lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * acpi-cpufreq.c - ACPI Processor P-States Driver |
| 3 | * |
| 4 | * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| 5 | * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| 6 | * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> |
| 7 | * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com> |
| 8 | * |
| 9 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License as published by |
| 13 | * the Free Software Foundation; either version 2 of the License, or (at |
| 14 | * your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, but |
| 17 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 19 | * General Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License along |
| 22 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 23 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
| 24 | * |
| 25 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 26 | */ |
| 27 | |
| 28 | #include <linux/kernel.h> |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/init.h> |
| 31 | #include <linux/smp.h> |
| 32 | #include <linux/sched.h> |
| 33 | #include <linux/cpufreq.h> |
| 34 | #include <linux/compiler.h> |
| 35 | #include <linux/dmi.h> |
| 36 | #include <linux/slab.h> |
| 37 | |
| 38 | #include <linux/acpi.h> |
| 39 | #include <linux/io.h> |
| 40 | #include <linux/delay.h> |
| 41 | #include <linux/uaccess.h> |
| 42 | |
| 43 | #include <acpi/processor.h> |
| 44 | |
| 45 | #include <asm/msr.h> |
| 46 | #include <asm/processor.h> |
| 47 | #include <asm/cpufeature.h> |
| 48 | #include "mperf.h" |
| 49 | |
| 50 | MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); |
| 51 | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); |
| 52 | MODULE_LICENSE("GPL"); |
| 53 | |
| 54 | enum { |
| 55 | UNDEFINED_CAPABLE = 0, |
| 56 | SYSTEM_INTEL_MSR_CAPABLE, |
| 57 | SYSTEM_IO_CAPABLE, |
| 58 | }; |
| 59 | |
| 60 | #define INTEL_MSR_RANGE (0xffff) |
| 61 | |
| 62 | struct acpi_cpufreq_data { |
| 63 | struct acpi_processor_performance *acpi_data; |
| 64 | struct cpufreq_frequency_table *freq_table; |
| 65 | unsigned int resume; |
| 66 | unsigned int cpu_feature; |
| 67 | }; |
| 68 | |
| 69 | static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data); |
| 70 | |
| 71 | /* acpi_perf_data is a pointer to percpu data. */ |
| 72 | static struct acpi_processor_performance __percpu *acpi_perf_data; |
| 73 | |
| 74 | static struct cpufreq_driver acpi_cpufreq_driver; |
| 75 | |
| 76 | static unsigned int acpi_pstate_strict; |
| 77 | |
| 78 | static int check_est_cpu(unsigned int cpuid) |
| 79 | { |
| 80 | struct cpuinfo_x86 *cpu = &cpu_data(cpuid); |
| 81 | |
| 82 | return cpu_has(cpu, X86_FEATURE_EST); |
| 83 | } |
| 84 | |
| 85 | static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data) |
| 86 | { |
| 87 | struct acpi_processor_performance *perf; |
| 88 | int i; |
| 89 | |
| 90 | perf = data->acpi_data; |
| 91 | |
| 92 | for (i = 0; i < perf->state_count; i++) { |
| 93 | if (value == perf->states[i].status) |
| 94 | return data->freq_table[i].frequency; |
| 95 | } |
| 96 | return 0; |
| 97 | } |
| 98 | |
| 99 | static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data) |
| 100 | { |
| 101 | int i; |
| 102 | struct acpi_processor_performance *perf; |
| 103 | |
| 104 | msr &= INTEL_MSR_RANGE; |
| 105 | perf = data->acpi_data; |
| 106 | |
| 107 | for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) { |
| 108 | if (msr == perf->states[data->freq_table[i].index].status) |
| 109 | return data->freq_table[i].frequency; |
| 110 | } |
| 111 | return data->freq_table[0].frequency; |
| 112 | } |
| 113 | |
