lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/time/timekeeping.c |
| 3 | * |
| 4 | * Kernel timekeeping code and accessor functions |
| 5 | * |
| 6 | * This code was moved from linux/kernel/timer.c. |
| 7 | * Please see that file for copyright and history logs. |
| 8 | * |
| 9 | */ |
| 10 | |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/interrupt.h> |
| 13 | #include <linux/percpu.h> |
| 14 | #include <linux/init.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/sched.h> |
| 17 | #include <linux/syscore_ops.h> |
| 18 | #include <linux/clocksource.h> |
| 19 | #include <linux/jiffies.h> |
| 20 | #include <linux/time.h> |
| 21 | #include <linux/tick.h> |
| 22 | #include <linux/stop_machine.h> |
| 23 | |
| 24 | /* Structure holding internal timekeeping values. */ |
| 25 | struct timekeeper { |
| 26 | /* Current clocksource used for timekeeping. */ |
| 27 | struct clocksource *clock; |
| 28 | /* NTP adjusted clock multiplier */ |
| 29 | u32 mult; |
| 30 | /* The shift value of the current clocksource. */ |
| 31 | int shift; |
| 32 | |
| 33 | /* Number of clock cycles in one NTP interval. */ |
| 34 | cycle_t cycle_interval; |
| 35 | /* Number of clock shifted nano seconds in one NTP interval. */ |
| 36 | u64 xtime_interval; |
| 37 | /* shifted nano seconds left over when rounding cycle_interval */ |
| 38 | s64 xtime_remainder; |
| 39 | /* Raw nano seconds accumulated per NTP interval. */ |
| 40 | u32 raw_interval; |
| 41 | |
| 42 | /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ |
| 43 | u64 xtime_nsec; |
| 44 | /* Difference between accumulated time and NTP time in ntp |
| 45 | * shifted nano seconds. */ |
| 46 | s64 ntp_error; |
| 47 | /* Shift conversion between clock shifted nano seconds and |
| 48 | * ntp shifted nano seconds. */ |
| 49 | int ntp_error_shift; |
| 50 | |
| 51 | /* The current time */ |
| 52 | struct timespec xtime; |
| 53 | /* |
| 54 | * wall_to_monotonic is what we need to add to xtime (or xtime corrected |
| 55 | * for sub jiffie times) to get to monotonic time. Monotonic is pegged |
| 56 | * at zero at system boot time, so wall_to_monotonic will be negative, |
| 57 | * however, we will ALWAYS keep the tv_nsec part positive so we can use |
| 58 | * the usual normalization. |
| 59 | * |
| 60 | * wall_to_monotonic is moved after resume from suspend for the |
| 61 | * monotonic time not to jump. We need to add total_sleep_time to |
| 62 | * wall_to_monotonic to get the real boot based time offset. |
| 63 | * |
| 64 | * - wall_to_monotonic is no longer the boot time, getboottime must be |
| 65 | * used instead. |
| 66 | */ |
| 67 | struct timespec wall_to_monotonic; |
| 68 | /* time spent in suspend */ |
| 69 | struct timespec total_sleep_time; |
| 70 | /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */ |
| 71 | struct timespec raw_time; |
| 72 | |
| 73 | /* Offset clock monotonic -> clock realtime */ |
| 74 | ktime_t offs_real; |
| 75 | |
| 76 | /* Offset clock monotonic -> clock boottime */ |
| 77 | ktime_t offs_boot; |
| 78 | |
| 79 | /* Open coded seqlock for all timekeeper values */ |
| 80 | seqcount_t seq; |
| 81 | raw_spinlock_t lock; |
| 82 | }; |
| 83 | |
| 84 | static struct timekeeper timekeeper; |
| 85 | |
| 86 | /* |
| 87 | * This read-write spinlock protects us from races in SMP while |
| 88 | * playing with xtime. |
| 89 | */ |
| 90 | __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(xtime_lock); |
| 91 | seqcount_t xtime_seq; |
| 92 | |
| 93 | |
| 94 | /* flag for if timekeeping is suspended */ |
| 95 | int __read_mostly timekeeping_suspended; |
| 96 | |
| 97 | |
| 98 | |
| 99 | /** |
| 100 | * timekeeper_setup_internals - Set up internals to use clocksource clock. |
| 101 | * |
| 102 | * @clock: Pointer to clocksource. |
| 103 | * |
| 104 | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment |
| 105 | * pair and interval request. |
| 106 | * |
| 107 | * Unless you're the timekeeping code, you should not be using this! |
| 108 | */ |
| 109 | static void timekeeper_setup_internals(struct clocksource *clock) |
| 110 | { |
| 111 | cycle_t interval; |
| 112 | u64 tmp, ntpinterval; |
| 113 | |
| 114 | timekeeper.clock = clock; |
| 115 | clock->cycle_last = clock->read(clock); |
| 116 | |
| 117 | /* Do the ns -> cycle conversion first, using original mult */ |
| 118 | tmp = NTP_INTERVAL_LENGTH; |
| 119 | tmp <<= clock->shift; |
| 120 | ntpinterval = tmp; |
| 121 | tmp += clock->mult/2; |
| 122 | do_div(tmp, clock->mult); |
| 123 | if (tmp == 0) |
| 124 | tmp = 1; |
| 125 | |
| 126 | interval = (cycle_t) tmp; |
| 127 | timekeeper.cycle_interval = interval; |
| 128 | |
| 129 | /* Go back from cycles -> shifted ns */ |
| 130 | timekeeper.xtime_interval = (u64) interval * clock->mult; |
| 131 | timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval; |
| 132 | timekeeper.raw_interval = |
| 133 | ((u64) interval * clock->mult) >> clock->shift; |
| 134 | |
| 135 | timekeeper.xtime_nsec = 0; |
| 136 | timekeeper.shift = clock->shift; |
| 137 | |
| 138 | timekeeper.ntp_error = 0; |
| 139 | timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; |
| 140 | |
| 141 | /* |
| 142 | * The timekeeper keeps its own mult values for the currently |
| 143 | * active clocksource. These value will be adjusted via NTP |
| 144 | * to counteract clock drifting. |
| 145 | */ |
| 146 | timekeeper.mult = clock->mult; |
| 147 | } |
| 148 | |
| 149 | /* Timekeeper helper functions. */ |
| 150 | static inline s64 timekeeping_get_ns(void) |
| 151 | { |
| 152 | cycle_t cycle_now, cycle_delta; |
| 153 | struct clocksource *clock; |
| 154 | |
| 155 | /* read clocksource: */ |
| 156 | clock = timekeeper.clock; |
| 157 | cycle_now = clock->read(clock); |
| 158 | |
| 159 | /* calculate the delta since the last update_wall_time: */ |
| 160 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| 161 | |
| 162 | /* return delta convert to nanoseconds using ntp adjusted mult. */ |
| 163 | return clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
| 164 | timekeeper.shift); |
| 165 | } |
| 166 | |
| 167 | static inline s64 timekeeping_get_ns_raw(void) |
| 168 | { |
| 169 | cycle_t cycle_now, cycle_delta; |
| 170 | struct clocksource *clock; |
| 171 | |
| 172 | /* read clocksource: */ |
| 173 | clock = timekeeper.clock; |
