| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Implement CPU time clocks for the POSIX clock interface. | 
|  | 3 | */ | 
|  | 4 |  | 
|  | 5 | #include <linux/sched.h> | 
|  | 6 | #include <linux/posix-timers.h> | 
|  | 7 | #include <linux/errno.h> | 
|  | 8 | #include <linux/math64.h> | 
|  | 9 | #include <asm/uaccess.h> | 
|  | 10 | #include <linux/kernel_stat.h> | 
|  | 11 | #include <trace/events/timer.h> | 
|  | 12 |  | 
|  | 13 | /* | 
|  | 14 | * Called after updating RLIMIT_CPU to run cpu timer and update | 
|  | 15 | * tsk->signal->cputime_expires expiration cache if necessary. Needs | 
|  | 16 | * siglock protection since other code may update expiration cache as | 
|  | 17 | * well. | 
|  | 18 | */ | 
|  | 19 | void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) | 
|  | 20 | { | 
|  | 21 | cputime_t cputime = secs_to_cputime(rlim_new); | 
|  | 22 |  | 
|  | 23 | spin_lock_irq(&task->sighand->siglock); | 
|  | 24 | set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); | 
|  | 25 | spin_unlock_irq(&task->sighand->siglock); | 
|  | 26 | } | 
|  | 27 |  | 
|  | 28 | static int check_clock(const clockid_t which_clock) | 
|  | 29 | { | 
|  | 30 | int error = 0; | 
|  | 31 | struct task_struct *p; | 
|  | 32 | const pid_t pid = CPUCLOCK_PID(which_clock); | 
|  | 33 |  | 
|  | 34 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | 
|  | 35 | return -EINVAL; | 
|  | 36 |  | 
|  | 37 | if (pid == 0) | 
|  | 38 | return 0; | 
|  | 39 |  | 
|  | 40 | rcu_read_lock(); | 
|  | 41 | p = find_task_by_vpid(pid); | 
|  | 42 | if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? | 
|  | 43 | same_thread_group(p, current) : has_group_leader_pid(p))) { | 
|  | 44 | error = -EINVAL; | 
|  | 45 | } | 
|  | 46 | rcu_read_unlock(); | 
|  | 47 |  | 
|  | 48 | return error; | 
|  | 49 | } | 
|  | 50 |  | 
|  | 51 | static inline union cpu_time_count | 
|  | 52 | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) | 
|  | 53 | { | 
|  | 54 | union cpu_time_count ret; | 
|  | 55 | ret.sched = 0;		/* high half always zero when .cpu used */ | 
|  | 56 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 57 | ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; | 
|  | 58 | } else { | 
|  | 59 | ret.cpu = timespec_to_cputime(tp); | 
|  | 60 | } | 
|  | 61 | return ret; | 
|  | 62 | } | 
|  | 63 |  | 
|  | 64 | static void sample_to_timespec(const clockid_t which_clock, | 
|  | 65 | union cpu_time_count cpu, | 
|  | 66 | struct timespec *tp) | 
|  | 67 | { | 
|  | 68 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) | 
|  | 69 | *tp = ns_to_timespec(cpu.sched); | 
|  | 70 | else | 
|  | 71 | cputime_to_timespec(cpu.cpu, tp); | 
|  | 72 | } | 
|  | 73 |  | 
|  | 74 | static inline int cpu_time_before(const clockid_t which_clock, | 
|  | 75 | union cpu_time_count now, | 
|  | 76 | union cpu_time_count then) | 
|  | 77 | { | 
|  | 78 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 79 | return now.sched < then.sched; | 
|  | 80 | }  else { | 
|  | 81 | return now.cpu < then.cpu; | 
|  | 82 | } | 
|  | 83 | } | 
|  | 84 | static inline void cpu_time_add(const clockid_t which_clock, | 
|  | 85 | union cpu_time_count *acc, | 
|  | 86 | union cpu_time_count val) | 
|  | 87 | { | 
|  | 88 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 89 | acc->sched += val.sched; | 
|  | 90 | }  else { | 
|  | 91 | acc->cpu += val.cpu; | 
|  | 92 | } | 
|  | 93 | } | 
|  | 94 | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, | 
|  | 95 | union cpu_time_count a, | 
|  | 96 | union cpu_time_count b) | 
|  | 97 | { | 
|  | 98 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 99 | a.sched -= b.sched; | 
|  | 100 | }  else { | 
|  | 101 | a.cpu -= b.cpu; | 
|  | 102 | } | 
|  | 103 | return a; | 
|  | 104 | } | 
|  | 105 |  | 
|  | 106 | /* | 
|  | 107 | * Update expiry time from increment, and increase overrun count, | 
|  | 108 | * given the current clock sample. | 
|  | 109 | */ | 
|  | 110 | static void bump_cpu_timer(struct k_itimer *timer, | 
|  | 111 | union cpu_time_count now) | 
|  | 112 | { | 
|  | 113 | int i; | 
|  | 114 |  | 
|  | 115 | if (timer->it.cpu.incr.sched == 0) | 
|  | 116 | return; | 
|  | 117 |  | 
|  | 118 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | 
|  | 119 | unsigned long long delta, incr; | 
|  | 120 |  | 
|  | 121 | if (now.sched < timer->it.cpu.expires.sched) | 
|  | 122 | return; | 
|  | 123 | incr = timer->it.cpu.incr.sched; | 
|  | 124 | delta = now.sched + incr - timer->it.cpu.expires.sched; | 
|  | 125 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | 
|  | 126 | for (i = 0; incr < delta - incr; i++) | 
|  | 127 | incr = incr << 1; | 
|  | 128 | for (; i >= 0; incr >>= 1, i--) { | 
|  | 129 | if (delta < incr) | 
|  | 130 | continue; | 
|  | 131 | timer->it.cpu.expires.sched += incr; | 
|  | 132 | timer->it_overrun += 1 << i; | 
|  | 133 | delta -= incr; | 
|  | 134 | } | 
|  | 135 | } else { | 
|  | 136 | cputime_t delta, incr; | 
|  | 137 |  | 
|  | 138 | if (now.cpu < timer->it.cpu.expires.cpu) | 
|  | 139 | return; | 
|  | 140 | incr = timer->it.cpu.incr.cpu; | 
|  | 141 | delta = now.cpu + incr - timer->it.cpu.expires.cpu; | 
|  | 142 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | 
|  | 143 | for (i = 0; incr < delta - incr; i++) | 
|  | 144 | incr += incr; | 
|  | 145 | for (; i >= 0; incr = incr >> 1, i--) { | 
|  | 146 | if (delta < incr) | 
|  | 147 | continue; | 
|  | 148 | timer->it.cpu.expires.cpu += incr; | 
|  | 149 | timer->it_overrun += 1 << i; | 
|  | 150 | delta -= incr; | 
|  | 151 | } | 
|  | 152 | } | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | static inline cputime_t prof_ticks(struct task_struct *p) | 
|  | 156 | { | 
|  | 157 | return p->utime + p->stime; | 
|  | 158 | } | 
|  | 159 | static inline cputime_t virt_ticks(struct task_struct *p) | 
|  | 160 | { | 
|  | 161 | return p->utime; | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | static int | 
|  | 165 | posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) | 
|  | 166 | { | 
|  | 167 | int error = check_clock(which_clock); | 
|  | 168 | if (!error) { | 
|  | 169 | tp->tv_sec = 0; | 
|  | 170 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | 
|  | 171 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | 
|  | 172 | /* | 
|  | 173 | * If sched_clock is using a cycle counter, we | 
|  | 174 | * don't have any idea of its true resolution | 
|  | 175 | * exported, but it is much more than 1s/HZ. | 
|  | 176 | */ | 
|  | 177 | tp->tv_nsec = 1; | 
|  | 178 | } | 
|  | 179 | } | 
|  | 180 | return error; | 
|  | 181 | } | 
|  | 182 |  | 
|  | 183 | static int | 
|  | 184 | posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) | 
|  | 185 | { | 
|  | 186 | /* | 
|  | 187 | * You can never reset a CPU clock, but we check for other errors | 
|  | 188 | * in the call before failing with EPERM. | 
|  | 189 | */ | 
|  | 190 | int error = check_clock(which_clock); | 
|  | 191 | if (error == 0) { | 
|  | 192 | error = -EPERM; | 
|  | 193 | } | 
|  | 194 | return error; | 
|  | 195 | } | 
|  | 196 |  | 
|  | 197 |  | 
|  | 198 | /* | 
|  | 199 | * Sample a per-thread clock for the given task. | 
|  | 200 | */ | 
|  | 201 | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, | 
|  | 202 | union cpu_time_count *cpu) | 
|  | 203 | { | 
|  | 204 | switch (CPUCLOCK_WHICH(which_clock)) { | 
|  | 205 | default: | 
|  | 206 | return -EINVAL; | 
|  | 207 | case CPUCLOCK_PROF: | 
|  | 208 | cpu->cpu = prof_ticks(p); | 
|  | 209 | break; | 
|  | 210 | case CPUCLOCK_VIRT: | 
|  | 211 | cpu->cpu = virt_ticks(p); | 
|  | 212 | break; | 
|  | 213 | case CPUCLOCK_SCHED: | 
|  | 214 | cpu->sched = task_sched_runtime(p); | 
|  | 215 | break; | 
|  | 216 | } | 
|  | 217 | return 0; | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) | 
|  | 221 | { | 
|  | 222 | struct signal_struct *sig = tsk->signal; | 
|  | 223 | struct task_struct *t; | 
|  | 224 |  | 
|  | 225 | times->utime = sig->utime; | 
|  | 226 | times->stime = sig->stime; | 
|  | 227 | times->sum_exec_runtime = sig->sum_sched_runtime; | 
|  | 228 |  | 
|  | 229 | rcu_read_lock(); | 
|  | 230 | /* make sure we can trust tsk->thread_group list */ | 
|  | 231 | if (!likely(pid_alive(tsk))) | 
|  | 232 | goto out; | 
|  | 233 |  | 
|  | 234 | t = tsk; | 
|  | 235 | do { | 
|  | 236 | times->utime += t->utime; | 
|  | 237 | times->stime += t->stime; | 
|  | 238 | times->sum_exec_runtime += task_sched_runtime(t); | 
|  | 239 | } while_each_thread(tsk, t); | 
|  | 240 | out: | 
|  | 241 | rcu_read_unlock(); | 
|  | 242 | } | 
|  | 243 |  | 
|  | 244 | static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) | 
