blob: ecd1c4c4207c8d535cae0f51042b5351f1f6fd57 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36#include <linux/pagevec.h>
37#include <trace/events/writeback.h>
38
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
44/*
45 * Try to keep balance_dirty_pages() call intervals higher than this many pages
46 * by raising pause time to max_pause when falls below it.
47 */
48#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
49
50/*
51 * Estimate write bandwidth at 200ms intervals.
52 */
53#define BANDWIDTH_INTERVAL max(HZ/5, 1)
54
55#define RATELIMIT_CALC_SHIFT 10
56
57/*
58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59 * will look to see if it needs to force writeback or throttling.
60 */
61static long ratelimit_pages = 32;
62
63/* The following parameters are exported via /proc/sys/vm */
64
65/*
66 * Start background writeback (via writeback threads) at this percentage
67 */
68int dirty_background_ratio = 10;
69
70/*
71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72 * dirty_background_ratio * the amount of dirtyable memory
73 */
74unsigned long dirty_background_bytes;
75
76/*
77 * free highmem will not be subtracted from the total free memory
78 * for calculating free ratios if vm_highmem_is_dirtyable is true
79 */
80int vm_highmem_is_dirtyable;
81
82/*
83 * The generator of dirty data starts writeback at this percentage
84 */
85int vm_dirty_ratio = 20;
86
87/*
88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89 * vm_dirty_ratio * the amount of dirtyable memory
90 */
91unsigned long vm_dirty_bytes;
92
93/*
94 * The interval between `kupdate'-style writebacks
95 */
96unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
97
98EXPORT_SYMBOL_GPL(dirty_writeback_interval);
99
100/*
101 * The longest time for which data is allowed to remain dirty
102 */
103unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
104
105/*
106 * Flag that makes the machine dump writes/reads and block dirtyings.
107 */
108int block_dump;
109
110/*
111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112 * a full sync is triggered after this time elapses without any disk activity.
113 */
114int laptop_mode;
115
116EXPORT_SYMBOL(laptop_mode);
117
118/* End of sysctl-exported parameters */
119
120unsigned long global_dirty_limit;
121
122/*
123 * Scale the writeback cache size proportional to the relative writeout speeds.
124 *
125 * We do this by keeping a floating proportion between BDIs, based on page
126 * writeback completions [end_page_writeback()]. Those devices that write out
127 * pages fastest will get the larger share, while the slower will get a smaller
128 * share.
129 *
130 * We use page writeout completions because we are interested in getting rid of
131 * dirty pages. Having them written out is the primary goal.
132 *
133 * We introduce a concept of time, a period over which we measure these events,
134 * because demand can/will vary over time. The length of this period itself is
135 * measured in page writeback completions.
136 *
137 */
138static struct prop_descriptor vm_completions;
139
140/*
141 * Work out the current dirty-memory clamping and background writeout
142 * thresholds.
143 *
144 * The main aim here is to lower them aggressively if there is a lot of mapped
145 * memory around. To avoid stressing page reclaim with lots of unreclaimable
146 * pages. It is better to clamp down on writers than to start swapping, and
147 * performing lots of scanning.
148 *
149 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
150 *
151 * We don't permit the clamping level to fall below 5% - that is getting rather
152 * excessive.
153 *
154 * We make sure that the background writeout level is below the adjusted
155 * clamping level.
156 */
157
158/*
159 * In a memory zone, there is a certain amount of pages we consider
160 * available for the page cache, which is essentially the number of
161 * free and reclaimable pages, minus some zone reserves to protect
162 * lowmem and the ability to uphold the zone's watermarks without
163 * requiring writeback.
164 *
165 * This number of dirtyable pages is the base value of which the
166 * user-configurable dirty ratio is the effictive number of pages that
167 * are allowed to be actually dirtied. Per individual zone, or
168 * globally by using the sum of dirtyable pages over all zones.
169 *
170 * Because the user is allowed to specify the dirty limit globally as
171 * absolute number of bytes, calculating the per-zone dirty limit can
172 * require translating the configured limit into a percentage of
173 * global dirtyable memory first.
174 */
175
176static unsigned long highmem_dirtyable_memory(unsigned long total)
177{
178#ifdef CONFIG_HIGHMEM
179 int node;
180 unsigned long x = 0;
181
182 for_each_node_state(node, N_HIGH_MEMORY) {
183 struct zone *z =
184 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
185
186 x += zone_page_state(z, NR_FREE_PAGES) +
187 zone_reclaimable_pages(z) - z->dirty_balance_reserve;
188 }
189 /*
190 * Unreclaimable memory (kernel memory or anonymous memory
191 * without swap) can bring down the dirtyable pages below
192 * the zone's dirty balance reserve and the above calculation
193 * will underflow. However we still want to add in nodes
194 * which are below threshold (negative values) to get a more
195 * accurate calculation but make sure that the total never
196 * underflows.
197 */
198 if ((long)x < 0)
199 x = 0;
200
201 /*
202 * Make sure that the number of highmem pages is never larger
203 * than the number of the total dirtyable memory. This can only
204 * occur in very strange VM situations but we want to make sure
205 * that this does not occur.
206 */
207 return min(x, total);
208#else
209 return 0;
210#endif
211}
212
213/**
214 * global_dirtyable_memory - number of globally dirtyable pages
215 *
216 * Returns the global number of pages potentially available for dirty
217 * page cache. This is the base value for the global dirty limits.
218 */
219unsigned long global_dirtyable_memory(void)
220{
221 unsigned long x;
222
223 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
224 x -= min(x, dirty_balance_reserve);
225
226 if (!vm_highmem_is_dirtyable)
227 x -= highmem_dirtyable_memory(x);
228
229 return x + 1; /* Ensure that we never return 0 */
230}
231
232/*
233 * global_dirty_limits - background-writeback and dirty-throttling thresholds
234 *
235 * Calculate the dirty thresholds based on sysctl parameters
236 * - vm.dirty_background_ratio or vm.dirty_background_bytes
237 * - vm.dirty_ratio or vm.dirty_bytes
238 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
239 * real-time tasks.
240 */
241void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
242{
243 unsigned long background;
244 unsigned long dirty;
245 unsigned long uninitialized_var(available_memory);
246 struct task_struct *tsk;
247
248 if (!vm_dirty_bytes || !dirty_background_bytes)
249 available_memory = global_dirtyable_memory();
250
251 if (vm_dirty_bytes)
252 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
253 else
254 dirty = (vm_dirty_ratio * available_memory) / 100;
255
256 if (dirty_background_bytes)
257 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
258 else
259 background = (dirty_background_ratio * available_memory) / 100;
260
261 if (background >= dirty)
262 background = dirty / 2;
263 tsk = current;
264 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
265 background += background / 4;
266 dirty += dirty / 4;
267 }
268 *pbackground = background;
269 *pdirty = dirty;
270 trace_global_dirty_state(background, dirty);
271}
272
273/**
274 * zone_dirtyable_memory - number of dirtyable pages in a zone
275 * @zone: the zone
276 *
277 * Returns the zone's number of pages potentially available for dirty
278 * page cache. This is the base value for the per-zone dirty limits.
279 */
280static unsigned long zone_dirtyable_memory(struct zone *zone)
281{
282 /*
283 * The effective global number of dirtyable pages may exclude
284 * highmem as a big-picture measure to keep the ratio between
285 * dirty memory and lowmem reasonable.
286 *
287 * But this function is purely about the individual zone and a
288 * highmem zone can hold its share of dirty pages, so we don't
289 * care about vm_highmem_is_dirtyable here.
290 */
291 unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
292 zone_reclaimable_pages(zone);
293
294 /* don't allow this to underflow */
295 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
296 return nr_pages;
297}
298
299/**
300 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
301 * @zone: the zone
302 *
303 * Returns the maximum number of dirty pages allowed in a zone, based
304 * on the zone's dirtyable memory.
305 */
306static unsigned long zone_dirty_limit(struct zone *zone)
307{
308 unsigned long zone_memory = zone_dirtyable_memory(zone);
309 struct task_struct *tsk = current;
310 unsigned long dirty;
311
312 if (vm_dirty_bytes)
313 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
314 zone_memory / global_dirtyable_memory();
315 else
316 dirty = vm_dirty_ratio * zone_memory / 100;
317
318 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
319 dirty += dirty / 4;
320
321 return dirty;
322}
323
324/**
325 * zone_dirty_ok - tells whether a zone is within its dirty limits
326 * @zone: the zone to check
327 *
328 * Returns %true when the dirty pages in @zone are within the zone's
329 * dirty limit, %false if the limit is exceeded.