| 174 | cycle_now = clock->read(clock); |
| 175 | |
| 176 | /* calculate the delta since the last update_wall_time: */ |
| 177 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| 178 | |
| 179 | /* return delta convert to nanoseconds. */ |
| 180 | return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
| 181 | } |
| 182 | |
| 183 | static void update_rt_offset(void) |
| 184 | { |
| 185 | struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic; |
| 186 | |
| 187 | set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec); |
| 188 | timekeeper.offs_real = timespec_to_ktime(tmp); |
| 189 | } |
| 190 | |
| 191 | /* must hold write on timekeeper.lock */ |
| 192 | static void timekeeping_update(bool clearntp) |
| 193 | { |
| 194 | if (clearntp) { |
| 195 | timekeeper.ntp_error = 0; |
| 196 | ntp_clear(); |
| 197 | } |
| 198 | update_rt_offset(); |
| 199 | update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic, |
| 200 | timekeeper.clock, timekeeper.mult); |
| 201 | } |
| 202 | |
| 203 | |
| 204 | /** |
| 205 | * timekeeping_forward_now - update clock to the current time |
| 206 | * |
| 207 | * Forward the current clock to update its state since the last call to |
| 208 | * update_wall_time(). This is useful before significant clock changes, |
| 209 | * as it avoids having to deal with this time offset explicitly. |
| 210 | */ |
| 211 | static void timekeeping_forward_now(void) |
| 212 | { |
| 213 | cycle_t cycle_now, cycle_delta; |
| 214 | struct clocksource *clock; |
| 215 | s64 nsec; |
| 216 | |
| 217 | clock = timekeeper.clock; |
| 218 | cycle_now = clock->read(clock); |
| 219 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| 220 | clock->cycle_last = cycle_now; |
| 221 | |
| 222 | nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
| 223 | timekeeper.shift); |
| 224 | |
| 225 | /* If arch requires, add in gettimeoffset() */ |
| 226 | nsec += arch_gettimeoffset(); |
| 227 | |
| 228 | timespec_add_ns(&timekeeper.xtime, nsec); |
| 229 | |
| 230 | nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
| 231 | timespec_add_ns(&timekeeper.raw_time, nsec); |
| 232 | } |
| 233 | |
| 234 | /** |
| 235 | * getnstimeofday - Returns the time of day in a timespec |
| 236 | * @ts: pointer to the timespec to be set |
| 237 | * |
| 238 | * Returns the time of day in a timespec. |
| 239 | */ |
| 240 | void getnstimeofday(struct timespec *ts) |
| 241 | { |
| 242 | unsigned long seq; |
| 243 | s64 nsecs; |
| 244 | |
| 245 | WARN_ON(timekeeping_suspended); |
| 246 | |
| 247 | do { |
| 248 | seq = read_seqcount_begin(&timekeeper.seq); |
| 249 | |
| 250 | *ts = timekeeper.xtime; |
| 251 | nsecs = timekeeping_get_ns(); |
| 252 | |
| 253 | /* If arch requires, add in gettimeoffset() */ |
| 254 | nsecs += arch_gettimeoffset(); |
| 255 | |
| 256 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 257 | |
| 258 | timespec_add_ns(ts, nsecs); |
| 259 | } |
| 260 | |
| 261 | EXPORT_SYMBOL(getnstimeofday); |
| 262 | |
| 263 | ktime_t ktime_get(void) |
| 264 | { |
| 265 | unsigned int seq; |
| 266 | s64 secs, nsecs; |
| 267 | |
| 268 | WARN_ON(timekeeping_suspended); |
| 269 | |
| 270 | do { |
| 271 | seq = read_seqcount_begin(&timekeeper.seq); |
| 272 | secs = timekeeper.xtime.tv_sec + |
| 273 | timekeeper.wall_to_monotonic.tv_sec; |
| 274 | nsecs = timekeeper.xtime.tv_nsec + |
| 275 | timekeeper.wall_to_monotonic.tv_nsec; |
| 276 | nsecs += timekeeping_get_ns(); |
| 277 | /* If arch requires, add in gettimeoffset() */ |
| 278 | nsecs += arch_gettimeoffset(); |
| 279 | |
| 280 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 281 | /* |
| 282 | * Use ktime_set/ktime_add_ns to create a proper ktime on |
| 283 | * 32-bit architectures without CONFIG_KTIME_SCALAR. |
| 284 | */ |
| 285 | return ktime_add_ns(ktime_set(secs, 0), nsecs); |
| 286 | } |
| 287 | EXPORT_SYMBOL_GPL(ktime_get); |
| 288 | |
| 289 | /** |
| 290 | * ktime_get_ts - get the monotonic clock in timespec format |
| 291 | * @ts: pointer to timespec variable |
| 292 | * |
| 293 | * The function calculates the monotonic clock from the realtime |
| 294 | * clock and the wall_to_monotonic offset and stores the result |
| 295 | * in normalized timespec format in the variable pointed to by @ts. |
| 296 | */ |
| 297 | void ktime_get_ts(struct timespec *ts) |
| 298 | { |
| 299 | struct timespec tomono; |
| 300 | unsigned int seq; |
| 301 | s64 nsecs; |
| 302 | |
| 303 | WARN_ON(timekeeping_suspended); |
| 304 | |
| 305 | do { |
| 306 | seq = read_seqcount_begin(&timekeeper.seq); |
| 307 | *ts = timekeeper.xtime; |
| 308 | tomono = timekeeper.wall_to_monotonic; |
| 309 | nsecs = timekeeping_get_ns(); |
| 310 | /* If arch requires, add in gettimeoffset() */ |
| 311 | nsecs += arch_gettimeoffset(); |
| 312 | |
| 313 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 314 | |
| 315 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, |
| 316 | ts->tv_nsec + tomono.tv_nsec + nsecs); |
| 317 | } |
| 318 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
| 319 | |
| 320 | #ifdef CONFIG_NTP_PPS |
| 321 | |
| 322 | /** |
| 323 | * getnstime_raw_and_real - get day and raw monotonic time in timespec format |
| 324 | * @ts_raw: pointer to the timespec to be set to raw monotonic time |
| 325 | * @ts_real: pointer to the timespec to be set to the time of day |
| 326 | * |
| 327 | * This function reads both the time of day and raw monotonic time at the |
| 328 | * same time atomically and stores the resulting timestamps in timespec |
| 329 | * format. |
| 330 | */ |
| 331 | void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) |
| 332 | { |
| 333 | unsigned long seq; |
| 334 | s64 nsecs_raw, nsecs_real; |
| 335 | |
| 336 | WARN_ON_ONCE(timekeeping_suspended); |
| 337 | |
| 338 | do { |
| 339 | u32 arch_offset; |
| 340 | |
| 341 | seq = read_seqcount_begin(&timekeeper.seq); |
| 342 | |
| 343 | *ts_raw = timekeeper.raw_time; |
| 344 | *ts_real = timekeeper.xtime; |
| 345 | |
| 346 | nsecs_raw = timekeeping_get_ns_raw(); |
| 347 | nsecs_real = timekeeping_get_ns(); |
| 348 | |
| 349 | /* If arch requires, add in gettimeoffset() */ |
| 350 | arch_offset = arch_gettimeoffset(); |
| 351 | nsecs_raw += arch_offset; |
| 352 | nsecs_real += arch_offset; |
| 353 | |
| 354 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 355 | |