|  | 245 | { | 
|  | 246 | if (b->utime > a->utime) | 
|  | 247 | a->utime = b->utime; | 
|  | 248 |  | 
|  | 249 | if (b->stime > a->stime) | 
|  | 250 | a->stime = b->stime; | 
|  | 251 |  | 
|  | 252 | if (b->sum_exec_runtime > a->sum_exec_runtime) | 
|  | 253 | a->sum_exec_runtime = b->sum_exec_runtime; | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 | void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) | 
|  | 257 | { | 
|  | 258 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | 
|  | 259 | struct task_cputime sum; | 
|  | 260 | unsigned long flags; | 
|  | 261 |  | 
|  | 262 | if (!cputimer->running) { | 
|  | 263 | /* | 
|  | 264 | * The POSIX timer interface allows for absolute time expiry | 
|  | 265 | * values through the TIMER_ABSTIME flag, therefore we have | 
|  | 266 | * to synchronize the timer to the clock every time we start | 
|  | 267 | * it. | 
|  | 268 | */ | 
|  | 269 | thread_group_cputime(tsk, &sum); | 
|  | 270 | raw_spin_lock_irqsave(&cputimer->lock, flags); | 
|  | 271 | cputimer->running = 1; | 
|  | 272 | update_gt_cputime(&cputimer->cputime, &sum); | 
|  | 273 | } else | 
|  | 274 | raw_spin_lock_irqsave(&cputimer->lock, flags); | 
|  | 275 | *times = cputimer->cputime; | 
|  | 276 | raw_spin_unlock_irqrestore(&cputimer->lock, flags); | 
|  | 277 | } | 
|  | 278 |  | 
|  | 279 | /* | 
|  | 280 | * Sample a process (thread group) clock for the given group_leader task. | 
|  | 281 | * Must be called with tasklist_lock held for reading. | 
|  | 282 | */ | 
|  | 283 | static int cpu_clock_sample_group(const clockid_t which_clock, | 
|  | 284 | struct task_struct *p, | 
|  | 285 | union cpu_time_count *cpu) | 
|  | 286 | { | 
|  | 287 | struct task_cputime cputime; | 
|  | 288 |  | 
|  | 289 | switch (CPUCLOCK_WHICH(which_clock)) { | 
|  | 290 | default: | 
|  | 291 | return -EINVAL; | 
|  | 292 | case CPUCLOCK_PROF: | 
|  | 293 | thread_group_cputime(p, &cputime); | 
|  | 294 | cpu->cpu = cputime.utime + cputime.stime; | 
|  | 295 | break; | 
|  | 296 | case CPUCLOCK_VIRT: | 
|  | 297 | thread_group_cputime(p, &cputime); | 
|  | 298 | cpu->cpu = cputime.utime; | 
|  | 299 | break; | 
|  | 300 | case CPUCLOCK_SCHED: | 
|  | 301 | thread_group_cputime(p, &cputime); | 
|  | 302 | cpu->sched = cputime.sum_exec_runtime; | 
|  | 303 | break; | 
|  | 304 | } | 
|  | 305 | return 0; | 
|  | 306 | } | 
|  | 307 |  | 
|  | 308 |  | 
|  | 309 | static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) | 
|  | 310 | { | 
|  | 311 | const pid_t pid = CPUCLOCK_PID(which_clock); | 
|  | 312 | int error = -EINVAL; | 
|  | 313 | union cpu_time_count rtn; | 
|  | 314 |  | 
|  | 315 | if (pid == 0) { | 
|  | 316 | /* | 
|  | 317 | * Special case constant value for our own clocks. | 
|  | 318 | * We don't have to do any lookup to find ourselves. | 
|  | 319 | */ | 
|  | 320 | if (CPUCLOCK_PERTHREAD(which_clock)) { | 
|  | 321 | /* | 
|  | 322 | * Sampling just ourselves we can do with no locking. | 
|  | 323 | */ | 
|  | 324 | error = cpu_clock_sample(which_clock, | 
|  | 325 | current, &rtn); | 
|  | 326 | } else { | 
|  | 327 | read_lock(&tasklist_lock); | 
|  | 328 | error = cpu_clock_sample_group(which_clock, | 
|  | 329 | current, &rtn); | 
|  | 330 | read_unlock(&tasklist_lock); | 
|  | 331 | } | 
|  | 332 | } else { | 
|  | 333 | /* | 
|  | 334 | * Find the given PID, and validate that the caller | 
|  | 335 | * should be able to see it. | 
|  | 336 | */ | 
|  | 337 | struct task_struct *p; | 
|  | 338 | rcu_read_lock(); | 
|  | 339 | p = find_task_by_vpid(pid); | 
|  | 340 | if (p) { | 
|  | 341 | if (CPUCLOCK_PERTHREAD(which_clock)) { | 
|  | 342 | if (same_thread_group(p, current)) { | 
|  | 343 | error = cpu_clock_sample(which_clock, | 
|  | 344 | p, &rtn); | 
|  | 345 | } | 
|  | 346 | } else { | 
|  | 347 | read_lock(&tasklist_lock); | 
|  | 348 | if (thread_group_leader(p) && p->sighand) { | 
|  | 349 | error = | 
|  | 350 | cpu_clock_sample_group(which_clock, | 
|  | 351 | p, &rtn); | 
|  | 352 | } | 
|  | 353 | read_unlock(&tasklist_lock); | 
|  | 354 | } | 
|  | 355 | } | 
|  | 356 | rcu_read_unlock(); | 
|  | 357 | } | 
|  | 358 |  | 
|  | 359 | if (error) | 
|  | 360 | return error; | 
|  | 361 | sample_to_timespec(which_clock, rtn, tp); | 
|  | 362 | return 0; | 
|  | 363 | } | 
|  | 364 |  | 
|  | 365 |  | 
|  | 366 | /* | 
|  | 367 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | 
|  | 368 | * This is called from sys_timer_create() and do_cpu_nanosleep() with the | 
|  | 369 | * new timer already all-zeros initialized. | 
|  | 370 | */ | 
|  | 371 | static int posix_cpu_timer_create(struct k_itimer *new_timer) | 
|  | 372 | { | 
|  | 373 | int ret = 0; | 
|  | 374 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | 
|  | 375 | struct task_struct *p; | 
|  | 376 |  | 
|  | 377 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | 
|  | 378 | return -EINVAL; | 
|  | 379 |  | 
|  | 380 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | 
|  | 381 |  | 
|  | 382 | rcu_read_lock(); | 
|  | 383 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { | 
|  | 384 | if (pid == 0) { | 
|  | 385 | p = current; | 
|  | 386 | } else { | 
|  | 387 | p = find_task_by_vpid(pid); | 
|  | 388 | if (p && !same_thread_group(p, current)) | 
|  | 389 | p = NULL; | 
|  | 390 | } | 
|  | 391 | } else { | 
|  | 392 | if (pid == 0) { | 
|  | 393 | p = current->group_leader; | 
|  | 394 | } else { | 
|  | 395 | p = find_task_by_vpid(pid); | 
|  | 396 | if (p && !has_group_leader_pid(p)) | 
|  | 397 | p = NULL; | 
|  | 398 | } | 
|  | 399 | } | 
|  | 400 | new_timer->it.cpu.task = p; | 
|  | 401 | if (p) { | 
|  | 402 | get_task_struct(p); | 
|  | 403 | } else { | 
|  | 404 | ret = -EINVAL; | 
|  | 405 | } | 
|  | 406 | rcu_read_unlock(); | 
|  | 407 |  | 
|  | 408 | return ret; | 
|  | 409 | } | 
|  | 410 |  | 
|  | 411 | /* | 
|  | 412 | * Clean up a CPU-clock timer that is about to be destroyed. | 
|  | 413 | * This is called from timer deletion with the timer already locked. | 
|  | 414 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | 
|  | 415 | * and try again.  (This happens when the timer is in the middle of firing.) | 
|  | 416 | */ | 
|  | 417 | static int posix_cpu_timer_del(struct k_itimer *timer) | 
|  | 418 | { | 
|  | 419 | struct task_struct *p = timer->it.cpu.task; | 
|  | 420 | int ret = 0; | 
|  | 421 |  | 
|  | 422 | if (likely(p != NULL)) { | 
|  | 423 | read_lock(&tasklist_lock); | 
|  | 424 | if (unlikely(p->sighand == NULL)) { | 
|  | 425 | /* | 
|  | 426 | * We raced with the reaping of the task. | 
|  | 427 | * The deletion should have cleared us off the list. | 
|  | 428 | */ | 
|  | 429 | BUG_ON(!list_empty(&timer->it.cpu.entry)); | 
|  | 430 | } else { | 
|  | 431 | spin_lock(&p->sighand->siglock); | 
|  | 432 | if (timer->it.cpu.firing) | 
|  | 433 | ret = TIMER_RETRY; | 
|  | 434 | else | 
|  | 435 | list_del(&timer->it.cpu.entry); | 
|  | 436 | spin_unlock(&p->sighand->siglock); | 
|  | 437 | } | 
|  | 438 | read_unlock(&tasklist_lock); | 
|  | 439 |  | 
|  | 440 | if (!ret) | 
|  | 441 | put_task_struct(p); | 
|  | 442 | } | 
|  | 443 |  | 
|  | 444 | return ret; | 
|  | 445 | } | 
|  | 446 |  | 
|  | 447 | /* | 
|  | 448 | * Clean out CPU timers still ticking when a thread exited.  The task | 
|  | 449 | * pointer is cleared, and the expiry time is replaced with the residual | 
|  | 450 | * time for later timer_gettime calls to return. | 
|  | 451 | * This must be called with the siglock held. | 
|  | 452 | */ | 
|  | 453 | static void cleanup_timers(struct list_head *head, | 
|  | 454 | cputime_t utime, cputime_t stime, | 
|  | 455 | unsigned long long sum_exec_runtime) | 
|  | 456 | { | 
|  | 457 | struct cpu_timer_list *timer, *next; | 
|  | 458 | cputime_t ptime = utime + stime; | 
|  | 459 |  | 
|  | 460 | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | 461 | list_del_init(&timer->entry); | 
|  | 462 | if (timer->expires.cpu < ptime) { | 
|  | 463 | timer->expires.cpu = 0; | 
|  | 464 | } else { | 
|  | 465 | timer->expires.cpu -= ptime; | 
|  | 466 | } | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | ++head; | 
|  | 470 | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | 471 | list_del_init(&timer->entry); | 
|  | 472 | if (timer->expires.cpu < utime) { | 
|  | 473 | timer->expires.cpu = 0; | 
|  | 474 | } else { | 
|  | 475 | timer->expires.cpu -= utime; | 
|  | 476 | } | 
|  | 477 | } | 
|  | 478 |  | 
|  | 479 | ++head; | 
|  | 480 | list_for_each_entry_safe(timer, next, head, entry) { | 
|  | 481 | list_del_init(&timer->entry); | 
|  | 482 | if (timer->expires.sched < sum_exec_runtime) { | 