330 */
331bool zone_dirty_ok(struct zone *zone)
332{
333 unsigned long limit = zone_dirty_limit(zone);
334
335 return zone_page_state(zone, NR_FILE_DIRTY) +
336 zone_page_state(zone, NR_UNSTABLE_NFS) +
337 zone_page_state(zone, NR_WRITEBACK) <= limit;
338}
339
340/*
341 * couple the period to the dirty_ratio:
342 *
343 * period/2 ~ roundup_pow_of_two(dirty limit)
344 */
345static int calc_period_shift(void)
346{
347 unsigned long dirty_total;
348
349 if (vm_dirty_bytes)
350 dirty_total = vm_dirty_bytes / PAGE_SIZE;
351 else
352 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
353 100;
354 return 2 + ilog2(dirty_total - 1);
355}
356
357/*
358 * update the period when the dirty threshold changes.
359 */
360static void update_completion_period(void)
361{
362 int shift = calc_period_shift();
363 prop_change_shift(&vm_completions, shift);
364
365 writeback_set_ratelimit();
366}
367
368int dirty_background_ratio_handler(struct ctl_table *table, int write,
369 void __user *buffer, size_t *lenp,
370 loff_t *ppos)
371{
372 int ret;
373
374 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
375 if (ret == 0 && write)
376 dirty_background_bytes = 0;
377 return ret;
378}
379
380int dirty_background_bytes_handler(struct ctl_table *table, int write,
381 void __user *buffer, size_t *lenp,
382 loff_t *ppos)
383{
384 int ret;
385
386 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
387 if (ret == 0 && write)
388 dirty_background_ratio = 0;
389 return ret;
390}
391
392int dirty_ratio_handler(struct ctl_table *table, int write,
393 void __user *buffer, size_t *lenp,
394 loff_t *ppos)
395{
396 int old_ratio = vm_dirty_ratio;
397 int ret;
398
399 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
400 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
401 update_completion_period();
402 vm_dirty_bytes = 0;
403 }
404 return ret;
405}
406
407int dirty_bytes_handler(struct ctl_table *table, int write,
408 void __user *buffer, size_t *lenp,
409 loff_t *ppos)
410{
411 unsigned long old_bytes = vm_dirty_bytes;
412 int ret;
413
414 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
415 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
416 update_completion_period();
417 vm_dirty_ratio = 0;
418 }
419 return ret;
420}
421
422/*
423 * Increment the BDI's writeout completion count and the global writeout
424 * completion count. Called from test_clear_page_writeback().
425 */
426static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
427{
428 __inc_bdi_stat(bdi, BDI_WRITTEN);
429 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
430 bdi->max_prop_frac);
431}
432
433void bdi_writeout_inc(struct backing_dev_info *bdi)
434{
435 unsigned long flags;
436
437 local_irq_save(flags);
438 __bdi_writeout_inc(bdi);
439 local_irq_restore(flags);
440}
441EXPORT_SYMBOL_GPL(bdi_writeout_inc);
442
443/*
444 * Obtain an accurate fraction of the BDI's portion.
445 */
446static void bdi_writeout_fraction(struct backing_dev_info *bdi,
447 long *numerator, long *denominator)
448{
449 prop_fraction_percpu(&vm_completions, &bdi->completions,
450 numerator, denominator);
451}
452
453/*
454 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
455 * registered backing devices, which, for obvious reasons, can not
456 * exceed 100%.
457 */
458static unsigned int bdi_min_ratio;
459
460int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
461{
462 int ret = 0;
463
464 spin_lock_bh(&bdi_lock);
465 if (min_ratio > bdi->max_ratio) {
466 ret = -EINVAL;
467 } else {
468 min_ratio -= bdi->min_ratio;
469 if (bdi_min_ratio + min_ratio < 100) {
470 bdi_min_ratio += min_ratio;
471 bdi->min_ratio += min_ratio;
472 } else {
473 ret = -EINVAL;
474 }
475 }
476 spin_unlock_bh(&bdi_lock);
477
478 return ret;
479}
480
481int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
482{
483 int ret = 0;
484
485 if (max_ratio > 100)
486 return -EINVAL;
487
488 spin_lock_bh(&bdi_lock);
489 if (bdi->min_ratio > max_ratio) {
490 ret = -EINVAL;
491 } else {
492 bdi->max_ratio = max_ratio;
493 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
494 }
495 spin_unlock_bh(&bdi_lock);
496
497 return ret;
498}
499EXPORT_SYMBOL(bdi_set_max_ratio);
500
501static unsigned long dirty_freerun_ceiling(unsigned long thresh,
502 unsigned long bg_thresh)
503{
504 return (thresh + bg_thresh) / 2;
505}
506
507static unsigned long hard_dirty_limit(unsigned long thresh)
508{
509 return max(thresh, global_dirty_limit);
510}
511
512/**
513 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
514 * @bdi: the backing_dev_info to query
515 * @dirty: global dirty limit in pages
516 *
517 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
518 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
519 *
520 * Note that balance_dirty_pages() will only seriously take it as a hard limit
521 * when sleeping max_pause per page is not enough to keep the dirty pages under
522 * control. For example, when the device is completely stalled due to some error
523 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
524 * In the other normal situations, it acts more gently by throttling the tasks
525 * more (rather than completely block them) when the bdi dirty pages go high.
526 *
527 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
528 * - starving fast devices
529 * - piling up dirty pages (that will take long time to sync) on slow devices
530 *
531 * The bdi's share of dirty limit will be adapting to its throughput and
532 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
533 */
534unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
535{
536 u64 bdi_dirty;
537 long numerator, denominator;
538
539 /*
540 * Calculate this BDI's share of the dirty ratio.
541 */
542 bdi_writeout_fraction(bdi, &numerator, &denominator);
543
544 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
545 bdi_dirty *= numerator;
546 do_div(bdi_dirty, denominator);
547
548 bdi_dirty += (dirty * bdi->min_ratio) / 100;
549 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
550 bdi_dirty = dirty * bdi->max_ratio / 100;
551
552 return bdi_dirty;
553}
554
555/*
556 * Dirty position control.
557 *
558 * (o) global/bdi setpoints
559 *
560 * We want the dirty pages be balanced around the global/bdi setpoints.
561 * When the number of dirty pages is higher/lower than the setpoint, the
562 * dirty position control ratio (and hence task dirty ratelimit) will be
563 * decreased/increased to bring the dirty pages back to the setpoint.
564 *
565 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
566 *
567 * if (dirty < setpoint) scale up pos_ratio
568 * if (dirty > setpoint) scale down pos_ratio
569 *
570 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
571 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
572 *
573 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
574 *
575 * (o) global control line
576 *
577 * ^ pos_ratio
578 * |
579 * | |<===== global dirty control scope ======>|
580 * 2.0 .............*
581 * | .*
582 * | . *
583 * | . *
584 * | . *
585 * | . *
586 * | . *
587 * 1.0 ................................*
588 * | . . *
589 * | . . *
590 * | . . *
591 * | . . *
592 * | . . *
593 * 0 +------------.------------------.----------------------*------------->
594 * freerun^ setpoint^ limit^ dirty pages
595 *
596 * (o) bdi control line
597 *
598 * ^ pos_ratio
599 * |
600 * | *
601 * | *
602 * | *
603 * | *
604 * | * |<=========== span ============>|
605 * 1.0 .......................*
606 * | . *
607 * | . *
608 * | . *
609 * | . *
610 * | . *
611 * | . *
612 * | . *
613 * | . *
614 * | . *
615 * | . *
616 * | . *
617 * 1/4 ...............................................* * * * * * * * * * * *
618 * | . .
619 * | . .
620 * | . .
621 * 0 +----------------------.-------------------------------.------------->
622 * bdi_setpoint^ x_intercept^
623 *
624 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
625 * be smoothly throttled down to normal if it starts high in situations like
626 * - start writing to a slow SD card and a fast disk at the same time. The SD
627 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
628 * - the bdi dirty thresh drops quickly due to change of JBOD workload
629 */
630static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
631 unsigned long thresh,
632 unsigned long bg_thresh,
633 unsigned long dirty,
634 unsigned long bdi_thresh,
635 unsigned long bdi_dirty)
636{
637 unsigned long write_bw = bdi->avg_write_bandwidth;
638 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
639 unsigned long limit = hard_dirty_limit(thresh);
640 unsigned long x_intercept;
641 unsigned long setpoint; /* dirty pages' target balance point */
642 unsigned long bdi_setpoint;
643 unsigned long span;
644 long long pos_ratio; /* for scaling up/down the rate limit */
645 long x;
646
647 if (unlikely(dirty >= limit))
648 return 0;
649
650 /*
651 * global setpoint
652 *
653 * setpoint - dirty 3
654 * f(dirty) := 1.0 + (----------------)
655 * limit - setpoint
656 *
657 * it's a 3rd order polynomial that subjects to
658 *
659 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
660 * (2) f(setpoint) = 1.0 => the balance point
661 * (3) f(limit) = 0 => the hard limit
662 * (4) df/dx <= 0 => negative feedback control
663 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
664 * => fast response on large errors; small oscillation near setpoint
665 */
666 setpoint = (freerun + limit) / 2;
667 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
668 limit - setpoint + 1);
669 pos_ratio = x;
670 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
671 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
672 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
673
674 /*
675 * We have computed basic pos_ratio above based on global situation. If
676 * the bdi is over/under its share of dirty pages, we want to scale
677 * pos_ratio further down/up. That is done by the following mechanism.
