blob: 4fc034ffd20908cc245102f690ce77ec8d9457d0 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/namei.h>
22#include <linux/pagemap.h>
23#include <linux/fsnotify.h>
24#include <linux/personality.h>
25#include <linux/security.h>
26#include <linux/ima.h>
27#include <linux/syscalls.h>
28#include <linux/mount.h>
29#include <linux/audit.h>
30#include <linux/capability.h>
31#include <linux/file.h>
32#include <linux/fcntl.h>
33#include <linux/device_cgroup.h>
34#include <linux/fs_struct.h>
35#include <linux/posix_acl.h>
36#include <asm/uaccess.h>
37
38#include "internal.h"
39#include "mount.h"
40
41/* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
46 *
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
53 *
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
57 *
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
60 *
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
67 */
68
69/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
76 *
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
84 */
85
86/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
88 *
89 * [10-Sep-98 Alan Modra] Another symlink change.
90 */
91
92/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
99 *
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
105 */
106/*
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
110 */
111
112/* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
115 *
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
118 */
119static int do_getname(const char __user *filename, char *page)
120{
121 int retval;
122 unsigned long len = PATH_MAX;
123
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
129 }
130
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
139}
140
141static char *getname_flags(const char __user *filename, int flags, int *empty)
142{
143 char *result = __getname();
144 int retval;
145
146 if (!result)
147 return ERR_PTR(-ENOMEM);
148
149 retval = do_getname(filename, result);
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(result);
155 return ERR_PTR(retval);
156 }
157 }
158 audit_getname(result);
159 return result;
160}
161
162char *getname(const char __user * filename)
163{
164 return getname_flags(filename, 0, NULL);
165}
166
167#ifdef CONFIG_AUDITSYSCALL
168void putname(const char *name)
169{
170 if (unlikely(!audit_dummy_context()))
171 audit_putname(name);
172 else
173 __putname(name);
174}
175EXPORT_SYMBOL(putname);
176#endif
177
178static int check_acl(struct inode *inode, int mask)
179{
180#ifdef CONFIG_FS_POSIX_ACL
181 struct posix_acl *acl;
182
183 if (mask & MAY_NOT_BLOCK) {
184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 if (!acl)
186 return -EAGAIN;
187 /* no ->get_acl() calls in RCU mode... */
188 if (acl == ACL_NOT_CACHED)
189 return -ECHILD;
190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 }
192
193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194
195 /*
196 * A filesystem can force a ACL callback by just never filling the
197 * ACL cache. But normally you'd fill the cache either at inode
198 * instantiation time, or on the first ->get_acl call.
199 *
200 * If the filesystem doesn't have a get_acl() function at all, we'll
201 * just create the negative cache entry.
202 */
203 if (acl == ACL_NOT_CACHED) {
204 if (inode->i_op->get_acl) {
205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 if (IS_ERR(acl))
207 return PTR_ERR(acl);
208 } else {
209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 return -EAGAIN;
211 }
212 }
213
214 if (acl) {
215 int error = posix_acl_permission(inode, acl, mask);
216 posix_acl_release(acl);
217 return error;
218 }
219#endif
220
221 return -EAGAIN;
222}
223
224/*
225 * This does the basic permission checking
226 */
227static int acl_permission_check(struct inode *inode, int mask)
228{
229 unsigned int mode = inode->i_mode;
230
231 if (current_user_ns() != inode_userns(inode))
232 goto other_perms;
233
234 if (likely(current_fsuid() == inode->i_uid))
235 mode >>= 6;
236 else {
237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 int error = check_acl(inode, mask);
239 if (error != -EAGAIN)
240 return error;
241 }
242
243 if (in_group_p(inode->i_gid))
244 mode >>= 3;
245 }
246
247other_perms:
248 /*
249 * If the DACs are ok we don't need any capability check.
250 */
251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 return 0;
253 return -EACCES;
254}
255
256/**
257 * generic_permission - check for access rights on a Posix-like filesystem
258 * @inode: inode to check access rights for
259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260 *
261 * Used to check for read/write/execute permissions on a file.
262 * We use "fsuid" for this, letting us set arbitrary permissions
263 * for filesystem access without changing the "normal" uids which
264 * are used for other things.
265 *
266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267 * request cannot be satisfied (eg. requires blocking or too much complexity).
268 * It would then be called again in ref-walk mode.
269 */
270int generic_permission(struct inode *inode, int mask)
271{
272 int ret;
273
274 /*
275 * Do the basic permission checks.
276 */
277 ret = acl_permission_check(inode, mask);
278 if (ret != -EACCES)
279 return ret;
280
281 if (S_ISDIR(inode->i_mode)) {
282 /* DACs are overridable for directories */
283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 return 0;
285 if (!(mask & MAY_WRITE))
286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 return 0;
288 return -EACCES;
289 }
290 /*
291 * Read/write DACs are always overridable.
292 * Executable DACs are overridable when there is
293 * at least one exec bit set.
294 */
295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 return 0;
298
299 /*
300 * Searching includes executable on directories, else just read.
301 */
302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 if (mask == MAY_READ)
304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 return 0;
306
307 return -EACCES;
308}
309
310/*
311 * We _really_ want to just do "generic_permission()" without
312 * even looking at the inode->i_op values. So we keep a cache
313 * flag in inode->i_opflags, that says "this has not special
314 * permission function, use the fast case".
315 */
316static inline int do_inode_permission(struct inode *inode, int mask)
317{
318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 if (likely(inode->i_op->permission))
320 return inode->i_op->permission(inode, mask);
321
322 /* This gets set once for the inode lifetime */
323 spin_lock(&inode->i_lock);
324 inode->i_opflags |= IOP_FASTPERM;
325 spin_unlock(&inode->i_lock);
326 }
327 return generic_permission(inode, mask);
328}
329
330/**
331 * inode_permission - check for access rights to a given inode
332 * @inode: inode to check permission on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334 *
335 * Used to check for read/write/execute permissions on an inode.
336 * We use "fsuid" for this, letting us set arbitrary permissions
337 * for filesystem access without changing the "normal" uids which
338 * are used for other things.
339 *
340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341 */
342int inode_permission(struct inode *inode, int mask)
343{
344 int retval;
345
346 if (unlikely(mask & MAY_WRITE)) {
347 umode_t mode = inode->i_mode;
348
349 /*
350 * Nobody gets write access to a read-only fs.
351 */
352 if (IS_RDONLY(inode) &&
353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 return -EROFS;
355
356 /*
357 * Nobody gets write access to an immutable file.
358 */
359 if (IS_IMMUTABLE(inode))
360 return -EACCES;
361 }
362
363 retval = do_inode_permission(inode, mask);
364 if (retval)
365 return retval;
366
367 retval = devcgroup_inode_permission(inode, mask);
368 if (retval)
369 return retval;
370
371 return security_inode_permission(inode, mask);
372}
373
374/**
375 * path_get - get a reference to a path
376 * @path: path to get the reference to
377 *
378 * Given a path increment the reference count to the dentry and the vfsmount.
379 */
380void path_get(struct path *path)
381{
382 mntget(path->mnt);
383 dget(path->dentry);
384}
385EXPORT_SYMBOL(path_get);
386
387/**
388 * path_put - put a reference to a path
389 * @path: path to put the reference to
390 *
391 * Given a path decrement the reference count to the dentry and the vfsmount.
392 */
393void path_put(struct path *path)
394{
395 dput(path->dentry);
396 mntput(path->mnt);
397}
398EXPORT_SYMBOL(path_put);
399
400/**
401 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
402 * @path: nameidate to verify
403 *
404 * Rename can sometimes move a file or directory outside of a bind
405 * mount, path_connected allows those cases to be detected.
406 */
407static bool path_connected(const struct path *path)
408{
409 struct vfsmount *mnt = path->mnt;
410
411 /* Only bind mounts can have disconnected paths */
412 if (mnt->mnt_root == mnt->mnt_sb->s_root)
413 return true;
414
415 return is_subdir(path->dentry, mnt->mnt_root);
416}
417
418/*
419 * Path walking has 2 modes, rcu-walk and ref-walk (see
420 * Documentation/filesystems/path-lookup.txt). In situations when we can't
421 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
422 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
423 * mode. Refcounts are grabbed at the last known good point before rcu-walk
424 * got stuck, so ref-walk may continue from there. If this is not successful
425 * (eg. a seqcount has changed), then failure is returned and it's up to caller
426 * to restart the path walk from the beginning in ref-walk mode.
427 */
428
429/**
430 * unlazy_walk - try to switch to ref-walk mode.
431 * @nd: nameidata pathwalk data
432 * @dentry: child of nd->path.dentry or NULL
433 * Returns: 0 on success, -ECHILD on failure
434 *
435 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
436 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
437 * @nd or NULL. Must be called from rcu-walk context.
438 */
439static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
440{
441 struct fs_struct *fs = current->fs;
442 struct dentry *parent = nd->path.dentry;
443 int want_root = 0;
444
445 BUG_ON(!(nd->flags & LOOKUP_RCU));
446 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
447 want_root = 1;
448 spin_lock(&fs->lock);
449 if (nd->root.mnt != fs->root.mnt ||
450 nd->root.dentry != fs->root.dentry)
451 goto err_root;
452 }
453 spin_lock(&parent->d_lock);
454 if (!dentry) {
455 if (!__d_rcu_to_refcount(parent, nd->seq))
456 goto err_parent;
457 BUG_ON(nd->inode != parent->d_inode);
458 } else {
459 if (dentry->d_parent != parent)
460 goto err_parent;
461 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
462 if (!__d_rcu_to_refcount(dentry, nd->seq))
463 goto err_child;
464 /*
465 * If the sequence check on the child dentry passed, then
466 * the child has not been removed from its parent. This
467 * means the parent dentry must be valid and able to take
468 * a reference at this point.
469 */
470 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
471 BUG_ON(!parent->d_count);
472 parent->d_count++;
473 spin_unlock(&dentry->d_lock);
474 }
475 spin_unlock(&parent->d_lock);
476 if (want_root) {
477 path_get(&nd->root);
478 spin_unlock(&fs->lock);
479 }
480 mntget(nd->path.mnt);
481
482 rcu_read_unlock();
483 br_read_unlock(vfsmount_lock);
484 nd->flags &= ~LOOKUP_RCU;
485 return 0;
486
487err_child:
488 spin_unlock(&dentry->d_lock);
489err_parent:
490 spin_unlock(&parent->d_lock);
491err_root:
492 if (want_root)
493 spin_unlock(&fs->lock);
494 return -ECHILD;
495}
496
497/**
498 * release_open_intent - free up open intent resources
499 * @nd: pointer to nameidata
500 */
501void release_open_intent(struct nameidata *nd)
502{
503 struct file *file = nd->intent.open.file;
504
505 if (file && !IS_ERR(file)) {
506 if (file->f_path.dentry == NULL)
507 put_filp(file);
508 else
509 fput(file);
510 }
511}
512
513static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
514{
515 return dentry->d_op->d_revalidate(dentry, nd);
516}
517
518/**
519 * complete_walk - successful completion of path walk
520 * @nd: pointer nameidata
521 *
522 * If we had been in RCU mode, drop out of it and legitimize nd->path.
523 * Revalidate the final result, unless we'd already done that during
524 * the path walk or the filesystem doesn't ask for it. Return 0 on
525 * success, -error on failure. In case of failure caller does not
526 * need to drop nd->path.