| 114 | static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data) |
| 115 | { |
| 116 | switch (data->cpu_feature) { |
| 117 | case SYSTEM_INTEL_MSR_CAPABLE: |
| 118 | return extract_msr(val, data); |
| 119 | case SYSTEM_IO_CAPABLE: |
| 120 | return extract_io(val, data); |
| 121 | default: |
| 122 | return 0; |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | struct msr_addr { |
| 127 | u32 reg; |
| 128 | }; |
| 129 | |
| 130 | struct io_addr { |
| 131 | u16 port; |
| 132 | u8 bit_width; |
| 133 | }; |
| 134 | |
| 135 | struct drv_cmd { |
| 136 | unsigned int type; |
| 137 | const struct cpumask *mask; |
| 138 | union { |
| 139 | struct msr_addr msr; |
| 140 | struct io_addr io; |
| 141 | } addr; |
| 142 | u32 val; |
| 143 | }; |
| 144 | |
| 145 | /* Called via smp_call_function_single(), on the target CPU */ |
| 146 | static void do_drv_read(void *_cmd) |
| 147 | { |
| 148 | struct drv_cmd *cmd = _cmd; |
| 149 | u32 h; |
| 150 | |
| 151 | switch (cmd->type) { |
| 152 | case SYSTEM_INTEL_MSR_CAPABLE: |
| 153 | rdmsr(cmd->addr.msr.reg, cmd->val, h); |
| 154 | break; |
| 155 | case SYSTEM_IO_CAPABLE: |
| 156 | acpi_os_read_port((acpi_io_address)cmd->addr.io.port, |
| 157 | &cmd->val, |
| 158 | (u32)cmd->addr.io.bit_width); |
| 159 | break; |
| 160 | default: |
| 161 | break; |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | /* Called via smp_call_function_many(), on the target CPUs */ |
| 166 | static void do_drv_write(void *_cmd) |
| 167 | { |
| 168 | struct drv_cmd *cmd = _cmd; |
| 169 | u32 lo, hi; |
| 170 | |
| 171 | switch (cmd->type) { |
| 172 | case SYSTEM_INTEL_MSR_CAPABLE: |
| 173 | rdmsr(cmd->addr.msr.reg, lo, hi); |
| 174 | lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE); |
| 175 | wrmsr(cmd->addr.msr.reg, lo, hi); |
| 176 | break; |
| 177 | case SYSTEM_IO_CAPABLE: |
| 178 | acpi_os_write_port((acpi_io_address)cmd->addr.io.port, |
| 179 | cmd->val, |
| 180 | (u32)cmd->addr.io.bit_width); |
| 181 | break; |
| 182 | default: |
| 183 | break; |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | static void drv_read(struct drv_cmd *cmd) |
| 188 | { |
| 189 | int err; |
| 190 | cmd->val = 0; |
| 191 | |
| 192 | err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1); |
| 193 | WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ |
| 194 | } |
| 195 | |
| 196 | static void drv_write(struct drv_cmd *cmd) |
| 197 | { |
| 198 | int this_cpu; |
| 199 | |
| 200 | this_cpu = get_cpu(); |
| 201 | if (cpumask_test_cpu(this_cpu, cmd->mask)) |
| 202 | do_drv_write(cmd); |
| 203 | smp_call_function_many(cmd->mask, do_drv_write, cmd, 1); |
| 204 | put_cpu(); |
| 205 | } |
| 206 | |
| 207 | static u32 get_cur_val(const struct cpumask *mask) |
| 208 | { |
| 209 | struct acpi_processor_performance *perf; |
| 210 | struct drv_cmd cmd; |
| 211 | |
| 212 | if (unlikely(cpumask_empty(mask))) |
| 213 | return 0; |
| 214 | |
| 215 | switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) { |
| 216 | case SYSTEM_INTEL_MSR_CAPABLE: |
| 217 | cmd.type = SYSTEM_INTEL_MSR_CAPABLE; |
| 218 | cmd.addr.msr.reg = MSR_IA32_PERF_STATUS; |
| 219 | break; |
| 220 | case SYSTEM_IO_CAPABLE: |
| 221 | cmd.type = SYSTEM_IO_CAPABLE; |
| 222 | perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data; |
| 223 | cmd.addr.io.port = perf->control_register.address; |
| 224 | cmd.addr.io.bit_width = perf->control_register.bit_width; |
| 225 | break; |
| 226 | default: |
| 227 | return 0; |
| 228 | } |
| 229 | |
| 230 | cmd.mask = mask; |
| 231 | drv_read(&cmd); |
| 232 | |
| 233 | pr_debug("get_cur_val = %u\n", cmd.val); |
| 234 | |
| 235 | return cmd.val; |
| 236 | } |
| 237 | |
| 238 | static unsigned int get_cur_freq_on_cpu(unsigned int cpu) |