|  | 483 | timer->expires.sched = 0; | 
|  | 484 | } else { | 
|  | 485 | timer->expires.sched -= sum_exec_runtime; | 
|  | 486 | } | 
|  | 487 | } | 
|  | 488 | } | 
|  | 489 |  | 
|  | 490 | /* | 
|  | 491 | * These are both called with the siglock held, when the current thread | 
|  | 492 | * is being reaped.  When the final (leader) thread in the group is reaped, | 
|  | 493 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | 
|  | 494 | */ | 
|  | 495 | void posix_cpu_timers_exit(struct task_struct *tsk) | 
|  | 496 | { | 
|  | 497 | cleanup_timers(tsk->cpu_timers, | 
|  | 498 | tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); | 
|  | 499 |  | 
|  | 500 | } | 
|  | 501 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | 
|  | 502 | { | 
|  | 503 | struct signal_struct *const sig = tsk->signal; | 
|  | 504 |  | 
|  | 505 | cleanup_timers(tsk->signal->cpu_timers, | 
|  | 506 | tsk->utime + sig->utime, tsk->stime + sig->stime, | 
|  | 507 | tsk->se.sum_exec_runtime + sig->sum_sched_runtime); | 
|  | 508 | } | 
|  | 509 |  | 
|  | 510 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | 
|  | 511 | { | 
|  | 512 | /* | 
|  | 513 | * That's all for this thread or process. | 
|  | 514 | * We leave our residual in expires to be reported. | 
|  | 515 | */ | 
|  | 516 | put_task_struct(timer->it.cpu.task); | 
|  | 517 | timer->it.cpu.task = NULL; | 
|  | 518 | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, | 
|  | 519 | timer->it.cpu.expires, | 
|  | 520 | now); | 
|  | 521 | } | 
|  | 522 |  | 
|  | 523 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | 
|  | 524 | { | 
|  | 525 | return expires == 0 || expires > new_exp; | 
|  | 526 | } | 
|  | 527 |  | 
|  | 528 | /* | 
|  | 529 | * Insert the timer on the appropriate list before any timers that | 
|  | 530 | * expire later.  This must be called with the tasklist_lock held | 
|  | 531 | * for reading, interrupts disabled and p->sighand->siglock taken. | 
|  | 532 | */ | 
|  | 533 | static void arm_timer(struct k_itimer *timer) | 
|  | 534 | { | 
|  | 535 | struct task_struct *p = timer->it.cpu.task; | 
|  | 536 | struct list_head *head, *listpos; | 
|  | 537 | struct task_cputime *cputime_expires; | 
|  | 538 | struct cpu_timer_list *const nt = &timer->it.cpu; | 
|  | 539 | struct cpu_timer_list *next; | 
|  | 540 |  | 
|  | 541 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | 542 | head = p->cpu_timers; | 
|  | 543 | cputime_expires = &p->cputime_expires; | 
|  | 544 | } else { | 
|  | 545 | head = p->signal->cpu_timers; | 
|  | 546 | cputime_expires = &p->signal->cputime_expires; | 
|  | 547 | } | 
|  | 548 | head += CPUCLOCK_WHICH(timer->it_clock); | 
|  | 549 |  | 
|  | 550 | listpos = head; | 
|  | 551 | list_for_each_entry(next, head, entry) { | 
|  | 552 | if (cpu_time_before(timer->it_clock, nt->expires, next->expires)) | 
|  | 553 | break; | 
|  | 554 | listpos = &next->entry; | 
|  | 555 | } | 
|  | 556 | list_add(&nt->entry, listpos); | 
|  | 557 |  | 
|  | 558 | if (listpos == head) { | 
|  | 559 | union cpu_time_count *exp = &nt->expires; | 
|  | 560 |  | 
|  | 561 | /* | 
|  | 562 | * We are the new earliest-expiring POSIX 1.b timer, hence | 
|  | 563 | * need to update expiration cache. Take into account that | 
|  | 564 | * for process timers we share expiration cache with itimers | 
|  | 565 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | 
|  | 566 | */ | 
|  | 567 |  | 
|  | 568 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 
|  | 569 | case CPUCLOCK_PROF: | 
|  | 570 | if (expires_gt(cputime_expires->prof_exp, exp->cpu)) | 
|  | 571 | cputime_expires->prof_exp = exp->cpu; | 
|  | 572 | break; | 
|  | 573 | case CPUCLOCK_VIRT: | 
|  | 574 | if (expires_gt(cputime_expires->virt_exp, exp->cpu)) | 
|  | 575 | cputime_expires->virt_exp = exp->cpu; | 
|  | 576 | break; | 
|  | 577 | case CPUCLOCK_SCHED: | 
|  | 578 | if (cputime_expires->sched_exp == 0 || | 
|  | 579 | cputime_expires->sched_exp > exp->sched) | 
|  | 580 | cputime_expires->sched_exp = exp->sched; | 
|  | 581 | break; | 
|  | 582 | } | 
|  | 583 | } | 
|  | 584 | } | 
|  | 585 |  | 
|  | 586 | /* | 
|  | 587 | * The timer is locked, fire it and arrange for its reload. | 
|  | 588 | */ | 
|  | 589 | static void cpu_timer_fire(struct k_itimer *timer) | 
|  | 590 | { | 
|  | 591 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | 
|  | 592 | /* | 
|  | 593 | * User don't want any signal. | 
|  | 594 | */ | 
|  | 595 | timer->it.cpu.expires.sched = 0; | 
|  | 596 | } else if (unlikely(timer->sigq == NULL)) { | 
|  | 597 | /* | 
|  | 598 | * This a special case for clock_nanosleep, | 
|  | 599 | * not a normal timer from sys_timer_create. | 
|  | 600 | */ | 
|  | 601 | wake_up_process(timer->it_process); | 
|  | 602 | timer->it.cpu.expires.sched = 0; | 
|  | 603 | } else if (timer->it.cpu.incr.sched == 0) { | 
|  | 604 | /* | 
|  | 605 | * One-shot timer.  Clear it as soon as it's fired. | 
|  | 606 | */ | 
|  | 607 | posix_timer_event(timer, 0); | 
|  | 608 | timer->it.cpu.expires.sched = 0; | 
|  | 609 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | 
|  | 610 | /* | 
|  | 611 | * The signal did not get queued because the signal | 
|  | 612 | * was ignored, so we won't get any callback to | 
|  | 613 | * reload the timer.  But we need to keep it | 
|  | 614 | * ticking in case the signal is deliverable next time. | 
|  | 615 | */ | 
|  | 616 | posix_cpu_timer_schedule(timer); | 
|  | 617 | } | 
|  | 618 | } | 
|  | 619 |  | 
|  | 620 | /* | 
|  | 621 | * Sample a process (thread group) timer for the given group_leader task. | 
|  | 622 | * Must be called with tasklist_lock held for reading. | 
|  | 623 | */ | 
|  | 624 | static int cpu_timer_sample_group(const clockid_t which_clock, | 
|  | 625 | struct task_struct *p, | 
|  | 626 | union cpu_time_count *cpu) | 
|  | 627 | { | 
|  | 628 | struct task_cputime cputime; | 
|  | 629 |  | 
|  | 630 | thread_group_cputimer(p, &cputime); | 
|  | 631 | switch (CPUCLOCK_WHICH(which_clock)) { | 
|  | 632 | default: | 
|  | 633 | return -EINVAL; | 
|  | 634 | case CPUCLOCK_PROF: | 
|  | 635 | cpu->cpu = cputime.utime + cputime.stime; | 
|  | 636 | break; | 
|  | 637 | case CPUCLOCK_VIRT: | 
|  | 638 | cpu->cpu = cputime.utime; | 
|  | 639 | break; | 
|  | 640 | case CPUCLOCK_SCHED: | 
|  | 641 | cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p); | 
|  | 642 | break; | 
|  | 643 | } | 
|  | 644 | return 0; | 
|  | 645 | } | 
|  | 646 |  | 
|  | 647 | /* | 
|  | 648 | * Guts of sys_timer_settime for CPU timers. | 
|  | 649 | * This is called with the timer locked and interrupts disabled. | 
|  | 650 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | 
|  | 651 | * and try again.  (This happens when the timer is in the middle of firing.) | 
|  | 652 | */ | 
|  | 653 | static int posix_cpu_timer_set(struct k_itimer *timer, int flags, | 
|  | 654 | struct itimerspec *new, struct itimerspec *old) | 
|  | 655 | { | 
|  | 656 | struct task_struct *p = timer->it.cpu.task; | 
|  | 657 | union cpu_time_count old_expires, new_expires, old_incr, val; | 
|  | 658 | int ret; | 
|  | 659 |  | 
|  | 660 | if (unlikely(p == NULL)) { | 
|  | 661 | /* | 
|  | 662 | * Timer refers to a dead task's clock. | 
|  | 663 | */ | 
|  | 664 | return -ESRCH; | 
|  | 665 | } | 
|  | 666 |  | 
|  | 667 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | 
|  | 668 |  | 
|  | 669 | read_lock(&tasklist_lock); | 
|  | 670 | /* | 
|  | 671 | * We need the tasklist_lock to protect against reaping that | 
|  | 672 | * clears p->sighand.  If p has just been reaped, we can no | 
|  | 673 | * longer get any information about it at all. | 
|  | 674 | */ | 
|  | 675 | if (unlikely(p->sighand == NULL)) { | 
|  | 676 | read_unlock(&tasklist_lock); | 
|  | 677 | put_task_struct(p); | 
|  | 678 | timer->it.cpu.task = NULL; | 
|  | 679 | return -ESRCH; | 
|  | 680 | } | 
|  | 681 |  | 
|  | 682 | /* | 
|  | 683 | * Disarm any old timer after extracting its expiry time. | 
|  | 684 | */ | 
|  | 685 | BUG_ON_NONRT(!irqs_disabled()); | 
|  | 686 |  | 
|  | 687 | ret = 0; | 
|  | 688 | old_incr = timer->it.cpu.incr; | 
|  | 689 | spin_lock(&p->sighand->siglock); | 
|  | 690 | old_expires = timer->it.cpu.expires; | 
|  | 691 | if (unlikely(timer->it.cpu.firing)) { | 
|  | 692 | timer->it.cpu.firing = -1; | 
|  | 693 | ret = TIMER_RETRY; | 
|  | 694 | } else | 
|  | 695 | list_del_init(&timer->it.cpu.entry); | 
|  | 696 |  | 
|  | 697 | /* | 
|  | 698 | * We need to sample the current value to convert the new | 
|  | 699 | * value from to relative and absolute, and to convert the | 
|  | 700 | * old value from absolute to relative.  To set a process | 