527 */
528static int complete_walk(struct nameidata *nd)
529{
530 struct dentry *dentry = nd->path.dentry;
531 int status;
532
533 if (nd->flags & LOOKUP_RCU) {
534 nd->flags &= ~LOOKUP_RCU;
535 if (!(nd->flags & LOOKUP_ROOT))
536 nd->root.mnt = NULL;
537 spin_lock(&dentry->d_lock);
538 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
539 spin_unlock(&dentry->d_lock);
540 rcu_read_unlock();
541 br_read_unlock(vfsmount_lock);
542 return -ECHILD;
543 }
544 BUG_ON(nd->inode != dentry->d_inode);
545 spin_unlock(&dentry->d_lock);
546 mntget(nd->path.mnt);
547 rcu_read_unlock();
548 br_read_unlock(vfsmount_lock);
549 }
550
551 if (likely(!(nd->flags & LOOKUP_JUMPED)))
552 return 0;
553
554 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
555 return 0;
556
557 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
558 return 0;
559
560 /* Note: we do not d_invalidate() */
561 status = d_revalidate(dentry, nd);
562 if (status > 0)
563 return 0;
564
565 if (!status)
566 status = -ESTALE;
567
568 path_put(&nd->path);
569 return status;
570}
571
572static __always_inline void set_root(struct nameidata *nd)
573{
574 get_fs_root(current->fs, &nd->root);
575}
576
577static int link_path_walk(const char *, struct nameidata *);
578
579static __always_inline unsigned set_root_rcu(struct nameidata *nd)
580{
581 struct fs_struct *fs = current->fs;
582 unsigned seq, res;
583
584 do {
585 seq = read_seqcount_begin(&fs->seq);
586 nd->root = fs->root;
587 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
588 } while (read_seqcount_retry(&fs->seq, seq));
589 return res;
590}
591
592static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
593{
594 int ret;
595
596 if (IS_ERR(link))
597 goto fail;
598
599 if (*link == '/') {
600 if (!nd->root.mnt)
601 set_root(nd);
602 path_put(&nd->path);
603 nd->path = nd->root;
604 path_get(&nd->root);
605 nd->flags |= LOOKUP_JUMPED;
606 }
607 nd->inode = nd->path.dentry->d_inode;
608
609 ret = link_path_walk(link, nd);
610 return ret;
611fail:
612 path_put(&nd->path);
613 return PTR_ERR(link);
614}
615
616static void path_put_conditional(struct path *path, struct nameidata *nd)
617{
618 dput(path->dentry);
619 if (path->mnt != nd->path.mnt)
620 mntput(path->mnt);
621}
622
623static inline void path_to_nameidata(const struct path *path,
624 struct nameidata *nd)
625{
626 if (!(nd->flags & LOOKUP_RCU)) {
627 dput(nd->path.dentry);
628 if (nd->path.mnt != path->mnt)
629 mntput(nd->path.mnt);
630 }
631 nd->path.mnt = path->mnt;
632 nd->path.dentry = path->dentry;
633}
634
635static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
636{
637 struct inode *inode = link->dentry->d_inode;
638 if (!IS_ERR(cookie) && inode->i_op->put_link)
639 inode->i_op->put_link(link->dentry, nd, cookie);
640 path_put(link);
641}
642
643static __always_inline int
644follow_link(struct path *link, struct nameidata *nd, void **p)
645{
646 int error;
647 struct dentry *dentry = link->dentry;
648
649 BUG_ON(nd->flags & LOOKUP_RCU);
650
651 if (link->mnt == nd->path.mnt)
652 mntget(link->mnt);
653
654 if (unlikely(current->total_link_count >= 40)) {
655 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
656 path_put(&nd->path);
657 return -ELOOP;
658 }
659 cond_resched();
660 current->total_link_count++;
661
662 touch_atime(link);
663 nd_set_link(nd, NULL);
664
665 error = security_inode_follow_link(link->dentry, nd);
666 if (error) {
667 *p = ERR_PTR(error); /* no ->put_link(), please */
668 path_put(&nd->path);
669 return error;
670 }
671
672 nd->last_type = LAST_BIND;
673 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
674 error = PTR_ERR(*p);
675 if (!IS_ERR(*p)) {
676 char *s = nd_get_link(nd);
677 error = 0;
678 if (s)
679 error = __vfs_follow_link(nd, s);
680 else if (nd->last_type == LAST_BIND) {
681 nd->flags |= LOOKUP_JUMPED;
682 nd->inode = nd->path.dentry->d_inode;
683 if (nd->inode->i_op->follow_link) {
684 /* stepped on a _really_ weird one */
685 path_put(&nd->path);
686 error = -ELOOP;
687 }
688 }
689 }
690 return error;
691}
692
693static int follow_up_rcu(struct path *path)
694{
695 struct mount *mnt = real_mount(path->mnt);
696 struct mount *parent;
697 struct dentry *mountpoint;
698
699 parent = mnt->mnt_parent;
700 if (&parent->mnt == path->mnt)
701 return 0;
702 mountpoint = mnt->mnt_mountpoint;
703 path->dentry = mountpoint;
704 path->mnt = &parent->mnt;
705 return 1;
706}
707
708int follow_up(struct path *path)
709{
710 struct mount *mnt = real_mount(path->mnt);
711 struct mount *parent;
712 struct dentry *mountpoint;
713
714 br_read_lock(vfsmount_lock);
715 parent = mnt->mnt_parent;
716 if (&parent->mnt == path->mnt) {
717 br_read_unlock(vfsmount_lock);
718 return 0;
719 }
720 mntget(&parent->mnt);
721 mountpoint = dget(mnt->mnt_mountpoint);
722 br_read_unlock(vfsmount_lock);
723 dput(path->dentry);
724 path->dentry = mountpoint;
725 mntput(path->mnt);
726 path->mnt = &parent->mnt;
727 return 1;
728}
729
730/*
731 * Perform an automount
732 * - return -EISDIR to tell follow_managed() to stop and return the path we
733 * were called with.
734 */
735static int follow_automount(struct path *path, unsigned flags,
736 bool *need_mntput)
737{
738 struct vfsmount *mnt;
739 int err;
740
741 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
742 return -EREMOTE;
743
744 /* We don't want to mount if someone's just doing a stat -
745 * unless they're stat'ing a directory and appended a '/' to
746 * the name.
747 *
748 * We do, however, want to mount if someone wants to open or
749 * create a file of any type under the mountpoint, wants to
750 * traverse through the mountpoint or wants to open the
751 * mounted directory. Also, autofs may mark negative dentries
752 * as being automount points. These will need the attentions
753 * of the daemon to instantiate them before they can be used.
754 */
755 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
756 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
757 path->dentry->d_inode)
758 return -EISDIR;
759
760 current->total_link_count++;
761 if (current->total_link_count >= 40)
762 return -ELOOP;
763
764 mnt = path->dentry->d_op->d_automount(path);
765 if (IS_ERR(mnt)) {
766 /*
767 * The filesystem is allowed to return -EISDIR here to indicate
768 * it doesn't want to automount. For instance, autofs would do
769 * this so that its userspace daemon can mount on this dentry.
770 *
771 * However, we can only permit this if it's a terminal point in
772 * the path being looked up; if it wasn't then the remainder of
773 * the path is inaccessible and we should say so.
774 */
775 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
776 return -EREMOTE;
777 return PTR_ERR(mnt);
778 }
779
780 if (!mnt) /* mount collision */
781 return 0;
782
783 if (!*need_mntput) {
784 /* lock_mount() may release path->mnt on error */
785 mntget(path->mnt);
786 *need_mntput = true;
787 }
788 err = finish_automount(mnt, path);
789
790 switch (err) {
791 case -EBUSY:
792 /* Someone else made a mount here whilst we were busy */
793 return 0;
794 case 0:
795 path_put(path);
796 path->mnt = mnt;
797 path->dentry = dget(mnt->mnt_root);
798 return 0;
799 default:
800 return err;
801 }
802
803}
804
805/*
806 * Handle a dentry that is managed in some way.
807 * - Flagged for transit management (autofs)
808 * - Flagged as mountpoint
809 * - Flagged as automount point
810 *
811 * This may only be called in refwalk mode.
812 *
813 * Serialization is taken care of in namespace.c
814 */
815static int follow_managed(struct path *path, unsigned flags)
816{
817 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
818 unsigned managed;
819 bool need_mntput = false;
820 int ret = 0;
821
822 /* Given that we're not holding a lock here, we retain the value in a
823 * local variable for each dentry as we look at it so that we don't see
824 * the components of that value change under us */
825 while (managed = ACCESS_ONCE(path->dentry->d_flags),
826 managed &= DCACHE_MANAGED_DENTRY,
827 unlikely(managed != 0)) {
828 /* Allow the filesystem to manage the transit without i_mutex
829 * being held. */
830 if (managed & DCACHE_MANAGE_TRANSIT) {
831 BUG_ON(!path->dentry->d_op);
832 BUG_ON(!path->dentry->d_op->d_manage);
833 ret = path->dentry->d_op->d_manage(path->dentry, false);
834 if (ret < 0)
835 break;
836 }
837
838 /* Transit to a mounted filesystem. */
839 if (managed & DCACHE_MOUNTED) {
840 struct vfsmount *mounted = lookup_mnt(path);
841 if (mounted) {
842 dput(path->dentry);
843 if (need_mntput)
844 mntput(path->mnt);
845 path->mnt = mounted;
846 path->dentry = dget(mounted->mnt_root);
847 need_mntput = true;
848 continue;
849 }
850
851 /* Something is mounted on this dentry in another
852 * namespace and/or whatever was mounted there in this
853 * namespace got unmounted before we managed to get the
854 * vfsmount_lock */
855 }
856
857 /* Handle an automount point */
858 if (managed & DCACHE_NEED_AUTOMOUNT) {
859 ret = follow_automount(path, flags, &need_mntput);
860 if (ret < 0)
861 break;
862 continue;
863 }
864
865 /* We didn't change the current path point */
866 break;
867 }
868
869 if (need_mntput && path->mnt == mnt)
870 mntput(path->mnt);
871 if (ret == -EISDIR)
872 ret = 0;
873 return ret < 0 ? ret : need_mntput;
874}
875
876int follow_down_one(struct path *path)
877{
878 struct vfsmount *mounted;
879
880 mounted = lookup_mnt(path);
881 if (mounted) {
882 dput(path->dentry);
883 mntput(path->mnt);
884 path->mnt = mounted;
885 path->dentry = dget(mounted->mnt_root);
886 return 1;
887 }
888 return 0;
889}
890
891static inline bool managed_dentry_might_block(struct dentry *dentry)
892{
893 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
894 dentry->d_op->d_manage(dentry, true) < 0);
895}
896
897/*
898 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
899 * we meet a managed dentry that would need blocking.
900 */
901static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
902 struct inode **inode)
903{
904 for (;;) {
905 struct mount *mounted;
906 /*
907 * Don't forget we might have a non-mountpoint managed dentry
908 * that wants to block transit.
909 */
910 if (unlikely(managed_dentry_might_block(path->dentry)))
911 return false;
912
913 if (!d_mountpoint(path->dentry))
914 break;
915
916 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
917 if (!mounted)
918 break;
919 path->mnt = &mounted->mnt;
920 path->dentry = mounted->mnt.mnt_root;
921 nd->flags |= LOOKUP_JUMPED;
922 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
923 /*
924 * Update the inode too. We don't need to re-check the
925 * dentry sequence number here after this d_inode read,
926 * because a mount-point is always pinned.
927 */
928 *inode = path->dentry->d_inode;
929 }
930 return true;
931}
932
933static void follow_mount_rcu(struct nameidata *nd)
934{
935 while (d_mountpoint(nd->path.dentry)) {
936 struct mount *mounted;
937 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
938 if (!mounted)
939 break;
940 nd->path.mnt = &mounted->mnt;
941 nd->path.dentry = mounted->mnt.mnt_root;
942 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
943 }
944}
945
946static int follow_dotdot_rcu(struct nameidata *nd)
947{
948 if (!nd->root.mnt)
949 set_root_rcu(nd);
950
951 while (1) {
952 if (nd->path.dentry == nd->root.dentry &&
953 nd->path.mnt == nd->root.mnt) {
954 break;
955 }
956 if (nd->path.dentry != nd->path.mnt->mnt_root) {
957 struct dentry *old = nd->path.dentry;
958 struct dentry *parent = old->d_parent;
959 unsigned seq;
960
961 seq = read_seqcount_begin(&parent->d_seq);
962 if (read_seqcount_retry(&old->d_seq, nd->seq))
963 goto failed;
964 nd->path.dentry = parent;
965 nd->seq = seq;
966 if (unlikely(!path_connected(&nd->path)))
967 goto failed;
968 break;
969 }
970 if (!follow_up_rcu(&nd->path))
971 break;
972 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
973 }
974 follow_mount_rcu(nd);
975 nd->inode = nd->path.dentry->d_inode;
976 return 0;
977
978failed:
979 nd->flags &= ~LOOKUP_RCU;
980 if (!(nd->flags & LOOKUP_ROOT))
981 nd->root.mnt = NULL;
982 rcu_read_unlock();
983 br_read_unlock(vfsmount_lock);
984 return -ECHILD;
985}
986
987/*
988 * Follow down to the covering mount currently visible to userspace. At each
989 * point, the filesystem owning that dentry may be queried as to whether the
990 * caller is permitted to proceed or not.