| 239 | { |
| 240 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu); |
| 241 | unsigned int freq; |
| 242 | unsigned int cached_freq; |
| 243 | |
| 244 | pr_debug("get_cur_freq_on_cpu (%d)\n", cpu); |
| 245 | |
| 246 | if (unlikely(data == NULL || |
| 247 | data->acpi_data == NULL || data->freq_table == NULL)) { |
| 248 | return 0; |
| 249 | } |
| 250 | |
| 251 | cached_freq = data->freq_table[data->acpi_data->state].frequency; |
| 252 | freq = extract_freq(get_cur_val(cpumask_of(cpu)), data); |
| 253 | if (freq != cached_freq) { |
| 254 | /* |
| 255 | * The dreaded BIOS frequency change behind our back. |
| 256 | * Force set the frequency on next target call. |
| 257 | */ |
| 258 | data->resume = 1; |
| 259 | } |
| 260 | |
| 261 | pr_debug("cur freq = %u\n", freq); |
| 262 | |
| 263 | return freq; |
| 264 | } |
| 265 | |
| 266 | static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq, |
| 267 | struct acpi_cpufreq_data *data) |
| 268 | { |
| 269 | unsigned int cur_freq; |
| 270 | unsigned int i; |
| 271 | |
| 272 | for (i = 0; i < 100; i++) { |
| 273 | cur_freq = extract_freq(get_cur_val(mask), data); |
| 274 | if (cur_freq == freq) |
| 275 | return 1; |
| 276 | udelay(10); |
| 277 | } |
| 278 | return 0; |
| 279 | } |
| 280 | |
| 281 | static int acpi_cpufreq_target(struct cpufreq_policy *policy, |
| 282 | unsigned int target_freq, unsigned int relation) |
| 283 | { |
| 284 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); |
| 285 | struct acpi_processor_performance *perf; |
| 286 | struct cpufreq_freqs freqs; |
| 287 | struct drv_cmd cmd; |
| 288 | unsigned int next_state = 0; /* Index into freq_table */ |
| 289 | unsigned int next_perf_state = 0; /* Index into perf table */ |
| 290 | unsigned int i; |
| 291 | int result = 0; |
| 292 | |
| 293 | pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu); |
| 294 | |
| 295 | if (unlikely(data == NULL || |
| 296 | data->acpi_data == NULL || data->freq_table == NULL)) { |
| 297 | return -ENODEV; |
| 298 | } |
| 299 | |
| 300 | perf = data->acpi_data; |
| 301 | result = cpufreq_frequency_table_target(policy, |
| 302 | data->freq_table, |
| 303 | target_freq, |
| 304 | relation, &next_state); |
| 305 | if (unlikely(result)) { |
| 306 | result = -ENODEV; |
| 307 | goto out; |
| 308 | } |
| 309 | |
| 310 | next_perf_state = data->freq_table[next_state].index; |
| 311 | if (perf->state == next_perf_state) { |
| 312 | if (unlikely(data->resume)) { |
| 313 | pr_debug("Called after resume, resetting to P%d\n", |
| 314 | next_perf_state); |
| 315 | data->resume = 0; |
| 316 | } else { |
| 317 | pr_debug("Already at target state (P%d)\n", |
| 318 | next_perf_state); |
| 319 | goto out; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | switch (data->cpu_feature) { |
| 324 | case SYSTEM_INTEL_MSR_CAPABLE: |
| 325 | cmd.type = SYSTEM_INTEL_MSR_CAPABLE; |
| 326 | cmd.addr.msr.reg = MSR_IA32_PERF_CTL; |
| 327 | cmd.val = (u32) perf->states[next_perf_state].control; |
| 328 | break; |
| 329 | case SYSTEM_IO_CAPABLE: |
| 330 | cmd.type = SYSTEM_IO_CAPABLE; |
| 331 | cmd.addr.io.port = perf->control_register.address; |
| 332 | cmd.addr.io.bit_width = perf->control_register.bit_width; |
| 333 | cmd.val = (u32) perf->states[next_perf_state].control; |
| 334 | break; |
| 335 | default: |
| 336 | result = -ENODEV; |
| 337 | goto out; |
| 338 | } |
| 339 | |
| 340 | /* cpufreq holds the hotplug lock, so we are safe from here on */ |
| 341 | if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY) |
| 342 | cmd.mask = policy->cpus; |
| 343 | else |
| 344 | cmd.mask = cpumask_of(policy->cpu); |
| 345 | |
| 346 | freqs.old = perf->states[perf->state].core_frequency * 1000; |
