| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * linux/fs/binfmt_elf.c | 
 | 3 |  * | 
 | 4 |  * These are the functions used to load ELF format executables as used | 
 | 5 |  * on SVr4 machines.  Information on the format may be found in the book | 
 | 6 |  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support | 
 | 7 |  * Tools". | 
 | 8 |  * | 
 | 9 |  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). | 
 | 10 |  */ | 
 | 11 |  | 
 | 12 | #include <linux/module.h> | 
 | 13 | #include <linux/kernel.h> | 
 | 14 | #include <linux/fs.h> | 
 | 15 | #include <linux/mm.h> | 
 | 16 | #include <linux/mman.h> | 
 | 17 | #include <linux/errno.h> | 
 | 18 | #include <linux/signal.h> | 
 | 19 | #include <linux/binfmts.h> | 
 | 20 | #include <linux/string.h> | 
 | 21 | #include <linux/file.h> | 
 | 22 | #include <linux/slab.h> | 
 | 23 | #include <linux/personality.h> | 
 | 24 | #include <linux/elfcore.h> | 
 | 25 | #include <linux/init.h> | 
 | 26 | #include <linux/highuid.h> | 
 | 27 | #include <linux/compiler.h> | 
 | 28 | #include <linux/highmem.h> | 
 | 29 | #include <linux/pagemap.h> | 
 | 30 | #include <linux/security.h> | 
 | 31 | #include <linux/random.h> | 
 | 32 | #include <linux/elf.h> | 
 | 33 | #include <linux/utsname.h> | 
 | 34 | #include <linux/coredump.h> | 
 | 35 | #include <asm/uaccess.h> | 
 | 36 | #include <asm/param.h> | 
 | 37 | #include <asm/page.h> | 
 | 38 | #include <asm/exec.h> | 
 | 39 |  | 
 | 40 | static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); | 
 | 41 | static int load_elf_library(struct file *); | 
 | 42 | static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *, | 
 | 43 | 				int, int, unsigned long); | 
 | 44 |  | 
 | 45 | /* | 
 | 46 |  * If we don't support core dumping, then supply a NULL so we | 
 | 47 |  * don't even try. | 
 | 48 |  */ | 
 | 49 | #ifdef CONFIG_ELF_CORE | 
 | 50 | static int elf_core_dump(struct coredump_params *cprm); | 
 | 51 | #else | 
 | 52 | #define elf_core_dump	NULL | 
 | 53 | #endif | 
 | 54 |  | 
 | 55 | #if ELF_EXEC_PAGESIZE > PAGE_SIZE | 
 | 56 | #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE | 
 | 57 | #else | 
 | 58 | #define ELF_MIN_ALIGN	PAGE_SIZE | 
 | 59 | #endif | 
 | 60 |  | 
 | 61 | #ifndef ELF_CORE_EFLAGS | 
 | 62 | #define ELF_CORE_EFLAGS	0 | 
 | 63 | #endif | 
 | 64 |  | 
 | 65 | #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) | 
 | 66 | #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) | 
 | 67 | #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) | 
 | 68 |  | 
 | 69 | static struct linux_binfmt elf_format = { | 
 | 70 | 	.module		= THIS_MODULE, | 
 | 71 | 	.load_binary	= load_elf_binary, | 
 | 72 | 	.load_shlib	= load_elf_library, | 
 | 73 | 	.core_dump	= elf_core_dump, | 
 | 74 | 	.min_coredump	= ELF_EXEC_PAGESIZE, | 
 | 75 | }; | 
 | 76 |  | 
 | 77 | #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) | 
 | 78 |  | 
 | 79 | static int set_brk(unsigned long start, unsigned long end) | 
 | 80 | { | 
 | 81 | 	start = ELF_PAGEALIGN(start); | 
 | 82 | 	end = ELF_PAGEALIGN(end); | 
 | 83 | 	if (end > start) { | 
 | 84 | 		unsigned long addr; | 
 | 85 | 		addr = vm_brk(start, end - start); | 
 | 86 | 		if (BAD_ADDR(addr)) | 
 | 87 | 			return addr; | 
 | 88 | 	} | 
 | 89 | 	current->mm->start_brk = current->mm->brk = end; | 
 | 90 | 	return 0; | 
 | 91 | } | 
 | 92 |  | 
 | 93 | /* We need to explicitly zero any fractional pages | 
 | 94 |    after the data section (i.e. bss).  This would | 
 | 95 |    contain the junk from the file that should not | 
 | 96 |    be in memory | 
 | 97 |  */ | 
 | 98 | static int padzero(unsigned long elf_bss) | 
 | 99 | { | 
 | 100 | 	unsigned long nbyte; | 
 | 101 |  | 
 | 102 | 	nbyte = ELF_PAGEOFFSET(elf_bss); | 
 | 103 | 	if (nbyte) { | 
 | 104 | 		nbyte = ELF_MIN_ALIGN - nbyte; | 
 | 105 | 		if (clear_user((void __user *) elf_bss, nbyte)) | 
 | 106 | 			return -EFAULT; | 
 | 107 | 	} | 
 | 108 | 	return 0; | 
 | 109 | } | 
 | 110 |  | 
 | 111 | /* Let's use some macros to make this stack manipulation a little clearer */ | 
 | 112 | #ifdef CONFIG_STACK_GROWSUP | 
 | 113 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) | 
 | 114 | #define STACK_ROUND(sp, items) \ | 
 | 115 | 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL) | 
 | 116 | #define STACK_ALLOC(sp, len) ({ \ | 
 | 117 | 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ | 
 | 118 | 	old_sp; }) | 
 | 119 | #else | 
 | 120 | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) | 
 | 121 | #define STACK_ROUND(sp, items) \ | 
 | 122 | 	(((unsigned long) (sp - items)) &~ 15UL) | 
 | 123 | #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) | 
 | 124 | #endif | 
 | 125 |  | 
 | 126 | #ifndef ELF_BASE_PLATFORM | 
 | 127 | /* | 
 | 128 |  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture. | 
 | 129 |  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value | 
 | 130 |  * will be copied to the user stack in the same manner as AT_PLATFORM. | 
 | 131 |  */ | 
 | 132 | #define ELF_BASE_PLATFORM NULL | 
 | 133 | #endif | 
 | 134 |  | 
 | 135 | static int | 
 | 136 | create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, | 
 | 137 | 		unsigned long load_addr, unsigned long interp_load_addr) | 
 | 138 | { | 
 | 139 | 	unsigned long p = bprm->p; | 
 | 140 | 	int argc = bprm->argc; | 
 | 141 | 	int envc = bprm->envc; | 
 | 142 | 	elf_addr_t __user *argv; | 
 | 143 | 	elf_addr_t __user *envp; | 
 | 144 | 	elf_addr_t __user *sp; | 
 | 145 | 	elf_addr_t __user *u_platform; | 
 | 146 | 	elf_addr_t __user *u_base_platform; | 
 | 147 | 	elf_addr_t __user *u_rand_bytes; | 
 | 148 | 	const char *k_platform = ELF_PLATFORM; | 
 | 149 | 	const char *k_base_platform = ELF_BASE_PLATFORM; | 
 | 150 | 	unsigned char k_rand_bytes[16]; | 
 | 151 | 	int items; | 
 | 152 | 	elf_addr_t *elf_info; | 
 | 153 | 	int ei_index = 0; | 
 | 154 | 	const struct cred *cred = current_cred(); | 
 | 155 | 	struct vm_area_struct *vma; | 