| 356 | timespec_add_ns(ts_raw, nsecs_raw); |
| 357 | timespec_add_ns(ts_real, nsecs_real); |
| 358 | } |
| 359 | EXPORT_SYMBOL(getnstime_raw_and_real); |
| 360 | |
| 361 | #endif /* CONFIG_NTP_PPS */ |
| 362 | |
| 363 | /** |
| 364 | * do_gettimeofday - Returns the time of day in a timeval |
| 365 | * @tv: pointer to the timeval to be set |
| 366 | * |
| 367 | * NOTE: Users should be converted to using getnstimeofday() |
| 368 | */ |
| 369 | void do_gettimeofday(struct timeval *tv) |
| 370 | { |
| 371 | struct timespec now; |
| 372 | |
| 373 | getnstimeofday(&now); |
| 374 | tv->tv_sec = now.tv_sec; |
| 375 | tv->tv_usec = now.tv_nsec/1000; |
| 376 | } |
| 377 | |
| 378 | EXPORT_SYMBOL(do_gettimeofday); |
| 379 | /** |
| 380 | * do_settimeofday - Sets the time of day |
| 381 | * @tv: pointer to the timespec variable containing the new time |
| 382 | * |
| 383 | * Sets the time of day to the new time and update NTP and notify hrtimers |
| 384 | */ |
| 385 | int do_settimeofday(const struct timespec *tv) |
| 386 | { |
| 387 | struct timespec ts_delta; |
| 388 | unsigned long flags; |
| 389 | |
| 390 | if (!timespec_valid_strict(tv)) |
| 391 | return -EINVAL; |
| 392 | |
| 393 | raw_spin_lock_irqsave(&timekeeper.lock, flags); |
| 394 | write_seqcount_begin(&timekeeper.seq); |
| 395 | |
| 396 | timekeeping_forward_now(); |
| 397 | |
| 398 | ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec; |
| 399 | ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec; |
| 400 | timekeeper.wall_to_monotonic = |
| 401 | timespec_sub(timekeeper.wall_to_monotonic, ts_delta); |
| 402 | |
| 403 | timekeeper.xtime = *tv; |
| 404 | timekeeping_update(true); |
| 405 | |
| 406 | write_seqcount_end(&timekeeper.seq); |
| 407 | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); |
| 408 | |
| 409 | /* signal hrtimers about time change */ |
| 410 | clock_was_set(); |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | EXPORT_SYMBOL(do_settimeofday); |
| 416 | |
| 417 | |
| 418 | /** |
| 419 | * timekeeping_inject_offset - Adds or subtracts from the current time. |
| 420 | * @tv: pointer to the timespec variable containing the offset |
| 421 | * |
| 422 | * Adds or subtracts an offset value from the current time. |
| 423 | */ |
| 424 | int timekeeping_inject_offset(struct timespec *ts) |
| 425 | { |
| 426 | unsigned long flags; |
| 427 | struct timespec tmp; |
| 428 | int ret = 0; |
| 429 | |
| 430 | if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) |
| 431 | return -EINVAL; |
| 432 | |
| 433 | raw_spin_lock_irqsave(&timekeeper.lock, flags); |
| 434 | write_seqcount_begin(&timekeeper.seq); |
| 435 | |
| 436 | timekeeping_forward_now(); |
| 437 | |
| 438 | tmp = timespec_add(timekeeper.xtime, *ts); |
| 439 | if (!timespec_valid_strict(&tmp)) { |
| 440 | ret = -EINVAL; |
| 441 | goto error; |
| 442 | } |
| 443 | |
| 444 | timekeeper.xtime = timespec_add(timekeeper.xtime, *ts); |
| 445 | timekeeper.wall_to_monotonic = |
| 446 | timespec_sub(timekeeper.wall_to_monotonic, *ts); |
| 447 | |
| 448 | error: /* even if we error out, we forwarded the time, so call update */ |
| 449 | timekeeping_update(true); |
| 450 | |
| 451 | write_seqcount_end(&timekeeper.seq); |
| 452 | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); |
| 453 | |
| 454 | /* signal hrtimers about time change */ |
| 455 | clock_was_set(); |
| 456 | |
| 457 | return ret; |
| 458 | } |
| 459 | EXPORT_SYMBOL(timekeeping_inject_offset); |
| 460 | |
| 461 | /** |
| 462 | * change_clocksource - Swaps clocksources if a new one is available |
| 463 | * |
| 464 | * Accumulates current time interval and initializes new clocksource |
| 465 | */ |
| 466 | static int change_clocksource(void *data) |
| 467 | { |
| 468 | struct clocksource *new, *old; |
| 469 | unsigned long flags; |
| 470 | |
| 471 | new = (struct clocksource *) data; |
| 472 | |
| 473 | raw_spin_lock_irqsave(&timekeeper.lock, flags); |
| 474 | write_seqcount_begin(&timekeeper.seq); |
| 475 | |
| 476 | timekeeping_forward_now(); |
| 477 | if (!new->enable || new->enable(new) == 0) { |
| 478 | old = timekeeper.clock; |
| 479 | timekeeper_setup_internals(new); |
| 480 | if (old->disable) |
| 481 | old->disable(old); |
| 482 | } |
| 483 | timekeeping_update(true); |
| 484 | |
| 485 | write_seqcount_end(&timekeeper.seq); |
| 486 | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); |
| 487 | |
| 488 | return 0; |
| 489 | } |
| 490 | |
| 491 | /** |
| 492 | * timekeeping_notify - Install a new clock source |
| 493 | * @clock: pointer to the clock source |
| 494 | * |
| 495 | * This function is called from clocksource.c after a new, better clock |
| 496 | * source has been registered. The caller holds the clocksource_mutex. |
| 497 | */ |
| 498 | void timekeeping_notify(struct clocksource *clock) |
| 499 | { |
| 500 | if (timekeeper.clock == clock) |
| 501 | return; |
| 502 | stop_machine(change_clocksource, clock, NULL); |
| 503 | tick_clock_notify(); |
| 504 | } |
| 505 | |
| 506 | /** |
| 507 | * ktime_get_real - get the real (wall-) time in ktime_t format |
| 508 | * |
| 509 | * returns the time in ktime_t format |
| 510 | */ |
| 511 | ktime_t ktime_get_real(void) |
| 512 | { |
| 513 | struct timespec now; |
| 514 | |
| 515 | getnstimeofday(&now); |
| 516 | |
| 517 | return timespec_to_ktime(now); |
| 518 | } |
| 519 | EXPORT_SYMBOL_GPL(ktime_get_real); |
| 520 | |
| 521 | /** |
| 522 | * getrawmonotonic - Returns the raw monotonic time in a timespec |
| 523 | * @ts: pointer to the timespec to be set |
| 524 | * |
| 525 | * Returns the raw monotonic time (completely un-modified by ntp) |
| 526 | */ |
| 527 | void getrawmonotonic(struct timespec *ts) |
| 528 | { |
| 529 | unsigned long seq; |
| 530 | s64 nsecs; |
| 531 | |
| 532 | do { |
| 533 | seq = read_seqcount_begin(&timekeeper.seq); |
| 534 | nsecs = timekeeping_get_ns_raw(); |
| 535 | *ts = timekeeper.raw_time; |
| 536 | |
| 537 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 538 | |
| 539 | timespec_add_ns(ts, nsecs); |
| 540 | } |
| 541 | EXPORT_SYMBOL(getrawmonotonic); |
| 542 | |
| 543 | |
| 544 | /** |
| 545 | * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres |
| 546 | */ |
| 547 | int timekeeping_valid_for_hres(void) |
| 548 | { |
| 549 | unsigned long seq; |
| 550 | int ret; |