678 */
679
680 /*
681 * bdi setpoint
682 *
683 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
684 *
685 * x_intercept - bdi_dirty
686 * := --------------------------
687 * x_intercept - bdi_setpoint
688 *
689 * The main bdi control line is a linear function that subjects to
690 *
691 * (1) f(bdi_setpoint) = 1.0
692 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
693 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
694 *
695 * For single bdi case, the dirty pages are observed to fluctuate
696 * regularly within range
697 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
698 * for various filesystems, where (2) can yield in a reasonable 12.5%
699 * fluctuation range for pos_ratio.
700 *
701 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
702 * own size, so move the slope over accordingly and choose a slope that
703 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
704 */
705 if (unlikely(bdi_thresh > thresh))
706 bdi_thresh = thresh;
707 /*
708 * It's very possible that bdi_thresh is close to 0 not because the
709 * device is slow, but that it has remained inactive for long time.
710 * Honour such devices a reasonable good (hopefully IO efficient)
711 * threshold, so that the occasional writes won't be blocked and active
712 * writes can rampup the threshold quickly.
713 */
714 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
715 /*
716 * scale global setpoint to bdi's:
717 * bdi_setpoint = setpoint * bdi_thresh / thresh
718 */
719 x = div_u64((u64)bdi_thresh << 16, thresh | 1);
720 bdi_setpoint = setpoint * (u64)x >> 16;
721 /*
722 * Use span=(8*write_bw) in single bdi case as indicated by
723 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
724 *
725 * bdi_thresh thresh - bdi_thresh
726 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
727 * thresh thresh
728 */
729 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
730 x_intercept = bdi_setpoint + span;
731
732 if (bdi_dirty < x_intercept - span / 4) {
733 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
734 x_intercept - bdi_setpoint + 1);
735 } else
736 pos_ratio /= 4;
737
738 /*
739 * bdi reserve area, safeguard against dirty pool underrun and disk idle
740 * It may push the desired control point of global dirty pages higher
741 * than setpoint.
742 */
743 x_intercept = bdi_thresh / 2;
744 if (bdi_dirty < x_intercept) {
745 if (bdi_dirty > x_intercept / 8)
746 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
747 else
748 pos_ratio *= 8;
749 }
750
751 return pos_ratio;
752}
753
754static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
755 unsigned long elapsed,
756 unsigned long written)
757{
758 const unsigned long period = roundup_pow_of_two(3 * HZ);
759 unsigned long avg = bdi->avg_write_bandwidth;
760 unsigned long old = bdi->write_bandwidth;
761 u64 bw;
762
763 /*
764 * bw = written * HZ / elapsed
765 *
766 * bw * elapsed + write_bandwidth * (period - elapsed)
767 * write_bandwidth = ---------------------------------------------------
768 * period
769 *
770 * @written may have decreased due to account_page_redirty().
771 * Avoid underflowing @bw calculation.
772 */
773 bw = written - min(written, bdi->written_stamp);
774 bw *= HZ;
775 if (unlikely(elapsed > period)) {
776 do_div(bw, elapsed);
777 avg = bw;
778 goto out;
779 }
780 bw += (u64)bdi->write_bandwidth * (period - elapsed);
781 bw >>= ilog2(period);
782
783 /*
784 * one more level of smoothing, for filtering out sudden spikes
785 */
786 if (avg > old && old >= (unsigned long)bw)
787 avg -= (avg - old) >> 3;
788
789 if (avg < old && old <= (unsigned long)bw)
790 avg += (old - avg) >> 3;
791
792out:
793 bdi->write_bandwidth = bw;
794 bdi->avg_write_bandwidth = avg;
795}
796
797/*
798 * The global dirtyable memory and dirty threshold could be suddenly knocked
799 * down by a large amount (eg. on the startup of KVM in a swapless system).
800 * This may throw the system into deep dirty exceeded state and throttle
801 * heavy/light dirtiers alike. To retain good responsiveness, maintain
802 * global_dirty_limit for tracking slowly down to the knocked down dirty
803 * threshold.
804 */
805static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
806{
807 unsigned long limit = global_dirty_limit;
808
809 /*
810 * Follow up in one step.
811 */
812 if (limit < thresh) {
813 limit = thresh;
814 goto update;
815 }
816
817 /*
818 * Follow down slowly. Use the higher one as the target, because thresh
819 * may drop below dirty. This is exactly the reason to introduce
820 * global_dirty_limit which is guaranteed to lie above the dirty pages.
821 */
822 thresh = max(thresh, dirty);
823 if (limit > thresh) {
824 limit -= (limit - thresh) >> 5;
825 goto update;
826 }
827 return;
828update:
829 global_dirty_limit = limit;
830}
831
832static void global_update_bandwidth(unsigned long thresh,
833 unsigned long dirty,
834 unsigned long now)
835{
836 static DEFINE_SPINLOCK(dirty_lock);
837 static unsigned long update_time = INITIAL_JIFFIES;
838
839 /*
840 * check locklessly first to optimize away locking for the most time
841 */
842 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
843 return;
844
845 spin_lock(&dirty_lock);
846 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
847 update_dirty_limit(thresh, dirty);
848 update_time = now;
849 }
850 spin_unlock(&dirty_lock);
851}
852
853/*
854 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
855 *
856 * Normal bdi tasks will be curbed at or below it in long term.
857 * Obviously it should be around (write_bw / N) when there are N dd tasks.
858 */
859static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
860 unsigned long thresh,
861 unsigned long bg_thresh,
862 unsigned long dirty,
863 unsigned long bdi_thresh,
864 unsigned long bdi_dirty,
865 unsigned long dirtied,
866 unsigned long elapsed)
867{
868 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
869 unsigned long limit = hard_dirty_limit(thresh);
870 unsigned long setpoint = (freerun + limit) / 2;
871 unsigned long write_bw = bdi->avg_write_bandwidth;
872 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
873 unsigned long dirty_rate;
874 unsigned long task_ratelimit;
875 unsigned long balanced_dirty_ratelimit;
876 unsigned long pos_ratio;
877 unsigned long step;
878 unsigned long x;
879
880 /*
881 * The dirty rate will match the writeout rate in long term, except
882 * when dirty pages are truncated by userspace or re-dirtied by FS.
883 */
884 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
885
886 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
887 bdi_thresh, bdi_dirty);
888 /*
889 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
890 */
891 task_ratelimit = (u64)dirty_ratelimit *
892 pos_ratio >> RATELIMIT_CALC_SHIFT;
893 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
894
895 /*
896 * A linear estimation of the "balanced" throttle rate. The theory is,
897 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
898 * dirty_rate will be measured to be (N * task_ratelimit). So the below
899 * formula will yield the balanced rate limit (write_bw / N).
900 *
901 * Note that the expanded form is not a pure rate feedback:
902 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
903 * but also takes pos_ratio into account:
904 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
905 *
906 * (1) is not realistic because pos_ratio also takes part in balancing
907 * the dirty rate. Consider the state
908 * pos_ratio = 0.5 (3)
909 * rate = 2 * (write_bw / N) (4)
910 * If (1) is used, it will stuck in that state! Because each dd will
911 * be throttled at
912 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
913 * yielding
914 * dirty_rate = N * task_ratelimit = write_bw (6)
915 * put (6) into (1) we get
916 * rate_(i+1) = rate_(i) (7)
917 *
918 * So we end up using (2) to always keep
919 * rate_(i+1) ~= (write_bw / N) (8)
920 * regardless of the value of pos_ratio. As long as (8) is satisfied,
921 * pos_ratio is able to drive itself to 1.0, which is not only where
922 * the dirty count meet the setpoint, but also where the slope of
923 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
924 */
925 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
926 dirty_rate | 1);
927 /*
928 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
929 */
930 if (unlikely(balanced_dirty_ratelimit > write_bw))
931 balanced_dirty_ratelimit = write_bw;
932
933 /*
934 * We could safely do this and return immediately:
935 *
936 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
937 *
938 * However to get a more stable dirty_ratelimit, the below elaborated
939 * code makes use of task_ratelimit to filter out sigular points and
940 * limit the step size.