 | 156 |  | 
 | 157 | 	/* | 
 | 158 | 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1 | 
 | 159 | 	 * evictions by the processes running on the same package. One | 
 | 160 | 	 * thing we can do is to shuffle the initial stack for them. | 
 | 161 | 	 */ | 
 | 162 |  | 
 | 163 | 	p = arch_align_stack(p); | 
 | 164 |  | 
 | 165 | 	/* | 
 | 166 | 	 * If this architecture has a platform capability string, copy it | 
 | 167 | 	 * to userspace.  In some cases (Sparc), this info is impossible | 
 | 168 | 	 * for userspace to get any other way, in others (i386) it is | 
 | 169 | 	 * merely difficult. | 
 | 170 | 	 */ | 
 | 171 | 	u_platform = NULL; | 
 | 172 | 	if (k_platform) { | 
 | 173 | 		size_t len = strlen(k_platform) + 1; | 
 | 174 |  | 
 | 175 | 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
 | 176 | 		if (__copy_to_user(u_platform, k_platform, len)) | 
 | 177 | 			return -EFAULT; | 
 | 178 | 	} | 
 | 179 |  | 
 | 180 | 	/* | 
 | 181 | 	 * If this architecture has a "base" platform capability | 
 | 182 | 	 * string, copy it to userspace. | 
 | 183 | 	 */ | 
 | 184 | 	u_base_platform = NULL; | 
 | 185 | 	if (k_base_platform) { | 
 | 186 | 		size_t len = strlen(k_base_platform) + 1; | 
 | 187 |  | 
 | 188 | 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
 | 189 | 		if (__copy_to_user(u_base_platform, k_base_platform, len)) | 
 | 190 | 			return -EFAULT; | 
 | 191 | 	} | 
 | 192 |  | 
 | 193 | 	/* | 
 | 194 | 	 * Generate 16 random bytes for userspace PRNG seeding. | 
 | 195 | 	 */ | 
 | 196 | 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes)); | 
 | 197 | 	u_rand_bytes = (elf_addr_t __user *) | 
 | 198 | 		       STACK_ALLOC(p, sizeof(k_rand_bytes)); | 
 | 199 | 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes))) | 
 | 200 | 		return -EFAULT; | 
 | 201 |  | 
 | 202 | 	/* Create the ELF interpreter info */ | 
 | 203 | 	elf_info = (elf_addr_t *)current->mm->saved_auxv; | 
 | 204 | 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */ | 
 | 205 | #define NEW_AUX_ENT(id, val) \ | 
 | 206 | 	do { \ | 
 | 207 | 		elf_info[ei_index++] = id; \ | 
 | 208 | 		elf_info[ei_index++] = val; \ | 
 | 209 | 	} while (0) | 
 | 210 |  | 
 | 211 | #ifdef ARCH_DLINFO | 
 | 212 | 	/*  | 
 | 213 | 	 * ARCH_DLINFO must come first so PPC can do its special alignment of | 
 | 214 | 	 * AUXV. | 
 | 215 | 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in | 
 | 216 | 	 * ARCH_DLINFO changes | 
 | 217 | 	 */ | 
 | 218 | 	ARCH_DLINFO; | 
 | 219 | #endif | 
 | 220 | 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); | 
 | 221 | 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); | 
 | 222 | 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); | 
 | 223 | 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); | 
 | 224 | 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); | 
 | 225 | 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); | 
 | 226 | 	NEW_AUX_ENT(AT_BASE, interp_load_addr); | 
 | 227 | 	NEW_AUX_ENT(AT_FLAGS, 0); | 
 | 228 | 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry); | 
 | 229 | 	NEW_AUX_ENT(AT_UID, cred->uid); | 
 | 230 | 	NEW_AUX_ENT(AT_EUID, cred->euid); | 
 | 231 | 	NEW_AUX_ENT(AT_GID, cred->gid); | 
 | 232 | 	NEW_AUX_ENT(AT_EGID, cred->egid); | 
 | 233 |  	NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); | 
 | 234 | 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes); | 
 | 235 | 	NEW_AUX_ENT(AT_EXECFN, bprm->exec); | 
 | 236 | 	if (k_platform) { | 
 | 237 | 		NEW_AUX_ENT(AT_PLATFORM, | 
 | 238 | 			    (elf_addr_t)(unsigned long)u_platform); | 
 | 239 | 	} | 
 | 240 | 	if (k_base_platform) { | 
 | 241 | 		NEW_AUX_ENT(AT_BASE_PLATFORM, | 
 | 242 | 			    (elf_addr_t)(unsigned long)u_base_platform); | 
 | 243 | 	} | 
 | 244 | 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { | 
 | 245 | 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); | 
 | 246 | 	} | 
 | 247 | #undef NEW_AUX_ENT | 
 | 248 | 	/* AT_NULL is zero; clear the rest too */ | 
 | 249 | 	memset(&elf_info[ei_index], 0, | 
 | 250 | 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); | 
 | 251 |  | 
 | 252 | 	/* And advance past the AT_NULL entry.  */ | 
 | 253 | 	ei_index += 2; | 
 | 254 |  | 
 | 255 | 	sp = STACK_ADD(p, ei_index); | 
 | 256 |  | 
 | 257 | 	items = (argc + 1) + (envc + 1) + 1; | 
 | 258 | 	bprm->p = STACK_ROUND(sp, items); | 
 | 259 |  | 
 | 260 | 	/* Point sp at the lowest address on the stack */ | 
 | 261 | #ifdef CONFIG_STACK_GROWSUP | 
 | 262 | 	sp = (elf_addr_t __user *)bprm->p - items - ei_index; | 
 | 263 | 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ | 
 | 264 | #else | 
 | 265 | 	sp = (elf_addr_t __user *)bprm->p; | 
 | 266 | #endif | 
 | 267 |  | 
 | 268 |  | 
 | 269 | 	/* | 
 | 270 | 	 * Grow the stack manually; some architectures have a limit on how | 
 | 271 | 	 * far ahead a user-space access may be in order to grow the stack. | 
 | 272 | 	 */ | 
 | 273 | 	vma = find_extend_vma(current->mm, bprm->p); | 
 | 274 | 	if (!vma) | 
 | 275 | 		return -EFAULT; | 
 | 276 |  | 
 | 277 | 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */ | 
 | 278 | 	if (__put_user(argc, sp++)) | 
 | 279 | 		return -EFAULT; | 
 | 280 | 	argv = sp; | 
 | 281 | 	envp = argv + argc + 1; | 
 | 282 |  | 
 | 283 | 	/* Populate argv and envp */ | 
 | 284 | 	p = current->mm->arg_end = current->mm->arg_start; | 
 | 285 | 	while (argc-- > 0) { | 
 | 286 | 		size_t len; | 
 | 287 | 		if (__put_user((elf_addr_t)p, argv++)) | 
 | 288 | 			return -EFAULT; | 
 | 289 | 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
 | 290 | 		if (!len || len > MAX_ARG_STRLEN) | 
 | 291 | 			return -EINVAL; | 
 | 292 | 		p += len; | 
 | 293 | 	} | 
 | 294 | 	if (__put_user(0, argv)) | 
 | 295 | 		return -EFAULT; | 
 | 296 | 	current->mm->arg_end = current->mm->env_start = p; | 
 | 297 | 	while (envc-- > 0) { | 
 | 298 | 		size_t len; | 
 | 299 | 		if (__put_user((elf_addr_t)p, envp++)) | 