| 347 | freqs.new = data->freq_table[next_state].frequency; |
| 348 | for_each_cpu(i, policy->cpus) { |
| 349 | freqs.cpu = i; |
| 350 | cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| 351 | } |
| 352 | |
| 353 | drv_write(&cmd); |
| 354 | |
| 355 | if (acpi_pstate_strict) { |
| 356 | if (!check_freqs(cmd.mask, freqs.new, data)) { |
| 357 | pr_debug("acpi_cpufreq_target failed (%d)\n", |
| 358 | policy->cpu); |
| 359 | result = -EAGAIN; |
| 360 | goto out; |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | for_each_cpu(i, policy->cpus) { |
| 365 | freqs.cpu = i; |
| 366 | cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| 367 | } |
| 368 | perf->state = next_perf_state; |
| 369 | |
| 370 | out: |
| 371 | return result; |
| 372 | } |
| 373 | |
| 374 | static int acpi_cpufreq_verify(struct cpufreq_policy *policy) |
| 375 | { |
| 376 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); |
| 377 | |
| 378 | pr_debug("acpi_cpufreq_verify\n"); |
| 379 | |
| 380 | return cpufreq_frequency_table_verify(policy, data->freq_table); |
| 381 | } |
| 382 | |
| 383 | static unsigned long |
| 384 | acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) |
| 385 | { |
| 386 | struct acpi_processor_performance *perf = data->acpi_data; |
| 387 | |
| 388 | if (cpu_khz) { |
| 389 | /* search the closest match to cpu_khz */ |
| 390 | unsigned int i; |
| 391 | unsigned long freq; |
| 392 | unsigned long freqn = perf->states[0].core_frequency * 1000; |
| 393 | |
| 394 | for (i = 0; i < (perf->state_count-1); i++) { |
| 395 | freq = freqn; |
| 396 | freqn = perf->states[i+1].core_frequency * 1000; |
| 397 | if ((2 * cpu_khz) > (freqn + freq)) { |
| 398 | perf->state = i; |
| 399 | return freq; |
| 400 | } |
| 401 | } |
| 402 | perf->state = perf->state_count-1; |
| 403 | return freqn; |
| 404 | } else { |
| 405 | /* assume CPU is at P0... */ |
| 406 | perf->state = 0; |
| 407 | return perf->states[0].core_frequency * 1000; |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | static void free_acpi_perf_data(void) |
| 412 | { |
| 413 | unsigned int i; |
| 414 | |
| 415 | /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ |
| 416 | for_each_possible_cpu(i) |
| 417 | free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) |
| 418 | ->shared_cpu_map); |
| 419 | free_percpu(acpi_perf_data); |
| 420 | } |
| 421 | |
| 422 | /* |
| 423 | * acpi_cpufreq_early_init - initialize ACPI P-States library |
| 424 | * |
| 425 | * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) |
| 426 | * in order to determine correct frequency and voltage pairings. We can |
| 427 | * do _PDC and _PSD and find out the processor dependency for the |
| 428 | * actual init that will happen later... |
| 429 | */ |
| 430 | static int __init acpi_cpufreq_early_init(void) |
| 431 | { |
| 432 | unsigned int i; |
| 433 | pr_debug("acpi_cpufreq_early_init\n"); |
| 434 | |
| 435 | acpi_perf_data = alloc_percpu(struct acpi_processor_performance); |
| 436 | if (!acpi_perf_data) { |
| 437 | pr_debug("Memory allocation error for acpi_perf_data.\n"); |
| 438 | return -ENOMEM; |
| 439 | } |
| 440 | for_each_possible_cpu(i) { |
| 441 | if (!zalloc_cpumask_var_node( |
| 442 | &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, |
| 443 | GFP_KERNEL, cpu_to_node(i))) { |
| 444 | |
| 445 | /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ |
| 446 | free_acpi_perf_data(); |
| 447 | return -ENOMEM; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | /* Do initialization in ACPI core */ |
| 452 | acpi_processor_preregister_performance(acpi_perf_data); |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | #ifdef CONFIG_SMP |