991 */
992int follow_down(struct path *path)
993{
994 unsigned managed;
995 int ret;
996
997 while (managed = ACCESS_ONCE(path->dentry->d_flags),
998 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
999 /* Allow the filesystem to manage the transit without i_mutex
1000 * being held.
1001 *
1002 * We indicate to the filesystem if someone is trying to mount
1003 * something here. This gives autofs the chance to deny anyone
1004 * other than its daemon the right to mount on its
1005 * superstructure.
1006 *
1007 * The filesystem may sleep at this point.
1008 */
1009 if (managed & DCACHE_MANAGE_TRANSIT) {
1010 BUG_ON(!path->dentry->d_op);
1011 BUG_ON(!path->dentry->d_op->d_manage);
1012 ret = path->dentry->d_op->d_manage(
1013 path->dentry, false);
1014 if (ret < 0)
1015 return ret == -EISDIR ? 0 : ret;
1016 }
1017
1018 /* Transit to a mounted filesystem. */
1019 if (managed & DCACHE_MOUNTED) {
1020 struct vfsmount *mounted = lookup_mnt(path);
1021 if (!mounted)
1022 break;
1023 dput(path->dentry);
1024 mntput(path->mnt);
1025 path->mnt = mounted;
1026 path->dentry = dget(mounted->mnt_root);
1027 continue;
1028 }
1029
1030 /* Don't handle automount points here */
1031 break;
1032 }
1033 return 0;
1034}
1035
1036/*
1037 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1038 */
1039static void follow_mount(struct path *path)
1040{
1041 while (d_mountpoint(path->dentry)) {
1042 struct vfsmount *mounted = lookup_mnt(path);
1043 if (!mounted)
1044 break;
1045 dput(path->dentry);
1046 mntput(path->mnt);
1047 path->mnt = mounted;
1048 path->dentry = dget(mounted->mnt_root);
1049 }
1050}
1051
1052static int follow_dotdot(struct nameidata *nd)
1053{
1054 if (!nd->root.mnt)
1055 set_root(nd);
1056
1057 while(1) {
1058 struct dentry *old = nd->path.dentry;
1059
1060 if (nd->path.dentry == nd->root.dentry &&
1061 nd->path.mnt == nd->root.mnt) {
1062 break;
1063 }
1064 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1065 /* rare case of legitimate dget_parent()... */
1066 nd->path.dentry = dget_parent(nd->path.dentry);
1067 dput(old);
1068 if (unlikely(!path_connected(&nd->path))) {
1069 path_put(&nd->path);
1070 return -ENOENT;
1071 }
1072 break;
1073 }
1074 if (!follow_up(&nd->path))
1075 break;
1076 }
1077 follow_mount(&nd->path);
1078 nd->inode = nd->path.dentry->d_inode;
1079 return 0;
1080}
1081
1082/*
1083 * This looks up the name in dcache, possibly revalidates the old dentry and
1084 * allocates a new one if not found or not valid. In the need_lookup argument
1085 * returns whether i_op->lookup is necessary.
1086 *
1087 * dir->d_inode->i_mutex must be held
1088 */
1089static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1090 struct nameidata *nd, bool *need_lookup)
1091{
1092 struct dentry *dentry;
1093 int error;
1094
1095 *need_lookup = false;
1096 dentry = d_lookup(dir, name);
1097 if (dentry) {
1098 if (d_need_lookup(dentry)) {
1099 *need_lookup = true;
1100 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1101 error = d_revalidate(dentry, nd);
1102 if (unlikely(error <= 0)) {
1103 if (error < 0) {
1104 dput(dentry);
1105 return ERR_PTR(error);
1106 } else if (!d_invalidate(dentry)) {
1107 dput(dentry);
1108 dentry = NULL;
1109 }
1110 }
1111 }
1112 }
1113
1114 if (!dentry) {
1115 dentry = d_alloc(dir, name);
1116 if (unlikely(!dentry))
1117 return ERR_PTR(-ENOMEM);
1118
1119 *need_lookup = true;
1120 }
1121 return dentry;
1122}
1123
1124/*
1125 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1126 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1127 *
1128 * dir->d_inode->i_mutex must be held
1129 */
1130static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1131 struct nameidata *nd)
1132{
1133 struct dentry *old;
1134
1135 /* Don't create child dentry for a dead directory. */
1136 if (unlikely(IS_DEADDIR(dir))) {
1137 dput(dentry);
1138 return ERR_PTR(-ENOENT);
1139 }
1140
1141 old = dir->i_op->lookup(dir, dentry, nd);
1142 if (unlikely(old)) {
1143 dput(dentry);
1144 dentry = old;
1145 }
1146 return dentry;
1147}
1148
1149static struct dentry *__lookup_hash(struct qstr *name,
1150 struct dentry *base, struct nameidata *nd)
1151{
1152 bool need_lookup;
1153 struct dentry *dentry;
1154
1155 dentry = lookup_dcache(name, base, nd, &need_lookup);
1156 if (!need_lookup)
1157 return dentry;
1158
1159 return lookup_real(base->d_inode, dentry, nd);
1160}
1161
1162/*
1163 * It's more convoluted than I'd like it to be, but... it's still fairly
1164 * small and for now I'd prefer to have fast path as straight as possible.
1165 * It _is_ time-critical.
1166 */
1167static int do_lookup(struct nameidata *nd, struct qstr *name,
1168 struct path *path, struct inode **inode)
1169{
1170 struct vfsmount *mnt = nd->path.mnt;
1171 struct dentry *dentry, *parent = nd->path.dentry;
1172 int need_reval = 1;
1173 int status = 1;
1174 int err;
1175
1176 /*
1177 * Rename seqlock is not required here because in the off chance
1178 * of a false negative due to a concurrent rename, we're going to
1179 * do the non-racy lookup, below.
1180 */
1181 if (nd->flags & LOOKUP_RCU) {
1182 unsigned seq;
1183 *inode = nd->inode;
1184 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1185 if (!dentry)
1186 goto unlazy;
1187
1188 /* Memory barrier in read_seqcount_begin of child is enough */
1189 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1190 return -ECHILD;
1191 nd->seq = seq;
1192
1193 if (unlikely(d_need_lookup(dentry)))
1194 goto unlazy;
1195 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1196 status = d_revalidate(dentry, nd);
1197 if (unlikely(status <= 0)) {
1198 if (status != -ECHILD)
1199 need_reval = 0;
1200 goto unlazy;
1201 }
1202 }
1203 path->mnt = mnt;
1204 path->dentry = dentry;
1205 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1206 goto unlazy;
1207 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1208 goto unlazy;
1209 return 0;
1210unlazy:
1211 if (unlazy_walk(nd, dentry))
1212 return -ECHILD;
1213 } else {
1214 dentry = __d_lookup(parent, name);
1215 }
1216
1217 if (unlikely(!dentry))
1218 goto need_lookup;
1219
1220 if (unlikely(d_need_lookup(dentry))) {
1221 dput(dentry);
1222 goto need_lookup;
1223 }
1224
1225 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1226 status = d_revalidate(dentry, nd);
1227 if (unlikely(status <= 0)) {
1228 if (status < 0) {
1229 dput(dentry);
1230 return status;
1231 }
1232 if (!d_invalidate(dentry)) {
1233 dput(dentry);
1234 goto need_lookup;
1235 }
1236 }
1237done:
1238 path->mnt = mnt;
1239 path->dentry = dentry;
1240 err = follow_managed(path, nd->flags);
1241 if (unlikely(err < 0)) {
1242 path_put_conditional(path, nd);
1243 return err;
1244 }
1245 if (err)
1246 nd->flags |= LOOKUP_JUMPED;
1247 *inode = path->dentry->d_inode;
1248 return 0;
1249
1250need_lookup:
1251 BUG_ON(nd->inode != parent->d_inode);
1252
1253 mutex_lock(&parent->d_inode->i_mutex);
1254 dentry = __lookup_hash(name, parent, nd);
1255 mutex_unlock(&parent->d_inode->i_mutex);
1256 if (IS_ERR(dentry))
1257 return PTR_ERR(dentry);
1258 goto done;
1259}
1260
1261static inline int may_lookup(struct nameidata *nd)
1262{
1263 if (nd->flags & LOOKUP_RCU) {
1264 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1265 if (err != -ECHILD)
1266 return err;
1267 if (unlazy_walk(nd, NULL))
1268 return -ECHILD;
1269 }
1270 return inode_permission(nd->inode, MAY_EXEC);
1271}
1272
1273static inline int handle_dots(struct nameidata *nd, int type)
1274{
1275 if (type == LAST_DOTDOT) {
1276 if (nd->flags & LOOKUP_RCU) {
1277 if (follow_dotdot_rcu(nd))
1278 return -ECHILD;
1279 } else
1280 return follow_dotdot(nd);
1281 }
1282 return 0;
1283}
1284
1285static void terminate_walk(struct nameidata *nd)
1286{
1287 if (!(nd->flags & LOOKUP_RCU)) {
1288 path_put(&nd->path);
1289 } else {
1290 nd->flags &= ~LOOKUP_RCU;
1291 if (!(nd->flags & LOOKUP_ROOT))
1292 nd->root.mnt = NULL;
1293 rcu_read_unlock();
1294 br_read_unlock(vfsmount_lock);
1295 }
1296}
1297
1298/*
1299 * Do we need to follow links? We _really_ want to be able
1300 * to do this check without having to look at inode->i_op,
1301 * so we keep a cache of "no, this doesn't need follow_link"
1302 * for the common case.
1303 */
1304static inline int should_follow_link(struct inode *inode, int follow)
1305{
1306 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1307 if (likely(inode->i_op->follow_link))
1308 return follow;
1309
1310 /* This gets set once for the inode lifetime */
1311 spin_lock(&inode->i_lock);
1312 inode->i_opflags |= IOP_NOFOLLOW;
1313 spin_unlock(&inode->i_lock);
1314 }
1315 return 0;
1316}
1317
1318static inline int walk_component(struct nameidata *nd, struct path *path,
1319 struct qstr *name, int type, int follow)
1320{
1321 struct inode *inode;
1322 int err;
1323 /*
1324 * "." and ".." are special - ".." especially so because it has
1325 * to be able to know about the current root directory and
1326 * parent relationships.
1327 */
1328 if (unlikely(type != LAST_NORM))
1329 return handle_dots(nd, type);
1330 err = do_lookup(nd, name, path, &inode);
1331 if (unlikely(err)) {
1332 terminate_walk(nd);
1333 return err;
1334 }
1335 if (!inode) {
1336 path_to_nameidata(path, nd);
1337 terminate_walk(nd);
1338 return -ENOENT;
1339 }
1340 if (should_follow_link(inode, follow)) {
1341 if (nd->flags & LOOKUP_RCU) {
1342 if (unlikely(nd->path.mnt != path->mnt ||
1343 unlazy_walk(nd, path->dentry))) {
1344 terminate_walk(nd);
1345 return -ECHILD;
1346 }
1347 }
1348 BUG_ON(inode != path->dentry->d_inode);
1349 return 1;
1350 }
1351 path_to_nameidata(path, nd);
1352 nd->inode = inode;
1353 return 0;
1354}
1355
1356/*
1357 * This limits recursive symlink follows to 8, while
1358 * limiting consecutive symlinks to 40.
1359 *
1360 * Without that kind of total limit, nasty chains of consecutive
1361 * symlinks can cause almost arbitrarily long lookups.
1362 */
1363static inline int nested_symlink(struct path *path, struct nameidata *nd)
1364{
1365 int res;
1366
1367 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1368 path_put_conditional(path, nd);
1369 path_put(&nd->path);
1370 return -ELOOP;
1371 }
1372 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1373
1374 nd->depth++;
1375 current->link_count++;
1376
1377 do {
1378 struct path link = *path;
1379 void *cookie;
1380
1381 res = follow_link(&link, nd, &cookie);
1382 if (!res)
1383 res = walk_component(nd, path, &nd->last,
1384 nd->last_type, LOOKUP_FOLLOW);
1385 put_link(nd, &link, cookie);
1386 } while (res > 0);
1387
1388 current->link_count--;
1389 nd->depth--;
1390 return res;
1391}
1392
1393/*
1394 * We really don't want to look at inode->i_op->lookup
1395 * when we don't have to. So we keep a cache bit in
1396 * the inode ->i_opflags field that says "yes, we can
1397 * do lookup on this inode".