941 *
942 * The below code essentially only uses the relative value of
943 *
944 * task_ratelimit - dirty_ratelimit
945 * = (pos_ratio - 1) * dirty_ratelimit
946 *
947 * which reflects the direction and size of dirty position error.
948 */
949
950 /*
951 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
952 * task_ratelimit is on the same side of dirty_ratelimit, too.
953 * For example, when
954 * - dirty_ratelimit > balanced_dirty_ratelimit
955 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
956 * lowering dirty_ratelimit will help meet both the position and rate
957 * control targets. Otherwise, don't update dirty_ratelimit if it will
958 * only help meet the rate target. After all, what the users ultimately
959 * feel and care are stable dirty rate and small position error.
960 *
961 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
962 * and filter out the sigular points of balanced_dirty_ratelimit. Which
963 * keeps jumping around randomly and can even leap far away at times
964 * due to the small 200ms estimation period of dirty_rate (we want to
965 * keep that period small to reduce time lags).
966 */
967 step = 0;
968 if (dirty < setpoint) {
969 x = min(bdi->balanced_dirty_ratelimit,
970 min(balanced_dirty_ratelimit, task_ratelimit));
971 if (dirty_ratelimit < x)
972 step = x - dirty_ratelimit;
973 } else {
974 x = max(bdi->balanced_dirty_ratelimit,
975 max(balanced_dirty_ratelimit, task_ratelimit));
976 if (dirty_ratelimit > x)
977 step = dirty_ratelimit - x;
978 }
979
980 /*
981 * Don't pursue 100% rate matching. It's impossible since the balanced
982 * rate itself is constantly fluctuating. So decrease the track speed
983 * when it gets close to the target. Helps eliminate pointless tremors.
984 */
985 step >>= dirty_ratelimit / (2 * step + 1);
986 /*
987 * Limit the tracking speed to avoid overshooting.
988 */
989 step = (step + 7) / 8;
990
991 if (dirty_ratelimit < balanced_dirty_ratelimit)
992 dirty_ratelimit += step;
993 else
994 dirty_ratelimit -= step;
995
996 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
997 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
998
999 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1000}
1001
1002void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1003 unsigned long thresh,
1004 unsigned long bg_thresh,
1005 unsigned long dirty,
1006 unsigned long bdi_thresh,
1007 unsigned long bdi_dirty,
1008 unsigned long start_time)
1009{
1010 unsigned long now = jiffies;
1011 unsigned long elapsed = now - bdi->bw_time_stamp;
1012 unsigned long dirtied;
1013 unsigned long written;
1014
1015 /*
1016 * rate-limit, only update once every 200ms.
1017 */
1018 if (elapsed < BANDWIDTH_INTERVAL)
1019 return;
1020
1021 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1022 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1023
1024 /*
1025 * Skip quiet periods when disk bandwidth is under-utilized.
1026 * (at least 1s idle time between two flusher runs)
1027 */
1028 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1029 goto snapshot;
1030
1031 if (thresh) {
1032 global_update_bandwidth(thresh, dirty, now);
1033 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1034 bdi_thresh, bdi_dirty,
1035 dirtied, elapsed);
1036 }
1037 bdi_update_write_bandwidth(bdi, elapsed, written);
1038
1039snapshot:
1040 bdi->dirtied_stamp = dirtied;
1041 bdi->written_stamp = written;
1042 bdi->bw_time_stamp = now;
1043}
1044
1045static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1046 unsigned long thresh,
1047 unsigned long bg_thresh,
1048 unsigned long dirty,
1049 unsigned long bdi_thresh,
1050 unsigned long bdi_dirty,
1051 unsigned long start_time)
1052{
1053 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1054 return;
1055 spin_lock(&bdi->wb.list_lock);
1056 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1057 bdi_thresh, bdi_dirty, start_time);
1058 spin_unlock(&bdi->wb.list_lock);
1059}
1060
1061/*
1062 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1063 * will look to see if it needs to start dirty throttling.
1064 *
1065 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1066 * global_page_state() too often. So scale it near-sqrt to the safety margin
1067 * (the number of pages we may dirty without exceeding the dirty limits).
1068 */
1069static unsigned long dirty_poll_interval(unsigned long dirty,
1070 unsigned long thresh)
1071{
1072 if (thresh > dirty)
1073 return 1UL << (ilog2(thresh - dirty) >> 1);
1074
1075 return 1;
1076}
1077
1078static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1079 unsigned long bdi_dirty)
1080{
1081 unsigned long bw = bdi->avg_write_bandwidth;
1082 unsigned long t;
1083
1084 /*
1085 * Limit pause time for small memory systems. If sleeping for too long
1086 * time, a small pool of dirty/writeback pages may go empty and disk go
1087 * idle.
1088 *
1089 * 8 serves as the safety ratio.
1090 */
1091 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1092 t++;
1093
1094 return min_t(unsigned long, t, MAX_PAUSE);
1095}
1096
1097static long bdi_min_pause(struct backing_dev_info *bdi,
1098 long max_pause,
1099 unsigned long task_ratelimit,
1100 unsigned long dirty_ratelimit,
1101 int *nr_dirtied_pause)
1102{
1103 long hi = ilog2(bdi->avg_write_bandwidth);
1104 long lo = ilog2(bdi->dirty_ratelimit);
1105 long t; /* target pause */
1106 long pause; /* estimated next pause */
1107 int pages; /* target nr_dirtied_pause */
1108
1109 /* target for 10ms pause on 1-dd case */
1110 t = max(1, HZ / 100);
1111
1112 /*
1113 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1114 * overheads.
1115 *
1116 * (N * 10ms) on 2^N concurrent tasks.
1117 */
1118 if (hi > lo)
1119 t += (hi - lo) * (10 * HZ) / 1024;
1120
1121 /*
1122 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1123 * on the much more stable dirty_ratelimit. However the next pause time
1124 * will be computed based on task_ratelimit and the two rate limits may
1125 * depart considerably at some time. Especially if task_ratelimit goes
1126 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1127 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1128 * result task_ratelimit won't be executed faithfully, which could
1129 * eventually bring down dirty_ratelimit.
1130 *
1131 * We apply two rules to fix it up:
1132 * 1) try to estimate the next pause time and if necessary, use a lower
1133 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1134 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1135 * 2) limit the target pause time to max_pause/2, so that the normal
1136 * small fluctuations of task_ratelimit won't trigger rule (1) and
1137 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1138 */
1139 t = min(t, 1 + max_pause / 2);
1140 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1141
1142 /*
1143 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1144 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1145 * When the 16 consecutive reads are often interrupted by some dirty
1146 * throttling pause during the async writes, cfq will go into idles
1147 * (deadline is fine). So push nr_dirtied_pause as high as possible
1148 * until reaches DIRTY_POLL_THRESH=32 pages.
1149 */
1150 if (pages < DIRTY_POLL_THRESH) {
1151 t = max_pause;
1152 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1153 if (pages > DIRTY_POLL_THRESH) {
1154 pages = DIRTY_POLL_THRESH;
1155 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1156 }
1157 }
1158
1159 pause = HZ * pages / (task_ratelimit + 1);
1160 if (pause > max_pause) {
1161 t = max_pause;
1162 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1163 }
1164
1165 *nr_dirtied_pause = pages;
1166 /*
1167 * The minimal pause time will normally be half the target pause time.
1168 */
1169 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1170}
1171
1172/*
1173 * balance_dirty_pages() must be called by processes which are generating dirty
1174 * data. It looks at the number of dirty pages in the machine and will force
1175 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1176 * If we're over `background_thresh' then the writeback threads are woken to
1177 * perform some writeout.
1178 */
1179static void balance_dirty_pages(struct address_space *mapping,
1180 unsigned long pages_dirtied)
1181{
1182 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1183 unsigned long bdi_reclaimable;
1184 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1185 unsigned long bdi_dirty;
1186 unsigned long freerun;
1187 unsigned long background_thresh;
1188 unsigned long dirty_thresh;
1189 unsigned long bdi_thresh;
1190 long period;
1191 long pause;
1192 long max_pause;
1193 long min_pause;
1194 int nr_dirtied_pause;
1195 bool dirty_exceeded = false;
1196 unsigned long task_ratelimit;
1197 unsigned long dirty_ratelimit;
1198 unsigned long pos_ratio;
1199 struct backing_dev_info *bdi = mapping->backing_dev_info;
1200 unsigned long start_time = jiffies;
1201
1202 for (;;) {
1203 unsigned long now = jiffies;
1204
1205 /*
1206 * Unstable writes are a feature of certain networked
1207 * filesystems (i.e. NFS) in which data may have been
1208 * written to the server's write cache, but has not yet
1209 * been flushed to permanent storage.