 | 300 | 			return -EFAULT; | 
 | 301 | 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
 | 302 | 		if (!len || len > MAX_ARG_STRLEN) | 
 | 303 | 			return -EINVAL; | 
 | 304 | 		p += len; | 
 | 305 | 	} | 
 | 306 | 	if (__put_user(0, envp)) | 
 | 307 | 		return -EFAULT; | 
 | 308 | 	current->mm->env_end = p; | 
 | 309 |  | 
 | 310 | 	/* Put the elf_info on the stack in the right place.  */ | 
 | 311 | 	sp = (elf_addr_t __user *)envp + 1; | 
 | 312 | 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) | 
 | 313 | 		return -EFAULT; | 
 | 314 | 	return 0; | 
 | 315 | } | 
 | 316 |  | 
 | 317 | static unsigned long elf_map(struct file *filep, unsigned long addr, | 
 | 318 | 		struct elf_phdr *eppnt, int prot, int type, | 
 | 319 | 		unsigned long total_size) | 
 | 320 | { | 
 | 321 | 	unsigned long map_addr; | 
 | 322 | 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); | 
 | 323 | 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); | 
 | 324 | 	addr = ELF_PAGESTART(addr); | 
 | 325 | 	size = ELF_PAGEALIGN(size); | 
 | 326 |  | 
 | 327 | 	/* mmap() will return -EINVAL if given a zero size, but a | 
 | 328 | 	 * segment with zero filesize is perfectly valid */ | 
 | 329 | 	if (!size) | 
 | 330 | 		return addr; | 
 | 331 |  | 
 | 332 | 	down_write(¤t->mm->mmap_sem); | 
 | 333 | 	/* | 
 | 334 | 	* total_size is the size of the ELF (interpreter) image. | 
 | 335 | 	* The _first_ mmap needs to know the full size, otherwise | 
 | 336 | 	* randomization might put this image into an overlapping | 
 | 337 | 	* position with the ELF binary image. (since size < total_size) | 
 | 338 | 	* So we first map the 'big' image - and unmap the remainder at | 
 | 339 | 	* the end. (which unmap is needed for ELF images with holes.) | 
 | 340 | 	*/ | 
 | 341 | 	if (total_size) { | 
 | 342 | 		total_size = ELF_PAGEALIGN(total_size); | 
 | 343 | 		map_addr = do_mmap(filep, addr, total_size, prot, type, off); | 
 | 344 | 		if (!BAD_ADDR(map_addr)) | 
 | 345 | 			do_munmap(current->mm, map_addr+size, total_size-size); | 
 | 346 | 	} else | 
 | 347 | 		map_addr = do_mmap(filep, addr, size, prot, type, off); | 
 | 348 |  | 
 | 349 | 	up_write(¤t->mm->mmap_sem); | 
 | 350 | 	return(map_addr); | 
 | 351 | } | 
 | 352 |  | 
 | 353 | static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) | 
 | 354 | { | 
 | 355 | 	int i, first_idx = -1, last_idx = -1; | 
 | 356 |  | 
 | 357 | 	for (i = 0; i < nr; i++) { | 
 | 358 | 		if (cmds[i].p_type == PT_LOAD) { | 
 | 359 | 			last_idx = i; | 
 | 360 | 			if (first_idx == -1) | 
 | 361 | 				first_idx = i; | 
 | 362 | 		} | 
 | 363 | 	} | 
 | 364 | 	if (first_idx == -1) | 
 | 365 | 		return 0; | 
 | 366 |  | 
 | 367 | 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - | 
 | 368 | 				ELF_PAGESTART(cmds[first_idx].p_vaddr); | 
 | 369 | } | 
 | 370 |  | 
 | 371 |  | 
 | 372 | /* This is much more generalized than the library routine read function, | 
 | 373 |    so we keep this separate.  Technically the library read function | 
 | 374 |    is only provided so that we can read a.out libraries that have | 
 | 375 |    an ELF header */ | 
 | 376 |  | 
 | 377 | static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, | 
 | 378 | 		struct file *interpreter, unsigned long *interp_map_addr, | 
 | 379 | 		unsigned long no_base) | 
 | 380 | { | 
 | 381 | 	struct elf_phdr *elf_phdata; | 
 | 382 | 	struct elf_phdr *eppnt; | 
 | 383 | 	unsigned long load_addr = 0; | 
 | 384 | 	int load_addr_set = 0; | 
 | 385 | 	unsigned long last_bss = 0, elf_bss = 0; | 
 | 386 | 	unsigned long error = ~0UL; | 
 | 387 | 	unsigned long total_size; | 
 | 388 | 	int retval, i, size; | 
 | 389 |  | 
 | 390 | 	/* First of all, some simple consistency checks */ | 
 | 391 | 	if (interp_elf_ex->e_type != ET_EXEC && | 
 | 392 | 	    interp_elf_ex->e_type != ET_DYN) | 
 | 393 | 		goto out; | 
 | 394 | 	if (!elf_check_arch(interp_elf_ex)) | 
 | 395 | 		goto out; | 
 | 396 | 	if (!interpreter->f_op || !interpreter->f_op->mmap) | 
 | 397 | 		goto out; | 
 | 398 |  | 
 | 399 | 	/* | 
 | 400 | 	 * If the size of this structure has changed, then punt, since | 
 | 401 | 	 * we will be doing the wrong thing. | 
 | 402 | 	 */ | 
 | 403 | 	if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) | 
 | 404 | 		goto out; | 
 | 405 | 	if (interp_elf_ex->e_phnum < 1 || | 
 | 406 | 		interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) | 
 | 407 | 		goto out; | 
 | 408 |  | 
 | 409 | 	/* Now read in all of the header information */ | 
 | 410 | 	size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; | 
 | 411 | 	if (size > ELF_MIN_ALIGN) | 
 | 412 | 		goto out; | 
 | 413 | 	elf_phdata = kmalloc(size, GFP_KERNEL); | 
 | 414 | 	if (!elf_phdata) | 
 | 415 | 		goto out; | 
 | 416 |  | 
 | 417 | 	retval = kernel_read(interpreter, interp_elf_ex->e_phoff, | 
 | 418 | 			     (char *)elf_phdata, size); | 
 | 419 | 	error = -EIO; | 
 | 420 | 	if (retval != size) { | 
 | 421 | 		if (retval < 0) | 
 | 422 | 			error = retval;	 | 
 | 423 | 		goto out_close; | 
 | 424 | 	} | 
 | 425 |  | 
 | 426 | 	total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); | 
 | 427 | 	if (!total_size) { | 
 | 428 | 		error = -EINVAL; | 
 | 429 | 		goto out_close; | 
 | 430 | 	} | 
 | 431 |  | 
 | 432 | 	eppnt = elf_phdata; | 
 | 433 | 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { | 
 | 434 | 		if (eppnt->p_type == PT_LOAD) { | 
 | 435 | 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE; | 
 | 436 | 			int elf_prot = 0; | 
 | 437 | 			unsigned long vaddr = 0; | 
 | 438 | 			unsigned long k, map_addr; | 
 | 439 |  | 
 | 440 | 			if (eppnt->p_flags & PF_R) | 
 | 441 | 		    		elf_prot = PROT_READ; | 
 | 442 | 			if (eppnt->p_flags & PF_W) | 
 | 443 | 				elf_prot |= PROT_WRITE; | 
 | 444 | 			if (eppnt->p_flags & PF_X) | 
 | 445 | 				elf_prot |= PROT_EXEC; | 
 | 446 | 			vaddr = eppnt->p_vaddr; | 
 | 447 | 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) | 