1398 */
1399static inline int can_lookup(struct inode *inode)
1400{
1401 if (likely(inode->i_opflags & IOP_LOOKUP))
1402 return 1;
1403 if (likely(!inode->i_op->lookup))
1404 return 0;
1405
1406 /* We do this once for the lifetime of the inode */
1407 spin_lock(&inode->i_lock);
1408 inode->i_opflags |= IOP_LOOKUP;
1409 spin_unlock(&inode->i_lock);
1410 return 1;
1411}
1412
1413/*
1414 * We can do the critical dentry name comparison and hashing
1415 * operations one word at a time, but we are limited to:
1416 *
1417 * - Architectures with fast unaligned word accesses. We could
1418 * do a "get_unaligned()" if this helps and is sufficiently
1419 * fast.
1420 *
1421 * - Little-endian machines (so that we can generate the mask
1422 * of low bytes efficiently). Again, we *could* do a byte
1423 * swapping load on big-endian architectures if that is not
1424 * expensive enough to make the optimization worthless.
1425 *
1426 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1427 * do not trap on the (extremely unlikely) case of a page
1428 * crossing operation.
1429 *
1430 * - Furthermore, we need an efficient 64-bit compile for the
1431 * 64-bit case in order to generate the "number of bytes in
1432 * the final mask". Again, that could be replaced with a
1433 * efficient population count instruction or similar.
1434 */
1435#ifdef CONFIG_DCACHE_WORD_ACCESS
1436
1437#include <asm/word-at-a-time.h>
1438
1439#ifdef CONFIG_64BIT
1440
1441static inline unsigned int fold_hash(unsigned long hash)
1442{
1443 hash += hash >> (8*sizeof(int));
1444 return hash;
1445}
1446
1447#else /* 32-bit case */
1448
1449#define fold_hash(x) (x)
1450
1451#endif
1452
1453unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1454{
1455 unsigned long a, mask;
1456 unsigned long hash = 0;
1457
1458 for (;;) {
1459 a = load_unaligned_zeropad(name);
1460 if (len < sizeof(unsigned long))
1461 break;
1462 hash += a;
1463 hash *= 9;
1464 name += sizeof(unsigned long);
1465 len -= sizeof(unsigned long);
1466 if (!len)
1467 goto done;
1468 }
1469 mask = ~(~0ul << len*8);
1470 hash += mask & a;
1471done:
1472 return fold_hash(hash);
1473}
1474EXPORT_SYMBOL(full_name_hash);
1475
1476/*
1477 * Calculate the length and hash of the path component, and
1478 * return the length of the component;
1479 */
1480static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1481{
1482 unsigned long a, mask, hash, len;
1483
1484 hash = a = 0;
1485 len = -sizeof(unsigned long);
1486 do {
1487 hash = (hash + a) * 9;
1488 len += sizeof(unsigned long);
1489 a = load_unaligned_zeropad(name+len);
1490 /* Do we have any NUL or '/' bytes in this word? */
1491 mask = has_zero(a) | has_zero(a ^ REPEAT_BYTE('/'));
1492 } while (!mask);
1493
1494 /* The mask *below* the first high bit set */
1495 mask = (mask - 1) & ~mask;
1496 mask >>= 7;
1497 hash += a & mask;
1498 *hashp = fold_hash(hash);
1499
1500 return len + count_masked_bytes(mask);
1501}
1502
1503#else
1504
1505unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1506{
1507 unsigned long hash = init_name_hash();
1508 while (len--)
1509 hash = partial_name_hash(*name++, hash);
1510 return end_name_hash(hash);
1511}
1512EXPORT_SYMBOL(full_name_hash);
1513
1514/*
1515 * We know there's a real path component here of at least
1516 * one character.
1517 */
1518static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1519{
1520 unsigned long hash = init_name_hash();
1521 unsigned long len = 0, c;
1522
1523 c = (unsigned char)*name;
1524 do {
1525 len++;
1526 hash = partial_name_hash(c, hash);
1527 c = (unsigned char)name[len];
1528 } while (c && c != '/');
1529 *hashp = end_name_hash(hash);
1530 return len;
1531}
1532
1533#endif
1534
1535/*
1536 * Name resolution.
1537 * This is the basic name resolution function, turning a pathname into
1538 * the final dentry. We expect 'base' to be positive and a directory.
1539 *
1540 * Returns 0 and nd will have valid dentry and mnt on success.
1541 * Returns error and drops reference to input namei data on failure.
1542 */
1543static int link_path_walk(const char *name, struct nameidata *nd)
1544{
1545 struct path next;
1546 int err;
1547
1548 while (*name=='/')
1549 name++;
1550 if (!*name)
1551 return 0;
1552
1553 /* At this point we know we have a real path component. */
1554 for(;;) {
1555 struct qstr this;
1556 long len;
1557 int type;
1558
1559 err = may_lookup(nd);
1560 if (err)
1561 break;
1562
1563 len = hash_name(name, &this.hash);
1564 this.name = name;
1565 this.len = len;
1566
1567 type = LAST_NORM;
1568 if (name[0] == '.') switch (len) {
1569 case 2:
1570 if (name[1] == '.') {
1571 type = LAST_DOTDOT;
1572 nd->flags |= LOOKUP_JUMPED;
1573 }
1574 break;
1575 case 1:
1576 type = LAST_DOT;
1577 }
1578 if (likely(type == LAST_NORM)) {
1579 struct dentry *parent = nd->path.dentry;
1580 nd->flags &= ~LOOKUP_JUMPED;
1581 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1582 err = parent->d_op->d_hash(parent, nd->inode,
1583 &this);
1584 if (err < 0)
1585 break;
1586 }
1587 }
1588
1589 if (!name[len])
1590 goto last_component;
1591 /*
1592 * If it wasn't NUL, we know it was '/'. Skip that
1593 * slash, and continue until no more slashes.
1594 */
1595 do {
1596 len++;
1597 } while (unlikely(name[len] == '/'));
1598 if (!name[len])
1599 goto last_component;
1600 name += len;
1601
1602 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1603 if (err < 0)
1604 return err;
1605
1606 if (err) {
1607 err = nested_symlink(&next, nd);
1608 if (err)
1609 return err;
1610 }
1611 if (can_lookup(nd->inode))
1612 continue;
1613 err = -ENOTDIR;
1614 break;
1615 /* here ends the main loop */
1616
1617last_component:
1618 nd->last = this;
1619 nd->last_type = type;
1620 return 0;
1621 }
1622 terminate_walk(nd);
1623 return err;
1624}
1625
1626static int path_init(int dfd, const char *name, unsigned int flags,
1627 struct nameidata *nd, struct file **fp)
1628{
1629 int retval = 0;
1630 int fput_needed;
1631 struct file *file;
1632
1633 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1634 nd->flags = flags | LOOKUP_JUMPED;
1635 nd->depth = 0;
1636 if (flags & LOOKUP_ROOT) {
1637 struct inode *inode = nd->root.dentry->d_inode;
1638 if (*name) {
1639 if (!inode->i_op->lookup)
1640 return -ENOTDIR;
1641 retval = inode_permission(inode, MAY_EXEC);
1642 if (retval)
1643 return retval;
1644 }
1645 nd->path = nd->root;
1646 nd->inode = inode;
1647 if (flags & LOOKUP_RCU) {
1648 br_read_lock(vfsmount_lock);
1649 rcu_read_lock();
1650 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1651 } else {
1652 path_get(&nd->path);
1653 }
1654 return 0;
1655 }
1656
1657 nd->root.mnt = NULL;
1658
1659 if (*name=='/') {
1660 if (flags & LOOKUP_RCU) {
1661 br_read_lock(vfsmount_lock);
1662 rcu_read_lock();
1663 nd->seq = set_root_rcu(nd);
1664 } else {
1665 set_root(nd);
1666 path_get(&nd->root);
1667 }
1668 nd->path = nd->root;
1669 } else if (dfd == AT_FDCWD) {
1670 if (flags & LOOKUP_RCU) {
1671 struct fs_struct *fs = current->fs;
1672 unsigned seq;
1673
1674 br_read_lock(vfsmount_lock);
1675 rcu_read_lock();
1676
1677 do {
1678 seq = read_seqcount_begin(&fs->seq);
1679 nd->path = fs->pwd;
1680 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1681 } while (read_seqcount_retry(&fs->seq, seq));
1682 } else {
1683 get_fs_pwd(current->fs, &nd->path);
1684 }
1685 } else {
1686 struct dentry *dentry;
1687
1688 file = fget_raw_light(dfd, &fput_needed);
1689 retval = -EBADF;
1690 if (!file)
1691 goto out_fail;
1692
1693 dentry = file->f_path.dentry;
1694
1695 if (*name) {
1696 retval = -ENOTDIR;
1697 if (!S_ISDIR(dentry->d_inode->i_mode))
1698 goto fput_fail;
1699
1700 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1701 if (retval)
1702 goto fput_fail;
1703 }
1704
1705 nd->path = file->f_path;
1706 if (flags & LOOKUP_RCU) {
1707 if (fput_needed)
1708 *fp = file;
1709 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1710 br_read_lock(vfsmount_lock);
1711 rcu_read_lock();
1712 } else {
1713 path_get(&file->f_path);
1714 fput_light(file, fput_needed);
1715 }
1716 }
1717
1718 nd->inode = nd->path.dentry->d_inode;
1719 return 0;
1720
1721fput_fail:
1722 fput_light(file, fput_needed);
1723out_fail:
1724 return retval;
1725}
1726
1727static inline int lookup_last(struct nameidata *nd, struct path *path)
1728{
1729 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1730 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1731
1732 nd->flags &= ~LOOKUP_PARENT;
1733 return walk_component(nd, path, &nd->last, nd->last_type,
1734 nd->flags & LOOKUP_FOLLOW);
1735}
1736
1737/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1738static int path_lookupat(int dfd, const char *name,
1739 unsigned int flags, struct nameidata *nd)
1740{
1741 struct file *base = NULL;
1742 struct path path;
1743 int err;
1744
1745 /*
1746 * Path walking is largely split up into 2 different synchronisation
1747 * schemes, rcu-walk and ref-walk (explained in
1748 * Documentation/filesystems/path-lookup.txt). These share much of the
1749 * path walk code, but some things particularly setup, cleanup, and
1750 * following mounts are sufficiently divergent that functions are
1751 * duplicated. Typically there is a function foo(), and its RCU
1752 * analogue, foo_rcu().
1753 *
1754 * -ECHILD is the error number of choice (just to avoid clashes) that
1755 * is returned if some aspect of an rcu-walk fails. Such an error must
1756 * be handled by restarting a traditional ref-walk (which will always
1757 * be able to complete).
1758 */
1759 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1760
1761 if (unlikely(err))
1762 return err;
1763
1764 current->total_link_count = 0;
1765 err = link_path_walk(name, nd);
1766
1767 if (!err && !(flags & LOOKUP_PARENT)) {
1768 err = lookup_last(nd, &path);
1769 while (err > 0) {
1770 void *cookie;
1771 struct path link = path;
1772 nd->flags |= LOOKUP_PARENT;
1773 err = follow_link(&link, nd, &cookie);
1774 if (!err)
1775 err = lookup_last(nd, &path);
1776 put_link(nd, &link, cookie);
1777 }
1778 }
1779
1780 if (!err)
1781 err = complete_walk(nd);
1782
1783 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1784 if (!nd->inode->i_op->lookup) {
1785 path_put(&nd->path);
1786 err = -ENOTDIR;
1787 }
1788 }
1789
1790 if (base)
1791 fput(base);
1792
1793 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1794 path_put(&nd->root);
1795 nd->root.mnt = NULL;
1796 }
1797 return err;
1798}
1799
1800static int do_path_lookup(int dfd, const char *name,
1801 unsigned int flags, struct nameidata *nd)
1802{
1803 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1804 if (unlikely(retval == -ECHILD))
1805 retval = path_lookupat(dfd, name, flags, nd);
1806 if (unlikely(retval == -ESTALE))
1807 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1808
1809 if (likely(!retval)) {
1810 if (unlikely(!audit_dummy_context())) {
1811 if (nd->path.dentry && nd->inode)
1812 audit_inode(name, nd->path.dentry);
1813 }
1814 }
1815 return retval;
1816}
1817
1818int kern_path_parent(const char *name, struct nameidata *nd)
1819{
1820 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1821}
1822
1823int kern_path(const char *name, unsigned int flags, struct path *path)
1824{
1825 struct nameidata nd;
1826 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1827 if (!res)
1828 *path = nd.path;
1829 return res;
1830}
1831
1832/**
1833 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1834 * @dentry: pointer to dentry of the base directory
1835 * @mnt: pointer to vfs mount of the base directory
1836 * @name: pointer to file name
1837 * @flags: lookup flags
1838 * @path: pointer to struct path to fill
1839 */
1840int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1841 const char *name, unsigned int flags,
1842 struct path *path)
1843{
1844 struct nameidata nd;
1845 int err;
1846 nd.root.dentry = dentry;
1847 nd.root.mnt = mnt;
1848 BUG_ON(flags & LOOKUP_PARENT);
1849 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1850 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1851 if (!err)
1852 *path = nd.path;
1853 return err;
1854}
1855
1856/*
1857 * Restricted form of lookup. Doesn't follow links, single-component only,
1858 * needs parent already locked. Doesn't follow mounts.