1210 */
1211 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1212 global_page_state(NR_UNSTABLE_NFS);
1213 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1214
1215 global_dirty_limits(&background_thresh, &dirty_thresh);
1216
1217 /*
1218 * Throttle it only when the background writeback cannot
1219 * catch-up. This avoids (excessively) small writeouts
1220 * when the bdi limits are ramping up.
1221 */
1222 freerun = dirty_freerun_ceiling(dirty_thresh,
1223 background_thresh);
1224 if (nr_dirty <= freerun) {
1225 current->dirty_paused_when = now;
1226 current->nr_dirtied = 0;
1227 current->nr_dirtied_pause =
1228 dirty_poll_interval(nr_dirty, dirty_thresh);
1229 break;
1230 }
1231
1232 if (unlikely(!writeback_in_progress(bdi)))
1233 bdi_start_background_writeback(bdi);
1234
1235 /*
1236 * bdi_thresh is not treated as some limiting factor as
1237 * dirty_thresh, due to reasons
1238 * - in JBOD setup, bdi_thresh can fluctuate a lot
1239 * - in a system with HDD and USB key, the USB key may somehow
1240 * go into state (bdi_dirty >> bdi_thresh) either because
1241 * bdi_dirty starts high, or because bdi_thresh drops low.
1242 * In this case we don't want to hard throttle the USB key
1243 * dirtiers for 100 seconds until bdi_dirty drops under
1244 * bdi_thresh. Instead the auxiliary bdi control line in
1245 * bdi_position_ratio() will let the dirtier task progress
1246 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1247 */
1248 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1249
1250 /*
1251 * In order to avoid the stacked BDI deadlock we need
1252 * to ensure we accurately count the 'dirty' pages when
1253 * the threshold is low.
1254 *
1255 * Otherwise it would be possible to get thresh+n pages
1256 * reported dirty, even though there are thresh-m pages
1257 * actually dirty; with m+n sitting in the percpu
1258 * deltas.
1259 */
1260 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1261 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1262 bdi_dirty = bdi_reclaimable +
1263 bdi_stat_sum(bdi, BDI_WRITEBACK);
1264 } else {
1265 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1266 bdi_dirty = bdi_reclaimable +
1267 bdi_stat(bdi, BDI_WRITEBACK);
1268 }
1269
1270 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1271 (nr_dirty > dirty_thresh);
1272 if (dirty_exceeded && !bdi->dirty_exceeded)
1273 bdi->dirty_exceeded = 1;
1274
1275 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1276 nr_dirty, bdi_thresh, bdi_dirty,
1277 start_time);
1278
1279 dirty_ratelimit = bdi->dirty_ratelimit;
1280 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1281 background_thresh, nr_dirty,
1282 bdi_thresh, bdi_dirty);
1283 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1284 RATELIMIT_CALC_SHIFT;
1285 max_pause = bdi_max_pause(bdi, bdi_dirty);
1286 min_pause = bdi_min_pause(bdi, max_pause,
1287 task_ratelimit, dirty_ratelimit,
1288 &nr_dirtied_pause);
1289
1290 if (unlikely(task_ratelimit == 0)) {
1291 period = max_pause;
1292 pause = max_pause;
1293 goto pause;
1294 }
1295 period = HZ * pages_dirtied / task_ratelimit;
1296 pause = period;
1297 if (current->dirty_paused_when)
1298 pause -= now - current->dirty_paused_when;
1299 /*
1300 * For less than 1s think time (ext3/4 may block the dirtier
1301 * for up to 800ms from time to time on 1-HDD; so does xfs,
1302 * however at much less frequency), try to compensate it in
1303 * future periods by updating the virtual time; otherwise just
1304 * do a reset, as it may be a light dirtier.
1305 */
1306 if (pause < min_pause) {
1307 trace_balance_dirty_pages(bdi,
1308 dirty_thresh,
1309 background_thresh,
1310 nr_dirty,
1311 bdi_thresh,
1312 bdi_dirty,
1313 dirty_ratelimit,
1314 task_ratelimit,
1315 pages_dirtied,
1316 period,
1317 min(pause, 0L),
1318 start_time);
1319 if (pause < -HZ) {
1320 current->dirty_paused_when = now;
1321 current->nr_dirtied = 0;
1322 } else if (period) {
1323 current->dirty_paused_when += period;
1324 current->nr_dirtied = 0;
1325 } else if (current->nr_dirtied_pause <= pages_dirtied)
1326 current->nr_dirtied_pause += pages_dirtied;
1327 break;
1328 }
1329 if (unlikely(pause > max_pause)) {
1330 /* for occasional dropped task_ratelimit */
1331 now += min(pause - max_pause, max_pause);
1332 pause = max_pause;
1333 }
1334
1335pause:
1336 trace_balance_dirty_pages(bdi,
1337 dirty_thresh,
1338 background_thresh,
1339 nr_dirty,
1340 bdi_thresh,
1341 bdi_dirty,
1342 dirty_ratelimit,
1343 task_ratelimit,
1344 pages_dirtied,
1345 period,
1346 pause,
1347 start_time);
1348 __set_current_state(TASK_KILLABLE);
1349 io_schedule_timeout(pause);
1350
1351 current->dirty_paused_when = now + pause;
1352 current->nr_dirtied = 0;
1353 current->nr_dirtied_pause = nr_dirtied_pause;
1354
1355 /*
1356 * This is typically equal to (nr_dirty < dirty_thresh) and can
1357 * also keep "1000+ dd on a slow USB stick" under control.
1358 */
1359 if (task_ratelimit)
1360 break;
1361
1362 /*
1363 * In the case of an unresponding NFS server and the NFS dirty
1364 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1365 * to go through, so that tasks on them still remain responsive.
1366 *
1367 * In theory 1 page is enough to keep the comsumer-producer
1368 * pipe going: the flusher cleans 1 page => the task dirties 1
1369 * more page. However bdi_dirty has accounting errors. So use
1370 * the larger and more IO friendly bdi_stat_error.
1371 */
1372 if (bdi_dirty <= bdi_stat_error(bdi))
1373 break;
1374
1375 if (fatal_signal_pending(current))
1376 break;
1377 }
1378
1379 if (!dirty_exceeded && bdi->dirty_exceeded)
1380 bdi->dirty_exceeded = 0;
1381
1382 if (writeback_in_progress(bdi))
1383 return;
1384
1385 /*
1386 * In laptop mode, we wait until hitting the higher threshold before
1387 * starting background writeout, and then write out all the way down
1388 * to the lower threshold. So slow writers cause minimal disk activity.
1389 *
1390 * In normal mode, we start background writeout at the lower
1391 * background_thresh, to keep the amount of dirty memory low.
1392 */
1393 if (laptop_mode)
1394 return;
1395
1396 if (nr_reclaimable > background_thresh)
1397 bdi_start_background_writeback(bdi);
1398}
1399
1400static DEFINE_PER_CPU(int, bdp_ratelimits);
1401
1402/*
1403 * Normal tasks are throttled by
1404 * loop {
1405 * dirty tsk->nr_dirtied_pause pages;
1406 * take a snap in balance_dirty_pages();
1407 * }
1408 * However there is a worst case. If every task exit immediately when dirtied
1409 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1410 * called to throttle the page dirties. The solution is to save the not yet
1411 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1412 * randomly into the running tasks. This works well for the above worst case,
1413 * as the new task will pick up and accumulate the old task's leaked dirty
1414 * count and eventually get throttled.
1415 */
1416DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1417
1418/**
1419 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1420 * @mapping: address_space which was dirtied
1421 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1422 *
1423 * Processes which are dirtying memory should call in here once for each page
1424 * which was newly dirtied. The function will periodically check the system's
1425 * dirty state and will initiate writeback if needed.
1426 *
1427 * On really big machines, get_writeback_state is expensive, so try to avoid
1428 * calling it too often (ratelimiting). But once we're over the dirty memory
1429 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1430 * from overshooting the limit by (ratelimit_pages) each.