| 551 | |
| 552 | do { |
| 553 | seq = read_seqcount_begin(&timekeeper.seq); |
| 554 | |
| 555 | ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; |
| 556 | |
| 557 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 558 | |
| 559 | return ret; |
| 560 | } |
| 561 | |
| 562 | /** |
| 563 | * timekeeping_max_deferment - Returns max time the clocksource can be deferred |
| 564 | */ |
| 565 | u64 timekeeping_max_deferment(void) |
| 566 | { |
| 567 | unsigned long seq; |
| 568 | u64 ret; |
| 569 | do { |
| 570 | seq = read_seqcount_begin(&timekeeper.seq); |
| 571 | |
| 572 | ret = timekeeper.clock->max_idle_ns; |
| 573 | |
| 574 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 575 | |
| 576 | return ret; |
| 577 | } |
| 578 | |
| 579 | /** |
| 580 | * read_persistent_clock - Return time from the persistent clock. |
| 581 | * |
| 582 | * Weak dummy function for arches that do not yet support it. |
| 583 | * Reads the time from the battery backed persistent clock. |
| 584 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
| 585 | * |
| 586 | * XXX - Do be sure to remove it once all arches implement it. |
| 587 | */ |
| 588 | void __attribute__((weak)) read_persistent_clock(struct timespec *ts) |
| 589 | { |
| 590 | ts->tv_sec = 0; |
| 591 | ts->tv_nsec = 0; |
| 592 | } |
| 593 | |
| 594 | /** |
| 595 | * read_boot_clock - Return time of the system start. |
| 596 | * |
| 597 | * Weak dummy function for arches that do not yet support it. |
| 598 | * Function to read the exact time the system has been started. |
| 599 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
| 600 | * |
| 601 | * XXX - Do be sure to remove it once all arches implement it. |
| 602 | */ |
| 603 | void __attribute__((weak)) read_boot_clock(struct timespec *ts) |
| 604 | { |
| 605 | ts->tv_sec = 0; |
| 606 | ts->tv_nsec = 0; |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | * timekeeping_init - Initializes the clocksource and common timekeeping values |
| 611 | */ |
| 612 | void __init timekeeping_init(void) |
| 613 | { |
| 614 | struct clocksource *clock; |
| 615 | unsigned long flags; |
| 616 | struct timespec now, boot; |
| 617 | |
| 618 | read_persistent_clock(&now); |
| 619 | if (!timespec_valid_strict(&now)) { |
| 620 | pr_warn("WARNING: Persistent clock returned invalid value!\n" |
| 621 | " Check your CMOS/BIOS settings.\n"); |
| 622 | now.tv_sec = 0; |
| 623 | now.tv_nsec = 0; |
| 624 | } |
| 625 | |
| 626 | read_boot_clock(&boot); |
| 627 | if (!timespec_valid_strict(&boot)) { |
| 628 | pr_warn("WARNING: Boot clock returned invalid value!\n" |
| 629 | " Check your CMOS/BIOS settings.\n"); |
| 630 | boot.tv_sec = 0; |
| 631 | boot.tv_nsec = 0; |
| 632 | } |
| 633 | |
| 634 | raw_spin_lock_init(&timekeeper.lock); |
| 635 | seqcount_init(&timekeeper.seq); |
| 636 | |
| 637 | ntp_init(); |
| 638 | |
| 639 | raw_spin_lock_irqsave(&timekeeper.lock, flags); |
| 640 | write_seqcount_begin(&timekeeper.seq); |
| 641 | clock = clocksource_default_clock(); |
| 642 | if (clock->enable) |
| 643 | clock->enable(clock); |
| 644 | timekeeper_setup_internals(clock); |
| 645 | |
| 646 | timekeeper.xtime.tv_sec = now.tv_sec; |
| 647 | timekeeper.xtime.tv_nsec = now.tv_nsec; |
| 648 | timekeeper.raw_time.tv_sec = 0; |
| 649 | timekeeper.raw_time.tv_nsec = 0; |
| 650 | if (boot.tv_sec == 0 && boot.tv_nsec == 0) { |
| 651 | boot.tv_sec = timekeeper.xtime.tv_sec; |
| 652 | boot.tv_nsec = timekeeper.xtime.tv_nsec; |
| 653 | } |
| 654 | set_normalized_timespec(&timekeeper.wall_to_monotonic, |
| 655 | -boot.tv_sec, -boot.tv_nsec); |
| 656 | update_rt_offset(); |
| 657 | timekeeper.total_sleep_time.tv_sec = 0; |
| 658 | timekeeper.total_sleep_time.tv_nsec = 0; |
| 659 | write_seqcount_end(&timekeeper.seq); |
| 660 | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); |
| 661 | } |
| 662 | |
| 663 | /* time in seconds when suspend began */ |
| 664 | static struct timespec timekeeping_suspend_time; |
| 665 | |
| 666 | static void update_sleep_time(struct timespec t) |
| 667 | { |
| 668 | timekeeper.total_sleep_time = t; |
| 669 | timekeeper.offs_boot = timespec_to_ktime(t); |
| 670 | } |
| 671 | |
| 672 | /** |
| 673 | * __timekeeping_inject_sleeptime - Internal function to add sleep interval |
| 674 | * @delta: pointer to a timespec delta value |
| 675 | * |
| 676 | * Takes a timespec offset measuring a suspend interval and properly |
| 677 | * adds the sleep offset to the timekeeping variables. |
| 678 | */ |
| 679 | static void __timekeeping_inject_sleeptime(struct timespec *delta) |
| 680 | { |
| 681 | if (!timespec_valid_strict(delta)) { |
| 682 | printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid " |
| 683 | "sleep delta value!\n"); |
| 684 | return; |
| 685 | } |
| 686 | |
| 687 | timekeeper.xtime = timespec_add(timekeeper.xtime, *delta); |
| 688 | timekeeper.wall_to_monotonic = |
| 689 | timespec_sub(timekeeper.wall_to_monotonic, *delta); |
| 690 | update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta)); |
| 691 | } |
| 692 | |
| 693 | |
| 694 | /** |
| 695 | * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values |
| 696 | * @delta: pointer to a timespec delta value |
| 697 | * |
| 698 | * This hook is for architectures that cannot support read_persistent_clock |
| 699 | * because their RTC/persistent clock is only accessible when irqs are enabled. |
| 700 | * |
| 701 | * This function should only be called by rtc_resume(), and allows |
| 702 | * a suspend offset to be injected into the timekeeping values. |
| 703 | */ |
| 704 | void timekeeping_inject_sleeptime(struct timespec *delta) |
| 705 | { |
| 706 | unsigned long flags; |
| 707 | struct timespec ts; |
| 708 | |
| 709 | /* Make sure we don't set the clock twice */ |
| 710 | read_persistent_clock(&ts); |
| 711 | if (!(ts.tv_sec == 0 && ts.tv_nsec == 0)) |
| 712 | return; |
| 713 | |
| 714 | raw_spin_lock_irqsave(&timekeeper.lock, flags); |
| 715 | write_seqcount_begin(&timekeeper.seq); |
| 716 | |
| 717 | timekeeping_forward_now(); |
| 718 | |
| 719 | __timekeeping_inject_sleeptime(delta); |
| 720 | |
| 721 | timekeeping_update(true); |
| 722 | |
| 723 | write_seqcount_end(&timekeeper.seq); |
| 724 | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); |
| 725 | |
| 726 | /* signal hrtimers about time change */ |