|  | 701 | * timer, we need a sample to balance the thread expiry | 
|  | 702 | * times (in arm_timer).  With an absolute time, we must | 
|  | 703 | * check if it's already passed.  In short, we need a sample. | 
|  | 704 | */ | 
|  | 705 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | 706 | cpu_clock_sample(timer->it_clock, p, &val); | 
|  | 707 | } else { | 
|  | 708 | cpu_timer_sample_group(timer->it_clock, p, &val); | 
|  | 709 | } | 
|  | 710 |  | 
|  | 711 | if (old) { | 
|  | 712 | if (old_expires.sched == 0) { | 
|  | 713 | old->it_value.tv_sec = 0; | 
|  | 714 | old->it_value.tv_nsec = 0; | 
|  | 715 | } else { | 
|  | 716 | /* | 
|  | 717 | * Update the timer in case it has | 
|  | 718 | * overrun already.  If it has, | 
|  | 719 | * we'll report it as having overrun | 
|  | 720 | * and with the next reloaded timer | 
|  | 721 | * already ticking, though we are | 
|  | 722 | * swallowing that pending | 
|  | 723 | * notification here to install the | 
|  | 724 | * new setting. | 
|  | 725 | */ | 
|  | 726 | bump_cpu_timer(timer, val); | 
|  | 727 | if (cpu_time_before(timer->it_clock, val, | 
|  | 728 | timer->it.cpu.expires)) { | 
|  | 729 | old_expires = cpu_time_sub( | 
|  | 730 | timer->it_clock, | 
|  | 731 | timer->it.cpu.expires, val); | 
|  | 732 | sample_to_timespec(timer->it_clock, | 
|  | 733 | old_expires, | 
|  | 734 | &old->it_value); | 
|  | 735 | } else { | 
|  | 736 | old->it_value.tv_nsec = 1; | 
|  | 737 | old->it_value.tv_sec = 0; | 
|  | 738 | } | 
|  | 739 | } | 
|  | 740 | } | 
|  | 741 |  | 
|  | 742 | if (unlikely(ret)) { | 
|  | 743 | /* | 
|  | 744 | * We are colliding with the timer actually firing. | 
|  | 745 | * Punt after filling in the timer's old value, and | 
|  | 746 | * disable this firing since we are already reporting | 
|  | 747 | * it as an overrun (thanks to bump_cpu_timer above). | 
|  | 748 | */ | 
|  | 749 | spin_unlock(&p->sighand->siglock); | 
|  | 750 | read_unlock(&tasklist_lock); | 
|  | 751 | goto out; | 
|  | 752 | } | 
|  | 753 |  | 
|  | 754 | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { | 
|  | 755 | cpu_time_add(timer->it_clock, &new_expires, val); | 
|  | 756 | } | 
|  | 757 |  | 
|  | 758 | /* | 
|  | 759 | * Install the new expiry time (or zero). | 
|  | 760 | * For a timer with no notification action, we don't actually | 
|  | 761 | * arm the timer (we'll just fake it for timer_gettime). | 
|  | 762 | */ | 
|  | 763 | timer->it.cpu.expires = new_expires; | 
|  | 764 | if (new_expires.sched != 0 && | 
|  | 765 | cpu_time_before(timer->it_clock, val, new_expires)) { | 
|  | 766 | arm_timer(timer); | 
|  | 767 | } | 
|  | 768 |  | 
|  | 769 | spin_unlock(&p->sighand->siglock); | 
|  | 770 | read_unlock(&tasklist_lock); | 
|  | 771 |  | 
|  | 772 | /* | 
|  | 773 | * Install the new reload setting, and | 
|  | 774 | * set up the signal and overrun bookkeeping. | 
|  | 775 | */ | 
|  | 776 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | 
|  | 777 | &new->it_interval); | 
|  | 778 |  | 
|  | 779 | /* | 
|  | 780 | * This acts as a modification timestamp for the timer, | 
|  | 781 | * so any automatic reload attempt will punt on seeing | 
|  | 782 | * that we have reset the timer manually. | 
|  | 783 | */ | 
|  | 784 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | 
|  | 785 | ~REQUEUE_PENDING; | 
|  | 786 | timer->it_overrun_last = 0; | 
|  | 787 | timer->it_overrun = -1; | 
|  | 788 |  | 
|  | 789 | if (new_expires.sched != 0 && | 
|  | 790 | !cpu_time_before(timer->it_clock, val, new_expires)) { | 
|  | 791 | /* | 
|  | 792 | * The designated time already passed, so we notify | 
|  | 793 | * immediately, even if the thread never runs to | 
|  | 794 | * accumulate more time on this clock. | 
|  | 795 | */ | 
|  | 796 | cpu_timer_fire(timer); | 
|  | 797 | } | 
|  | 798 |  | 
|  | 799 | ret = 0; | 
|  | 800 | out: | 
|  | 801 | if (old) { | 
|  | 802 | sample_to_timespec(timer->it_clock, | 
|  | 803 | old_incr, &old->it_interval); | 
|  | 804 | } | 
|  | 805 | return ret; | 
|  | 806 | } | 
|  | 807 |  | 
|  | 808 | static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | 
|  | 809 | { | 
|  | 810 | union cpu_time_count now; | 
|  | 811 | struct task_struct *p = timer->it.cpu.task; | 
|  | 812 | int clear_dead; | 
|  | 813 |  | 
|  | 814 | /* | 
|  | 815 | * Easy part: convert the reload time. | 
|  | 816 | */ | 
|  | 817 | sample_to_timespec(timer->it_clock, | 
|  | 818 | timer->it.cpu.incr, &itp->it_interval); | 
|  | 819 |  | 
|  | 820 | if (timer->it.cpu.expires.sched == 0) {	/* Timer not armed at all.  */ | 
|  | 821 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | 
|  | 822 | return; | 
|  | 823 | } | 
|  | 824 |  | 
|  | 825 | if (unlikely(p == NULL)) { | 
|  | 826 | /* | 
|  | 827 | * This task already died and the timer will never fire. | 
|  | 828 | * In this case, expires is actually the dead value. | 
|  | 829 | */ | 
|  | 830 | dead: | 
|  | 831 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | 
|  | 832 | &itp->it_value); | 
|  | 833 | return; | 
|  | 834 | } | 
|  | 835 |  | 
|  | 836 | /* | 
|  | 837 | * Sample the clock to take the difference with the expiry time. | 
|  | 838 | */ | 
|  | 839 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | 840 | cpu_clock_sample(timer->it_clock, p, &now); | 
|  | 841 | clear_dead = p->exit_state; | 
|  | 842 | } else { | 
|  | 843 | read_lock(&tasklist_lock); | 
|  | 844 | if (unlikely(p->sighand == NULL)) { | 
|  | 845 | /* | 
|  | 846 | * The process has been reaped. | 
|  | 847 | * We can't even collect a sample any more. | 
|  | 848 | * Call the timer disarmed, nothing else to do. | 
|  | 849 | */ | 
|  | 850 | put_task_struct(p); | 
|  | 851 | timer->it.cpu.task = NULL; | 
|  | 852 | timer->it.cpu.expires.sched = 0; | 
|  | 853 | read_unlock(&tasklist_lock); | 
|  | 854 | goto dead; | 
|  | 855 | } else { | 
|  | 856 | cpu_timer_sample_group(timer->it_clock, p, &now); | 
|  | 857 | clear_dead = (unlikely(p->exit_state) && | 
|  | 858 | thread_group_empty(p)); | 
|  | 859 | } | 
|  | 860 | read_unlock(&tasklist_lock); | 
|  | 861 | } | 
|  | 862 |  | 
|  | 863 | if (unlikely(clear_dead)) { | 
|  | 864 | /* | 
|  | 865 | * We've noticed that the thread is dead, but | 
|  | 866 | * not yet reaped.  Take this opportunity to | 
|  | 867 | * drop our task ref. | 
|  | 868 | */ | 
|  | 869 | clear_dead_task(timer, now); | 
|  | 870 | goto dead; | 
|  | 871 | } | 
|  | 872 |  | 
|  | 873 | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { | 
|  | 874 | sample_to_timespec(timer->it_clock, | 
|  | 875 | cpu_time_sub(timer->it_clock, | 
|  | 876 | timer->it.cpu.expires, now), | 
|  | 877 | &itp->it_value); | 
|  | 878 | } else { | 
|  | 879 | /* | 
|  | 880 | * The timer should have expired already, but the firing | 
|  | 881 | * hasn't taken place yet.  Say it's just about to expire. | 
|  | 882 | */ | 
|  | 883 | itp->it_value.tv_nsec = 1; | 
|  | 884 | itp->it_value.tv_sec = 0; | 
|  | 885 | } | 
|  | 886 | } | 
|  | 887 |  | 
|  | 888 | /* | 
|  | 889 | * Check for any per-thread CPU timers that have fired and move them off | 
|  | 890 | * the tsk->cpu_timers[N] list onto the firing list.  Here we update the | 
|  | 891 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | 
|  | 892 | */ | 
|  | 893 | static void check_thread_timers(struct task_struct *tsk, | 
|  | 894 | struct list_head *firing) | 
|  | 895 | { | 
|  | 896 | int maxfire; | 
|  | 897 | struct list_head *timers = tsk->cpu_timers; | 
|  | 898 | struct signal_struct *const sig = tsk->signal; | 
|  | 899 | unsigned long soft; | 
|  | 900 |  | 
|  | 901 | maxfire = 20; | 
|  | 902 | tsk->cputime_expires.prof_exp = 0; | 
|  | 903 | while (!list_empty(timers)) { | 
|  | 904 | struct cpu_timer_list *t = list_first_entry(timers, | 
|  | 905 | struct cpu_timer_list, | 
|  | 906 | entry); | 
|  | 907 | if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) { | 
|  | 908 | tsk->cputime_expires.prof_exp = t->expires.cpu; | 
|  | 909 | break; | 
|  | 910 | } | 
|  | 911 | t->firing = 1; | 
|  | 912 | list_move_tail(&t->entry, firing); | 
|  | 913 | } | 
|  | 914 |  | 
|  | 915 | ++timers; | 
|  | 916 | maxfire = 20; | 
|  | 917 | tsk->cputime_expires.virt_exp = 0; | 
|  | 918 | while (!list_empty(timers)) { | 
|  | 919 | struct cpu_timer_list *t = list_first_entry(timers, | 
|  | 920 | struct cpu_timer_list, | 
|  | 921 | entry); | 
|  | 922 | if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) { | 
|  | 923 | tsk->cputime_expires.virt_exp = t->expires.cpu; | 
|  | 924 | break; | 
|  | 925 | } | 
|  | 926 | t->firing = 1; | 
|  | 927 | list_move_tail(&t->entry, firing); | 
