfs_region); | 
|  | 2105 | print_rd_rules(rd); | 
|  | 2106 | } | 
|  | 2107 |  | 
|  | 2108 | static void print_regdomain_info(const struct ieee80211_regdomain *rd) | 
|  | 2109 | { | 
|  | 2110 | pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]); | 
|  | 2111 | print_rd_rules(rd); | 
|  | 2112 | } | 
|  | 2113 |  | 
|  | 2114 | /* Takes ownership of rd only if it doesn't fail */ | 
|  | 2115 | static int __set_regdom(const struct ieee80211_regdomain *rd) | 
|  | 2116 | { | 
|  | 2117 | const struct ieee80211_regdomain *intersected_rd = NULL; | 
|  | 2118 | struct cfg80211_registered_device *rdev = NULL; | 
|  | 2119 | struct wiphy *request_wiphy; | 
|  | 2120 | /* Some basic sanity checks first */ | 
|  | 2121 |  | 
|  | 2122 | if (is_world_regdom(rd->alpha2)) { | 
|  | 2123 | if (WARN_ON(!reg_is_valid_request(rd->alpha2))) | 
|  | 2124 | return -EINVAL; | 
|  | 2125 | update_world_regdomain(rd); | 
|  | 2126 | return 0; | 
|  | 2127 | } | 
|  | 2128 |  | 
|  | 2129 | if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) && | 
|  | 2130 | !is_unknown_alpha2(rd->alpha2)) | 
|  | 2131 | return -EINVAL; | 
|  | 2132 |  | 
|  | 2133 | if (!last_request) | 
|  | 2134 | return -EINVAL; | 
|  | 2135 |  | 
|  | 2136 | /* | 
|  | 2137 | * Lets only bother proceeding on the same alpha2 if the current | 
|  | 2138 | * rd is non static (it means CRDA was present and was used last) | 
|  | 2139 | * and the pending request came in from a country IE | 
|  | 2140 | */ | 
|  | 2141 | if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { | 
|  | 2142 | /* | 
|  | 2143 | * If someone else asked us to change the rd lets only bother | 
|  | 2144 | * checking if the alpha2 changes if CRDA was already called | 
|  | 2145 | */ | 
|  | 2146 | if (!regdom_changes(rd->alpha2)) | 
|  | 2147 | return -EINVAL; | 
|  | 2148 | } | 
|  | 2149 |  | 
|  | 2150 | /* | 
|  | 2151 | * Now lets set the regulatory domain, update all driver channels | 
|  | 2152 | * and finally inform them of what we have done, in case they want | 
|  | 2153 | * to review or adjust their own settings based on their own | 
|  | 2154 | * internal EEPROM data | 
|  | 2155 | */ | 
|  | 2156 |  | 
|  | 2157 | if (WARN_ON(!reg_is_valid_request(rd->alpha2))) | 
|  | 2158 | return -EINVAL; | 
|  | 2159 |  | 
|  | 2160 | if (!is_valid_rd(rd)) { | 
|  | 2161 | pr_err("Invalid regulatory domain detected:\n"); | 
|  | 2162 | print_regdomain_info(rd); | 
|  | 2163 | return -EINVAL; | 
|  | 2164 | } | 
|  | 2165 |  | 
|  | 2166 | request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); | 
|  | 2167 | if (!request_wiphy && | 
|  | 2168 | (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER || | 
|  | 2169 | last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) { | 
|  | 2170 | schedule_delayed_work(®_timeout, 0); | 
|  | 2171 | return -ENODEV; | 
|  | 2172 | } | 
|  | 2173 |  | 
|  | 2174 | if (!last_request->intersect) { | 
|  | 2175 | int r; | 
|  | 2176 |  | 
|  | 2177 | if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) { | 