| 727 | clock_was_set(); |
| 728 | } |
| 729 | |
| 730 | |
| 731 | /** |
| 732 | * timekeeping_resume - Resumes the generic timekeeping subsystem. |
| 733 | * |
| 734 | * This is for the generic clocksource timekeeping. |
| 735 | * xtime/wall_to_monotonic/jiffies/etc are |
| 736 | * still managed by arch specific suspend/resume code. |
| 737 | */ |
| 738 | static void timekeeping_resume(void) |
| 739 | { |
| 740 | unsigned long flags; |
| 741 | struct timespec ts; |
| 742 | |
| 743 | read_persistent_clock(&ts); |
| 744 | |
| 745 | clocksource_resume(); |
| 746 | |
| 747 | raw_spin_lock_irqsave(&timekeeper.lock, flags); |
| 748 | write_seqcount_begin(&timekeeper.seq); |
| 749 | |
| 750 | if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { |
| 751 | ts = timespec_sub(ts, timekeeping_suspend_time); |
| 752 | __timekeeping_inject_sleeptime(&ts); |
| 753 | } |
| 754 | /* re-base the last cycle value */ |
| 755 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
| 756 | timekeeper.ntp_error = 0; |
| 757 | timekeeping_suspended = 0; |
| 758 | timekeeping_update(false); |
| 759 | write_seqcount_end(&timekeeper.seq); |
| 760 | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); |
| 761 | |
| 762 | touch_softlockup_watchdog(); |
| 763 | |
| 764 | clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); |
| 765 | |
| 766 | /* Resume hrtimers */ |
| 767 | hrtimers_resume(); |
| 768 | } |
| 769 | |
| 770 | static int timekeeping_suspend(void) |
| 771 | { |
| 772 | unsigned long flags; |
| 773 | struct timespec delta, delta_delta; |
| 774 | static struct timespec old_delta; |
| 775 | |
| 776 | read_persistent_clock(&timekeeping_suspend_time); |
| 777 | |
| 778 | raw_spin_lock_irqsave(&timekeeper.lock, flags); |
| 779 | write_seqcount_begin(&timekeeper.seq); |
| 780 | timekeeping_forward_now(); |
| 781 | timekeeping_suspended = 1; |
| 782 | |
| 783 | /* |
| 784 | * To avoid drift caused by repeated suspend/resumes, |
| 785 | * which each can add ~1 second drift error, |
| 786 | * try to compensate so the difference in system time |
| 787 | * and persistent_clock time stays close to constant. |
| 788 | */ |
| 789 | delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time); |
| 790 | delta_delta = timespec_sub(delta, old_delta); |
| 791 | if (abs(delta_delta.tv_sec) >= 2) { |
| 792 | /* |
| 793 | * if delta_delta is too large, assume time correction |
| 794 | * has occured and set old_delta to the current delta. |
| 795 | */ |
| 796 | old_delta = delta; |
| 797 | } else { |
| 798 | /* Otherwise try to adjust old_system to compensate */ |
| 799 | timekeeping_suspend_time = |
| 800 | timespec_add(timekeeping_suspend_time, delta_delta); |
| 801 | } |
| 802 | write_seqcount_end(&timekeeper.seq); |
| 803 | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); |
| 804 | |
| 805 | clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); |
| 806 | clocksource_suspend(); |
| 807 | |
| 808 | return 0; |
| 809 | } |
| 810 | |
| 811 | /* sysfs resume/suspend bits for timekeeping */ |
| 812 | static struct syscore_ops timekeeping_syscore_ops = { |
| 813 | .resume = timekeeping_resume, |
| 814 | .suspend = timekeeping_suspend, |
| 815 | }; |
| 816 | |
| 817 | static int __init timekeeping_init_ops(void) |
| 818 | { |
| 819 | register_syscore_ops(&timekeeping_syscore_ops); |
| 820 | return 0; |
| 821 | } |
| 822 | |
| 823 | device_initcall(timekeeping_init_ops); |
| 824 | |
| 825 | /* |
| 826 | * If the error is already larger, we look ahead even further |
| 827 | * to compensate for late or lost adjustments. |
| 828 | */ |
| 829 | static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, |
| 830 | s64 *offset) |
| 831 | { |
| 832 | s64 tick_error, i; |
| 833 | u32 look_ahead, adj; |
| 834 | s32 error2, mult; |
| 835 | |
| 836 | /* |
| 837 | * Use the current error value to determine how much to look ahead. |
| 838 | * The larger the error the slower we adjust for it to avoid problems |
| 839 | * with losing too many ticks, otherwise we would overadjust and |
| 840 | * produce an even larger error. The smaller the adjustment the |
| 841 | * faster we try to adjust for it, as lost ticks can do less harm |
| 842 | * here. This is tuned so that an error of about 1 msec is adjusted |
| 843 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). |
| 844 | */ |
| 845 | error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); |
| 846 | error2 = abs(error2); |
| 847 | for (look_ahead = 0; error2 > 0; look_ahead++) |
| 848 | error2 >>= 2; |
| 849 | |
| 850 | /* |
| 851 | * Now calculate the error in (1 << look_ahead) ticks, but first |
| 852 | * remove the single look ahead already included in the error. |
| 853 | */ |
| 854 | tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1); |
| 855 | tick_error -= timekeeper.xtime_interval >> 1; |
| 856 | error = ((error - tick_error) >> look_ahead) + tick_error; |
| 857 | |
| 858 | /* Finally calculate the adjustment shift value. */ |
| 859 | i = *interval; |
| 860 | mult = 1; |
| 861 | if (error < 0) { |
| 862 | error = -error; |
| 863 | *interval = -*interval; |
| 864 | *offset = -*offset; |
| 865 | mult = -1; |
| 866 | } |
| 867 | for (adj = 0; error > i; adj++) |
| 868 | error >>= 1; |
| 869 | |
| 870 | *interval <<= adj; |
| 871 | *offset <<= adj; |
| 872 | return mult << adj; |
| 873 | } |
| 874 | |
| 875 | /* |
| 876 | * Adjust the multiplier to reduce the error value, |
| 877 | * this is optimized for the most common adjustments of -1,0,1, |
| 878 | * for other values we can do a bit more work. |
| 879 | */ |
| 880 | static void timekeeping_adjust(s64 offset) |
| 881 | { |
| 882 | s64 error, interval = timekeeper.cycle_interval; |
| 883 | int adj; |
| 884 | |
| 885 | /* |
| 886 | * The point of this is to check if the error is greater than half |
| 887 | * an interval. |
| 888 | * |
| 889 | * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs. |
| 890 | * |
| 891 | * Note we subtract one in the shift, so that error is really error*2. |
| 892 | * This "saves" dividing(shifting) interval twice, but keeps the |
| 893 | * (error > interval) comparison as still measuring if error is |
| 894 | * larger than half an interval. |
| 895 | * |
| 896 | * Note: It does not "save" on aggravation when reading the code. |
| 897 | */ |