| 457 | /* |
| 458 | * Some BIOSes do SW_ANY coordination internally, either set it up in hw |
| 459 | * or do it in BIOS firmware and won't inform about it to OS. If not |
| 460 | * detected, this has a side effect of making CPU run at a different speed |
| 461 | * than OS intended it to run at. Detect it and handle it cleanly. |
| 462 | */ |
| 463 | static int bios_with_sw_any_bug; |
| 464 | |
| 465 | static int sw_any_bug_found(const struct dmi_system_id *d) |
| 466 | { |
| 467 | bios_with_sw_any_bug = 1; |
| 468 | return 0; |
| 469 | } |
| 470 | |
| 471 | static const struct dmi_system_id sw_any_bug_dmi_table[] = { |
| 472 | { |
| 473 | .callback = sw_any_bug_found, |
| 474 | .ident = "Supermicro Server X6DLP", |
| 475 | .matches = { |
| 476 | DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), |
| 477 | DMI_MATCH(DMI_BIOS_VERSION, "080010"), |
| 478 | DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), |
| 479 | }, |
| 480 | }, |
| 481 | { } |
| 482 | }; |
| 483 | |
| 484 | static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) |
| 485 | { |
| 486 | /* Intel Xeon Processor 7100 Series Specification Update |
| 487 | * http://www.intel.com/Assets/PDF/specupdate/314554.pdf |
| 488 | * AL30: A Machine Check Exception (MCE) Occurring during an |
| 489 | * Enhanced Intel SpeedStep Technology Ratio Change May Cause |
| 490 | * Both Processor Cores to Lock Up. */ |
| 491 | if (c->x86_vendor == X86_VENDOR_INTEL) { |
| 492 | if ((c->x86 == 15) && |
| 493 | (c->x86_model == 6) && |
| 494 | (c->x86_mask == 8)) { |
| 495 | printk(KERN_INFO "acpi-cpufreq: Intel(R) " |
| 496 | "Xeon(R) 7100 Errata AL30, processors may " |
| 497 | "lock up on frequency changes: disabling " |
| 498 | "acpi-cpufreq.\n"); |
| 499 | return -ENODEV; |
| 500 | } |
| 501 | } |
| 502 | return 0; |
| 503 | } |
| 504 | #endif |
| 505 | |
| 506 | static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) |
| 507 | { |
| 508 | unsigned int i; |
| 509 | unsigned int valid_states = 0; |
| 510 | unsigned int cpu = policy->cpu; |
| 511 | struct acpi_cpufreq_data *data; |
| 512 | unsigned int result = 0; |
| 513 | struct cpuinfo_x86 *c = &cpu_data(policy->cpu); |
| 514 | struct acpi_processor_performance *perf; |
| 515 | #ifdef CONFIG_SMP |
| 516 | static int blacklisted; |
| 517 | #endif |
| 518 | |
| 519 | pr_debug("acpi_cpufreq_cpu_init\n"); |
| 520 | |
| 521 | #ifdef CONFIG_SMP |
| 522 | if (blacklisted) |
| 523 | return blacklisted; |
| 524 | blacklisted = acpi_cpufreq_blacklist(c); |
| 525 | if (blacklisted) |
| 526 | return blacklisted; |
| 527 | #endif |
| 528 | |
| 529 | data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL); |
| 530 | if (!data) |
| 531 | return -ENOMEM; |
| 532 | |
| 533 | data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu); |
| 534 | per_cpu(acfreq_data, cpu) = data; |
| 535 | |
| 536 | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) |
| 537 | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; |
| 538 | |
| 539 | result = acpi_processor_register_performance(data->acpi_data, cpu); |
| 540 | if (result) |
| 541 | goto err_free; |
| 542 | |
| 543 | perf = data->acpi_data; |
| 544 | policy->shared_type = perf->shared_type; |
| 545 | |
| 546 | /* |
| 547 | * Will let policy->cpus know about dependency only when software |
| 548 | * coordination is required. |
| 549 | */ |
| 550 | if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || |
| 551 | policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { |
| 552 | cpumask_copy(policy->cpus, perf->shared_cpu_map); |
| 553 | } |
| 554 | cpumask_copy(policy->related_cpus, perf->shared_cpu_map); |
| 555 | |
| 556 | #ifdef CONFIG_SMP |