|  | 2178 | reset_regdomains(false); | 
|  | 2179 | cfg80211_regdomain = rd; | 
|  | 2180 | return 0; | 
|  | 2181 | } | 
|  | 2182 |  | 
|  | 2183 | /* | 
|  | 2184 | * For a driver hint, lets copy the regulatory domain the | 
|  | 2185 | * driver wanted to the wiphy to deal with conflicts | 
|  | 2186 | */ | 
|  | 2187 |  | 
|  | 2188 | /* | 
|  | 2189 | * Userspace could have sent two replies with only | 
|  | 2190 | * one kernel request. | 
|  | 2191 | */ | 
|  | 2192 | if (request_wiphy->regd) | 
|  | 2193 | return -EALREADY; | 
|  | 2194 |  | 
|  | 2195 | r = reg_copy_regd(&request_wiphy->regd, rd); | 
|  | 2196 | if (r) | 
|  | 2197 | return r; | 
|  | 2198 |  | 
|  | 2199 | reset_regdomains(false); | 
|  | 2200 | cfg80211_regdomain = rd; | 
|  | 2201 | return 0; | 
|  | 2202 | } | 
|  | 2203 |  | 
|  | 2204 | /* Intersection requires a bit more work */ | 
|  | 2205 |  | 
|  | 2206 | if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) { | 
|  | 2207 |  | 
|  | 2208 | intersected_rd = regdom_intersect(rd, cfg80211_regdomain); | 
|  | 2209 | if (!intersected_rd) | 
|  | 2210 | return -EINVAL; | 
|  | 2211 |  | 
|  | 2212 | /* | 
|  | 2213 | * We can trash what CRDA provided now. | 
|  | 2214 | * However if a driver requested this specific regulatory | 
|  | 2215 | * domain we keep it for its private use | 
|  | 2216 | */ | 
|  | 2217 | if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER) | 
|  | 2218 | request_wiphy->regd = rd; | 
|  | 2219 | else | 
|  | 2220 | kfree(rd); | 
|  | 2221 |  | 
|  | 2222 | rd = NULL; | 
|  | 2223 |  | 
|  | 2224 | reset_regdomains(false); | 
|  | 2225 | cfg80211_regdomain = intersected_rd; | 
|  | 2226 |  | 
|  | 2227 | return 0; | 
|  | 2228 | } | 
|  | 2229 |  | 
|  | 2230 | if (!intersected_rd) | 
|  | 2231 | return -EINVAL; | 
|  | 2232 |  | 
|  | 2233 | rdev = wiphy_to_dev(request_wiphy); | 
|  | 2234 |  | 
|  | 2235 | rdev->country_ie_alpha2[0] = rd->alpha2[0]; | 
|  | 2236 | rdev->country_ie_alpha2[1] = rd->alpha2[1]; | 
|  | 2237 | rdev->env = last_request->country_ie_env; | 
|  | 2238 |  | 
|  | 2239 | BUG_ON(intersected_rd == rd); | 
|  | 2240 |  | 
|  | 2241 | kfree(rd); | 
|  | 2242 | rd = NULL; | 
|  | 2243 |  | 
|  | 2244 | reset_regdomains(false); | 
|  | 2245 | cfg80211_regdomain = intersected_rd; | 
|  | 2246 |  | 
|  | 2247 | return 0; | 
|  | 2248 | } | 
|  | 2249 |  | 
|  | 2250 |  | 
|  | 2251 | /* | 
|  | 2252 | * Use this call to set the current regulatory domain. Conflicts with | 
|  | 2253 | * multiple drivers can be ironed out later. Caller must've already | 
|  | 2254 | * kmalloc'd the rd structure. Caller must hold cfg80211_mutex | 
|  | 2255 | */ | 
|  | 2256 | int set_regdom(const struct ieee80211_regdomain *rd) | 
|  | 2257 | { | 
|  | 2258 | int r; | 
|  | 2259 |  | 
|  | 2260 | assert_cfg80211_lock(); | 
|  | 2261 |  | 
|  | 2262 | mutex_lock(®_mutex); | 
|  | 2263 |  | 
|  | 2264 | /* Note that this doesn't update the wiphys, this is done below */ | 
|  | 2265 | r = __set_regdom(rd); | 
|  | 2266 | if (r) { | 
|  | 2267 | kfree(rd); | 