| 898 | error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); |
| 899 | if (error > interval) { |
| 900 | /* |
| 901 | * We now divide error by 4(via shift), which checks if |
| 902 | * the error is greater than twice the interval. |
| 903 | * If it is greater, we need a bigadjust, if its smaller, |
| 904 | * we can adjust by 1. |
| 905 | */ |
| 906 | error >>= 2; |
| 907 | /* |
| 908 | * XXX - In update_wall_time, we round up to the next |
| 909 | * nanosecond, and store the amount rounded up into |
| 910 | * the error. This causes the likely below to be unlikely. |
| 911 | * |
| 912 | * The proper fix is to avoid rounding up by using |
| 913 | * the high precision timekeeper.xtime_nsec instead of |
| 914 | * xtime.tv_nsec everywhere. Fixing this will take some |
| 915 | * time. |
| 916 | */ |
| 917 | if (likely(error <= interval)) |
| 918 | adj = 1; |
| 919 | else |
| 920 | adj = timekeeping_bigadjust(error, &interval, &offset); |
| 921 | } else if (error < -interval) { |
| 922 | /* See comment above, this is just switched for the negative */ |
| 923 | error >>= 2; |
| 924 | if (likely(error >= -interval)) { |
| 925 | adj = -1; |
| 926 | interval = -interval; |
| 927 | offset = -offset; |
| 928 | } else |
| 929 | adj = timekeeping_bigadjust(error, &interval, &offset); |
| 930 | } else /* No adjustment needed */ |
| 931 | return; |
| 932 | |
| 933 | if (unlikely(timekeeper.clock->maxadj && |
| 934 | (timekeeper.mult + adj > |
| 935 | timekeeper.clock->mult + timekeeper.clock->maxadj))) { |
| 936 | printk_once(KERN_WARNING |
| 937 | "Adjusting %s more than 11%% (%ld vs %ld)\n", |
| 938 | timekeeper.clock->name, (long)timekeeper.mult + adj, |
| 939 | (long)timekeeper.clock->mult + |
| 940 | timekeeper.clock->maxadj); |
| 941 | } |
| 942 | /* |
| 943 | * So the following can be confusing. |
| 944 | * |
| 945 | * To keep things simple, lets assume adj == 1 for now. |
| 946 | * |
| 947 | * When adj != 1, remember that the interval and offset values |
| 948 | * have been appropriately scaled so the math is the same. |
| 949 | * |
| 950 | * The basic idea here is that we're increasing the multiplier |
| 951 | * by one, this causes the xtime_interval to be incremented by |
| 952 | * one cycle_interval. This is because: |
| 953 | * xtime_interval = cycle_interval * mult |
| 954 | * So if mult is being incremented by one: |
| 955 | * xtime_interval = cycle_interval * (mult + 1) |
| 956 | * Its the same as: |
| 957 | * xtime_interval = (cycle_interval * mult) + cycle_interval |
| 958 | * Which can be shortened to: |
| 959 | * xtime_interval += cycle_interval |
| 960 | * |
| 961 | * So offset stores the non-accumulated cycles. Thus the current |
| 962 | * time (in shifted nanoseconds) is: |
| 963 | * now = (offset * adj) + xtime_nsec |
| 964 | * Now, even though we're adjusting the clock frequency, we have |
| 965 | * to keep time consistent. In other words, we can't jump back |
| 966 | * in time, and we also want to avoid jumping forward in time. |
| 967 | * |
| 968 | * So given the same offset value, we need the time to be the same |
| 969 | * both before and after the freq adjustment. |
| 970 | * now = (offset * adj_1) + xtime_nsec_1 |
| 971 | * now = (offset * adj_2) + xtime_nsec_2 |
| 972 | * So: |
| 973 | * (offset * adj_1) + xtime_nsec_1 = |
| 974 | * (offset * adj_2) + xtime_nsec_2 |
| 975 | * And we know: |
| 976 | * adj_2 = adj_1 + 1 |
| 977 | * So: |
| 978 | * (offset * adj_1) + xtime_nsec_1 = |
| 979 | * (offset * (adj_1+1)) + xtime_nsec_2 |
| 980 | * (offset * adj_1) + xtime_nsec_1 = |
| 981 | * (offset * adj_1) + offset + xtime_nsec_2 |
| 982 | * Canceling the sides: |
| 983 | * xtime_nsec_1 = offset + xtime_nsec_2 |
| 984 | * Which gives us: |
| 985 | * xtime_nsec_2 = xtime_nsec_1 - offset |
| 986 | * Which simplfies to: |
| 987 | * xtime_nsec -= offset |
| 988 | * |
| 989 | * XXX - TODO: Doc ntp_error calculation. |
| 990 | */ |
| 991 | timekeeper.mult += adj; |
| 992 | timekeeper.xtime_interval += interval; |
| 993 | timekeeper.xtime_nsec -= offset; |
| 994 | timekeeper.ntp_error -= (interval - offset) << |
| 995 | timekeeper.ntp_error_shift; |
| 996 | } |
| 997 | |
| 998 | |
| 999 | /** |
| 1000 | * logarithmic_accumulation - shifted accumulation of cycles |
| 1001 | * |
| 1002 | * This functions accumulates a shifted interval of cycles into |
| 1003 | * into a shifted interval nanoseconds. Allows for O(log) accumulation |
| 1004 | * loop. |
| 1005 | * |
| 1006 | * Returns the unconsumed cycles. |
| 1007 | */ |
| 1008 | static cycle_t logarithmic_accumulation(cycle_t offset, int shift, |
| 1009 | unsigned int *clock_set) |
| 1010 | { |
| 1011 | u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; |
| 1012 | u64 raw_nsecs; |
| 1013 | |
| 1014 | /* If the offset is smaller than a shifted interval, do nothing */ |
| 1015 | if (offset < timekeeper.cycle_interval<<shift) |
| 1016 | return offset; |
| 1017 | |
| 1018 | /* Accumulate one shifted interval */ |
| 1019 | offset -= timekeeper.cycle_interval << shift; |
| 1020 | timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; |
| 1021 | |
| 1022 | timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; |
| 1023 | while (timekeeper.xtime_nsec >= nsecps) { |
| 1024 | int leap; |
| 1025 | timekeeper.xtime_nsec -= nsecps; |
| 1026 | timekeeper.xtime.tv_sec++; |
| 1027 | leap = second_overflow(timekeeper.xtime.tv_sec); |
| 1028 | timekeeper.xtime.tv_sec += leap; |
| 1029 | timekeeper.wall_to_monotonic.tv_sec -= leap; |
| 1030 | if (leap) |
| 1031 | *clock_set = 1; |
| 1032 | } |
| 1033 | |
| 1034 | /* Accumulate raw time */ |
| 1035 | raw_nsecs = (u64)timekeeper.raw_interval << shift; |
| 1036 | raw_nsecs += timekeeper.raw_time.tv_nsec; |
| 1037 | if (raw_nsecs >= NSEC_PER_SEC) { |
| 1038 | u64 raw_secs = raw_nsecs; |
| 1039 | raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); |
| 1040 | timekeeper.raw_time.tv_sec += raw_secs; |
| 1041 | } |
| 1042 | timekeeper.raw_time.tv_nsec = raw_nsecs; |
| 1043 | |
| 1044 | /* Accumulate error between NTP and clock interval */ |
| 1045 | timekeeper.ntp_error += ntp_tick_length() << shift; |
| 1046 | timekeeper.ntp_error -= |
| 1047 | (timekeeper.xtime_interval + timekeeper.xtime_remainder) << |
| 1048 | (timekeeper.ntp_error_shift + shift); |
| 1049 | |