1431 */
1432void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1433 unsigned long nr_pages_dirtied)
1434{
1435 struct backing_dev_info *bdi = mapping->backing_dev_info;
1436 int ratelimit;
1437 int *p;
1438
1439 if (!bdi_cap_account_dirty(bdi))
1440 return;
1441
1442 ratelimit = current->nr_dirtied_pause;
1443 if (bdi->dirty_exceeded)
1444 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1445
1446 preempt_disable();
1447 /*
1448 * This prevents one CPU to accumulate too many dirtied pages without
1449 * calling into balance_dirty_pages(), which can happen when there are
1450 * 1000+ tasks, all of them start dirtying pages at exactly the same
1451 * time, hence all honoured too large initial task->nr_dirtied_pause.
1452 */
1453 p = &__get_cpu_var(bdp_ratelimits);
1454 if (unlikely(current->nr_dirtied >= ratelimit))
1455 *p = 0;
1456 else if (unlikely(*p >= ratelimit_pages)) {
1457 *p = 0;
1458 ratelimit = 0;
1459 }
1460 /*
1461 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1462 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1463 * the dirty throttling and livelock other long-run dirtiers.
1464 */
1465 p = &__get_cpu_var(dirty_throttle_leaks);
1466 if (*p > 0 && current->nr_dirtied < ratelimit) {
1467 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1468 *p -= nr_pages_dirtied;
1469 current->nr_dirtied += nr_pages_dirtied;
1470 }
1471 preempt_enable();
1472
1473 if (unlikely(current->nr_dirtied >= ratelimit))
1474 balance_dirty_pages(mapping, current->nr_dirtied);
1475}
1476EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1477
1478void throttle_vm_writeout(gfp_t gfp_mask)
1479{
1480 unsigned long background_thresh;
1481 unsigned long dirty_thresh;
1482
1483 for ( ; ; ) {
1484 global_dirty_limits(&background_thresh, &dirty_thresh);
1485 dirty_thresh = hard_dirty_limit(dirty_thresh);
1486
1487 /*
1488 * Boost the allowable dirty threshold a bit for page
1489 * allocators so they don't get DoS'ed by heavy writers
1490 */
1491 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1492
1493 if (global_page_state(NR_UNSTABLE_NFS) +
1494 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1495 break;
1496 congestion_wait(BLK_RW_ASYNC, HZ/10);
1497
1498 /*
1499 * The caller might hold locks which can prevent IO completion
1500 * or progress in the filesystem. So we cannot just sit here
1501 * waiting for IO to complete.
1502 */
1503 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1504 break;
1505 }
1506}
1507
1508/*
1509 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1510 */
1511int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1512 void __user *buffer, size_t *length, loff_t *ppos)
1513{
1514 proc_dointvec(table, write, buffer, length, ppos);
1515 bdi_arm_supers_timer();
1516 return 0;
1517}
1518
1519#ifdef CONFIG_BLOCK
1520void laptop_mode_timer_fn(unsigned long data)
1521{
1522 struct request_queue *q = (struct request_queue *)data;
1523 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1524 global_page_state(NR_UNSTABLE_NFS);
1525
1526 /*
1527 * We want to write everything out, not just down to the dirty
1528 * threshold
1529 */
1530 if (bdi_has_dirty_io(&q->backing_dev_info))
1531 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1532 WB_REASON_LAPTOP_TIMER);
1533}
1534
1535/*
1536 * We've spun up the disk and we're in laptop mode: schedule writeback
1537 * of all dirty data a few seconds from now. If the flush is already scheduled
1538 * then push it back - the user is still using the disk.
1539 */
1540void laptop_io_completion(struct backing_dev_info *info)
1541{
1542 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1543}
1544
1545/*
1546 * We're in laptop mode and we've just synced. The sync's writes will have
1547 * caused another writeback to be scheduled by laptop_io_completion.
1548 * Nothing needs to be written back anymore, so we unschedule the writeback.
1549 */
1550void laptop_sync_completion(void)
1551{
1552 struct backing_dev_info *bdi;
1553
1554 rcu_read_lock();
1555
1556 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1557 del_timer(&bdi->laptop_mode_wb_timer);
1558
1559 rcu_read_unlock();
1560}
1561#endif
1562
1563/*
1564 * If ratelimit_pages is too high then we can get into dirty-data overload
1565 * if a large number of processes all perform writes at the same time.
1566 * If it is too low then SMP machines will call the (expensive)
1567 * get_writeback_state too often.
1568 *
1569 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1570 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1571 * thresholds.
1572 */
1573
1574void writeback_set_ratelimit(void)
1575{
1576 unsigned long background_thresh;
1577 unsigned long dirty_thresh;
1578 global_dirty_limits(&background_thresh, &dirty_thresh);
1579 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1580 if (ratelimit_pages < 16)
1581 ratelimit_pages = 16;
1582}
1583
1584static int __cpuinit
1585ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1586{
1587 writeback_set_ratelimit();
1588 return NOTIFY_DONE;
1589}
1590
1591static struct notifier_block __cpuinitdata ratelimit_nb = {
1592 .notifier_call = ratelimit_handler,
1593 .next = NULL,
1594};
1595
1596/*
1597 * Called early on to tune the page writeback dirty limits.
1598 *
1599 * We used to scale dirty pages according to how total memory
1600 * related to pages that could be allocated for buffers (by
1601 * comparing nr_free_buffer_pages() to vm_total_pages.
1602 *
1603 * However, that was when we used "dirty_ratio" to scale with
1604 * all memory, and we don't do that any more. "dirty_ratio"
1605 * is now applied to total non-HIGHPAGE memory (by subtracting
1606 * totalhigh_pages from vm_total_pages), and as such we can't
1607 * get into the old insane situation any more where we had
1608 * large amounts of dirty pages compared to a small amount of
1609 * non-HIGHMEM memory.
1610 *
1611 * But we might still want to scale the dirty_ratio by how
1612 * much memory the box has..
1613 */
1614void __init page_writeback_init(void)
1615{
1616 int shift;
1617
1618 writeback_set_ratelimit();
1619 register_cpu_notifier(&ratelimit_nb);
1620
1621 shift = calc_period_shift();
1622 prop_descriptor_init(&vm_completions, shift);
1623}
1624
1625/**
1626 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1627 * @mapping: address space structure to write
1628 * @start: starting page index
1629 * @end: ending page index (inclusive)
1630 *
1631 * This function scans the page range from @start to @end (inclusive) and tags
1632 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1633 * that write_cache_pages (or whoever calls this function) will then use
1634 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1635 * used to avoid livelocking of writeback by a process steadily creating new
1636 * dirty pages in the file (thus it is important for this function to be quick
1637 * so that it can tag pages faster than a dirtying process can create them).
1638 */
1639/*
1640 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1641 */
1642void tag_pages_for_writeback(struct address_space *mapping,
1643 pgoff_t start, pgoff_t end)
1644{
1645#define WRITEBACK_TAG_BATCH 4096
1646 unsigned long tagged;
1647
1648 do {
1649 spin_lock_irq(&mapping->tree_lock);
1650 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1651 &start, end, WRITEBACK_TAG_BATCH,
1652 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1653 spin_unlock_irq(&mapping->tree_lock);
1654 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1655 cond_resched();
1656 /* We check 'start' to handle wrapping when end == ~0UL */
1657 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1658}
1659EXPORT_SYMBOL(tag_pages_for_writeback);
1660
1661/**
1662 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1663 * @mapping: address space structure to write
1664 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1665 * @writepage: function called for each page
1666 * @data: data passed to writepage function
1667 *
1668 * If a page is already under I/O, write_cache_pages() skips it, even
1669 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1670 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1671 * and msync() need to guarantee that all the data which was dirty at the time
1672 * the call was made get new I/O started against them. If wbc->sync_mode is
1673 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1674 * existing IO to complete.
1675 *
1676 * To avoid livelocks (when other process dirties new pages), we first tag
1677 * pages which should be written back with TOWRITE tag and only then start
1678 * writing them. For data-integrity sync we have to be careful so that we do
1679 * not miss some pages (e.g., because some other process has cleared TOWRITE
1680 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1681 * by the process clearing the DIRTY tag (and submitting the page for IO).