|  | 928 | } | 
|  | 929 |  | 
|  | 930 | ++timers; | 
|  | 931 | maxfire = 20; | 
|  | 932 | tsk->cputime_expires.sched_exp = 0; | 
|  | 933 | while (!list_empty(timers)) { | 
|  | 934 | struct cpu_timer_list *t = list_first_entry(timers, | 
|  | 935 | struct cpu_timer_list, | 
|  | 936 | entry); | 
|  | 937 | if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { | 
|  | 938 | tsk->cputime_expires.sched_exp = t->expires.sched; | 
|  | 939 | break; | 
|  | 940 | } | 
|  | 941 | t->firing = 1; | 
|  | 942 | list_move_tail(&t->entry, firing); | 
|  | 943 | } | 
|  | 944 |  | 
|  | 945 | /* | 
|  | 946 | * Check for the special case thread timers. | 
|  | 947 | */ | 
|  | 948 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); | 
|  | 949 | if (soft != RLIM_INFINITY) { | 
|  | 950 | unsigned long hard = | 
|  | 951 | ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); | 
|  | 952 |  | 
|  | 953 | if (hard != RLIM_INFINITY && | 
|  | 954 | tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { | 
|  | 955 | /* | 
|  | 956 | * At the hard limit, we just die. | 
|  | 957 | * No need to calculate anything else now. | 
|  | 958 | */ | 
|  | 959 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | 
|  | 960 | return; | 
|  | 961 | } | 
|  | 962 | if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { | 
|  | 963 | /* | 
|  | 964 | * At the soft limit, send a SIGXCPU every second. | 
|  | 965 | */ | 
|  | 966 | if (soft < hard) { | 
|  | 967 | soft += USEC_PER_SEC; | 
|  | 968 | sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; | 
|  | 969 | } | 
|  | 970 | printk(KERN_INFO | 
|  | 971 | "RT Watchdog Timeout: %s[%d]\n", | 
|  | 972 | tsk->comm, task_pid_nr(tsk)); | 
|  | 973 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | 
|  | 974 | } | 
|  | 975 | } | 
|  | 976 | } | 
|  | 977 |  | 
|  | 978 | static void stop_process_timers(struct signal_struct *sig) | 
|  | 979 | { | 
|  | 980 | struct thread_group_cputimer *cputimer = &sig->cputimer; | 
|  | 981 | unsigned long flags; | 
|  | 982 |  | 
|  | 983 | raw_spin_lock_irqsave(&cputimer->lock, flags); | 
|  | 984 | cputimer->running = 0; | 
|  | 985 | raw_spin_unlock_irqrestore(&cputimer->lock, flags); | 
|  | 986 | } | 
|  | 987 |  | 
|  | 988 | static u32 onecputick; | 
|  | 989 |  | 
|  | 990 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | 
|  | 991 | cputime_t *expires, cputime_t cur_time, int signo) | 
|  | 992 | { | 
|  | 993 | if (!it->expires) | 
|  | 994 | return; | 
|  | 995 |  | 
|  | 996 | if (cur_time >= it->expires) { | 
|  | 997 | if (it->incr) { | 
|  | 998 | it->expires += it->incr; | 
|  | 999 | it->error += it->incr_error; | 
|  | 1000 | if (it->error >= onecputick) { | 
|  | 1001 | it->expires -= cputime_one_jiffy; | 
|  | 1002 | it->error -= onecputick; | 
|  | 1003 | } | 
|  | 1004 | } else { | 
|  | 1005 | it->expires = 0; | 
|  | 1006 | } | 
|  | 1007 |  | 
|  | 1008 | trace_itimer_expire(signo == SIGPROF ? | 
|  | 1009 | ITIMER_PROF : ITIMER_VIRTUAL, | 
|  | 1010 | tsk->signal->leader_pid, cur_time); | 
|  | 1011 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | 
|  | 1012 | } | 
|  | 1013 |  | 
|  | 1014 | if (it->expires && (!*expires || it->expires < *expires)) { | 
|  | 1015 | *expires = it->expires; | 
|  | 1016 | } | 
|  | 1017 | } | 
|  | 1018 |  | 
|  | 1019 | /** | 
|  | 1020 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | 
|  | 1021 | * | 
|  | 1022 | * @cputime:	The struct to compare. | 
|  | 1023 | * | 
|  | 1024 | * Checks @cputime to see if all fields are zero.  Returns true if all fields | 
|  | 1025 | * are zero, false if any field is nonzero. | 
|  | 1026 | */ | 
|  | 1027 | static inline int task_cputime_zero(const struct task_cputime *cputime) | 
|  | 1028 | { | 
|  | 1029 | if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) | 
|  | 1030 | return 1; | 
|  | 1031 | return 0; | 
|  | 1032 | } | 
|  | 1033 |  | 
|  | 1034 | /* | 
|  | 1035 | * Check for any per-thread CPU timers that have fired and move them | 
|  | 1036 | * off the tsk->*_timers list onto the firing list.  Per-thread timers | 
|  | 1037 | * have already been taken off. | 
|  | 1038 | */ | 
|  | 1039 | static void check_process_timers(struct task_struct *tsk, | 
|  | 1040 | struct list_head *firing) | 
|  | 1041 | { | 
|  | 1042 | int maxfire; | 
|  | 1043 | struct signal_struct *const sig = tsk->signal; | 
|  | 1044 | cputime_t utime, ptime, virt_expires, prof_expires; | 
|  | 1045 | unsigned long long sum_sched_runtime, sched_expires; | 
|  | 1046 | struct list_head *timers = sig->cpu_timers; | 
|  | 1047 | struct task_cputime cputime; | 
|  | 1048 | unsigned long soft; | 
|  | 1049 |  | 
|  | 1050 | /* | 
|  | 1051 | * Collect the current process totals. | 
|  | 1052 | */ | 
|  | 1053 | thread_group_cputimer(tsk, &cputime); | 
|  | 1054 | utime = cputime.utime; | 
|  | 1055 | ptime = utime + cputime.stime; | 
|  | 1056 | sum_sched_runtime = cputime.sum_exec_runtime; | 
|  | 1057 | maxfire = 20; | 
|  | 1058 | prof_expires = 0; | 
|  | 1059 | while (!list_empty(timers)) { | 
|  | 1060 | struct cpu_timer_list *tl = list_first_entry(timers, | 
|  | 1061 | struct cpu_timer_list, | 
|  | 1062 | entry); | 
|  | 1063 | if (!--maxfire || ptime < tl->expires.cpu) { | 
|  | 1064 | prof_expires = tl->expires.cpu; | 
|  | 1065 | break; | 
|  | 1066 | } | 
|  | 1067 | tl->firing = 1; | 
|  | 1068 | list_move_tail(&tl->entry, firing); | 
|  | 1069 | } | 
|  | 1070 |  | 
|  | 1071 | ++timers; | 
|  | 1072 | maxfire = 20; | 
|  | 1073 | virt_expires = 0; | 
|  | 1074 | while (!list_empty(timers)) { | 
|  | 1075 | struct cpu_timer_list *tl = list_first_entry(timers, | 
|  | 1076 | struct cpu_timer_list, | 
|  | 1077 | entry); | 
|  | 1078 | if (!--maxfire || utime < tl->expires.cpu) { | 
|  | 1079 | virt_expires = tl->expires.cpu; | 
|  | 1080 | break; | 
|  | 1081 | } | 
|  | 1082 | tl->firing = 1; | 
|  | 1083 | list_move_tail(&tl->entry, firing); | 
|  | 1084 | } | 
|  | 1085 |  | 
|  | 1086 | ++timers; | 
|  | 1087 | maxfire = 20; | 
|  | 1088 | sched_expires = 0; | 
|  | 1089 | while (!list_empty(timers)) { | 
|  | 1090 | struct cpu_timer_list *tl = list_first_entry(timers, | 
|  | 1091 | struct cpu_timer_list, | 
|  | 1092 | entry); | 
|  | 1093 | if (!--maxfire || sum_sched_runtime < tl->expires.sched) { | 
|  | 1094 | sched_expires = tl->expires.sched; | 
|  | 1095 | break; | 
|  | 1096 | } | 
|  | 1097 | tl->firing = 1; | 
|  | 1098 | list_move_tail(&tl->entry, firing); | 
|  | 1099 | } | 
|  | 1100 |  | 
|  | 1101 | /* | 
|  | 1102 | * Check for the special case process timers. | 
|  | 1103 | */ | 
|  | 1104 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, | 
|  | 1105 | SIGPROF); | 
|  | 1106 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, | 
|  | 1107 | SIGVTALRM); | 
|  | 1108 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); | 
|  | 1109 | if (soft != RLIM_INFINITY) { | 
|  | 1110 | unsigned long psecs = cputime_to_secs(ptime); | 
|  | 1111 | unsigned long hard = | 
|  | 1112 | ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); | 
|  | 1113 | cputime_t x; | 
|  | 1114 | if (psecs >= hard) { | 
|  | 1115 | /* | 
|  | 1116 | * At the hard limit, we just die. | 
|  | 1117 | * No need to calculate anything else now. | 
|  | 1118 | */ | 
|  | 1119 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | 
|  | 1120 | return; | 
|  | 1121 | } | 
|  | 1122 | if (psecs >= soft) { | 
|  | 1123 | /* | 
|  | 1124 | * At the soft limit, send a SIGXCPU every second. | 
|  | 1125 | */ | 
|  | 1126 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | 
|  | 1127 | if (soft < hard) { | 
|  | 1128 | soft++; | 
|  | 1129 | sig->rlim[RLIMIT_CPU].rlim_cur = soft; | 
|  | 1130 | } | 
|  | 1131 | } | 
|  | 1132 | x = secs_to_cputime(soft); | 
|  | 1133 | if (!prof_expires || x < prof_expires) { | 
|  | 1134 | prof_expires = x; | 
|  | 1135 | } | 
|  | 1136 | } | 
|  | 1137 |  | 
|  | 1138 | sig->cputime_expires.prof_exp = prof_expires; | 
|  | 1139 | sig->cputime_expires.virt_exp = virt_expires; | 
|  | 1140 | sig->cputime_expires.sched_exp = sched_expires; | 
|  | 1141 | if (task_cputime_zero(&sig->cputime_expires)) | 
|  | 1142 | stop_process_timers(sig); | 
|  | 1143 | } | 
|  | 1144 |  | 
|  | 1145 | /* | 
|  | 1146 | * This is called from the signal code (via do_schedule_next_timer) | 
|  | 1147 | * when the last timer signal was delivered and we have to reload the timer. | 
|  | 1148 | */ | 
|  | 1149 | void posix_cpu_timer_schedule(struct k_itimer *timer) | 
|  | 1150 | { | 
|  | 1151 | struct task_struct *p = timer->it.cpu.task; | 
|  | 1152 | union cpu_time_count now; | 
|  | 1153 |  | 