 | 448 | 				elf_type |= MAP_FIXED; | 
 | 449 | 			else if (no_base && interp_elf_ex->e_type == ET_DYN) | 
 | 450 | 				load_addr = -vaddr; | 
 | 451 |  | 
 | 452 | 			map_addr = elf_map(interpreter, load_addr + vaddr, | 
 | 453 | 					eppnt, elf_prot, elf_type, total_size); | 
 | 454 | 			total_size = 0; | 
 | 455 | 			if (!*interp_map_addr) | 
 | 456 | 				*interp_map_addr = map_addr; | 
 | 457 | 			error = map_addr; | 
 | 458 | 			if (BAD_ADDR(map_addr)) | 
 | 459 | 				goto out_close; | 
 | 460 |  | 
 | 461 | 			if (!load_addr_set && | 
 | 462 | 			    interp_elf_ex->e_type == ET_DYN) { | 
 | 463 | 				load_addr = map_addr - ELF_PAGESTART(vaddr); | 
 | 464 | 				load_addr_set = 1; | 
 | 465 | 			} | 
 | 466 |  | 
 | 467 | 			/* | 
 | 468 | 			 * Check to see if the section's size will overflow the | 
 | 469 | 			 * allowed task size. Note that p_filesz must always be | 
 | 470 | 			 * <= p_memsize so it's only necessary to check p_memsz. | 
 | 471 | 			 */ | 
 | 472 | 			k = load_addr + eppnt->p_vaddr; | 
 | 473 | 			if (BAD_ADDR(k) || | 
 | 474 | 			    eppnt->p_filesz > eppnt->p_memsz || | 
 | 475 | 			    eppnt->p_memsz > TASK_SIZE || | 
 | 476 | 			    TASK_SIZE - eppnt->p_memsz < k) { | 
 | 477 | 				error = -ENOMEM; | 
 | 478 | 				goto out_close; | 
 | 479 | 			} | 
 | 480 |  | 
 | 481 | 			/* | 
 | 482 | 			 * Find the end of the file mapping for this phdr, and | 
 | 483 | 			 * keep track of the largest address we see for this. | 
 | 484 | 			 */ | 
 | 485 | 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; | 
 | 486 | 			if (k > elf_bss) | 
 | 487 | 				elf_bss = k; | 
 | 488 |  | 
 | 489 | 			/* | 
 | 490 | 			 * Do the same thing for the memory mapping - between | 
 | 491 | 			 * elf_bss and last_bss is the bss section. | 
 | 492 | 			 */ | 
 | 493 | 			k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; | 
 | 494 | 			if (k > last_bss) | 
 | 495 | 				last_bss = k; | 
 | 496 | 		} | 
 | 497 | 	} | 
 | 498 |  | 
 | 499 | 	if (last_bss > elf_bss) { | 
 | 500 | 		/* | 
 | 501 | 		 * Now fill out the bss section.  First pad the last page up | 
 | 502 | 		 * to the page boundary, and then perform a mmap to make sure | 
 | 503 | 		 * that there are zero-mapped pages up to and including the | 
 | 504 | 		 * last bss page. | 
 | 505 | 		 */ | 
 | 506 | 		if (padzero(elf_bss)) { | 
 | 507 | 			error = -EFAULT; | 
 | 508 | 			goto out_close; | 
 | 509 | 		} | 
 | 510 |  | 
 | 511 | 		/* What we have mapped so far */ | 
 | 512 | 		elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); | 
 | 513 |  | 
 | 514 | 		/* Map the last of the bss segment */ | 
 | 515 | 		error = vm_brk(elf_bss, last_bss - elf_bss); | 
 | 516 | 		if (BAD_ADDR(error)) | 
 | 517 | 			goto out_close; | 
 | 518 | 	} | 
 | 519 |  | 
 | 520 | 	error = load_addr; | 
 | 521 |  | 
 | 522 | out_close: | 
 | 523 | 	kfree(elf_phdata); | 
 | 524 | out: | 
 | 525 | 	return error; | 
 | 526 | } | 
 | 527 |  | 
 | 528 | /* | 
 | 529 |  * These are the functions used to load ELF style executables and shared | 
 | 530 |  * libraries.  There is no binary dependent code anywhere else. | 
 | 531 |  */ | 
 | 532 |  | 
 | 533 | #define INTERPRETER_NONE 0 | 
 | 534 | #define INTERPRETER_ELF 2 | 
 | 535 |  | 
 | 536 | #ifndef STACK_RND_MASK | 
 | 537 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */ | 
 | 538 | #endif | 
 | 539 |  | 
 | 540 | static unsigned long randomize_stack_top(unsigned long stack_top) | 
 | 541 | { | 
 | 542 | 	unsigned long random_variable = 0; | 
 | 543 |  | 
 | 544 | 	if ((current->flags & PF_RANDOMIZE) && | 
 | 545 | 		!(current->personality & ADDR_NO_RANDOMIZE)) { | 
 | 546 | 		random_variable = (unsigned long) get_random_int(); | 
 | 547 | 		random_variable &= STACK_RND_MASK; | 
 | 548 | 		random_variable <<= PAGE_SHIFT; | 
 | 549 | 	} | 
 | 550 | #ifdef CONFIG_STACK_GROWSUP | 
 | 551 | 	return PAGE_ALIGN(stack_top) + random_variable; | 
 | 552 | #else | 
 | 553 | 	return PAGE_ALIGN(stack_top) - random_variable; | 
 | 554 | #endif | 
 | 555 | } | 
 | 556 |  | 
 | 557 | static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) | 
 | 558 | { | 
 | 559 | 	struct file *interpreter = NULL; /* to shut gcc up */ | 
 | 560 |  	unsigned long load_addr = 0, load_bias = 0; | 
 | 561 | 	int load_addr_set = 0; | 
 | 562 | 	char * elf_interpreter = NULL; | 
 | 563 | 	unsigned long error; | 
 | 564 | 	struct elf_phdr *elf_ppnt, *elf_phdata; | 
 | 565 | 	unsigned long elf_bss, elf_brk; | 
 | 566 | 	int retval, i; | 
 | 567 | 	unsigned int size; | 
 | 568 | 	unsigned long elf_entry; | 
 | 569 | 	unsigned long interp_load_addr = 0; | 
 | 570 | 	unsigned long start_code, end_code, start_data, end_data; | 
 | 571 | 	unsigned long reloc_func_desc __maybe_unused = 0; | 
 | 572 | 	int executable_stack = EXSTACK_DEFAULT; | 
 | 573 | 	unsigned long def_flags = 0; | 
 | 574 | 	struct { | 
 | 575 | 		struct elfhdr elf_ex; | 
 | 576 | 		struct elfhdr interp_elf_ex; | 
 | 577 | 	} *loc; | 
 | 578 |  | 
 | 579 | 	loc = kmalloc(sizeof(*loc), GFP_KERNEL); | 
 | 580 | 	if (!loc) { | 
 | 581 | 		retval = -ENOMEM; | 
 | 582 | 		goto out_ret; | 
 | 583 | 	} | 
 | 584 | 	 | 
 | 585 | 	/* Get the exec-header */ | 
 | 586 | 	loc->elf_ex = *((struct elfhdr *)bprm->buf); | 
 | 587 |  | 
 | 588 | 	retval = -ENOEXEC; | 
 | 589 | 	/* First of all, some simple consistency checks */ | 
 | 590 | 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
 | 591 | 		goto out; | 
 | 592 |  | 
 | 593 | 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) | 
 | 594 | 		goto out; | 
 | 595 | 	if (!elf_check_arch(&loc->elf_ex)) | 
 | 596 | 		goto out; | 
 | 597 | 	if (!bprm->file->f_op || !bprm->file->f_op->mmap) | 
 | 598 | 		goto out; | 
 | 599 |  | 
 | 600 | 	/* Now read in all of the header information */ | 
 | 601 | 	if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) | 
 | 602 | 		goto out; | 
 | 603 | 	if (loc->elf_ex.e_phnum < 1 || | 
 | 604 | 	 	loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) | 