1859 * SMP-safe.
1860 */
1861static struct dentry *lookup_hash(struct nameidata *nd)
1862{
1863 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1864}
1865
1866/**
1867 * lookup_one_len - filesystem helper to lookup single pathname component
1868 * @name: pathname component to lookup
1869 * @base: base directory to lookup from
1870 * @len: maximum length @len should be interpreted to
1871 *
1872 * Note that this routine is purely a helper for filesystem usage and should
1873 * not be called by generic code. Also note that by using this function the
1874 * nameidata argument is passed to the filesystem methods and a filesystem
1875 * using this helper needs to be prepared for that.
1876 */
1877struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1878{
1879 struct qstr this;
1880 unsigned int c;
1881 int err;
1882
1883 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1884
1885 this.name = name;
1886 this.len = len;
1887 this.hash = full_name_hash(name, len);
1888 if (!len)
1889 return ERR_PTR(-EACCES);
1890
1891 while (len--) {
1892 c = *(const unsigned char *)name++;
1893 if (c == '/' || c == '\0')
1894 return ERR_PTR(-EACCES);
1895 }
1896 /*
1897 * See if the low-level filesystem might want
1898 * to use its own hash..
1899 */
1900 if (base->d_flags & DCACHE_OP_HASH) {
1901 int err = base->d_op->d_hash(base, base->d_inode, &this);
1902 if (err < 0)
1903 return ERR_PTR(err);
1904 }
1905
1906 err = inode_permission(base->d_inode, MAY_EXEC);
1907 if (err)
1908 return ERR_PTR(err);
1909
1910 return __lookup_hash(&this, base, NULL);
1911}
1912
1913int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1914 struct path *path, int *empty)
1915{
1916 struct nameidata nd;
1917 char *tmp = getname_flags(name, flags, empty);
1918 int err = PTR_ERR(tmp);
1919 if (!IS_ERR(tmp)) {
1920
1921 BUG_ON(flags & LOOKUP_PARENT);
1922
1923 err = do_path_lookup(dfd, tmp, flags, &nd);
1924 putname(tmp);
1925 if (!err)
1926 *path = nd.path;
1927 }
1928 return err;
1929}
1930
1931int user_path_at(int dfd, const char __user *name, unsigned flags,
1932 struct path *path)
1933{
1934 return user_path_at_empty(dfd, name, flags, path, NULL);
1935}
1936
1937static int user_path_parent(int dfd, const char __user *path,
1938 struct nameidata *nd, char **name)
1939{
1940 char *s = getname(path);
1941 int error;
1942
1943 if (IS_ERR(s))
1944 return PTR_ERR(s);
1945
1946 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1947 if (error)
1948 putname(s);
1949 else
1950 *name = s;
1951
1952 return error;
1953}
1954
1955/*
1956 * It's inline, so penalty for filesystems that don't use sticky bit is
1957 * minimal.
1958 */
1959static inline int check_sticky(struct inode *dir, struct inode *inode)
1960{
1961 uid_t fsuid = current_fsuid();
1962
1963 if (!(dir->i_mode & S_ISVTX))
1964 return 0;
1965 if (current_user_ns() != inode_userns(inode))
1966 goto other_userns;
1967 if (inode->i_uid == fsuid)
1968 return 0;
1969 if (dir->i_uid == fsuid)
1970 return 0;
1971
1972other_userns:
1973 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1974}
1975
1976/*
1977 * Check whether we can remove a link victim from directory dir, check
1978 * whether the type of victim is right.
1979 * 1. We can't do it if dir is read-only (done in permission())
1980 * 2. We should have write and exec permissions on dir
1981 * 3. We can't remove anything from append-only dir
1982 * 4. We can't do anything with immutable dir (done in permission())
1983 * 5. If the sticky bit on dir is set we should either
1984 * a. be owner of dir, or
1985 * b. be owner of victim, or
1986 * c. have CAP_FOWNER capability
1987 * 6. If the victim is append-only or immutable we can't do antyhing with
1988 * links pointing to it.
1989 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1990 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1991 * 9. We can't remove a root or mountpoint.
1992 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1993 * nfs_async_unlink().
1994 */
1995static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1996{
1997 int error;
1998
1999 if (!victim->d_inode)
2000 return -ENOENT;
2001
2002 BUG_ON(victim->d_parent->d_inode != dir);
2003 audit_inode_child(victim, dir);
2004
2005 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2006 if (error)
2007 return error;
2008 if (IS_APPEND(dir))
2009 return -EPERM;
2010 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2011 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2012 return -EPERM;
2013 if (isdir) {
2014 if (!S_ISDIR(victim->d_inode->i_mode))
2015 return -ENOTDIR;
2016 if (IS_ROOT(victim))
2017 return -EBUSY;
2018 } else if (S_ISDIR(victim->d_inode->i_mode))
2019 return -EISDIR;
2020 if (IS_DEADDIR(dir))
2021 return -ENOENT;
2022 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2023 return -EBUSY;
2024 return 0;
2025}
2026
2027/* Check whether we can create an object with dentry child in directory
2028 * dir.
2029 * 1. We can't do it if child already exists (open has special treatment for
2030 * this case, but since we are inlined it's OK)
2031 * 2. We can't do it if dir is read-only (done in permission())
2032 * 3. We should have write and exec permissions on dir
2033 * 4. We can't do it if dir is immutable (done in permission())
2034 */
2035static inline int may_create(struct inode *dir, struct dentry *child)
2036{
2037 if (child->d_inode)
2038 return -EEXIST;
2039 if (IS_DEADDIR(dir))
2040 return -ENOENT;
2041 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2042}
2043
2044/*
2045 * p1 and p2 should be directories on the same fs.
2046 */
2047struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2048{
2049 struct dentry *p;
2050
2051 if (p1 == p2) {
2052 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2053 return NULL;
2054 }
2055
2056 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2057
2058 p = d_ancestor(p2, p1);
2059 if (p) {
2060 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2061 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2062 return p;
2063 }
2064
2065 p = d_ancestor(p1, p2);
2066 if (p) {
2067 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2068 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2069 return p;
2070 }
2071
2072 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2073 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2074 return NULL;
2075}
2076
2077void unlock_rename(struct dentry *p1, struct dentry *p2)
2078{
2079 mutex_unlock(&p1->d_inode->i_mutex);
2080 if (p1 != p2) {
2081 mutex_unlock(&p2->d_inode->i_mutex);
2082 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2083 }
2084}
2085
2086int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2087 struct nameidata *nd)
2088{
2089 int error = may_create(dir, dentry);
2090
2091 if (error)
2092 return error;
2093
2094 if (!dir->i_op->create)
2095 return -EACCES; /* shouldn't it be ENOSYS? */
2096 mode &= S_IALLUGO;
2097 mode |= S_IFREG;
2098 error = security_inode_create(dir, dentry, mode);
2099 if (error)
2100 return error;
2101 error = dir->i_op->create(dir, dentry, mode, nd);
2102 if (!error)
2103 fsnotify_create(dir, dentry);
2104 return error;
2105}
2106
2107static int may_open(struct path *path, int acc_mode, int flag)
2108{
2109 struct dentry *dentry = path->dentry;
2110 struct inode *inode = dentry->d_inode;
2111 int error;
2112
2113 /* O_PATH? */
2114 if (!acc_mode)
2115 return 0;
2116
2117 if (!inode)
2118 return -ENOENT;
2119
2120 switch (inode->i_mode & S_IFMT) {
2121 case S_IFLNK:
2122 return -ELOOP;
2123 case S_IFDIR:
2124 if (acc_mode & MAY_WRITE)
2125 return -EISDIR;
2126 break;
2127 case S_IFBLK:
2128 case S_IFCHR:
2129 if (path->mnt->mnt_flags & MNT_NODEV)
2130 return -EACCES;
2131 /*FALLTHRU*/
2132 case S_IFIFO:
2133 case S_IFSOCK:
2134 flag &= ~O_TRUNC;
2135 break;
2136 }
2137
2138 error = inode_permission(inode, acc_mode);
2139 if (error)
2140 return error;
2141
2142 /*
2143 * An append-only file must be opened in append mode for writing.
2144 */
2145 if (IS_APPEND(inode)) {
2146 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2147 return -EPERM;
2148 if (flag & O_TRUNC)
2149 return -EPERM;
2150 }
2151
2152 /* O_NOATIME can only be set by the owner or superuser */
2153 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2154 return -EPERM;
2155
2156 return 0;
2157}
2158
2159static int handle_truncate(struct file *filp)
2160{
2161 struct path *path = &filp->f_path;
2162 struct inode *inode = path->dentry->d_inode;
2163 int error = get_write_access(inode);
2164 if (error)
2165 return error;
2166 /*
2167 * Refuse to truncate files with mandatory locks held on them.
2168 */
2169 error = locks_verify_locked(inode);
2170 if (!error)
2171 error = security_path_truncate(path);
2172 if (!error) {
2173 error = do_truncate(path->dentry, 0,
2174 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2175 filp);
2176 }
2177 put_write_access(inode);
2178 return error;
2179}
2180
2181static inline int open_to_namei_flags(int flag)
2182{
2183 if ((flag & O_ACCMODE) == 3)
2184 flag--;
2185 return flag;
2186}
2187
2188/*
2189 * Handle the last step of open()
2190 */
2191static struct file *do_last(struct nameidata *nd, struct path *path,
2192 const struct open_flags *op, const char *pathname)
2193{
2194 struct dentry *dir = nd->path.dentry;
2195 struct dentry *dentry;
2196 int open_flag = op->open_flag;
2197 int will_truncate = open_flag & O_TRUNC;
2198 int want_write = 0;
2199 int acc_mode = op->acc_mode;
2200 struct file *filp;
2201 int error;
2202
2203 nd->flags &= ~LOOKUP_PARENT;
2204 nd->flags |= op->intent;
2205
2206 switch (nd->last_type) {
2207 case LAST_DOTDOT:
2208 case LAST_DOT:
2209 error = handle_dots(nd, nd->last_type);
2210 if (error)
2211 return ERR_PTR(error);
2212 /* fallthrough */
2213 case LAST_ROOT:
2214 error = complete_walk(nd);
2215 if (error)
2216 return ERR_PTR(error);
2217 audit_inode(pathname, nd->path.dentry);
2218 if (open_flag & O_CREAT) {
2219 error = -EISDIR;
2220 goto exit;
2221 }
2222 goto ok;
2223 case LAST_BIND:
2224 error = complete_walk(nd);
2225 if (error)
2226 return ERR_PTR(error);
2227 audit_inode(pathname, dir);
2228 goto ok;
2229 }
2230
2231 if (!(open_flag & O_CREAT)) {
2232 int symlink_ok = 0;
2233 if (nd->last.name[nd->last.len])
2234 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2235 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2236 symlink_ok = 1;
2237 /* we _can_ be in RCU mode here */
2238 error = walk_component(nd, path, &nd->last, LAST_NORM,
2239 !symlink_ok);
2240 if (error < 0)
2241 return ERR_PTR(error);
2242 if (error) /* symlink */
2243 return NULL;
2244 /* sayonara */
2245 error = complete_walk(nd);
2246 if (error)
2247 return ERR_PTR(error);
2248
2249 error = -ENOTDIR;
2250 if (nd->flags & LOOKUP_DIRECTORY) {
2251 if (!nd->inode->i_op->lookup)
2252 goto exit;
2253 }
2254 audit_inode(pathname, nd->path.dentry);
2255 goto ok;
2256 }
2257
2258 /* create side of things */
2259 /*
2260 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2261 * cleared when we got to the last component we are about to look up
2262 */
2263 error = complete_walk(nd);
2264 if (error)
2265 return ERR_PTR(error);
2266
2267 audit_inode(pathname, dir);
2268 error = -EISDIR;
2269 /* trailing slashes? */
2270 if (nd->last.name[nd->last.len])
2271 goto exit;
2272
2273 mutex_lock(&dir->d_inode->i_mutex);
2274
2275 dentry = lookup_hash(nd);
2276 error = PTR_ERR(dentry);
2277 if (IS_ERR(dentry)) {
2278 mutex_unlock(&dir->d_inode->i_mutex);
2279 goto exit;
2280 }
2281
2282 path->dentry = dentry;
2283 path->mnt = nd->path.mnt;
2284
2285 /* Negative dentry, just create the file */
2286 if (!dentry->d_inode) {
2287 umode_t mode = op->mode;
2288 if (!IS_POSIXACL(dir->d_inode))
2289 mode &= ~current_umask();
2290 /*
2291 * This write is needed to ensure that a
2292 * rw->ro transition does not occur between
2293 * the time when the file is created and when
2294 * a permanent write count is taken through
2295 * the 'struct file' in nameidata_to_filp().