1682 */
1683int write_cache_pages(struct address_space *mapping,
1684 struct writeback_control *wbc, writepage_t writepage,
1685 void *data)
1686{
1687 int ret = 0;
1688 int done = 0;
1689 struct pagevec pvec;
1690 int nr_pages;
1691 pgoff_t uninitialized_var(writeback_index);
1692 pgoff_t index;
1693 pgoff_t end; /* Inclusive */
1694 pgoff_t done_index;
1695 int cycled;
1696 int range_whole = 0;
1697 int tag;
1698
1699 pagevec_init(&pvec, 0);
1700 if (wbc->range_cyclic) {
1701 writeback_index = mapping->writeback_index; /* prev offset */
1702 index = writeback_index;
1703 if (index == 0)
1704 cycled = 1;
1705 else
1706 cycled = 0;
1707 end = -1;
1708 } else {
1709 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1710 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1711 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1712 range_whole = 1;
1713 cycled = 1; /* ignore range_cyclic tests */
1714 }
1715 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1716 tag = PAGECACHE_TAG_TOWRITE;
1717 else
1718 tag = PAGECACHE_TAG_DIRTY;
1719retry:
1720 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1721 tag_pages_for_writeback(mapping, index, end);
1722 done_index = index;
1723 while (!done && (index <= end)) {
1724 int i;
1725
1726 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1727 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1728 if (nr_pages == 0)
1729 break;
1730
1731 for (i = 0; i < nr_pages; i++) {
1732 struct page *page = pvec.pages[i];
1733
1734 /*
1735 * At this point, the page may be truncated or
1736 * invalidated (changing page->mapping to NULL), or
1737 * even swizzled back from swapper_space to tmpfs file
1738 * mapping. However, page->index will not change
1739 * because we have a reference on the page.
1740 */
1741 if (page->index > end) {
1742 /*
1743 * can't be range_cyclic (1st pass) because
1744 * end == -1 in that case.
1745 */
1746 done = 1;
1747 break;
1748 }
1749
1750 done_index = page->index;
1751
1752 lock_page(page);
1753
1754 /*
1755 * Page truncated or invalidated. We can freely skip it
1756 * then, even for data integrity operations: the page
1757 * has disappeared concurrently, so there could be no
1758 * real expectation of this data interity operation
1759 * even if there is now a new, dirty page at the same
1760 * pagecache address.
1761 */
1762 if (unlikely(page->mapping != mapping)) {
1763continue_unlock:
1764 unlock_page(page);
1765 continue;
1766 }
1767
1768 if (!PageDirty(page)) {
1769 /* someone wrote it for us */
1770 goto continue_unlock;
1771 }
1772
1773 if (PageWriteback(page)) {
1774 if (wbc->sync_mode != WB_SYNC_NONE)
1775 wait_on_page_writeback(page);
1776 else
1777 goto continue_unlock;
1778 }
1779
1780 BUG_ON(PageWriteback(page));
1781 if (!clear_page_dirty_for_io(page))
1782 goto continue_unlock;
1783
1784 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1785 ret = (*writepage)(page, wbc, data);
1786 if (unlikely(ret)) {
1787 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1788 unlock_page(page);
1789 ret = 0;
1790 } else {
1791 /*
1792 * done_index is set past this page,
1793 * so media errors will not choke
1794 * background writeout for the entire
1795 * file. This has consequences for
1796 * range_cyclic semantics (ie. it may
1797 * not be suitable for data integrity
1798 * writeout).
1799 */
1800 done_index = page->index + 1;
1801 done = 1;
1802 break;
1803 }
1804 }
1805
1806 /*
1807 * We stop writing back only if we are not doing
1808 * integrity sync. In case of integrity sync we have to
1809 * keep going until we have written all the pages
1810 * we tagged for writeback prior to entering this loop.
1811 */
1812 if (--wbc->nr_to_write <= 0 &&
1813 wbc->sync_mode == WB_SYNC_NONE) {
1814 done = 1;
1815 break;
1816 }
1817 }
1818 pagevec_release(&pvec);
1819 cond_resched();
1820 }
1821 if (!cycled && !done) {
1822 /*
1823 * range_cyclic:
1824 * We hit the last page and there is more work to be done: wrap
1825 * back to the start of the file
1826 */
1827 cycled = 1;
1828 index = 0;
1829 end = writeback_index - 1;
1830 goto retry;
1831 }
1832 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1833 mapping->writeback_index = done_index;
1834
1835 return ret;
1836}
1837EXPORT_SYMBOL(write_cache_pages);
1838
1839/*
1840 * Function used by generic_writepages to call the real writepage
1841 * function and set the mapping flags on error
1842 */
1843static int __writepage(struct page *page, struct writeback_control *wbc,
1844 void *data)
1845{
1846 struct address_space *mapping = data;
1847 int ret = mapping->a_ops->writepage(page, wbc);
1848 mapping_set_error(mapping, ret);
1849 return ret;
1850}
1851
1852/**
1853 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1854 * @mapping: address space structure to write
1855 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1856 *
1857 * This is a library function, which implements the writepages()
1858 * address_space_operation.
1859 */
1860int generic_writepages(struct address_space *mapping,
1861 struct writeback_control *wbc)
1862{
1863 struct blk_plug plug;
1864 int ret;
1865
1866 /* deal with chardevs and other special file */
1867 if (!mapping->a_ops->writepage)
1868 return 0;
1869
1870 blk_start_plug(&plug);
1871 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1872 blk_finish_plug(&plug);
1873 return ret;
1874}
1875
1876EXPORT_SYMBOL(generic_writepages);
1877
1878int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1879{
1880 int ret;
1881
1882 if (wbc->nr_to_write <= 0)
1883 return 0;
1884 if (mapping->a_ops->writepages)
1885 ret = mapping->a_ops->writepages(mapping, wbc);
1886 else
1887 ret = generic_writepages(mapping, wbc);
1888 return ret;
1889}
1890
1891/**
1892 * write_one_page - write out a single page and optionally wait on I/O
1893 * @page: the page to write
1894 * @wait: if true, wait on writeout
1895 *
1896 * The page must be locked by the caller and will be unlocked upon return.
1897 *
1898 * write_one_page() returns a negative error code if I/O failed.
1899 */
1900int write_one_page(struct page *page, int wait)
1901{
1902 struct address_space *mapping = page->mapping;
1903 int ret = 0;
1904 struct writeback_control wbc = {
1905 .sync_mode = WB_SYNC_ALL,
1906 .nr_to_write = 1,
1907 };
1908
1909 BUG_ON(!PageLocked(page));
1910
1911 if (wait)
1912 wait_on_page_writeback(page);
1913
1914 if (clear_page_dirty_for_io(page)) {
1915 page_cache_get(page);
1916 ret = mapping->a_ops->writepage(page, &wbc);
1917 if (ret == 0 && wait) {
1918 wait_on_page_writeback(page);
1919 if (PageError(page))
1920 ret = -EIO;
1921 }
1922 page_cache_release(page);
1923 } else {
1924 unlock_page(page);
1925 }
1926 return ret;
1927}
1928EXPORT_SYMBOL(write_one_page);
1929
1930/*
1931 * For address_spaces which do not use buffers nor write back.
1932 */
1933int __set_page_dirty_no_writeback(struct page *page)
1934{
1935 if (!PageDirty(page))
1936 return !TestSetPageDirty(page);
1937 return 0;
1938}
1939
1940/*
1941 * Helper function for set_page_dirty family.
1942 * NOTE: This relies on being atomic wrt interrupts.
1943 */
1944void account_page_dirtied(struct page *page, struct address_space *mapping)
1945{
1946 if (mapping_cap_account_dirty(mapping)) {
1947 __inc_zone_page_state(page, NR_FILE_DIRTY);
1948 __inc_zone_page_state(page, NR_DIRTIED);
1949 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1950 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1951 task_io_account_write(PAGE_CACHE_SIZE);
1952 current->nr_dirtied++;
1953 this_cpu_inc(bdp_ratelimits);
1954 }
1955}
1956EXPORT_SYMBOL(account_page_dirtied);
1957
1958/*
1959 * Helper function for set_page_writeback family.
1960 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1961 * wrt interrupts.
1962 */
1963void account_page_writeback(struct page *page)
1964{
1965 inc_zone_page_state(page, NR_WRITEBACK);
1966}
1967EXPORT_SYMBOL(account_page_writeback);
1968
1969/*
1970 * For address_spaces which do not use buffers. Just tag the page as dirty in
1971 * its radix tree.
1972 *
1973 * This is also used when a single buffer is being dirtied: we want to set the
1974 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1975 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1976 *
1977 * The caller must ensure this doesn't race with truncation. Most will simply
1978 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
1979 * the pte lock held, which also locks out truncat
1980 */
1981int __set_page_dirty_nobuffers(struct page *page)
1982{
1983 if (!TestSetPageDirty(page)) {
1984 struct address_space *mapping = page_mapping(page);
1985 unsigned long flags;
1986
1987 if (!mapping)
1988 return 1;
1989
1990 spin_lock_irqsave(&mapping->tree_lock, flags);
1991 BUG_ON(page_mapping(page) != mapping);
1992 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1993 account_page_dirtied(page, mapping);
1994 radix_tree_tag_set(&mapping->page_tree, page_index(page),
1995 PAGECACHE_TAG_DIRTY);
1996 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1997 if (mapping->host) {
1998 /* !PageAnon && !swapper_space */
1999 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2000 }
2001 return 1;
2002 }
2003 return 0;
2004}
2005EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2006
2007/*
2008 * Call this whenever redirtying a page, to de-account the dirty counters
2009 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2010 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2011 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2012 * control.