|  | 2268 | mutex_unlock(®_mutex); | 
|  | 2269 | return r; | 
|  | 2270 | } | 
|  | 2271 |  | 
|  | 2272 | /* This would make this whole thing pointless */ | 
|  | 2273 | if (!last_request->intersect) | 
|  | 2274 | BUG_ON(rd != cfg80211_regdomain); | 
|  | 2275 |  | 
|  | 2276 | /* update all wiphys now with the new established regulatory domain */ | 
|  | 2277 | update_all_wiphy_regulatory(last_request->initiator); | 
|  | 2278 |  | 
|  | 2279 | print_regdomain(cfg80211_regdomain); | 
|  | 2280 |  | 
|  | 2281 | nl80211_send_reg_change_event(last_request); | 
|  | 2282 |  | 
|  | 2283 | reg_set_request_processed(); | 
|  | 2284 |  | 
|  | 2285 | mutex_unlock(®_mutex); | 
|  | 2286 |  | 
|  | 2287 | return r; | 
|  | 2288 | } | 
|  | 2289 |  | 
|  | 2290 | #ifdef CONFIG_HOTPLUG | 
|  | 2291 | int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) | 
|  | 2292 | { | 
|  | 2293 | if (last_request && !last_request->processed) { | 
|  | 2294 | if (add_uevent_var(env, "COUNTRY=%c%c", | 
|  | 2295 | last_request->alpha2[0], | 
|  | 2296 | last_request->alpha2[1])) | 
|  | 2297 | return -ENOMEM; | 
|  | 2298 | } | 
|  | 2299 |  | 
|  | 2300 | return 0; | 
|  | 2301 | } | 
|  | 2302 | #else | 
|  | 2303 | int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env) | 
|  | 2304 | { | 
|  | 2305 | return -ENODEV; | 
|  | 2306 | } | 
|  | 2307 | #endif /* CONFIG_HOTPLUG */ | 
|  | 2308 |  | 
|  | 2309 | /* Caller must hold cfg80211_mutex */ | 
|  | 2310 | void reg_device_remove(struct wiphy *wiphy) | 
|  | 2311 | { | 
|  | 2312 | struct wiphy *request_wiphy = NULL; | 
|  | 2313 |  | 
|  | 2314 | assert_cfg80211_lock(); | 
|  | 2315 |  | 
|  | 2316 | mutex_lock(®_mutex); | 
|  | 2317 |  | 
|  | 2318 | kfree(wiphy->regd); | 
|  | 2319 |  | 
|  | 2320 | if (last_request) | 
|  | 2321 | request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx); | 
|  | 2322 |  | 
|  | 2323 | if (!request_wiphy || request_wiphy != wiphy) | 
|  | 2324 | goto out; | 
|  | 2325 |  | 
|  | 2326 | last_request->wiphy_idx = WIPHY_IDX_STALE; | 
|  | 2327 | last_request->country_ie_env = ENVIRON_ANY; | 
|  | 2328 | out: | 
|  | 2329 | mutex_unlock(®_mutex); | 
|  | 2330 | } | 
|  | 2331 |  | 
|  | 2332 | static void reg_timeout_work(struct work_struct *work) | 
|  | 2333 | { | 
|  | 2334 | REG_DBG_PRINT("Timeout while waiting for CRDA to reply, " | 
|  | 2335 | "restoring regulatory settings\n"); | 
|  | 2336 | restore_regulatory_settings(true); | 
|  | 2337 | } | 
|  | 2338 |  | 
|  | 2339 | int __init regulatory_init(void) | 
|  | 2340 | { | 
|  | 2341 | int err = 0; | 
|  | 2342 |  | 
|  | 2343 | reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0); | 
|  | 2344 | if (IS_ERR(reg_pdev)) | 
|  | 2345 | return PTR_ERR(reg_pdev); | 
|  | 2346 |  | 
|  | 2347 | reg_pdev->dev.type = ®_device_type; | 
|  | 2348 |  | 
|  | 2349 | spin_lock_init(®_requests_lock); | 
|  | 2350 | spin_lock_init(®_pending_beacons_lock); | 
|  | 2351 |  | 
|  | 2352 | reg_regdb_size_check(); | 
|  | 2353 |  | 
|  | 2354 | cfg80211_regdomain = cfg80211_world_regdom; | 