2296 */
2297 error = mnt_want_write(nd->path.mnt);
2298 if (error)
2299 goto exit_mutex_unlock;
2300 want_write = 1;
2301 /* Don't check for write permission, don't truncate */
2302 open_flag &= ~O_TRUNC;
2303 will_truncate = 0;
2304 acc_mode = MAY_OPEN;
2305 error = security_path_mknod(&nd->path, dentry, mode, 0);
2306 if (error)
2307 goto exit_mutex_unlock;
2308 error = vfs_create(dir->d_inode, dentry, mode, nd);
2309 if (error)
2310 goto exit_mutex_unlock;
2311 mutex_unlock(&dir->d_inode->i_mutex);
2312 dput(nd->path.dentry);
2313 nd->path.dentry = dentry;
2314 goto common;
2315 }
2316
2317 /*
2318 * It already exists.
2319 */
2320 mutex_unlock(&dir->d_inode->i_mutex);
2321 audit_inode(pathname, path->dentry);
2322
2323 error = -EEXIST;
2324 if (open_flag & O_EXCL)
2325 goto exit_dput;
2326
2327 error = follow_managed(path, nd->flags);
2328 if (error < 0)
2329 goto exit_dput;
2330
2331 if (error)
2332 nd->flags |= LOOKUP_JUMPED;
2333
2334 error = -ENOENT;
2335 if (!path->dentry->d_inode)
2336 goto exit_dput;
2337
2338 if (path->dentry->d_inode->i_op->follow_link)
2339 return NULL;
2340
2341 path_to_nameidata(path, nd);
2342 nd->inode = path->dentry->d_inode;
2343 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2344 error = complete_walk(nd);
2345 if (error)
2346 return ERR_PTR(error);
2347 error = -EISDIR;
2348 if (S_ISDIR(nd->inode->i_mode))
2349 goto exit;
2350ok:
2351 if (!S_ISREG(nd->inode->i_mode))
2352 will_truncate = 0;
2353
2354 if (will_truncate) {
2355 error = mnt_want_write(nd->path.mnt);
2356 if (error)
2357 goto exit;
2358 want_write = 1;
2359 }
2360common:
2361 error = may_open(&nd->path, acc_mode, open_flag);
2362 if (error)
2363 goto exit;
2364 filp = nameidata_to_filp(nd);
2365 if (!IS_ERR(filp)) {
2366 error = ima_file_check(filp, op->acc_mode);
2367 if (error) {
2368 fput(filp);
2369 filp = ERR_PTR(error);
2370 }
2371 }
2372 if (!IS_ERR(filp)) {
2373 if (will_truncate) {
2374 error = handle_truncate(filp);
2375 if (error) {
2376 fput(filp);
2377 filp = ERR_PTR(error);
2378 }
2379 }
2380 }
2381out:
2382 if (want_write)
2383 mnt_drop_write(nd->path.mnt);
2384 path_put(&nd->path);
2385 return filp;
2386
2387exit_mutex_unlock:
2388 mutex_unlock(&dir->d_inode->i_mutex);
2389exit_dput:
2390 path_put_conditional(path, nd);
2391exit:
2392 filp = ERR_PTR(error);
2393 goto out;
2394}
2395
2396static struct file *path_openat(int dfd, const char *pathname,
2397 struct nameidata *nd, const struct open_flags *op, int flags)
2398{
2399 struct file *base = NULL;
2400 struct file *filp;
2401 struct path path;
2402 int error;
2403
2404 filp = get_empty_filp();
2405 if (!filp)
2406 return ERR_PTR(-ENFILE);
2407
2408 filp->f_flags = op->open_flag;
2409 nd->intent.open.file = filp;
2410 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2411 nd->intent.open.create_mode = op->mode;
2412
2413 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2414 if (unlikely(error))
2415 goto out_filp;
2416
2417 current->total_link_count = 0;
2418 error = link_path_walk(pathname, nd);
2419 if (unlikely(error))
2420 goto out_filp;
2421
2422 filp = do_last(nd, &path, op, pathname);
2423 while (unlikely(!filp)) { /* trailing symlink */
2424 struct path link = path;
2425 void *cookie;
2426 if (!(nd->flags & LOOKUP_FOLLOW)) {
2427 path_put_conditional(&path, nd);
2428 path_put(&nd->path);
2429 filp = ERR_PTR(-ELOOP);
2430 break;
2431 }
2432 nd->flags |= LOOKUP_PARENT;
2433 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2434 error = follow_link(&link, nd, &cookie);
2435 if (unlikely(error))
2436 filp = ERR_PTR(error);
2437 else
2438 filp = do_last(nd, &path, op, pathname);
2439 put_link(nd, &link, cookie);
2440 }
2441out:
2442 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2443 path_put(&nd->root);
2444 if (base)
2445 fput(base);
2446 release_open_intent(nd);
2447 return filp;
2448
2449out_filp:
2450 filp = ERR_PTR(error);
2451 goto out;
2452}
2453
2454struct file *do_filp_open(int dfd, const char *pathname,
2455 const struct open_flags *op, int flags)
2456{
2457 struct nameidata nd;
2458 struct file *filp;
2459
2460 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2461 if (unlikely(filp == ERR_PTR(-ECHILD)))
2462 filp = path_openat(dfd, pathname, &nd, op, flags);
2463 if (unlikely(filp == ERR_PTR(-ESTALE)))
2464 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2465 return filp;
2466}
2467
2468struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2469 const char *name, const struct open_flags *op, int flags)
2470{
2471 struct nameidata nd;
2472 struct file *file;
2473
2474 nd.root.mnt = mnt;
2475 nd.root.dentry = dentry;
2476
2477 flags |= LOOKUP_ROOT;
2478
2479 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2480 return ERR_PTR(-ELOOP);
2481
2482 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2483 if (unlikely(file == ERR_PTR(-ECHILD)))
2484 file = path_openat(-1, name, &nd, op, flags);
2485 if (unlikely(file == ERR_PTR(-ESTALE)))
2486 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2487 return file;
2488}
2489
2490struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2491{
2492 struct dentry *dentry = ERR_PTR(-EEXIST);
2493 struct nameidata nd;
2494 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2495 if (error)
2496 return ERR_PTR(error);
2497
2498 /*
2499 * Yucky last component or no last component at all?
2500 * (foo/., foo/.., /////)
2501 */
2502 if (nd.last_type != LAST_NORM)
2503 goto out;
2504 nd.flags &= ~LOOKUP_PARENT;
2505 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2506 nd.intent.open.flags = O_EXCL;
2507
2508 /*
2509 * Do the final lookup.
2510 */
2511 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2512 dentry = lookup_hash(&nd);
2513 if (IS_ERR(dentry))
2514 goto fail;
2515
2516 if (dentry->d_inode)
2517 goto eexist;
2518 /*
2519 * Special case - lookup gave negative, but... we had foo/bar/
2520 * From the vfs_mknod() POV we just have a negative dentry -
2521 * all is fine. Let's be bastards - you had / on the end, you've
2522 * been asking for (non-existent) directory. -ENOENT for you.
2523 */
2524 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2525 dput(dentry);
2526 dentry = ERR_PTR(-ENOENT);
2527 goto fail;
2528 }
2529 *path = nd.path;
2530 return dentry;
2531eexist:
2532 dput(dentry);
2533 dentry = ERR_PTR(-EEXIST);
2534fail:
2535 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2536out:
2537 path_put(&nd.path);
2538 return dentry;
2539}
2540EXPORT_SYMBOL(kern_path_create);
2541
2542struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2543{
2544 char *tmp = getname(pathname);
2545 struct dentry *res;
2546 if (IS_ERR(tmp))
2547 return ERR_CAST(tmp);
2548 res = kern_path_create(dfd, tmp, path, is_dir);
2549 putname(tmp);
2550 return res;
2551}
2552EXPORT_SYMBOL(user_path_create);
2553
2554int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2555{
2556 int error = may_create(dir, dentry);
2557
2558 if (error)
2559 return error;
2560
2561 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2562 !ns_capable(inode_userns(dir), CAP_MKNOD))
2563 return -EPERM;
2564
2565 if (!dir->i_op->mknod)
2566 return -EPERM;
2567
2568 error = devcgroup_inode_mknod(mode, dev);
2569 if (error)
2570 return error;
2571
2572 error = security_inode_mknod(dir, dentry, mode, dev);
2573 if (error)
2574 return error;
2575
2576 error = dir->i_op->mknod(dir, dentry, mode, dev);
2577 if (!error)
2578 fsnotify_create(dir, dentry);
2579 return error;
2580}
2581
2582static int may_mknod(umode_t mode)
2583{
2584 switch (mode & S_IFMT) {
2585 case S_IFREG:
2586 case S_IFCHR:
2587 case S_IFBLK:
2588 case S_IFIFO:
2589 case S_IFSOCK:
2590 case 0: /* zero mode translates to S_IFREG */
2591 return 0;
2592 case S_IFDIR:
2593 return -EPERM;
2594 default:
2595 return -EINVAL;
2596 }
2597}
2598
2599SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2600 unsigned, dev)
2601{
2602 struct dentry *dentry;
2603 struct path path;
2604 int error;
2605
2606 if (S_ISDIR(mode))
2607 return -EPERM;
2608
2609 dentry = user_path_create(dfd, filename, &path, 0);
2610 if (IS_ERR(dentry))
2611 return PTR_ERR(dentry);
2612
2613 if (!IS_POSIXACL(path.dentry->d_inode))
2614 mode &= ~current_umask();
2615 error = may_mknod(mode);
2616 if (error)
2617 goto out_dput;
2618 error = mnt_want_write(path.mnt);
2619 if (error)
2620 goto out_dput;
2621 error = security_path_mknod(&path, dentry, mode, dev);
2622 if (error)
2623 goto out_drop_write;
2624 switch (mode & S_IFMT) {
2625 case 0: case S_IFREG:
2626 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2627 break;
2628 case S_IFCHR: case S_IFBLK:
2629 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2630 new_decode_dev(dev));
2631 break;
2632 case S_IFIFO: case S_IFSOCK:
2633 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2634 break;
2635 }
2636out_drop_write:
2637 mnt_drop_write(path.mnt);
2638out_dput:
2639 dput(dentry);
2640 mutex_unlock(&path.dentry->d_inode->i_mutex);
2641 path_put(&path);
2642
2643 return error;
2644}
2645
2646SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2647{
2648 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2649}
2650
2651int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2652{
2653 int error = may_create(dir, dentry);
2654 unsigned max_links = dir->i_sb->s_max_links;
2655
2656 if (error)
2657 return error;
2658
2659 if (!dir->i_op->mkdir)
2660 return -EPERM;
2661
2662 mode &= (S_IRWXUGO|S_ISVTX);
2663 error = security_inode_mkdir(dir, dentry, mode);
2664 if (error)
2665 return error;
2666
2667 if (max_links && dir->i_nlink >= max_links)
2668 return -EMLINK;
2669
2670 error = dir->i_op->mkdir(dir, dentry, mode);
2671 if (!error)
2672 fsnotify_mkdir(dir, dentry);
2673 return error;
2674}
2675
2676SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2677{
2678 struct dentry *dentry;
2679 struct path path;
2680 int error;
2681
2682 dentry = user_path_create(dfd, pathname, &path, 1);
2683 if (IS_ERR(dentry))
2684 return PTR_ERR(dentry);
2685
2686 if (!IS_POSIXACL(path.dentry->d_inode))
2687 mode &= ~current_umask();
2688 error = mnt_want_write(path.mnt);
2689 if (error)
2690 goto out_dput;
2691 error = security_path_mkdir(&path, dentry, mode);
2692 if (error)
2693 goto out_drop_write;
2694 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2695out_drop_write:
2696 mnt_drop_write(path.mnt);
2697out_dput:
2698 dput(dentry);
2699 mutex_unlock(&path.dentry->d_inode->i_mutex);
2700 path_put(&path);
2701 return error;
2702}
2703
2704SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2705{
2706 return sys_mkdirat(AT_FDCWD, pathname, mode);
2707}
2708
2709/*
2710 * The dentry_unhash() helper will try to drop the dentry early: we
2711 * should have a usage count of 1 if we're the only user of this
2712 * dentry, and if that is true (possibly after pruning the dcache),
2713 * then we drop the dentry now.