|  | 1154 | if (unlikely(p == NULL)) | 
|  | 1155 | /* | 
|  | 1156 | * The task was cleaned up already, no future firings. | 
|  | 1157 | */ | 
|  | 1158 | goto out; | 
|  | 1159 |  | 
|  | 1160 | /* | 
|  | 1161 | * Fetch the current sample and update the timer's expiry time. | 
|  | 1162 | */ | 
|  | 1163 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 
|  | 1164 | cpu_clock_sample(timer->it_clock, p, &now); | 
|  | 1165 | bump_cpu_timer(timer, now); | 
|  | 1166 | if (unlikely(p->exit_state)) { | 
|  | 1167 | clear_dead_task(timer, now); | 
|  | 1168 | goto out; | 
|  | 1169 | } | 
|  | 1170 | read_lock(&tasklist_lock); /* arm_timer needs it.  */ | 
|  | 1171 | spin_lock(&p->sighand->siglock); | 
|  | 1172 | } else { | 
|  | 1173 | read_lock(&tasklist_lock); | 
|  | 1174 | if (unlikely(p->sighand == NULL)) { | 
|  | 1175 | /* | 
|  | 1176 | * The process has been reaped. | 
|  | 1177 | * We can't even collect a sample any more. | 
|  | 1178 | */ | 
|  | 1179 | put_task_struct(p); | 
|  | 1180 | timer->it.cpu.task = p = NULL; | 
|  | 1181 | timer->it.cpu.expires.sched = 0; | 
|  | 1182 | goto out_unlock; | 
|  | 1183 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { | 
|  | 1184 | /* | 
|  | 1185 | * We've noticed that the thread is dead, but | 
|  | 1186 | * not yet reaped.  Take this opportunity to | 
|  | 1187 | * drop our task ref. | 
|  | 1188 | */ | 
|  | 1189 | clear_dead_task(timer, now); | 
|  | 1190 | goto out_unlock; | 
|  | 1191 | } | 
|  | 1192 | spin_lock(&p->sighand->siglock); | 
|  | 1193 | cpu_timer_sample_group(timer->it_clock, p, &now); | 
|  | 1194 | bump_cpu_timer(timer, now); | 
|  | 1195 | /* Leave the tasklist_lock locked for the call below.  */ | 
|  | 1196 | } | 
|  | 1197 |  | 
|  | 1198 | /* | 
|  | 1199 | * Now re-arm for the new expiry time. | 
|  | 1200 | */ | 
|  | 1201 | BUG_ON_NONRT(!irqs_disabled()); | 
|  | 1202 | arm_timer(timer); | 
|  | 1203 | spin_unlock(&p->sighand->siglock); | 
|  | 1204 |  | 
|  | 1205 | out_unlock: | 
|  | 1206 | read_unlock(&tasklist_lock); | 
|  | 1207 |  | 
|  | 1208 | out: | 
|  | 1209 | timer->it_overrun_last = timer->it_overrun; | 
|  | 1210 | timer->it_overrun = -1; | 
|  | 1211 | ++timer->it_requeue_pending; | 
|  | 1212 | } | 
|  | 1213 |  | 
|  | 1214 | /** | 
|  | 1215 | * task_cputime_expired - Compare two task_cputime entities. | 
|  | 1216 | * | 
|  | 1217 | * @sample:	The task_cputime structure to be checked for expiration. | 
|  | 1218 | * @expires:	Expiration times, against which @sample will be checked. | 
|  | 1219 | * | 
|  | 1220 | * Checks @sample against @expires to see if any field of @sample has expired. | 
|  | 1221 | * Returns true if any field of the former is greater than the corresponding | 
|  | 1222 | * field of the latter if the latter field is set.  Otherwise returns false. | 
|  | 1223 | */ | 
|  | 1224 | static inline int task_cputime_expired(const struct task_cputime *sample, | 
|  | 1225 | const struct task_cputime *expires) | 
|  | 1226 | { | 
|  | 1227 | if (expires->utime && sample->utime >= expires->utime) | 
|  | 1228 | return 1; | 
|  | 1229 | if (expires->stime && sample->utime + sample->stime >= expires->stime) | 
|  | 1230 | return 1; | 
|  | 1231 | if (expires->sum_exec_runtime != 0 && | 
|  | 1232 | sample->sum_exec_runtime >= expires->sum_exec_runtime) | 
|  | 1233 | return 1; | 
|  | 1234 | return 0; | 
|  | 1235 | } | 
|  | 1236 |  | 
|  | 1237 | /** | 
|  | 1238 | * fastpath_timer_check - POSIX CPU timers fast path. | 
|  | 1239 | * | 
|  | 1240 | * @tsk:	The task (thread) being checked. | 
|  | 1241 | * | 
|  | 1242 | * Check the task and thread group timers.  If both are zero (there are no | 
|  | 1243 | * timers set) return false.  Otherwise snapshot the task and thread group | 
|  | 1244 | * timers and compare them with the corresponding expiration times.  Return | 
|  | 1245 | * true if a timer has expired, else return false. | 
|  | 1246 | */ | 
|  | 1247 | static inline int fastpath_timer_check(struct task_struct *tsk) | 
|  | 1248 | { | 
|  | 1249 | struct signal_struct *sig; | 
|  | 1250 |  | 
|  | 1251 | if (!task_cputime_zero(&tsk->cputime_expires)) { | 
|  | 1252 | struct task_cputime task_sample = { | 
|  | 1253 | .utime = tsk->utime, | 
|  | 1254 | .stime = tsk->stime, | 
|  | 1255 | .sum_exec_runtime = tsk->se.sum_exec_runtime | 
|  | 1256 | }; | 
|  | 1257 |  | 
|  | 1258 | if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) | 
|  | 1259 | return 1; | 
|  | 1260 | } | 
|  | 1261 |  | 
|  | 1262 | sig = tsk->signal; | 
|  | 1263 | if (sig->cputimer.running) { | 
|  | 1264 | struct task_cputime group_sample; | 
|  | 1265 | unsigned long flags; | 
|  | 1266 |  | 
|  | 1267 | raw_spin_lock_irqsave(&sig->cputimer.lock, flags); | 
|  | 1268 | group_sample = sig->cputimer.cputime; | 
|  | 1269 | raw_spin_unlock_irqrestore(&sig->cputimer.lock, flags); | 
|  | 1270 |  | 
|  | 1271 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) | 
|  | 1272 | return 1; | 
|  | 1273 | } | 
|  | 1274 |  | 
|  | 1275 | return 0; | 
|  | 1276 | } | 
|  | 1277 |  | 
|  | 1278 | /* | 
|  | 1279 | * This is called from the timer interrupt handler.  The irq handler has | 
|  | 1280 | * already updated our counts.  We need to check if any timers fire now. | 
|  | 1281 | * Interrupts are disabled. | 
|  | 1282 | */ | 
|  | 1283 | static void __run_posix_cpu_timers(struct task_struct *tsk) | 
|  | 1284 | { | 
|  | 1285 | LIST_HEAD(firing); | 
|  | 1286 | struct k_itimer *timer, *next; | 
|  | 1287 | unsigned long flags; | 
|  | 1288 |  | 
|  | 1289 | BUG_ON_NONRT(!irqs_disabled()); | 
|  | 1290 |  | 
|  | 1291 | /* | 
|  | 1292 | * The fast path checks that there are no expired thread or thread | 
|  | 1293 | * group timers.  If that's so, just return. | 
|  | 1294 | */ | 
|  | 1295 | if (!fastpath_timer_check(tsk)) | 
|  | 1296 | return; | 
|  | 1297 |  | 
|  | 1298 | if (!lock_task_sighand(tsk, &flags)) | 
|  | 1299 | return; | 
|  | 1300 | /* | 
|  | 1301 | * Here we take off tsk->signal->cpu_timers[N] and | 
|  | 1302 | * tsk->cpu_timers[N] all the timers that are firing, and | 
|  | 1303 | * put them on the firing list. | 
|  | 1304 | */ | 
|  | 1305 | check_thread_timers(tsk, &firing); | 
|  | 1306 | /* | 
|  | 1307 | * If there are any active process wide timers (POSIX 1.b, itimers, | 
|  | 1308 | * RLIMIT_CPU) cputimer must be running. | 
|  | 1309 | */ | 
|  | 1310 | if (tsk->signal->cputimer.running) | 
|  | 1311 | check_process_timers(tsk, &firing); | 
|  | 1312 |  | 
|  | 1313 | /* | 
|  | 1314 | * We must release these locks before taking any timer's lock. | 
|  | 1315 | * There is a potential race with timer deletion here, as the | 
|  | 1316 | * siglock now protects our private firing list.  We have set | 
|  | 1317 | * the firing flag in each timer, so that a deletion attempt | 
|  | 1318 | * that gets the timer lock before we do will give it up and | 
|  | 1319 | * spin until we've taken care of that timer below. | 
|  | 1320 | */ | 
|  | 1321 | unlock_task_sighand(tsk, &flags); | 
|  | 1322 |  | 
|  | 1323 | /* | 
|  | 1324 | * Now that all the timers on our list have the firing flag, | 
|  | 1325 | * no one will touch their list entries but us.  We'll take | 
|  | 1326 | * each timer's lock before clearing its firing flag, so no | 
|  | 1327 | * timer call will interfere. | 
|  | 1328 | */ | 
|  | 1329 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | 
|  | 1330 | int cpu_firing; | 
|  | 1331 |  | 
|  | 1332 | spin_lock(&timer->it_lock); | 
|  | 1333 | list_del_init(&timer->it.cpu.entry); | 
|  | 1334 | cpu_firing = timer->it.cpu.firing; | 
|  | 1335 | timer->it.cpu.firing = 0; | 
|  | 1336 | /* | 
|  | 1337 | * The firing flag is -1 if we collided with a reset | 
|  | 1338 | * of the timer, which already reported this | 
|  | 1339 | * almost-firing as an overrun.  So don't generate an event. | 
|  | 1340 | */ | 
|  | 1341 | if (likely(cpu_firing >= 0)) | 
|  | 1342 | cpu_timer_fire(timer); | 
|  | 1343 | spin_unlock(&timer->it_lock); | 
|  | 1344 | } | 
|  | 1345 | } | 
|  | 1346 |  | 
|  | 1347 | #ifdef CONFIG_PREEMPT_RT_BASE | 
|  | 1348 | #include <linux/kthread.h> | 
|  | 1349 | #include <linux/cpu.h> | 
|  | 1350 | DEFINE_PER_CPU(struct task_struct *, posix_timer_task); | 
|  | 1351 | DEFINE_PER_CPU(struct task_struct *, posix_timer_tasklist); | 
|  | 1352 |  | 
|  | 1353 | static int posix_cpu_timers_thread(void *data) | 
|  | 1354 | { | 
|  | 1355 | int cpu = (long)data; | 
|  | 1356 |  | 
|  | 1357 | BUG_ON(per_cpu(posix_timer_task,cpu) != current); | 
|  | 1358 |  | 
|  | 1359 | while (!kthread_should_stop()) { | 
|  | 1360 | struct task_struct *tsk = NULL; | 