 | 605 | 		goto out; | 
 | 606 | 	size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); | 
 | 607 | 	retval = -ENOMEM; | 
 | 608 | 	elf_phdata = kmalloc(size, GFP_KERNEL); | 
 | 609 | 	if (!elf_phdata) | 
 | 610 | 		goto out; | 
 | 611 |  | 
 | 612 | 	retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, | 
 | 613 | 			     (char *)elf_phdata, size); | 
 | 614 | 	if (retval != size) { | 
 | 615 | 		if (retval >= 0) | 
 | 616 | 			retval = -EIO; | 
 | 617 | 		goto out_free_ph; | 
 | 618 | 	} | 
 | 619 |  | 
 | 620 | 	elf_ppnt = elf_phdata; | 
 | 621 | 	elf_bss = 0; | 
 | 622 | 	elf_brk = 0; | 
 | 623 |  | 
 | 624 | 	start_code = ~0UL; | 
 | 625 | 	end_code = 0; | 
 | 626 | 	start_data = 0; | 
 | 627 | 	end_data = 0; | 
 | 628 |  | 
 | 629 | 	for (i = 0; i < loc->elf_ex.e_phnum; i++) { | 
 | 630 | 		if (elf_ppnt->p_type == PT_INTERP) { | 
 | 631 | 			/* This is the program interpreter used for | 
 | 632 | 			 * shared libraries - for now assume that this | 
 | 633 | 			 * is an a.out format binary | 
 | 634 | 			 */ | 
 | 635 | 			retval = -ENOEXEC; | 
 | 636 | 			if (elf_ppnt->p_filesz > PATH_MAX ||  | 
 | 637 | 			    elf_ppnt->p_filesz < 2) | 
 | 638 | 				goto out_free_ph; | 
 | 639 |  | 
 | 640 | 			retval = -ENOMEM; | 
 | 641 | 			elf_interpreter = kmalloc(elf_ppnt->p_filesz, | 
 | 642 | 						  GFP_KERNEL); | 
 | 643 | 			if (!elf_interpreter) | 
 | 644 | 				goto out_free_ph; | 
 | 645 |  | 
 | 646 | 			retval = kernel_read(bprm->file, elf_ppnt->p_offset, | 
 | 647 | 					     elf_interpreter, | 
 | 648 | 					     elf_ppnt->p_filesz); | 
 | 649 | 			if (retval != elf_ppnt->p_filesz) { | 
 | 650 | 				if (retval >= 0) | 
 | 651 | 					retval = -EIO; | 
 | 652 | 				goto out_free_interp; | 
 | 653 | 			} | 
 | 654 | 			/* make sure path is NULL terminated */ | 
 | 655 | 			retval = -ENOEXEC; | 
 | 656 | 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') | 
 | 657 | 				goto out_free_interp; | 
 | 658 |  | 
 | 659 | 			interpreter = open_exec(elf_interpreter); | 
 | 660 | 			retval = PTR_ERR(interpreter); | 
 | 661 | 			if (IS_ERR(interpreter)) | 
 | 662 | 				goto out_free_interp; | 
 | 663 |  | 
 | 664 | 			/* | 
 | 665 | 			 * If the binary is not readable then enforce | 
 | 666 | 			 * mm->dumpable = 0 regardless of the interpreter's | 
 | 667 | 			 * permissions. | 
 | 668 | 			 */ | 
 | 669 | 			would_dump(bprm, interpreter); | 
 | 670 |  | 
 | 671 | 			retval = kernel_read(interpreter, 0, bprm->buf, | 
 | 672 | 					     BINPRM_BUF_SIZE); | 
 | 673 | 			if (retval != BINPRM_BUF_SIZE) { | 
 | 674 | 				if (retval >= 0) | 
 | 675 | 					retval = -EIO; | 
 | 676 | 				goto out_free_dentry; | 
 | 677 | 			} | 
 | 678 |  | 
 | 679 | 			/* Get the exec headers */ | 
 | 680 | 			loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); | 
 | 681 | 			break; | 
 | 682 | 		} | 
 | 683 | 		elf_ppnt++; | 
 | 684 | 	} | 
 | 685 |  | 
 | 686 | 	elf_ppnt = elf_phdata; | 
 | 687 | 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) | 
 | 688 | 		if (elf_ppnt->p_type == PT_GNU_STACK) { | 
 | 689 | 			if (elf_ppnt->p_flags & PF_X) | 
 | 690 | 				executable_stack = EXSTACK_ENABLE_X; | 
 | 691 | 			else | 
 | 692 | 				executable_stack = EXSTACK_DISABLE_X; | 
 | 693 | 			break; | 
 | 694 | 		} | 
 | 695 |  | 
 | 696 | 	/* Some simple consistency checks for the interpreter */ | 
 | 697 | 	if (elf_interpreter) { | 
 | 698 | 		retval = -ELIBBAD; | 
 | 699 | 		/* Not an ELF interpreter */ | 
 | 700 | 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
 | 701 | 			goto out_free_dentry; | 
 | 702 | 		/* Verify the interpreter has a valid arch */ | 
 | 703 | 		if (!elf_check_arch(&loc->interp_elf_ex)) | 
 | 704 | 			goto out_free_dentry; | 
 | 705 | 	} | 
 | 706 |  | 
 | 707 | 	/* Flush all traces of the currently running executable */ | 
 | 708 | 	retval = flush_old_exec(bprm); | 
 | 709 | 	if (retval) | 
 | 710 | 		goto out_free_dentry; | 
 | 711 |  | 
 | 712 | 	/* OK, This is the point of no return */ | 
 | 713 | 	current->mm->def_flags = def_flags; | 
 | 714 |  | 
 | 715 | 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages | 
 | 716 | 	   may depend on the personality.  */ | 
 | 717 | 	SET_PERSONALITY(loc->elf_ex); | 
 | 718 | 	if (elf_read_implies_exec(loc->elf_ex, executable_stack)) | 
 | 719 | 		current->personality |= READ_IMPLIES_EXEC; | 
 | 720 |  | 
 | 721 | 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
 | 722 | 		current->flags |= PF_RANDOMIZE; | 
 | 723 |  | 
 | 724 | 	setup_new_exec(bprm); | 
 | 725 |  | 
 | 726 | 	/* Do this so that we can load the interpreter, if need be.  We will | 
 | 727 | 	   change some of these later */ | 
 | 728 | 	current->mm->free_area_cache = current->mm->mmap_base; | 
 | 729 | 	current->mm->cached_hole_size = 0; | 
 | 730 | 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), | 
 | 731 | 				 executable_stack); | 
 | 732 | 	if (retval < 0) { | 
 | 733 | 		send_sig(SIGKILL, current, 0); | 
 | 734 | 		goto out_free_dentry; | 
 | 735 | 	} | 
 | 736 | 	 | 
 | 737 | 	current->mm->start_stack = bprm->p; | 
 | 738 |  | 
 | 739 | 	/* Now we do a little grungy work by mmapping the ELF image into | 
 | 740 | 	   the correct location in memory. */ | 
 | 741 | 	for(i = 0, elf_ppnt = elf_phdata; | 
 | 742 | 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { | 
 | 743 | 		int elf_prot = 0, elf_flags; | 
 | 744 | 		unsigned long k, vaddr; | 
 | 745 | 		unsigned long total_size = 0; | 
 | 746 |  | 
 | 747 | 		if (elf_ppnt->p_type != PT_LOAD) | 
 | 748 | 			continue; | 
 | 749 |  | 
 | 750 | 		if (unlikely (elf_brk > elf_bss)) { | 
 | 751 | 			unsigned long nbyte; | 
 | 752 | 	             | 
 | 753 | 			/* There was a PT_LOAD segment with p_memsz > p_filesz | 
 | 754 | 			   before this one. Map anonymous pages, if needed, | 
 | 755 | 			   and clear the area.  */ | 
 | 756 | 			retval = set_brk(elf_bss + load_bias, | 
 | 757 | 					 elf_brk + load_bias); | 