2714 *
2715 * A low-level filesystem can, if it choses, legally
2716 * do a
2717 *
2718 * if (!d_unhashed(dentry))
2719 * return -EBUSY;
2720 *
2721 * if it cannot handle the case of removing a directory
2722 * that is still in use by something else..
2723 */
2724void dentry_unhash(struct dentry *dentry)
2725{
2726 shrink_dcache_parent(dentry);
2727 spin_lock(&dentry->d_lock);
2728 if (dentry->d_count == 1)
2729 __d_drop(dentry);
2730 spin_unlock(&dentry->d_lock);
2731}
2732
2733int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2734{
2735 int error = may_delete(dir, dentry, 1);
2736
2737 if (error)
2738 return error;
2739
2740 if (!dir->i_op->rmdir)
2741 return -EPERM;
2742
2743 dget(dentry);
2744 mutex_lock(&dentry->d_inode->i_mutex);
2745
2746 error = -EBUSY;
2747 if (d_mountpoint(dentry))
2748 goto out;
2749
2750 error = security_inode_rmdir(dir, dentry);
2751 if (error)
2752 goto out;
2753
2754 shrink_dcache_parent(dentry);
2755 error = dir->i_op->rmdir(dir, dentry);
2756 if (error)
2757 goto out;
2758
2759 dentry->d_inode->i_flags |= S_DEAD;
2760 dont_mount(dentry);
2761
2762out:
2763 mutex_unlock(&dentry->d_inode->i_mutex);
2764 dput(dentry);
2765 if (!error)
2766 d_delete(dentry);
2767 return error;
2768}
2769
2770static long do_rmdir(int dfd, const char __user *pathname)
2771{
2772 int error = 0;
2773 char * name;
2774 struct dentry *dentry;
2775 struct nameidata nd;
2776
2777 error = user_path_parent(dfd, pathname, &nd, &name);
2778 if (error)
2779 return error;
2780
2781 switch(nd.last_type) {
2782 case LAST_DOTDOT:
2783 error = -ENOTEMPTY;
2784 goto exit1;
2785 case LAST_DOT:
2786 error = -EINVAL;
2787 goto exit1;
2788 case LAST_ROOT:
2789 error = -EBUSY;
2790 goto exit1;
2791 }
2792
2793 nd.flags &= ~LOOKUP_PARENT;
2794
2795 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2796 dentry = lookup_hash(&nd);
2797 error = PTR_ERR(dentry);
2798 if (IS_ERR(dentry))
2799 goto exit2;
2800 if (!dentry->d_inode) {
2801 error = -ENOENT;
2802 goto exit3;
2803 }
2804 error = mnt_want_write(nd.path.mnt);
2805 if (error)
2806 goto exit3;
2807 error = security_path_rmdir(&nd.path, dentry);
2808 if (error)
2809 goto exit4;
2810 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2811exit4:
2812 mnt_drop_write(nd.path.mnt);
2813exit3:
2814 dput(dentry);
2815exit2:
2816 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2817exit1:
2818 path_put(&nd.path);
2819 putname(name);
2820 return error;
2821}
2822
2823SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2824{
2825 return do_rmdir(AT_FDCWD, pathname);
2826}
2827
2828int vfs_unlink(struct inode *dir, struct dentry *dentry)
2829{
2830 int error = may_delete(dir, dentry, 0);
2831
2832 if (error)
2833 return error;
2834
2835 if (!dir->i_op->unlink)
2836 return -EPERM;
2837
2838 mutex_lock(&dentry->d_inode->i_mutex);
2839 if (d_mountpoint(dentry))
2840 error = -EBUSY;
2841 else {
2842 error = security_inode_unlink(dir, dentry);
2843 if (!error) {
2844 error = dir->i_op->unlink(dir, dentry);
2845 if (!error)
2846 dont_mount(dentry);
2847 }
2848 }
2849 mutex_unlock(&dentry->d_inode->i_mutex);
2850
2851 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2852 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2853 fsnotify_link_count(dentry->d_inode);
2854 d_delete(dentry);
2855 }
2856
2857 return error;
2858}
2859
2860/*
2861 * Make sure that the actual truncation of the file will occur outside its
2862 * directory's i_mutex. Truncate can take a long time if there is a lot of
2863 * writeout happening, and we don't want to prevent access to the directory
2864 * while waiting on the I/O.
2865 */
2866static long do_unlinkat(int dfd, const char __user *pathname)
2867{
2868 int error;
2869 char *name;
2870 struct dentry *dentry;
2871 struct nameidata nd;
2872 struct inode *inode = NULL;
2873
2874 error = user_path_parent(dfd, pathname, &nd, &name);
2875 if (error)
2876 return error;
2877
2878 error = -EISDIR;
2879 if (nd.last_type != LAST_NORM)
2880 goto exit1;
2881
2882 nd.flags &= ~LOOKUP_PARENT;
2883
2884 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2885 dentry = lookup_hash(&nd);
2886 error = PTR_ERR(dentry);
2887 if (!IS_ERR(dentry)) {
2888 /* Why not before? Because we want correct error value */
2889 if (nd.last.name[nd.last.len])
2890 goto slashes;
2891 inode = dentry->d_inode;
2892 if (!inode)
2893 goto slashes;
2894 ihold(inode);
2895 error = mnt_want_write(nd.path.mnt);
2896 if (error)
2897 goto exit2;
2898 error = security_path_unlink(&nd.path, dentry);
2899 if (error)
2900 goto exit3;
2901 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2902exit3:
2903 mnt_drop_write(nd.path.mnt);
2904 exit2:
2905 dput(dentry);
2906 }
2907 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2908 if (inode)
2909 iput(inode); /* truncate the inode here */
2910exit1:
2911 path_put(&nd.path);
2912 putname(name);
2913 return error;
2914
2915slashes:
2916 error = !dentry->d_inode ? -ENOENT :
2917 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2918 goto exit2;
2919}
2920
2921SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2922{
2923 if ((flag & ~AT_REMOVEDIR) != 0)
2924 return -EINVAL;
2925
2926 if (flag & AT_REMOVEDIR)
2927 return do_rmdir(dfd, pathname);
2928
2929 return do_unlinkat(dfd, pathname);
2930}
2931
2932SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2933{
2934 return do_unlinkat(AT_FDCWD, pathname);
2935}
2936
2937int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2938{
2939 int error = may_create(dir, dentry);
2940
2941 if (error)
2942 return error;
2943
2944 if (!dir->i_op->symlink)
2945 return -EPERM;
2946
2947 error = security_inode_symlink(dir, dentry, oldname);
2948 if (error)
2949 return error;
2950
2951 error = dir->i_op->symlink(dir, dentry, oldname);
2952 if (!error)
2953 fsnotify_create(dir, dentry);
2954 return error;
2955}
2956
2957SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2958 int, newdfd, const char __user *, newname)
2959{
2960 int error;
2961 char *from;
2962 struct dentry *dentry;
2963 struct path path;
2964
2965 from = getname(oldname);
2966 if (IS_ERR(from))
2967 return PTR_ERR(from);
2968
2969 dentry = user_path_create(newdfd, newname, &path, 0);
2970 error = PTR_ERR(dentry);
2971 if (IS_ERR(dentry))
2972 goto out_putname;
2973
2974 error = mnt_want_write(path.mnt);
2975 if (error)
2976 goto out_dput;
2977 error = security_path_symlink(&path, dentry, from);
2978 if (error)
2979 goto out_drop_write;
2980 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2981out_drop_write:
2982 mnt_drop_write(path.mnt);
2983out_dput:
2984 dput(dentry);
2985 mutex_unlock(&path.dentry->d_inode->i_mutex);
2986 path_put(&path);
2987out_putname:
2988 putname(from);
2989 return error;
2990}
2991
2992SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2993{
2994 return sys_symlinkat(oldname, AT_FDCWD, newname);
2995}
2996
2997int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2998{
2999 struct inode *inode = old_dentry->d_inode;
3000 unsigned max_links = dir->i_sb->s_max_links;
3001 int error;
3002
3003 if (!inode)
3004 return -ENOENT;
3005
3006 error = may_create(dir, new_dentry);
3007 if (error)
3008 return error;
3009
3010 if (dir->i_sb != inode->i_sb)
3011 return -EXDEV;
3012
3013 /*
3014 * A link to an append-only or immutable file cannot be created.
3015 */
3016 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3017 return -EPERM;
3018 if (!dir->i_op->link)
3019 return -EPERM;
3020 if (S_ISDIR(inode->i_mode))
3021 return -EPERM;
3022
3023 error = security_inode_link(old_dentry, dir, new_dentry);
3024 if (error)
3025 return error;
3026
3027 mutex_lock(&inode->i_mutex);
3028 /* Make sure we don't allow creating hardlink to an unlinked file */
3029 if (inode->i_nlink == 0)
3030 error = -ENOENT;
3031 else if (max_links && inode->i_nlink >= max_links)
3032 error = -EMLINK;
3033 else
3034 error = dir->i_op->link(old_dentry, dir, new_dentry);
3035 mutex_unlock(&inode->i_mutex);
3036 if (!error)
3037 fsnotify_link(dir, inode, new_dentry);
3038 return error;
3039}
3040
3041/*
3042 * Hardlinks are often used in delicate situations. We avoid
3043 * security-related surprises by not following symlinks on the
3044 * newname. --KAB
3045 *
3046 * We don't follow them on the oldname either to be compatible
3047 * with linux 2.0, and to avoid hard-linking to directories
3048 * and other special files. --ADM
3049 */
3050SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3051 int, newdfd, const char __user *, newname, int, flags)
3052{
3053 struct dentry *new_dentry;
3054 struct path old_path, new_path;
3055 int how = 0;
3056 int error;
3057
3058 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3059 return -EINVAL;
3060 /*
3061 * To use null names we require CAP_DAC_READ_SEARCH
3062 * This ensures that not everyone will be able to create
3063 * handlink using the passed filedescriptor.
3064 */
3065 if (flags & AT_EMPTY_PATH) {
3066 if (!capable(CAP_DAC_READ_SEARCH))
3067 return -ENOENT;
3068 how = LOOKUP_EMPTY;
3069 }
3070
3071 if (flags & AT_SYMLINK_FOLLOW)
3072 how |= LOOKUP_FOLLOW;
3073
3074 error = user_path_at(olddfd, oldname, how, &old_path);
3075 if (error)
3076 return error;
3077
3078 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3079 error = PTR_ERR(new_dentry);
3080 if (IS_ERR(new_dentry))
3081 goto out;
3082
3083 error = -EXDEV;
3084 if (old_path.mnt != new_path.mnt)
3085 goto out_dput;
3086 error = mnt_want_write(new_path.mnt);
3087 if (error)
3088 goto out_dput;
3089 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3090 if (error)
3091 goto out_drop_write;
3092 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3093out_drop_write:
3094 mnt_drop_write(new_path.mnt);
3095out_dput:
3096 dput(new_dentry);
3097 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3098 path_put(&new_path);
3099out:
3100 path_put(&old_path);
3101
3102 return error;
3103}
3104
3105SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3106{
3107 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3108}
3109
3110/*
3111 * The worst of all namespace operations - renaming directory. "Perverted"
3112 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3113 * Problems:
3114 * a) we can get into loop creation. Check is done in is_subdir().