|  | 1361 | struct task_struct *next = NULL; | 
|  | 1362 |  | 
|  | 1363 | if (cpu_is_offline(cpu)) | 
|  | 1364 | goto wait_to_die; | 
|  | 1365 |  | 
|  | 1366 | /* grab task list */ | 
|  | 1367 | raw_local_irq_disable(); | 
|  | 1368 | tsk = per_cpu(posix_timer_tasklist, cpu); | 
|  | 1369 | per_cpu(posix_timer_tasklist, cpu) = NULL; | 
|  | 1370 | raw_local_irq_enable(); | 
|  | 1371 |  | 
|  | 1372 | /* its possible the list is empty, just return */ | 
|  | 1373 | if (!tsk) { | 
|  | 1374 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1375 | schedule(); | 
|  | 1376 | __set_current_state(TASK_RUNNING); | 
|  | 1377 | continue; | 
|  | 1378 | } | 
|  | 1379 |  | 
|  | 1380 | /* Process task list */ | 
|  | 1381 | while (1) { | 
|  | 1382 | /* save next */ | 
|  | 1383 | next = tsk->posix_timer_list; | 
|  | 1384 |  | 
|  | 1385 | /* run the task timers, clear its ptr and | 
|  | 1386 | * unreference it | 
|  | 1387 | */ | 
|  | 1388 | __run_posix_cpu_timers(tsk); | 
|  | 1389 | tsk->posix_timer_list = NULL; | 
|  | 1390 | put_task_struct(tsk); | 
|  | 1391 |  | 
|  | 1392 | /* check if this is the last on the list */ | 
|  | 1393 | if (next == tsk) | 
|  | 1394 | break; | 
|  | 1395 | tsk = next; | 
|  | 1396 | } | 
|  | 1397 | } | 
|  | 1398 | return 0; | 
|  | 1399 |  | 
|  | 1400 | wait_to_die: | 
|  | 1401 | /* Wait for kthread_stop */ | 
|  | 1402 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1403 | while (!kthread_should_stop()) { | 
|  | 1404 | schedule(); | 
|  | 1405 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1406 | } | 
|  | 1407 | __set_current_state(TASK_RUNNING); | 
|  | 1408 | return 0; | 
|  | 1409 | } | 
|  | 1410 |  | 
|  | 1411 | static inline int __fastpath_timer_check(struct task_struct *tsk) | 
|  | 1412 | { | 
|  | 1413 | /* tsk == current, ensure it is safe to use ->signal/sighand */ | 
|  | 1414 | if (unlikely(tsk->exit_state)) | 
|  | 1415 | return 0; | 
|  | 1416 |  | 
|  | 1417 | if (!task_cputime_zero(&tsk->cputime_expires)) | 
|  | 1418 | return 1; | 
|  | 1419 |  | 
|  | 1420 | if (!task_cputime_zero(&tsk->signal->cputime_expires)) | 
|  | 1421 | return 1; | 
|  | 1422 |  | 
|  | 1423 | return 0; | 
|  | 1424 | } | 
|  | 1425 |  | 
|  | 1426 | void run_posix_cpu_timers(struct task_struct *tsk) | 
|  | 1427 | { | 
|  | 1428 | unsigned long cpu = smp_processor_id(); | 
|  | 1429 | struct task_struct *tasklist; | 
|  | 1430 |  | 
|  | 1431 | BUG_ON(!irqs_disabled()); | 
|  | 1432 | if(!per_cpu(posix_timer_task, cpu)) | 
|  | 1433 | return; | 
|  | 1434 | /* get per-cpu references */ | 
|  | 1435 | tasklist = per_cpu(posix_timer_tasklist, cpu); | 
|  | 1436 |  | 
|  | 1437 | /* check to see if we're already queued */ | 
|  | 1438 | if (!tsk->posix_timer_list && __fastpath_timer_check(tsk)) { | 
|  | 1439 | get_task_struct(tsk); | 
|  | 1440 | if (tasklist) { | 
|  | 1441 | tsk->posix_timer_list = tasklist; | 
|  | 1442 | } else { | 
|  | 1443 | /* | 
|  | 1444 | * The list is terminated by a self-pointing | 
|  | 1445 | * task_struct | 
|  | 1446 | */ | 
|  | 1447 | tsk->posix_timer_list = tsk; | 
|  | 1448 | } | 
|  | 1449 | per_cpu(posix_timer_tasklist, cpu) = tsk; | 
|  | 1450 |  | 
|  | 1451 | wake_up_process(per_cpu(posix_timer_task, cpu)); | 
|  | 1452 | } | 
|  | 1453 | } | 
|  | 1454 |  | 
|  | 1455 | /* | 
|  | 1456 | * posix_cpu_thread_call - callback that gets triggered when a CPU is added. | 
|  | 1457 | * Here we can start up the necessary migration thread for the new CPU. | 
|  | 1458 | */ | 
|  | 1459 | static int posix_cpu_thread_call(struct notifier_block *nfb, | 
|  | 1460 | unsigned long action, void *hcpu) | 
|  | 1461 | { | 
|  | 1462 | int cpu = (long)hcpu; | 
|  | 1463 | struct task_struct *p; | 
|  | 1464 | struct sched_param param; | 
|  | 1465 |  | 
|  | 1466 | switch (action) { | 
|  | 1467 | case CPU_UP_PREPARE: | 
|  | 1468 | p = kthread_create(posix_cpu_timers_thread, hcpu, | 
|  | 1469 | "posixcputmr/%d",cpu); | 
|  | 1470 | if (IS_ERR(p)) | 
|  | 1471 | return NOTIFY_BAD; | 
|  | 1472 | p->flags |= PF_NOFREEZE; | 
|  | 1473 | kthread_bind(p, cpu); | 
|  | 1474 | /* Must be high prio to avoid getting starved */ | 
|  | 1475 | param.sched_priority = MAX_RT_PRIO-1; | 
|  | 1476 | sched_setscheduler(p, SCHED_FIFO, ¶m); | 
|  | 1477 | per_cpu(posix_timer_task,cpu) = p; | 
|  | 1478 | break; | 
|  | 1479 | case CPU_ONLINE: | 
|  | 1480 | /* Strictly unneccessary, as first user will wake it. */ | 
|  | 1481 | wake_up_process(per_cpu(posix_timer_task,cpu)); | 
|  | 1482 | break; | 
|  | 1483 | #ifdef CONFIG_HOTPLUG_CPU | 
|  | 1484 | case CPU_UP_CANCELED: | 
|  | 1485 | /* Unbind it from offline cpu so it can run.  Fall thru. */ | 
|  | 1486 | kthread_bind(per_cpu(posix_timer_task, cpu), | 
|  | 1487 | cpumask_any(cpu_online_mask)); | 
|  | 1488 | kthread_stop(per_cpu(posix_timer_task,cpu)); | 
|  | 1489 | per_cpu(posix_timer_task,cpu) = NULL; | 
|  | 1490 | break; | 
|  | 1491 | case CPU_DEAD: | 
|  | 1492 | kthread_stop(per_cpu(posix_timer_task,cpu)); | 
|  | 1493 | per_cpu(posix_timer_task,cpu) = NULL; | 
|  | 1494 | break; | 
|  | 1495 | #endif | 
|  | 1496 | } | 
|  | 1497 | return NOTIFY_OK; | 
|  | 1498 | } | 
|  | 1499 |  | 
|  | 1500 | /* Register at highest priority so that task migration (migrate_all_tasks) | 
|  | 1501 | * happens before everything else. | 
|  | 1502 | */ | 
|  | 1503 | static struct notifier_block __devinitdata posix_cpu_thread_notifier = { | 
|  | 1504 | .notifier_call = posix_cpu_thread_call, | 
|  | 1505 | .priority = 10 | 
|  | 1506 | }; | 
|  | 1507 |  | 
|  | 1508 | static int __init posix_cpu_thread_init(void) | 
|  | 1509 | { | 
|  | 1510 | void *hcpu = (void *)(long)smp_processor_id(); | 
|  | 1511 | /* Start one for boot CPU. */ | 
|  | 1512 | unsigned long cpu; | 
|  | 1513 |  | 
|  | 1514 | /* init the per-cpu posix_timer_tasklets */ | 
|  | 1515 | for_each_possible_cpu(cpu) | 
|  | 1516 | per_cpu(posix_timer_tasklist, cpu) = NULL; | 
|  | 1517 |  | 
|  | 1518 | posix_cpu_thread_call(&posix_cpu_thread_notifier, CPU_UP_PREPARE, hcpu); | 
|  | 1519 | posix_cpu_thread_call(&posix_cpu_thread_notifier, CPU_ONLINE, hcpu); | 
|  | 1520 | register_cpu_notifier(&posix_cpu_thread_notifier); | 
|  | 1521 | return 0; | 
|  | 1522 | } | 
|  | 1523 | early_initcall(posix_cpu_thread_init); | 
|  | 1524 | #else /* CONFIG_PREEMPT_RT_BASE */ | 
|  | 1525 | void run_posix_cpu_timers(struct task_struct *tsk) | 
|  | 1526 | { | 
|  | 1527 | __run_posix_cpu_timers(tsk); | 
|  | 1528 | } | 
|  | 1529 | #endif /* CONFIG_PREEMPT_RT_BASE */ | 
|  | 1530 |  | 
|  | 1531 | /* | 
|  | 1532 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. | 
|  | 1533 | * The tsk->sighand->siglock must be held by the caller. | 
|  | 1534 | */ | 
|  | 1535 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | 
|  | 1536 | cputime_t *newval, cputime_t *oldval) | 
|  | 1537 | { | 
|  | 1538 | union cpu_time_count now; | 
|  | 1539 |  | 
|  | 1540 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | 
|  | 1541 | cpu_timer_sample_group(clock_idx, tsk, &now); | 
|  | 1542 |  | 
|  | 1543 | if (oldval) { | 
|  | 1544 | /* | 
|  | 1545 | * We are setting itimer. The *oldval is absolute and we update | 
|  | 1546 | * it to be relative, *newval argument is relative and we update | 
|  | 1547 | * it to be absolute. | 
|  | 1548 | */ | 
|  | 1549 | if (*oldval) { | 
|  | 1550 | if (*oldval <= now.cpu) { | 
|  | 1551 | /* Just about to fire. */ | 
|  | 1552 | *oldval = cputime_one_jiffy; | 
|  | 1553 | } else { | 
|  | 1554 | *oldval -= now.cpu; | 
|  | 1555 | } | 
|  | 1556 | } | 
|  | 1557 |  | 
|  | 1558 | if (!*newval) | 
|  | 1559 | return; | 
|  | 1560 | *newval += now.cpu; | 
|  | 1561 | } | 
|  | 1562 |  | 
|  | 1563 | /* | 
|  | 1564 | * Update expiration cache if we are the earliest timer, or eventually | 
|  | 1565 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. | 
|  | 1566 | */ | 
|  | 1567 | switch (clock_idx) { | 
|  | 1568 | case CPUCLOCK_PROF: | 
|  | 1569 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) | 
|  | 1570 | tsk->signal->cputime_expires.prof_exp = *newval; | 
|  | 1571 | break; | 
|  | 1572 | case CPUCLOCK_VIRT: | 
|  | 1573 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) | 
|  | 1574 | tsk->signal->cputime_expires.virt_exp = *newval; | 
|  | 1575 | break; | 
|  | 1576 | } | 
|  | 1577 | } | 
|  | 1578 |  | 
|  | 1579 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, | 
|  | 1580 | struct timespec *rqtp, struct itimerspec *it) | 
|  | 1581 | { | 
|  | 1582 | struct k_itimer timer; | 
|  | 1583 | int error; | 
|  | 1584 |  | 
|  | 1585 | /* | 
|  | 1586 | * Set up a temporary timer and then wait for it to go off. | 