 | 758 | 			if (retval) { | 
 | 759 | 				send_sig(SIGKILL, current, 0); | 
 | 760 | 				goto out_free_dentry; | 
 | 761 | 			} | 
 | 762 | 			nbyte = ELF_PAGEOFFSET(elf_bss); | 
 | 763 | 			if (nbyte) { | 
 | 764 | 				nbyte = ELF_MIN_ALIGN - nbyte; | 
 | 765 | 				if (nbyte > elf_brk - elf_bss) | 
 | 766 | 					nbyte = elf_brk - elf_bss; | 
 | 767 | 				if (clear_user((void __user *)elf_bss + | 
 | 768 | 							load_bias, nbyte)) { | 
 | 769 | 					/* | 
 | 770 | 					 * This bss-zeroing can fail if the ELF | 
 | 771 | 					 * file specifies odd protections. So | 
 | 772 | 					 * we don't check the return value | 
 | 773 | 					 */ | 
 | 774 | 				} | 
 | 775 | 			} | 
 | 776 | 		} | 
 | 777 |  | 
 | 778 | 		if (elf_ppnt->p_flags & PF_R) | 
 | 779 | 			elf_prot |= PROT_READ; | 
 | 780 | 		if (elf_ppnt->p_flags & PF_W) | 
 | 781 | 			elf_prot |= PROT_WRITE; | 
 | 782 | 		if (elf_ppnt->p_flags & PF_X) | 
 | 783 | 			elf_prot |= PROT_EXEC; | 
 | 784 |  | 
 | 785 | 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; | 
 | 786 |  | 
 | 787 | 		vaddr = elf_ppnt->p_vaddr; | 
 | 788 | 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { | 
 | 789 | 			elf_flags |= MAP_FIXED; | 
 | 790 | 		} else if (loc->elf_ex.e_type == ET_DYN) { | 
 | 791 | 			/* Try and get dynamic programs out of the way of the | 
 | 792 | 			 * default mmap base, as well as whatever program they | 
 | 793 | 			 * might try to exec.  This is because the brk will | 
 | 794 | 			 * follow the loader, and is not movable.  */ | 
 | 795 | #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE | 
 | 796 | 			/* Memory randomization might have been switched off | 
 | 797 | 			 * in runtime via sysctl. | 
 | 798 | 			 * If that is the case, retain the original non-zero | 
 | 799 | 			 * load_bias value in order to establish proper | 
 | 800 | 			 * non-randomized mappings. | 
 | 801 | 			 */ | 
 | 802 | 			if (current->flags & PF_RANDOMIZE) | 
 | 803 | 				load_bias = 0; | 
 | 804 | 			else | 
 | 805 | 				load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); | 
 | 806 | #else | 
 | 807 | 			load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); | 
 | 808 | #endif | 
 | 809 | 			total_size = total_mapping_size(elf_phdata, | 
 | 810 | 							loc->elf_ex.e_phnum); | 
 | 811 | 			if (!total_size) { | 
 | 812 | 				error = -EINVAL; | 
 | 813 | 				goto out_free_dentry; | 
 | 814 | 			} | 
 | 815 | 		} | 
 | 816 |  | 
 | 817 | 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, | 
 | 818 | 				elf_prot, elf_flags, total_size); | 
 | 819 | 		if (BAD_ADDR(error)) { | 
 | 820 | 			send_sig(SIGKILL, current, 0); | 
 | 821 | 			retval = IS_ERR((void *)error) ? | 
 | 822 | 				PTR_ERR((void*)error) : -EINVAL; | 
 | 823 | 			goto out_free_dentry; | 
 | 824 | 		} | 
 | 825 |  | 
 | 826 | 		if (!load_addr_set) { | 
 | 827 | 			load_addr_set = 1; | 
 | 828 | 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); | 
 | 829 | 			if (loc->elf_ex.e_type == ET_DYN) { | 
 | 830 | 				load_bias += error - | 
 | 831 | 				             ELF_PAGESTART(load_bias + vaddr); | 
 | 832 | 				load_addr += load_bias; | 
 | 833 | 				reloc_func_desc = load_bias; | 
 | 834 | 			} | 
 | 835 | 		} | 
 | 836 | 		k = elf_ppnt->p_vaddr; | 
 | 837 | 		if (k < start_code) | 
 | 838 | 			start_code = k; | 
 | 839 | 		if (start_data < k) | 
 | 840 | 			start_data = k; | 
 | 841 |  | 
 | 842 | 		/* | 
 | 843 | 		 * Check to see if the section's size will overflow the | 
 | 844 | 		 * allowed task size. Note that p_filesz must always be | 
 | 845 | 		 * <= p_memsz so it is only necessary to check p_memsz. | 
 | 846 | 		 */ | 
 | 847 | 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || | 
 | 848 | 		    elf_ppnt->p_memsz > TASK_SIZE || | 
 | 849 | 		    TASK_SIZE - elf_ppnt->p_memsz < k) { | 
 | 850 | 			/* set_brk can never work. Avoid overflows. */ | 
 | 851 | 			send_sig(SIGKILL, current, 0); | 
 | 852 | 			retval = -EINVAL; | 
 | 853 | 			goto out_free_dentry; | 
 | 854 | 		} | 
 | 855 |  | 
 | 856 | 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | 
 | 857 |  | 
 | 858 | 		if (k > elf_bss) | 
 | 859 | 			elf_bss = k; | 
 | 860 | 		if ((elf_ppnt->p_flags & PF_X) && end_code < k) | 
 | 861 | 			end_code = k; | 
 | 862 | 		if (end_data < k) | 
 | 863 | 			end_data = k; | 
 | 864 | 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | 
 | 865 | 		if (k > elf_brk) | 
 | 866 | 			elf_brk = k; | 
 | 867 | 	} | 
 | 868 |  | 
 | 869 | 	loc->elf_ex.e_entry += load_bias; | 
 | 870 | 	elf_bss += load_bias; | 
 | 871 | 	elf_brk += load_bias; | 
 | 872 | 	start_code += load_bias; | 
 | 873 | 	end_code += load_bias; | 
 | 874 | 	start_data += load_bias; | 
 | 875 | 	end_data += load_bias; | 
 | 876 |  | 
 | 877 | 	/* Calling set_brk effectively mmaps the pages that we need | 
 | 878 | 	 * for the bss and break sections.  We must do this before | 
 | 879 | 	 * mapping in the interpreter, to make sure it doesn't wind | 
 | 880 | 	 * up getting placed where the bss needs to go. | 
 | 881 | 	 */ | 
 | 882 | 	retval = set_brk(elf_bss, elf_brk); | 
 | 883 | 	if (retval) { | 
 | 884 | 		send_sig(SIGKILL, current, 0); | 
 | 885 | 		goto out_free_dentry; | 
 | 886 | 	} | 
 | 887 | 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { | 
 | 888 | 		send_sig(SIGSEGV, current, 0); | 
 | 889 | 		retval = -EFAULT; /* Nobody gets to see this, but.. */ | 
 | 890 | 		goto out_free_dentry; | 
 | 891 | 	} | 
 | 892 |  | 
 | 893 | 	if (elf_interpreter) { | 
 | 894 | 		unsigned long uninitialized_var(interp_map_addr); | 
 | 895 |  | 
 | 896 | 		elf_entry = load_elf_interp(&loc->interp_elf_ex, | 
 | 897 | 					    interpreter, | 
 | 898 | 					    &interp_map_addr, | 
 | 899 | 					    load_bias); | 
 | 900 | 		if (!IS_ERR((void *)elf_entry)) { | 
 | 901 | 			/* | 
 | 902 | 			 * load_elf_interp() returns relocation | 
 | 903 | 			 * adjustment | 
 | 904 | 			 */ | 
 | 905 | 			interp_load_addr = elf_entry; | 