3115 * b) race potential - two innocent renames can create a loop together.
3116 * That's where 4.4 screws up. Current fix: serialization on
3117 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3118 * story.
3119 * c) we have to lock _three_ objects - parents and victim (if it exists).
3120 * And that - after we got ->i_mutex on parents (until then we don't know
3121 * whether the target exists). Solution: try to be smart with locking
3122 * order for inodes. We rely on the fact that tree topology may change
3123 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3124 * move will be locked. Thus we can rank directories by the tree
3125 * (ancestors first) and rank all non-directories after them.
3126 * That works since everybody except rename does "lock parent, lookup,
3127 * lock child" and rename is under ->s_vfs_rename_mutex.
3128 * HOWEVER, it relies on the assumption that any object with ->lookup()
3129 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3130 * we'd better make sure that there's no link(2) for them.
3131 * d) conversion from fhandle to dentry may come in the wrong moment - when
3132 * we are removing the target. Solution: we will have to grab ->i_mutex
3133 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3134 * ->i_mutex on parents, which works but leads to some truly excessive
3135 * locking].
3136 */
3137static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3138 struct inode *new_dir, struct dentry *new_dentry)
3139{
3140 int error = 0;
3141 struct inode *target = new_dentry->d_inode;
3142 unsigned max_links = new_dir->i_sb->s_max_links;
3143
3144 /*
3145 * If we are going to change the parent - check write permissions,
3146 * we'll need to flip '..'.
3147 */
3148 if (new_dir != old_dir) {
3149 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3150 if (error)
3151 return error;
3152 }
3153
3154 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3155 if (error)
3156 return error;
3157
3158 dget(new_dentry);
3159 if (target)
3160 mutex_lock(&target->i_mutex);
3161
3162 error = -EBUSY;
3163 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3164 goto out;
3165
3166 error = -EMLINK;
3167 if (max_links && !target && new_dir != old_dir &&
3168 new_dir->i_nlink >= max_links)
3169 goto out;
3170
3171 if (target)
3172 shrink_dcache_parent(new_dentry);
3173 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3174 if (error)
3175 goto out;
3176
3177 if (target) {
3178 target->i_flags |= S_DEAD;
3179 dont_mount(new_dentry);
3180 }
3181out:
3182 if (target)
3183 mutex_unlock(&target->i_mutex);
3184 dput(new_dentry);
3185 if (!error)
3186 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3187 d_move(old_dentry,new_dentry);
3188 return error;
3189}
3190
3191static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3192 struct inode *new_dir, struct dentry *new_dentry)
3193{
3194 struct inode *target = new_dentry->d_inode;
3195 int error;
3196
3197 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3198 if (error)
3199 return error;
3200
3201 dget(new_dentry);
3202 if (target)
3203 mutex_lock(&target->i_mutex);
3204
3205 error = -EBUSY;
3206 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3207 goto out;
3208
3209 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3210 if (error)
3211 goto out;
3212
3213 if (target)
3214 dont_mount(new_dentry);
3215 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3216 d_move(old_dentry, new_dentry);
3217out:
3218 if (target)
3219 mutex_unlock(&target->i_mutex);
3220 dput(new_dentry);
3221 return error;
3222}
3223
3224int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3225 struct inode *new_dir, struct dentry *new_dentry)
3226{
3227 int error;
3228 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3229 const unsigned char *old_name;
3230
3231 if (old_dentry->d_inode == new_dentry->d_inode)
3232 return 0;
3233
3234 error = may_delete(old_dir, old_dentry, is_dir);
3235 if (error)
3236 return error;
3237
3238 if (!new_dentry->d_inode)
3239 error = may_create(new_dir, new_dentry);
3240 else
3241 error = may_delete(new_dir, new_dentry, is_dir);
3242 if (error)
3243 return error;
3244
3245 if (!old_dir->i_op->rename)
3246 return -EPERM;
3247
3248 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3249
3250 if (is_dir)
3251 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3252 else
3253 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3254 if (!error)
3255 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3256 new_dentry->d_inode, old_dentry);
3257 fsnotify_oldname_free(old_name);
3258
3259 return error;
3260}
3261
3262SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3263 int, newdfd, const char __user *, newname)
3264{
3265 struct dentry *old_dir, *new_dir;
3266 struct dentry *old_dentry, *new_dentry;
3267 struct dentry *trap;
3268 struct nameidata oldnd, newnd;
3269 char *from;
3270 char *to;
3271 int error;
3272
3273 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3274 if (error)
3275 goto exit;
3276
3277 error = user_path_parent(newdfd, newname, &newnd, &to);
3278 if (error)
3279 goto exit1;
3280
3281 error = -EXDEV;
3282 if (oldnd.path.mnt != newnd.path.mnt)
3283 goto exit2;
3284
3285 old_dir = oldnd.path.dentry;
3286 error = -EBUSY;
3287 if (oldnd.last_type != LAST_NORM)
3288 goto exit2;
3289
3290 new_dir = newnd.path.dentry;
3291 if (newnd.last_type != LAST_NORM)
3292 goto exit2;
3293
3294 oldnd.flags &= ~LOOKUP_PARENT;
3295 newnd.flags &= ~LOOKUP_PARENT;
3296 newnd.flags |= LOOKUP_RENAME_TARGET;
3297
3298 trap = lock_rename(new_dir, old_dir);
3299
3300 old_dentry = lookup_hash(&oldnd);
3301 error = PTR_ERR(old_dentry);
3302 if (IS_ERR(old_dentry))
3303 goto exit3;
3304 /* source must exist */
3305 error = -ENOENT;
3306 if (!old_dentry->d_inode)
3307 goto exit4;
3308 /* unless the source is a directory trailing slashes give -ENOTDIR */
3309 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3310 error = -ENOTDIR;
3311 if (oldnd.last.name[oldnd.last.len])
3312 goto exit4;
3313 if (newnd.last.name[newnd.last.len])
3314 goto exit4;
3315 }
3316 /* source should not be ancestor of target */
3317 error = -EINVAL;
3318 if (old_dentry == trap)
3319 goto exit4;
3320 new_dentry = lookup_hash(&newnd);
3321 error = PTR_ERR(new_dentry);
3322 if (IS_ERR(new_dentry))
3323 goto exit4;
3324 /* target should not be an ancestor of source */
3325 error = -ENOTEMPTY;
3326 if (new_dentry == trap)
3327 goto exit5;
3328
3329 error = mnt_want_write(oldnd.path.mnt);
3330 if (error)
3331 goto exit5;
3332 error = security_path_rename(&oldnd.path, old_dentry,
3333 &newnd.path, new_dentry);
3334 if (error)
3335 goto exit6;
3336 error = vfs_rename(old_dir->d_inode, old_dentry,
3337 new_dir->d_inode, new_dentry);
3338exit6:
3339 mnt_drop_write(oldnd.path.mnt);
3340exit5:
3341 dput(new_dentry);
3342exit4:
3343 dput(old_dentry);
3344exit3:
3345 unlock_rename(new_dir, old_dir);
3346exit2:
3347 path_put(&newnd.path);
3348 putname(to);
3349exit1:
3350 path_put(&oldnd.path);
3351 putname(from);
3352exit:
3353 return error;
3354}
3355
3356SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3357{
3358 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3359}
3360
3361int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3362{
3363 int len;
3364
3365 len = PTR_ERR(link);
3366 if (IS_ERR(link))
3367 goto out;
3368
3369 len = strlen(link);
3370 if (len > (unsigned) buflen)
3371 len = buflen;
3372 if (copy_to_user(buffer, link, len))
3373 len = -EFAULT;
3374out:
3375 return len;
3376}
3377
3378/*
3379 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3380 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3381 * using) it for any given inode is up to filesystem.
3382 */
3383int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3384{
3385 struct nameidata nd;
3386 void *cookie;
3387 int res;
3388
3389 nd.depth = 0;
3390 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3391 if (IS_ERR(cookie))
3392 return PTR_ERR(cookie);
3393
3394 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3395 if (dentry->d_inode->i_op->put_link)
3396 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3397 return res;
3398}
3399
3400int vfs_follow_link(struct nameidata *nd, const char *link)
3401{
3402 return __vfs_follow_link(nd, link);
3403}
3404
3405/* get the link contents into pagecache */
3406static char *page_getlink(struct dentry * dentry, struct page **ppage)
3407{
3408 char *kaddr;
3409 struct page *page;
3410 struct address_space *mapping = dentry->d_inode->i_mapping;
3411 page = read_mapping_page(mapping, 0, NULL);
3412 if (IS_ERR(page))
3413 return (char*)page;
3414 *ppage = page;
3415 kaddr = kmap(page);
3416 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3417 return kaddr;
3418}
3419
3420int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3421{
3422 struct page *page = NULL;
3423 char *s = page_getlink(dentry, &page);
3424 int res = vfs_readlink(dentry,buffer,buflen,s);
3425 if (page) {
3426 kunmap(page);
3427 page_cache_release(page);
3428 }
3429 return res;
3430}
3431
3432void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3433{
3434 struct page *page = NULL;
3435 nd_set_link(nd, page_getlink(dentry, &page));
3436 return page;
3437}
3438
3439void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3440{
3441 struct page *page = cookie;
3442
3443 if (page) {
3444 kunmap(page);
3445 page_cache_release(page);
3446 }
3447}
3448
3449/*
3450 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3451 */
3452int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3453{
3454 struct address_space *mapping = inode->i_mapping;
3455 struct page *page;
3456 void *fsdata;
3457 int err;
3458 char *kaddr;
3459 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3460 if (nofs)
3461 flags |= AOP_FLAG_NOFS;
3462
3463retry:
3464 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3465 flags, &page, &fsdata);
3466 if (err)
3467 goto fail;
3468
3469 kaddr = kmap_atomic(page);
3470 memcpy(kaddr, symname, len-1);
3471 kunmap_atomic(kaddr);
3472
3473 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3474 page, fsdata);
3475 if (err < 0)
3476 goto fail;
3477 if (err < len-1)
3478 goto retry;
3479
3480 mark_inode_dirty(inode);
3481 return 0;
3482fail:
3483 return err;
3484}
3485
3486int page_symlink(struct inode *inode, const char *symname, int len)
3487{
3488 return __page_symlink(inode, symname, len,
3489 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3490}
3491
3492const struct inode_operations page_symlink_inode_operations = {
3493 .readlink = generic_readlink,
3494 .follow_link = page_follow_link_light,
3495 .put_link = page_put_link,
3496};
3497
3498EXPORT_SYMBOL(user_path_at);
3499EXPORT_SYMBOL(follow_down_one);
3500EXPORT_SYMBOL(follow_down);
3501EXPORT_SYMBOL(follow_up);
3502EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3503EXPORT_SYMBOL(getname);
3504EXPORT_SYMBOL(lock_rename);
3505EXPORT_SYMBOL(lookup_one_len);
3506EXPORT_SYMBOL(page_follow_link_light);
3507EXPORT_SYMBOL(page_put_link);
3508EXPORT_SYMBOL(page_readlink);
3509EXPORT_SYMBOL(__page_symlink);
3510EXPORT_SYMBOL(page_symlink);
3511EXPORT_SYMBOL(page_symlink_inode_operations);
3512EXPORT_SYMBOL(kern_path);
3513EXPORT_SYMBOL(vfs_path_lookup);
3514EXPORT_SYMBOL(inode_permission);
3515EXPORT_SYMBOL(unlock_rename);
3516EXPORT_SYMBOL(vfs_create);
3517EXPORT_SYMBOL(vfs_follow_link);
3518EXPORT_SYMBOL(vfs_link);
3519EXPORT_SYMBOL(vfs_mkdir);
3520EXPORT_SYMBOL(vfs_mknod);
3521EXPORT_SYMBOL(generic_permission);
3522EXPORT_SYMBOL(vfs_readlink);
3523EXPORT_SYMBOL(vfs_rename);
3524EXPORT_SYMBOL(vfs_rmdir);
3525EXPORT_SYMBOL(vfs_symlink);
3526EXPORT_SYMBOL(vfs_unlink);
3527EXPORT_SYMBOL(dentry_unhash);
3528EXPORT_SYMBOL(generic_readlink);