| 557 | dmi_check_system(sw_any_bug_dmi_table); |
| 558 | if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) { |
| 559 | policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| 560 | cpumask_copy(policy->cpus, cpu_core_mask(cpu)); |
| 561 | } |
| 562 | #endif |
| 563 | |
| 564 | /* capability check */ |
| 565 | if (perf->state_count <= 1) { |
| 566 | pr_debug("No P-States\n"); |
| 567 | result = -ENODEV; |
| 568 | goto err_unreg; |
| 569 | } |
| 570 | |
| 571 | if (perf->control_register.space_id != perf->status_register.space_id) { |
| 572 | result = -ENODEV; |
| 573 | goto err_unreg; |
| 574 | } |
| 575 | |
| 576 | switch (perf->control_register.space_id) { |
| 577 | case ACPI_ADR_SPACE_SYSTEM_IO: |
| 578 | pr_debug("SYSTEM IO addr space\n"); |
| 579 | data->cpu_feature = SYSTEM_IO_CAPABLE; |
| 580 | break; |
| 581 | case ACPI_ADR_SPACE_FIXED_HARDWARE: |
| 582 | pr_debug("HARDWARE addr space\n"); |
| 583 | if (!check_est_cpu(cpu)) { |
| 584 | result = -ENODEV; |
| 585 | goto err_unreg; |
| 586 | } |
| 587 | data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; |
| 588 | break; |
| 589 | default: |
| 590 | pr_debug("Unknown addr space %d\n", |
| 591 | (u32) (perf->control_register.space_id)); |
| 592 | result = -ENODEV; |
| 593 | goto err_unreg; |
| 594 | } |
| 595 | |
| 596 | data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * |
| 597 | (perf->state_count+1), GFP_KERNEL); |
| 598 | if (!data->freq_table) { |
| 599 | result = -ENOMEM; |
| 600 | goto err_unreg; |
| 601 | } |
| 602 | |
| 603 | /* detect transition latency */ |
| 604 | policy->cpuinfo.transition_latency = 0; |
| 605 | for (i = 0; i < perf->state_count; i++) { |
| 606 | if ((perf->states[i].transition_latency * 1000) > |
| 607 | policy->cpuinfo.transition_latency) |
| 608 | policy->cpuinfo.transition_latency = |
| 609 | perf->states[i].transition_latency * 1000; |
| 610 | } |
| 611 | |
| 612 | /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ |
| 613 | if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && |
| 614 | policy->cpuinfo.transition_latency > 20 * 1000) { |
| 615 | policy->cpuinfo.transition_latency = 20 * 1000; |
| 616 | printk_once(KERN_INFO |
| 617 | "P-state transition latency capped at 20 uS\n"); |
| 618 | } |
| 619 | |
| 620 | /* table init */ |
| 621 | for (i = 0; i < perf->state_count; i++) { |
| 622 | if (i > 0 && perf->states[i].core_frequency >= |
| 623 | data->freq_table[valid_states-1].frequency / 1000) |
| 624 | continue; |
| 625 | |
| 626 | data->freq_table[valid_states].index = i; |
| 627 | data->freq_table[valid_states].frequency = |
| 628 | perf->states[i].core_frequency * 1000; |
| 629 | valid_states++; |
| 630 | } |
| 631 | data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END; |
| 632 | perf->state = 0; |
| 633 | |
| 634 | result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); |
| 635 | if (result) |
| 636 | goto err_freqfree; |
| 637 | |
| 638 | if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq) |
| 639 | printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n"); |
| 640 | |
| 641 | switch (perf->control_register.space_id) { |
| 642 | case ACPI_ADR_SPACE_SYSTEM_IO: |
| 643 | /* Current speed is unknown and not detectable by IO port */ |
| 644 | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); |
| 645 | break; |
| 646 | case ACPI_ADR_SPACE_FIXED_HARDWARE: |
| 647 | acpi_cpufreq_driver.get = get_cur_freq_on_cpu; |
| 648 | policy->cur = get_cur_freq_on_cpu(cpu); |
| 649 | break; |
| 650 | default: |
| 651 | break; |
| 652 | } |
| 653 | |
| 654 | /* notify BIOS that we exist */ |
| 655 | acpi_processor_notify_smm(THIS_MODULE); |
| 656 | |