 | 906 | 			elf_entry += loc->interp_elf_ex.e_entry; | 
 | 907 | 		} | 
 | 908 | 		if (BAD_ADDR(elf_entry)) { | 
 | 909 | 			force_sig(SIGSEGV, current); | 
 | 910 | 			retval = IS_ERR((void *)elf_entry) ? | 
 | 911 | 					(int)elf_entry : -EINVAL; | 
 | 912 | 			goto out_free_dentry; | 
 | 913 | 		} | 
 | 914 | 		reloc_func_desc = interp_load_addr; | 
 | 915 |  | 
 | 916 | 		allow_write_access(interpreter); | 
 | 917 | 		fput(interpreter); | 
 | 918 | 		kfree(elf_interpreter); | 
 | 919 | 	} else { | 
 | 920 | 		elf_entry = loc->elf_ex.e_entry; | 
 | 921 | 		if (BAD_ADDR(elf_entry)) { | 
 | 922 | 			force_sig(SIGSEGV, current); | 
 | 923 | 			retval = -EINVAL; | 
 | 924 | 			goto out_free_dentry; | 
 | 925 | 		} | 
 | 926 | 	} | 
 | 927 |  | 
 | 928 | 	kfree(elf_phdata); | 
 | 929 |  | 
 | 930 | 	set_binfmt(&elf_format); | 
 | 931 |  | 
 | 932 | #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES | 
 | 933 | 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter); | 
 | 934 | 	if (retval < 0) { | 
 | 935 | 		send_sig(SIGKILL, current, 0); | 
 | 936 | 		goto out; | 
 | 937 | 	} | 
 | 938 | #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ | 
 | 939 |  | 
 | 940 | 	install_exec_creds(bprm); | 
 | 941 | 	retval = create_elf_tables(bprm, &loc->elf_ex, | 
 | 942 | 			  load_addr, interp_load_addr); | 
 | 943 | 	if (retval < 0) { | 
 | 944 | 		send_sig(SIGKILL, current, 0); | 
 | 945 | 		goto out; | 
 | 946 | 	} | 
 | 947 | 	/* N.B. passed_fileno might not be initialized? */ | 
 | 948 | 	current->mm->end_code = end_code; | 
 | 949 | 	current->mm->start_code = start_code; | 
 | 950 | 	current->mm->start_data = start_data; | 
 | 951 | 	current->mm->end_data = end_data; | 
 | 952 | 	current->mm->start_stack = bprm->p; | 
 | 953 |  | 
 | 954 | #ifdef arch_randomize_brk | 
 | 955 | 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) { | 
 | 956 | 		current->mm->brk = current->mm->start_brk = | 
 | 957 | 			arch_randomize_brk(current->mm); | 
 | 958 | #ifdef CONFIG_COMPAT_BRK | 
 | 959 | 		current->brk_randomized = 1; | 
 | 960 | #endif | 
 | 961 | 	} | 
 | 962 | #endif | 
 | 963 |  | 
 | 964 | 	if (current->personality & MMAP_PAGE_ZERO) { | 
 | 965 | 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only, | 
 | 966 | 		   and some applications "depend" upon this behavior. | 
 | 967 | 		   Since we do not have the power to recompile these, we | 
 | 968 | 		   emulate the SVr4 behavior. Sigh. */ | 
 | 969 | 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, | 
 | 970 | 				MAP_FIXED | MAP_PRIVATE, 0); | 
 | 971 | 	} | 
 | 972 |  | 
 | 973 | #ifdef ELF_PLAT_INIT | 
 | 974 | 	/* | 
 | 975 | 	 * The ABI may specify that certain registers be set up in special | 
 | 976 | 	 * ways (on i386 %edx is the address of a DT_FINI function, for | 
 | 977 | 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF) | 
 | 978 | 	 * that the e_entry field is the address of the function descriptor | 
 | 979 | 	 * for the startup routine, rather than the address of the startup | 
 | 980 | 	 * routine itself.  This macro performs whatever initialization to | 
 | 981 | 	 * the regs structure is required as well as any relocations to the | 
 | 982 | 	 * function descriptor entries when executing dynamically links apps. | 
 | 983 | 	 */ | 
 | 984 | 	ELF_PLAT_INIT(regs, reloc_func_desc); | 
 | 985 | #endif | 
 | 986 |  | 
 | 987 | 	start_thread(regs, elf_entry, bprm->p); | 
 | 988 | 	retval = 0; | 
 | 989 | out: | 
 | 990 | 	kfree(loc); | 
 | 991 | out_ret: | 
 | 992 | 	return retval; | 
 | 993 |  | 
 | 994 | 	/* error cleanup */ | 
 | 995 | out_free_dentry: | 
 | 996 | 	allow_write_access(interpreter); | 
 | 997 | 	if (interpreter) | 
 | 998 | 		fput(interpreter); | 
 | 999 | out_free_interp: | 
 | 1000 | 	kfree(elf_interpreter); | 
 | 1001 | out_free_ph: | 
 | 1002 | 	kfree(elf_phdata); | 
 | 1003 | 	goto out; | 
 | 1004 | } | 
 | 1005 |  | 
 | 1006 | /* This is really simpleminded and specialized - we are loading an | 
 | 1007 |    a.out library that is given an ELF header. */ | 
 | 1008 | static int load_elf_library(struct file *file) | 
 | 1009 | { | 
 | 1010 | 	struct elf_phdr *elf_phdata; | 
 | 1011 | 	struct elf_phdr *eppnt; | 
 | 1012 | 	unsigned long elf_bss, bss, len; | 
 | 1013 | 	int retval, error, i, j; | 
 | 1014 | 	struct elfhdr elf_ex; | 
 | 1015 |  | 
 | 1016 | 	error = -ENOEXEC; | 
 | 1017 | 	retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); | 
 | 1018 | 	if (retval != sizeof(elf_ex)) | 
 | 1019 | 		goto out; | 
 | 1020 |  | 
 | 1021 | 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
 | 1022 | 		goto out; | 
 | 1023 |  | 
 | 1024 | 	/* First of all, some simple consistency checks */ | 
 | 1025 | 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || | 
 | 1026 | 	    !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) | 
 | 1027 | 		goto out; | 
 | 1028 |  | 
 | 1029 | 	/* Now read in all of the header information */ | 
 | 1030 |  | 
 | 1031 | 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum; | 
 | 1032 | 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ | 
 | 1033 |  | 
 | 1034 | 	error = -ENOMEM; | 
 | 1035 | 	elf_phdata = kmalloc(j, GFP_KERNEL); | 
 | 1036 | 	if (!elf_phdata) | 
 | 1037 | 		goto out; | 
 | 1038 |  | 
 | 1039 | 	eppnt = elf_phdata; | 
 | 1040 | 	error = -ENOEXEC; | 
 | 1041 | 	retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); | 
 | 1042 | 	if (retval != j) | 
 | 1043 | 		goto out_free_ph; | 
 | 1044 |  | 
 | 1045 | 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++) | 
 | 1046 | 		if ((eppnt + i)->p_type == PT_LOAD) | 
 | 1047 | 			j++; | 
 | 1048 | 	if (j != 1) | 
 | 1049 | 		goto out_free_ph; | 
 | 1050 |  | 
 | 1051 | 	while (eppnt->p_type != PT_LOAD) | 
 | 1052 | 		eppnt++; | 
 | 1053 |  | 
 | 1054 | 	/* Now use mmap to map the library into memory. */ | 
 | 1055 | 	error = vm_mmap(file, | 
 | 1056 | 			ELF_PAGESTART(eppnt->p_vaddr), | 
 | 1057 | 			(eppnt->p_filesz + | 