| 1050 | return offset; |
| 1051 | } |
| 1052 | |
| 1053 | |
| 1054 | /** |
| 1055 | * update_wall_time - Uses the current clocksource to increment the wall time |
| 1056 | * |
| 1057 | */ |
| 1058 | static void update_wall_time(void) |
| 1059 | { |
| 1060 | struct clocksource *clock; |
| 1061 | cycle_t offset; |
| 1062 | int shift = 0, maxshift; |
| 1063 | unsigned int clock_set = 0; |
| 1064 | unsigned long flags; |
| 1065 | |
| 1066 | raw_spin_lock_irqsave(&timekeeper.lock, flags); |
| 1067 | write_seqcount_begin(&timekeeper.seq); |
| 1068 | |
| 1069 | /* Make sure we're fully resumed: */ |
| 1070 | if (unlikely(timekeeping_suspended)) |
| 1071 | goto out; |
| 1072 | |
| 1073 | clock = timekeeper.clock; |
| 1074 | |
| 1075 | #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET |
| 1076 | offset = timekeeper.cycle_interval; |
| 1077 | #else |
| 1078 | offset = (clock->read(clock) - clock->cycle_last) & clock->mask; |
| 1079 | #endif |
| 1080 | /* Check if there's really nothing to do */ |
| 1081 | if (offset < timekeeper.cycle_interval) |
| 1082 | goto out; |
| 1083 | |
| 1084 | timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec << |
| 1085 | timekeeper.shift; |
| 1086 | /* |
| 1087 | * With NO_HZ we may have to accumulate many cycle_intervals |
| 1088 | * (think "ticks") worth of time at once. To do this efficiently, |
| 1089 | * we calculate the largest doubling multiple of cycle_intervals |
| 1090 | * that is smaller than the offset. We then accumulate that |
| 1091 | * chunk in one go, and then try to consume the next smaller |
| 1092 | * doubled multiple. |
| 1093 | */ |
| 1094 | shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); |
| 1095 | shift = max(0, shift); |
| 1096 | /* Bound shift to one less than what overflows tick_length */ |
| 1097 | maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; |
| 1098 | shift = min(shift, maxshift); |
| 1099 | while (offset >= timekeeper.cycle_interval) { |
| 1100 | offset = logarithmic_accumulation(offset, shift, &clock_set); |
| 1101 | if(offset < timekeeper.cycle_interval<<shift) |
| 1102 | shift--; |
| 1103 | } |
| 1104 | |
| 1105 | /* correct the clock when NTP error is too big */ |
| 1106 | timekeeping_adjust(offset); |
| 1107 | |
| 1108 | /* |
| 1109 | * Since in the loop above, we accumulate any amount of time |
| 1110 | * in xtime_nsec over a second into xtime.tv_sec, its possible for |
| 1111 | * xtime_nsec to be fairly small after the loop. Further, if we're |
| 1112 | * slightly speeding the clocksource up in timekeeping_adjust(), |
| 1113 | * its possible the required corrective factor to xtime_nsec could |
| 1114 | * cause it to underflow. |
| 1115 | * |
| 1116 | * Now, we cannot simply roll the accumulated second back, since |
| 1117 | * the NTP subsystem has been notified via second_overflow. So |
| 1118 | * instead we push xtime_nsec forward by the amount we underflowed, |
| 1119 | * and add that amount into the error. |
| 1120 | * |
| 1121 | * We'll correct this error next time through this function, when |
| 1122 | * xtime_nsec is not as small. |
| 1123 | */ |
| 1124 | if (unlikely((s64)timekeeper.xtime_nsec < 0)) { |
| 1125 | s64 neg = -(s64)timekeeper.xtime_nsec; |
| 1126 | timekeeper.xtime_nsec = 0; |
| 1127 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
| 1128 | } |
| 1129 | |
| 1130 | |
| 1131 | /* |
| 1132 | * Store full nanoseconds into xtime after rounding it up and |
| 1133 | * add the remainder to the error difference. |
| 1134 | */ |
| 1135 | timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >> |
| 1136 | timekeeper.shift) + 1; |
| 1137 | timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec << |
| 1138 | timekeeper.shift; |
| 1139 | timekeeper.ntp_error += timekeeper.xtime_nsec << |
| 1140 | timekeeper.ntp_error_shift; |
| 1141 | |
| 1142 | /* |
| 1143 | * Finally, make sure that after the rounding |
| 1144 | * xtime.tv_nsec isn't larger than NSEC_PER_SEC |
| 1145 | */ |
| 1146 | if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) { |
| 1147 | int leap; |
| 1148 | timekeeper.xtime.tv_nsec -= NSEC_PER_SEC; |
| 1149 | timekeeper.xtime.tv_sec++; |
| 1150 | leap = second_overflow(timekeeper.xtime.tv_sec); |
| 1151 | timekeeper.xtime.tv_sec += leap; |
| 1152 | timekeeper.wall_to_monotonic.tv_sec -= leap; |
| 1153 | if (leap) |
| 1154 | clock_set = 1; |
| 1155 | } |
| 1156 | |
| 1157 | timekeeping_update(false); |
| 1158 | |
| 1159 | out: |
| 1160 | write_seqcount_end(&timekeeper.seq); |
| 1161 | raw_spin_unlock_irqrestore(&timekeeper.lock, flags); |
| 1162 | |
| 1163 | if (clock_set) |
| 1164 | clock_was_set_delayed(); |
| 1165 | } |
| 1166 | |
| 1167 | /** |
| 1168 | * getboottime - Return the real time of system boot. |
| 1169 | * @ts: pointer to the timespec to be set |
| 1170 | * |
| 1171 | * Returns the wall-time of boot in a timespec. |
| 1172 | * |
| 1173 | * This is based on the wall_to_monotonic offset and the total suspend |
| 1174 | * time. Calls to settimeofday will affect the value returned (which |
| 1175 | * basically means that however wrong your real time clock is at boot time, |
| 1176 | * you get the right time here). |
| 1177 | */ |
| 1178 | void getboottime(struct timespec *ts) |
| 1179 | { |
| 1180 | struct timespec boottime = { |
| 1181 | .tv_sec = timekeeper.wall_to_monotonic.tv_sec + |
| 1182 | timekeeper.total_sleep_time.tv_sec, |
| 1183 | .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec + |
| 1184 | timekeeper.total_sleep_time.tv_nsec |
| 1185 | }; |
| 1186 | |
| 1187 | set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); |
| 1188 | } |
| 1189 | EXPORT_SYMBOL_GPL(getboottime); |
| 1190 | |
| 1191 | |
| 1192 | /** |
| 1193 | * get_monotonic_boottime - Returns monotonic time since boot |
| 1194 | * @ts: pointer to the timespec to be set |
| 1195 | * |
| 1196 | * Returns the monotonic time since boot in a timespec. |
| 1197 | * |
| 1198 | * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also |
| 1199 | * includes the time spent in suspend. |
| 1200 | */ |
| 1201 | void get_monotonic_boottime(struct timespec *ts) |
| 1202 | { |
| 1203 | struct timespec tomono, sleep; |
| 1204 | unsigned int seq; |
| 1205 | s64 nsecs; |
| 1206 | |
| 1207 | WARN_ON(timekeeping_suspended); |
| 1208 | |
| 1209 | do { |