|  | 2355 |  | 
|  | 2356 | user_alpha2[0] = '9'; | 
|  | 2357 | user_alpha2[1] = '7'; | 
|  | 2358 |  | 
|  | 2359 | /* We always try to get an update for the static regdomain */ | 
|  | 2360 | err = regulatory_hint_core(cfg80211_regdomain->alpha2); | 
|  | 2361 | if (err) { | 
|  | 2362 | if (err == -ENOMEM) | 
|  | 2363 | return err; | 
|  | 2364 | /* | 
|  | 2365 | * N.B. kobject_uevent_env() can fail mainly for when we're out | 
|  | 2366 | * memory which is handled and propagated appropriately above | 
|  | 2367 | * but it can also fail during a netlink_broadcast() or during | 
|  | 2368 | * early boot for call_usermodehelper(). For now treat these | 
|  | 2369 | * errors as non-fatal. | 
|  | 2370 | */ | 
|  | 2371 | pr_err("kobject_uevent_env() was unable to call CRDA during init\n"); | 
|  | 2372 | #ifdef CONFIG_CFG80211_REG_DEBUG | 
|  | 2373 | /* We want to find out exactly why when debugging */ | 
|  | 2374 | WARN_ON(err); | 
|  | 2375 | #endif | 
|  | 2376 | } | 
|  | 2377 |  | 
|  | 2378 | /* | 
|  | 2379 | * Finally, if the user set the module parameter treat it | 
|  | 2380 | * as a user hint. | 
|  | 2381 | */ | 
|  | 2382 | if (!is_world_regdom(ieee80211_regdom)) | 
|  | 2383 | regulatory_hint_user(ieee80211_regdom); | 
|  | 2384 |  | 
|  | 2385 | return 0; | 
|  | 2386 | } | 
|  | 2387 |  | 
|  | 2388 | void /* __init_or_exit */ regulatory_exit(void) | 
|  | 2389 | { | 
|  | 2390 | struct regulatory_request *reg_request, *tmp; | 
|  | 2391 | struct reg_beacon *reg_beacon, *btmp; | 
|  | 2392 |  | 
|  | 2393 | cancel_work_sync(®_work); | 
|  | 2394 | cancel_delayed_work_sync(®_timeout); | 
|  | 2395 |  | 
|  | 2396 | mutex_lock(&cfg80211_mutex); | 
|  | 2397 | mutex_lock(®_mutex); | 
|  | 2398 |  | 
|  | 2399 | reset_regdomains(true); | 
|  | 2400 |  | 
|  | 2401 | dev_set_uevent_suppress(®_pdev->dev, true); | 
|  | 2402 |  | 
|  | 2403 | platform_device_unregister(reg_pdev); | 
|  | 2404 |  | 
|  | 2405 | spin_lock_bh(®_pending_beacons_lock); | 
|  | 2406 | if (!list_empty(®_pending_beacons)) { | 
|  | 2407 | list_for_each_entry_safe(reg_beacon, btmp, | 
|  | 2408 | ®_pending_beacons, list) { | 
|  | 2409 | list_del(®_beacon->list); | 
|  | 2410 | kfree(reg_beacon); | 
|  | 2411 | } | 
|  | 2412 | } | 
|  | 2413 | spin_unlock_bh(®_pending_beacons_lock); | 
|  | 2414 |  | 
|  | 2415 | if (!list_empty(®_beacon_list)) { | 
|  | 2416 | list_for_each_entry_safe(reg_beacon, btmp, | 
|  | 2417 | ®_beacon_list, list) { | 
|  | 2418 | list_del(®_beacon->list); | 
|  | 2419 | kfree(reg_beacon); | 
|  | 2420 | } | 
|  | 2421 | } | 
|  | 2422 |  | 
|  | 2423 | spin_lock(®_requests_lock); | 
|  | 2424 | if (!list_empty(®_requests_list)) { | 
|  | 2425 | list_for_each_entry_safe(reg_request, tmp, | 
|  | 2426 | ®_requests_list, list) { | 
|  | 2427 | list_del(®_request->list); | 
|  | 2428 | kfree(reg_request); | 
|  | 2429 | } | 
|  | 2430 | } | 
|  | 2431 | spin_unlock(®_requests_lock); | 
|  | 2432 |  | 
|  | 2433 | mutex_unlock(®_mutex); | 
|  | 2434 | mutex_unlock(&cfg80211_mutex); | 
|  | 2435 | } |