2013 */
2014void account_page_redirty(struct page *page)
2015{
2016 struct address_space *mapping = page->mapping;
2017 if (mapping && mapping_cap_account_dirty(mapping)) {
2018 current->nr_dirtied--;
2019 dec_zone_page_state(page, NR_DIRTIED);
2020 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2021 }
2022}
2023EXPORT_SYMBOL(account_page_redirty);
2024
2025/*
2026 * When a writepage implementation decides that it doesn't want to write this
2027 * page for some reason, it should redirty the locked page via
2028 * redirty_page_for_writepage() and it should then unlock the page and return 0
2029 */
2030int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2031{
2032 wbc->pages_skipped++;
2033 account_page_redirty(page);
2034 return __set_page_dirty_nobuffers(page);
2035}
2036EXPORT_SYMBOL(redirty_page_for_writepage);
2037
2038/*
2039 * Dirty a page.
2040 *
2041 * For pages with a mapping this should be done under the page lock
2042 * for the benefit of asynchronous memory errors who prefer a consistent
2043 * dirty state. This rule can be broken in some special cases,
2044 * but should be better not to.
2045 *
2046 * If the mapping doesn't provide a set_page_dirty a_op, then
2047 * just fall through and assume that it wants buffer_heads.
2048 */
2049int set_page_dirty(struct page *page)
2050{
2051 struct address_space *mapping = page_mapping(page);
2052
2053 if (likely(mapping)) {
2054 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2055 /*
2056 * readahead/lru_deactivate_page could remain
2057 * PG_readahead/PG_reclaim due to race with end_page_writeback
2058 * About readahead, if the page is written, the flags would be
2059 * reset. So no problem.
2060 * About lru_deactivate_page, if the page is redirty, the flag
2061 * will be reset. So no problem. but if the page is used by readahead
2062 * it will confuse readahead and make it restart the size rampup
2063 * process. But it's a trivial problem.
2064 */
2065 ClearPageReclaim(page);
2066#ifdef CONFIG_BLOCK
2067 if (!spd)
2068 spd = __set_page_dirty_buffers;
2069#endif
2070 return (*spd)(page);
2071 }
2072 if (!PageDirty(page)) {
2073 if (!TestSetPageDirty(page))
2074 return 1;
2075 }
2076 return 0;
2077}
2078EXPORT_SYMBOL(set_page_dirty);
2079
2080/*
2081 * set_page_dirty() is racy if the caller has no reference against
2082 * page->mapping->host, and if the page is unlocked. This is because another
2083 * CPU could truncate the page off the mapping and then free the mapping.
2084 *
2085 * Usually, the page _is_ locked, or the caller is a user-space process which
2086 * holds a reference on the inode by having an open file.
2087 *
2088 * In other cases, the page should be locked before running set_page_dirty().
2089 */
2090int set_page_dirty_lock(struct page *page)
2091{
2092 int ret;
2093
2094 lock_page(page);
2095 ret = set_page_dirty(page);
2096 unlock_page(page);
2097 return ret;
2098}
2099EXPORT_SYMBOL(set_page_dirty_lock);
2100
2101/*
2102 * Clear a page's dirty flag, while caring for dirty memory accounting.
2103 * Returns true if the page was previously dirty.
2104 *
2105 * This is for preparing to put the page under writeout. We leave the page
2106 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2107 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2108 * implementation will run either set_page_writeback() or set_page_dirty(),
2109 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2110 * back into sync.
2111 *
2112 * This incoherency between the page's dirty flag and radix-tree tag is
2113 * unfortunate, but it only exists while the page is locked.
2114 */
2115int clear_page_dirty_for_io(struct page *page)
2116{
2117 struct address_space *mapping = page_mapping(page);
2118
2119 BUG_ON(!PageLocked(page));
2120
2121 if (mapping && mapping_cap_account_dirty(mapping)) {
2122 /*
2123 * Yes, Virginia, this is indeed insane.
2124 *
2125 * We use this sequence to make sure that
2126 * (a) we account for dirty stats properly
2127 * (b) we tell the low-level filesystem to
2128 * mark the whole page dirty if it was
2129 * dirty in a pagetable. Only to then
2130 * (c) clean the page again and return 1 to
2131 * cause the writeback.
2132 *
2133 * This way we avoid all nasty races with the
2134 * dirty bit in multiple places and clearing
2135 * them concurrently from different threads.
2136 *
2137 * Note! Normally the "set_page_dirty(page)"
2138 * has no effect on the actual dirty bit - since
2139 * that will already usually be set. But we
2140 * need the side effects, and it can help us
2141 * avoid races.
2142 *
2143 * We basically use the page "master dirty bit"
2144 * as a serialization point for all the different
2145 * threads doing their things.
2146 */
2147 if (page_mkclean(page))
2148 set_page_dirty(page);
2149 /*
2150 * We carefully synchronise fault handlers against
2151 * installing a dirty pte and marking the page dirty
2152 * at this point. We do this by having them hold the
2153 * page lock while dirtying the page, and pages are
2154 * always locked coming in here, so we get the desired
2155 * exclusion.
2156 */
2157 if (TestClearPageDirty(page)) {
2158 dec_zone_page_state(page, NR_FILE_DIRTY);
2159 dec_bdi_stat(mapping->backing_dev_info,
2160 BDI_RECLAIMABLE);
2161 return 1;
2162 }
2163 return 0;
2164 }
2165 return TestClearPageDirty(page);
2166}
2167EXPORT_SYMBOL(clear_page_dirty_for_io);
2168
2169int test_clear_page_writeback(struct page *page)
2170{
2171 struct address_space *mapping = page_mapping(page);
2172 int ret;
2173
2174 if (mapping) {
2175 struct backing_dev_info *bdi = mapping->backing_dev_info;
2176 unsigned long flags;
2177
2178 spin_lock_irqsave(&mapping->tree_lock, flags);
2179 ret = TestClearPageWriteback(page);
2180 if (ret) {
2181 radix_tree_tag_clear(&mapping->page_tree,
2182 page_index(page),
2183 PAGECACHE_TAG_WRITEBACK);
2184 if (bdi_cap_account_writeback(bdi)) {
2185 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2186 __bdi_writeout_inc(bdi);
2187 }
2188 }
2189 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2190 } else {
2191 ret = TestClearPageWriteback(page);
2192 }
2193 if (ret) {
2194 dec_zone_page_state(page, NR_WRITEBACK);
2195 inc_zone_page_state(page, NR_WRITTEN);
2196 }
2197 return ret;
2198}
2199
2200int test_set_page_writeback(struct page *page)
2201{
2202 struct address_space *mapping = page_mapping(page);
2203 int ret;
2204
2205 if (mapping) {
2206 struct backing_dev_info *bdi = mapping->backing_dev_info;
2207 unsigned long flags;
2208
2209 spin_lock_irqsave(&mapping->tree_lock, flags);
2210 ret = TestSetPageWriteback(page);
2211 if (!ret) {
2212 radix_tree_tag_set(&mapping->page_tree,
2213 page_index(page),
2214 PAGECACHE_TAG_WRITEBACK);
2215 if (bdi_cap_account_writeback(bdi))
2216 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2217 }
2218 if (!PageDirty(page))
2219 radix_tree_tag_clear(&mapping->page_tree,
2220 page_index(page),
2221 PAGECACHE_TAG_DIRTY);
2222 radix_tree_tag_clear(&mapping->page_tree,
2223 page_index(page),
2224 PAGECACHE_TAG_TOWRITE);
2225 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2226 } else {
2227 ret = TestSetPageWriteback(page);
2228 }
2229 if (!ret)
2230 account_page_writeback(page);
2231 return ret;
2232
2233}
2234EXPORT_SYMBOL(test_set_page_writeback);
2235
2236/*
2237 * Return true if any of the pages in the mapping are marked with the
2238 * passed tag.
2239 */
2240int mapping_tagged(struct address_space *mapping, int tag)
2241{
2242 return radix_tree_tagged(&mapping->page_tree, tag);
2243}
2244EXPORT_SYMBOL(mapping_tagged);