|  | 1587 | */ | 
|  | 1588 | memset(&timer, 0, sizeof timer); | 
|  | 1589 | spin_lock_init(&timer.it_lock); | 
|  | 1590 | timer.it_clock = which_clock; | 
|  | 1591 | timer.it_overrun = -1; | 
|  | 1592 | error = posix_cpu_timer_create(&timer); | 
|  | 1593 | timer.it_process = current; | 
|  | 1594 | if (!error) { | 
|  | 1595 | static struct itimerspec zero_it; | 
|  | 1596 |  | 
|  | 1597 | memset(it, 0, sizeof *it); | 
|  | 1598 | it->it_value = *rqtp; | 
|  | 1599 |  | 
|  | 1600 | spin_lock_irq(&timer.it_lock); | 
|  | 1601 | error = posix_cpu_timer_set(&timer, flags, it, NULL); | 
|  | 1602 | if (error) { | 
|  | 1603 | spin_unlock_irq(&timer.it_lock); | 
|  | 1604 | return error; | 
|  | 1605 | } | 
|  | 1606 |  | 
|  | 1607 | while (!signal_pending(current)) { | 
|  | 1608 | if (timer.it.cpu.expires.sched == 0) { | 
|  | 1609 | /* | 
|  | 1610 | * Our timer fired and was reset, below | 
|  | 1611 | * deletion can not fail. | 
|  | 1612 | */ | 
|  | 1613 | posix_cpu_timer_del(&timer); | 
|  | 1614 | spin_unlock_irq(&timer.it_lock); | 
|  | 1615 | return 0; | 
|  | 1616 | } | 
|  | 1617 |  | 
|  | 1618 | /* | 
|  | 1619 | * Block until cpu_timer_fire (or a signal) wakes us. | 
|  | 1620 | */ | 
|  | 1621 | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1622 | spin_unlock_irq(&timer.it_lock); | 
|  | 1623 | schedule(); | 
|  | 1624 | spin_lock_irq(&timer.it_lock); | 
|  | 1625 | } | 
|  | 1626 |  | 
|  | 1627 | /* | 
|  | 1628 | * We were interrupted by a signal. | 
|  | 1629 | */ | 
|  | 1630 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | 
|  | 1631 | error = posix_cpu_timer_set(&timer, 0, &zero_it, it); | 
|  | 1632 | if (!error) { | 
|  | 1633 | /* | 
|  | 1634 | * Timer is now unarmed, deletion can not fail. | 
|  | 1635 | */ | 
|  | 1636 | posix_cpu_timer_del(&timer); | 
|  | 1637 | } | 
|  | 1638 | spin_unlock_irq(&timer.it_lock); | 
|  | 1639 |  | 
|  | 1640 | while (error == TIMER_RETRY) { | 
|  | 1641 | /* | 
|  | 1642 | * We need to handle case when timer was or is in the | 
|  | 1643 | * middle of firing. In other cases we already freed | 
|  | 1644 | * resources. | 
|  | 1645 | */ | 
|  | 1646 | spin_lock_irq(&timer.it_lock); | 
|  | 1647 | error = posix_cpu_timer_del(&timer); | 
|  | 1648 | spin_unlock_irq(&timer.it_lock); | 
|  | 1649 | } | 
|  | 1650 |  | 
|  | 1651 | if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { | 
|  | 1652 | /* | 
|  | 1653 | * It actually did fire already. | 
|  | 1654 | */ | 
|  | 1655 | return 0; | 
|  | 1656 | } | 
|  | 1657 |  | 
|  | 1658 | error = -ERESTART_RESTARTBLOCK; | 
|  | 1659 | } | 
|  | 1660 |  | 
|  | 1661 | return error; | 
|  | 1662 | } | 
|  | 1663 |  | 
|  | 1664 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block); | 
|  | 1665 |  | 
|  | 1666 | static int posix_cpu_nsleep(const clockid_t which_clock, int flags, | 
|  | 1667 | struct timespec *rqtp, struct timespec __user *rmtp) | 
|  | 1668 | { | 
|  | 1669 | struct restart_block *restart_block = | 
|  | 1670 | ¤t_thread_info()->restart_block; | 
|  | 1671 | struct itimerspec it; | 
|  | 1672 | int error; | 
|  | 1673 |  | 
|  | 1674 | /* | 
|  | 1675 | * Diagnose required errors first. | 
|  | 1676 | */ | 
|  | 1677 | if (CPUCLOCK_PERTHREAD(which_clock) && | 
|  | 1678 | (CPUCLOCK_PID(which_clock) == 0 || | 
|  | 1679 | CPUCLOCK_PID(which_clock) == current->pid)) | 
|  | 1680 | return -EINVAL; | 
|  | 1681 |  | 
|  | 1682 | error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); | 
|  | 1683 |  | 
|  | 1684 | if (error == -ERESTART_RESTARTBLOCK) { | 
|  | 1685 |  | 
|  | 1686 | if (flags & TIMER_ABSTIME) | 
|  | 1687 | return -ERESTARTNOHAND; | 
|  | 1688 | /* | 
|  | 1689 | * Report back to the user the time still remaining. | 
|  | 1690 | */ | 
|  | 1691 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | 
|  | 1692 | return -EFAULT; | 
|  | 1693 |  | 
|  | 1694 | restart_block->fn = posix_cpu_nsleep_restart; | 
|  | 1695 | restart_block->nanosleep.clockid = which_clock; | 
|  | 1696 | restart_block->nanosleep.rmtp = rmtp; | 
|  | 1697 | restart_block->nanosleep.expires = timespec_to_ns(rqtp); | 
|  | 1698 | } | 
|  | 1699 | return error; | 
|  | 1700 | } | 
|  | 1701 |  | 
|  | 1702 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block) | 
|  | 1703 | { | 
|  | 1704 | clockid_t which_clock = restart_block->nanosleep.clockid; | 
|  | 1705 | struct timespec t; | 
|  | 1706 | struct itimerspec it; | 
|  | 1707 | int error; | 
|  | 1708 |  | 
|  | 1709 | t = ns_to_timespec(restart_block->nanosleep.expires); | 
|  | 1710 |  | 
|  | 1711 | error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); | 
|  | 1712 |  | 
|  | 1713 | if (error == -ERESTART_RESTARTBLOCK) { | 
|  | 1714 | struct timespec __user *rmtp = restart_block->nanosleep.rmtp; | 
|  | 1715 | /* | 
|  | 1716 | * Report back to the user the time still remaining. | 
|  | 1717 | */ | 
|  | 1718 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | 
|  | 1719 | return -EFAULT; | 
|  | 1720 |  | 
|  | 1721 | restart_block->nanosleep.expires = timespec_to_ns(&t); | 
|  | 1722 | } | 
|  | 1723 | return error; | 
|  | 1724 |  | 
|  | 1725 | } | 
|  | 1726 |  | 
|  | 1727 | #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) | 
|  | 1728 | #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | 
|  | 1729 |  | 
|  | 1730 | static int process_cpu_clock_getres(const clockid_t which_clock, | 
|  | 1731 | struct timespec *tp) | 
|  | 1732 | { | 
|  | 1733 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | 
|  | 1734 | } | 
|  | 1735 | static int process_cpu_clock_get(const clockid_t which_clock, | 
|  | 1736 | struct timespec *tp) | 
|  | 1737 | { | 
|  | 1738 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | 
|  | 1739 | } | 
|  | 1740 | static int process_cpu_timer_create(struct k_itimer *timer) | 
|  | 1741 | { | 
|  | 1742 | timer->it_clock = PROCESS_CLOCK; | 
|  | 1743 | return posix_cpu_timer_create(timer); | 
|  | 1744 | } | 
|  | 1745 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, | 
|  | 1746 | struct timespec *rqtp, | 
|  | 1747 | struct timespec __user *rmtp) | 
|  | 1748 | { | 
|  | 1749 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); | 
|  | 1750 | } | 
|  | 1751 | static long process_cpu_nsleep_restart(struct restart_block *restart_block) | 
|  | 1752 | { | 
|  | 1753 | return -EINVAL; | 
|  | 1754 | } | 
|  | 1755 | static int thread_cpu_clock_getres(const clockid_t which_clock, | 
|  | 1756 | struct timespec *tp) | 
|  | 1757 | { | 
|  | 1758 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | 
|  | 1759 | } | 
|  | 1760 | static int thread_cpu_clock_get(const clockid_t which_clock, | 
|  | 1761 | struct timespec *tp) | 
|  | 1762 | { | 
|  | 1763 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | 
|  | 1764 | } | 
|  | 1765 | static int thread_cpu_timer_create(struct k_itimer *timer) | 
|  | 1766 | { | 
|  | 1767 | timer->it_clock = THREAD_CLOCK; | 
|  | 1768 | return posix_cpu_timer_create(timer); | 
|  | 1769 | } | 
|  | 1770 |  | 
|  | 1771 | struct k_clock clock_posix_cpu = { | 
|  | 1772 | .clock_getres	= posix_cpu_clock_getres, | 
|  | 1773 | .clock_set	= posix_cpu_clock_set, | 
|  | 1774 | .clock_get	= posix_cpu_clock_get, | 
|  | 1775 | .timer_create	= posix_cpu_timer_create, | 
|  | 1776 | .nsleep		= posix_cpu_nsleep, | 
|  | 1777 | .nsleep_restart	= posix_cpu_nsleep_restart, | 
|  | 1778 | .timer_set	= posix_cpu_timer_set, | 
|  | 1779 | .timer_del	= posix_cpu_timer_del, | 
|  | 1780 | .timer_get	= posix_cpu_timer_get, | 
|  | 1781 | }; | 
|  | 1782 |  | 
|  | 1783 | static __init int init_posix_cpu_timers(void) | 
|  | 1784 | { | 
|  | 1785 | struct k_clock process = { | 
|  | 1786 | .clock_getres	= process_cpu_clock_getres, | 
|  | 1787 | .clock_get	= process_cpu_clock_get, | 
|  | 1788 | .timer_create	= process_cpu_timer_create, | 
|  | 1789 | .nsleep		= process_cpu_nsleep, | 
|  | 1790 | .nsleep_restart	= process_cpu_nsleep_restart, | 
|  | 1791 | }; | 
|  | 1792 | struct k_clock thread = { | 
|  | 1793 | .clock_getres	= thread_cpu_clock_getres, | 
|  | 1794 | .clock_get	= thread_cpu_clock_get, | 
|  | 1795 | .timer_create	= thread_cpu_timer_create, | 
|  | 1796 | }; | 
|  | 1797 | struct timespec ts; | 
|  | 1798 |  | 
|  | 1799 | posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 
|  | 1800 | posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 
|  | 1801 |  | 
|  | 1802 | cputime_to_timespec(cputime_one_jiffy, &ts); | 
|  | 1803 | onecputick = ts.tv_nsec; | 
|  | 1804 | WARN_ON(ts.tv_sec != 0); | 
|  | 1805 |  | 
|  | 1806 | return 0; | 
|  | 1807 | } | 
|  | 1808 | __initcall(init_posix_cpu_timers); |