| 1210 | seq = read_seqcount_begin(&timekeeper.seq); |
| 1211 | *ts = timekeeper.xtime; |
| 1212 | tomono = timekeeper.wall_to_monotonic; |
| 1213 | sleep = timekeeper.total_sleep_time; |
| 1214 | nsecs = timekeeping_get_ns(); |
| 1215 | |
| 1216 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 1217 | |
| 1218 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec, |
| 1219 | (s64)ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs); |
| 1220 | } |
| 1221 | EXPORT_SYMBOL_GPL(get_monotonic_boottime); |
| 1222 | |
| 1223 | /** |
| 1224 | * ktime_get_boottime - Returns monotonic time since boot in a ktime |
| 1225 | * |
| 1226 | * Returns the monotonic time since boot in a ktime |
| 1227 | * |
| 1228 | * This is similar to CLOCK_MONTONIC/ktime_get, but also |
| 1229 | * includes the time spent in suspend. |
| 1230 | */ |
| 1231 | ktime_t ktime_get_boottime(void) |
| 1232 | { |
| 1233 | struct timespec ts; |
| 1234 | |
| 1235 | get_monotonic_boottime(&ts); |
| 1236 | return timespec_to_ktime(ts); |
| 1237 | } |
| 1238 | EXPORT_SYMBOL_GPL(ktime_get_boottime); |
| 1239 | |
| 1240 | /** |
| 1241 | * monotonic_to_bootbased - Convert the monotonic time to boot based. |
| 1242 | * @ts: pointer to the timespec to be converted |
| 1243 | */ |
| 1244 | void monotonic_to_bootbased(struct timespec *ts) |
| 1245 | { |
| 1246 | *ts = timespec_add(*ts, timekeeper.total_sleep_time); |
| 1247 | } |
| 1248 | EXPORT_SYMBOL_GPL(monotonic_to_bootbased); |
| 1249 | |
| 1250 | unsigned long get_seconds(void) |
| 1251 | { |
| 1252 | return timekeeper.xtime.tv_sec; |
| 1253 | } |
| 1254 | EXPORT_SYMBOL(get_seconds); |
| 1255 | |
| 1256 | struct timespec __current_kernel_time(void) |
| 1257 | { |
| 1258 | return timekeeper.xtime; |
| 1259 | } |
| 1260 | |
| 1261 | struct timespec current_kernel_time(void) |
| 1262 | { |
| 1263 | struct timespec now; |
| 1264 | unsigned long seq; |
| 1265 | |
| 1266 | do { |
| 1267 | seq = read_seqcount_begin(&timekeeper.seq); |
| 1268 | |
| 1269 | now = timekeeper.xtime; |
| 1270 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 1271 | |
| 1272 | return now; |
| 1273 | } |
| 1274 | EXPORT_SYMBOL(current_kernel_time); |
| 1275 | |
| 1276 | struct timespec get_monotonic_coarse(void) |
| 1277 | { |
| 1278 | struct timespec now, mono; |
| 1279 | unsigned long seq; |
| 1280 | |
| 1281 | do { |
| 1282 | seq = read_seqcount_begin(&timekeeper.seq); |
| 1283 | |
| 1284 | now = timekeeper.xtime; |
| 1285 | mono = timekeeper.wall_to_monotonic; |
| 1286 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 1287 | |
| 1288 | set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, |
| 1289 | now.tv_nsec + mono.tv_nsec); |
| 1290 | return now; |
| 1291 | } |
| 1292 | |
| 1293 | /* |
| 1294 | * The 64-bit jiffies value is not atomic - you MUST NOT read it |
| 1295 | * without sampling the sequence number in xtime_lock. |
| 1296 | * jiffies is defined in the linker script... |
| 1297 | */ |
| 1298 | void do_timer(unsigned long ticks) |
| 1299 | { |
| 1300 | jiffies_64 += ticks; |
| 1301 | update_wall_time(); |
| 1302 | calc_global_load(ticks); |
| 1303 | } |
| 1304 | |
| 1305 | /** |
| 1306 | * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic, |
| 1307 | * and sleep offsets. |
| 1308 | * @xtim: pointer to timespec to be set with xtime |
| 1309 | * @wtom: pointer to timespec to be set with wall_to_monotonic |
| 1310 | * @sleep: pointer to timespec to be set with time in suspend |
| 1311 | */ |
| 1312 | void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim, |
| 1313 | struct timespec *wtom, struct timespec *sleep) |
| 1314 | { |
| 1315 | unsigned long seq; |
| 1316 | |
| 1317 | do { |
| 1318 | seq = read_seqcount_begin(&timekeeper.seq); |
| 1319 | *xtim = timekeeper.xtime; |
| 1320 | *wtom = timekeeper.wall_to_monotonic; |
| 1321 | *sleep = timekeeper.total_sleep_time; |
| 1322 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 1323 | } |
| 1324 | |
| 1325 | #ifdef CONFIG_HIGH_RES_TIMERS |
| 1326 | /** |
| 1327 | * ktime_get_update_offsets - hrtimer helper |
| 1328 | * @offs_real: pointer to storage for monotonic -> realtime offset |
| 1329 | * @offs_boot: pointer to storage for monotonic -> boottime offset |
| 1330 | * |
| 1331 | * Returns current monotonic time and updates the offsets |
| 1332 | * Called from hrtimer_interupt() or retrigger_next_event() |
| 1333 | */ |
| 1334 | ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot) |
| 1335 | { |
| 1336 | ktime_t now; |
| 1337 | unsigned int seq; |
| 1338 | u64 secs, nsecs; |
| 1339 | |
| 1340 | do { |
| 1341 | seq = read_seqcount_begin(&timekeeper.seq); |
| 1342 | |
| 1343 | secs = timekeeper.xtime.tv_sec; |
| 1344 | nsecs = timekeeper.xtime.tv_nsec; |
| 1345 | nsecs += timekeeping_get_ns(); |
| 1346 | /* If arch requires, add in gettimeoffset() */ |
| 1347 | nsecs += arch_gettimeoffset(); |
| 1348 | |
| 1349 | *offs_real = timekeeper.offs_real; |
| 1350 | *offs_boot = timekeeper.offs_boot; |
| 1351 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 1352 | |
| 1353 | now = ktime_add_ns(ktime_set(secs, 0), nsecs); |
| 1354 | now = ktime_sub(now, *offs_real); |
| 1355 | return now; |
| 1356 | } |
| 1357 | #endif |
| 1358 | |
| 1359 | /** |
| 1360 | * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format |
| 1361 | */ |
| 1362 | ktime_t ktime_get_monotonic_offset(void) |
| 1363 | { |
| 1364 | unsigned long seq; |
| 1365 | struct timespec wtom; |
| 1366 | |
| 1367 | do { |
| 1368 | seq = read_seqcount_begin(&timekeeper.seq); |
| 1369 | wtom = timekeeper.wall_to_monotonic; |
| 1370 | } while (read_seqcount_retry(&timekeeper.seq, seq)); |
| 1371 | |
| 1372 | return timespec_to_ktime(wtom); |
| 1373 | } |
| 1374 | EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset); |
| 1375 | |
| 1376 | |
| 1377 | /** |
| 1378 | * xtime_update() - advances the timekeeping infrastructure |
| 1379 | * @ticks: number of ticks, that have elapsed since the last call. |
| 1380 | * |
| 1381 | * Must be called with interrupts disabled. |
| 1382 | */ |
| 1383 | void xtime_update(unsigned long ticks) |
| 1384 | { |
| 1385 | raw_spin_lock(&xtime_lock); |
| 1386 | write_seqcount_begin(&xtime_seq); |
| 1387 | do_timer(ticks); |
| 1388 | write_seqcount_end(&xtime_seq); |
| 1389 | raw_spin_unlock(&xtime_lock); |
| 1390 | } |