| 657 | /* Check for APERF/MPERF support in hardware */ |
| 658 | if (boot_cpu_has(X86_FEATURE_APERFMPERF)) |
| 659 | acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf; |
| 660 | |
| 661 | pr_debug("CPU%u - ACPI performance management activated.\n", cpu); |
| 662 | for (i = 0; i < perf->state_count; i++) |
| 663 | pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", |
| 664 | (i == perf->state ? '*' : ' '), i, |
| 665 | (u32) perf->states[i].core_frequency, |
| 666 | (u32) perf->states[i].power, |
| 667 | (u32) perf->states[i].transition_latency); |
| 668 | |
| 669 | cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); |
| 670 | |
| 671 | /* |
| 672 | * the first call to ->target() should result in us actually |
| 673 | * writing something to the appropriate registers. |
| 674 | */ |
| 675 | data->resume = 1; |
| 676 | |
| 677 | return result; |
| 678 | |
| 679 | err_freqfree: |
| 680 | kfree(data->freq_table); |
| 681 | err_unreg: |
| 682 | acpi_processor_unregister_performance(perf, cpu); |
| 683 | err_free: |
| 684 | kfree(data); |
| 685 | per_cpu(acfreq_data, cpu) = NULL; |
| 686 | |
| 687 | return result; |
| 688 | } |
| 689 | |
| 690 | static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) |
| 691 | { |
| 692 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); |
| 693 | |
| 694 | pr_debug("acpi_cpufreq_cpu_exit\n"); |
| 695 | |
| 696 | if (data) { |
| 697 | cpufreq_frequency_table_put_attr(policy->cpu); |
| 698 | per_cpu(acfreq_data, policy->cpu) = NULL; |
| 699 | acpi_processor_unregister_performance(data->acpi_data, |
| 700 | policy->cpu); |
| 701 | kfree(data->freq_table); |
| 702 | kfree(data); |
| 703 | } |
| 704 | |
| 705 | return 0; |
| 706 | } |
| 707 | |
| 708 | static int acpi_cpufreq_resume(struct cpufreq_policy *policy) |
| 709 | { |
| 710 | struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); |
| 711 | |
| 712 | pr_debug("acpi_cpufreq_resume\n"); |
| 713 | |
| 714 | data->resume = 1; |
| 715 | |
| 716 | return 0; |
| 717 | } |
| 718 | |
| 719 | static struct freq_attr *acpi_cpufreq_attr[] = { |
| 720 | &cpufreq_freq_attr_scaling_available_freqs, |
| 721 | NULL, |
| 722 | }; |
| 723 | |
| 724 | static struct cpufreq_driver acpi_cpufreq_driver = { |
| 725 | .verify = acpi_cpufreq_verify, |
| 726 | .target = acpi_cpufreq_target, |
| 727 | .bios_limit = acpi_processor_get_bios_limit, |
| 728 | .init = acpi_cpufreq_cpu_init, |
| 729 | .exit = acpi_cpufreq_cpu_exit, |
| 730 | .resume = acpi_cpufreq_resume, |
| 731 | .name = "acpi-cpufreq", |
| 732 | .owner = THIS_MODULE, |
| 733 | .attr = acpi_cpufreq_attr, |
| 734 | }; |
| 735 | |
| 736 | static int __init acpi_cpufreq_init(void) |
| 737 | { |
| 738 | int ret; |
| 739 | |
| 740 | if (acpi_disabled) |
| 741 | return 0; |
| 742 | |
| 743 | pr_debug("acpi_cpufreq_init\n"); |
| 744 | |
| 745 | ret = acpi_cpufreq_early_init(); |
| 746 | if (ret) |
| 747 | return ret; |
| 748 | |
| 749 | ret = cpufreq_register_driver(&acpi_cpufreq_driver); |
| 750 | if (ret) |
| 751 | free_acpi_perf_data(); |
| 752 | |
| 753 | return ret; |
| 754 | } |
| 755 | |
| 756 | static void __exit acpi_cpufreq_exit(void) |
| 757 | { |
| 758 | pr_debug("acpi_cpufreq_exit\n"); |
| 759 | |
| 760 | cpufreq_unregister_driver(&acpi_cpufreq_driver); |
| 761 | |
| 762 | free_acpi_perf_data(); |
| 763 | } |
| 764 | |
| 765 | module_param(acpi_pstate_strict, uint, 0644); |
| 766 | MODULE_PARM_DESC(acpi_pstate_strict, |
| 767 | "value 0 or non-zero. non-zero -> strict ACPI checks are " |
| 768 | "performed during frequency changes."); |
| 769 | |
| 770 | late_initcall(acpi_cpufreq_init); |
| 771 | module_exit(acpi_cpufreq_exit); |
| 772 | |
| 773 | MODULE_ALIAS("acpi"); |