 | 1058 | 			 ELF_PAGEOFFSET(eppnt->p_vaddr)), | 
 | 1059 | 			PROT_READ | PROT_WRITE | PROT_EXEC, | 
 | 1060 | 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, | 
 | 1061 | 			(eppnt->p_offset - | 
 | 1062 | 			 ELF_PAGEOFFSET(eppnt->p_vaddr))); | 
 | 1063 | 	if (error != ELF_PAGESTART(eppnt->p_vaddr)) | 
 | 1064 | 		goto out_free_ph; | 
 | 1065 |  | 
 | 1066 | 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz; | 
 | 1067 | 	if (padzero(elf_bss)) { | 
 | 1068 | 		error = -EFAULT; | 
 | 1069 | 		goto out_free_ph; | 
 | 1070 | 	} | 
 | 1071 |  | 
 | 1072 | 	len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + | 
 | 1073 | 			    ELF_MIN_ALIGN - 1); | 
 | 1074 | 	bss = eppnt->p_memsz + eppnt->p_vaddr; | 
 | 1075 | 	if (bss > len) | 
 | 1076 | 		vm_brk(len, bss - len); | 
 | 1077 | 	error = 0; | 
 | 1078 |  | 
 | 1079 | out_free_ph: | 
 | 1080 | 	kfree(elf_phdata); | 
 | 1081 | out: | 
 | 1082 | 	return error; | 
 | 1083 | } | 
 | 1084 |  | 
 | 1085 | #ifdef CONFIG_ELF_CORE | 
 | 1086 | /* | 
 | 1087 |  * ELF core dumper | 
 | 1088 |  * | 
 | 1089 |  * Modelled on fs/exec.c:aout_core_dump() | 
 | 1090 |  * Jeremy Fitzhardinge <jeremy@sw.oz.au> | 
 | 1091 |  */ | 
 | 1092 |  | 
 | 1093 | /* | 
 | 1094 |  * The purpose of always_dump_vma() is to make sure that special kernel mappings | 
 | 1095 |  * that are useful for post-mortem analysis are included in every core dump. | 
 | 1096 |  * In that way we ensure that the core dump is fully interpretable later | 
 | 1097 |  * without matching up the same kernel and hardware config to see what PC values | 
 | 1098 |  * meant. These special mappings include - vDSO, vsyscall, and other | 
 | 1099 |  * architecture specific mappings | 
 | 1100 |  */ | 
 | 1101 | static bool always_dump_vma(struct vm_area_struct *vma) | 
 | 1102 | { | 
 | 1103 | 	/* Any vsyscall mappings? */ | 
 | 1104 | 	if (vma == get_gate_vma(vma->vm_mm)) | 
 | 1105 | 		return true; | 
 | 1106 | 	/* | 
 | 1107 | 	 * arch_vma_name() returns non-NULL for special architecture mappings, | 
 | 1108 | 	 * such as vDSO sections. | 
 | 1109 | 	 */ | 
 | 1110 | 	if (arch_vma_name(vma)) | 
 | 1111 | 		return true; | 
 | 1112 |  | 
 | 1113 | 	return false; | 
 | 1114 | } | 
 | 1115 |  | 
 | 1116 | /* | 
 | 1117 |  * Decide what to dump of a segment, part, all or none. | 
 | 1118 |  */ | 
 | 1119 | static unsigned long vma_dump_size(struct vm_area_struct *vma, | 
 | 1120 | 				   unsigned long mm_flags) | 
 | 1121 | { | 
 | 1122 | #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type)) | 
 | 1123 |  | 
 | 1124 | 	/* always dump the vdso and vsyscall sections */ | 
 | 1125 | 	if (always_dump_vma(vma)) | 
 | 1126 | 		goto whole; | 
 | 1127 |  | 
 | 1128 | 	if (vma->vm_flags & VM_NODUMP) | 
 | 1129 | 		return 0; | 
 | 1130 |  | 
 | 1131 | 	/* Hugetlb memory check */ | 
 | 1132 | 	if (vma->vm_flags & VM_HUGETLB) { | 
 | 1133 | 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED)) | 
 | 1134 | 			goto whole; | 
 | 1135 | 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE)) | 
 | 1136 | 			goto whole; | 
 | 1137 | 	} | 
 | 1138 |  | 
 | 1139 | 	/* Do not dump I/O mapped devices or special mappings */ | 
 | 1140 | 	if (vma->vm_flags & (VM_IO | VM_RESERVED)) | 
 | 1141 | 		return 0; | 
 | 1142 |  | 
 | 1143 | 	/* By default, dump shared memory if mapped from an anonymous file. */ | 
 | 1144 | 	if (vma->vm_flags & VM_SHARED) { | 
 | 1145 | 		if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0 ? | 
 | 1146 | 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED)) | 
 | 1147 | 			goto whole; | 
 | 1148 | 		return 0; | 
 | 1149 | 	} | 
 | 1150 |  | 
 | 1151 | 	/* Dump segments that have been written to.  */ | 
 | 1152 | 	if (vma->anon_vma && FILTER(ANON_PRIVATE)) | 
 | 1153 | 		goto whole; | 
 | 1154 | 	if (vma->vm_file == NULL) | 
 | 1155 | 		return 0; | 
 | 1156 |  | 
 | 1157 | 	if (FILTER(MAPPED_PRIVATE)) | 
 | 1158 | 		goto whole; | 
 | 1159 |  | 
 | 1160 | 	/* | 
 | 1161 | 	 * If this looks like the beginning of a DSO or executable mapping, | 
 | 1162 | 	 * check for an ELF header.  If we find one, dump the first page to | 
 | 1163 | 	 * aid in determining what was mapped here. | 
 | 1164 | 	 */ | 
 | 1165 | 	if (FILTER(ELF_HEADERS) && | 
 | 1166 | 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) { | 
 | 1167 | 		u32 __user *header = (u32 __user *) vma->vm_start; | 
 | 1168 | 		u32 word; | 
 | 1169 | 		mm_segment_t fs = get_fs(); | 
 | 1170 | 		/* | 
 | 1171 | 		 * Doing it this way gets the constant folded by GCC. | 
 | 1172 | 		 */ | 
 | 1173 | 		union { | 
 | 1174 | 			u32 cmp; | 
 | 1175 | 			char elfmag[SELFMAG]; | 
 | 1176 | 		} magic; | 
 | 1177 | 		BUILD_BUG_ON(SELFMAG != sizeof word); | 
 | 1178 | 		magic.elfmag[EI_MAG0] = ELFMAG0; | 
 | 1179 | 		magic.elfmag[EI_MAG1] = ELFMAG1; | 
 | 1180 | 		magic.elfmag[EI_MAG2] = ELFMAG2; | 
 | 1181 | 		magic.elfmag[EI_MAG3] = ELFMAG3; | 
 | 1182 | 		/* | 
 | 1183 | 		 * Switch to the user "segment" for get_user(), | 
 | 1184 | 		 * then put back what elf_core_dump() had in place. | 
 | 1185 | 		 */ | 
 | 1186 | 		set_fs(USER_DS); | 
 | 1187 | 		if (unlikely(get_user(word, header))) | 
 | 1188 | 			word = 0; | 
 | 1189 | 		set_fs(fs); | 
 | 1190 | 		if (word == magic.cmp) | 
 | 1191 | 			return PAGE_SIZE; | 
 | 1192 | 	} | 
 | 1193 |  | 
 | 1194 | #undef	FILTER | 
 | 1195 |  | 
 | 1196 | 	return 0; | 
 | 1197 |  | 
 | 1198 | whole: | 
 | 1199 | 	return vma->vm_end - vma->vm_start; | 
 | 1200 | } | 
 | 1201 |  | 
 | 1202 | /* An ELF note in memory */ | 
 | 1203 | struct memelfnote | 
 | 1204 | { | 
 | 1205 | 	const char *name; | 
 | 1206 | 	int type; | 
 | 1207 | 	unsigned int datasz; | 
 | 1208 | 	void *data; | 
 | 1209 | }; | 
 | 1210 |  | 
 | 1211 | static int notesize(struct memelfnote *en) | 
 | 1212 | { | 
 | 1213 | 	int sz; | 
 | 1214 |  | 
 | 1215 | 	sz = sizeof(struct elf_note); | 
 | 1216 | 	sz += roundup(strlen(en->name) + 1, 4); | 
 | 1217 | 	sz += roundup(en->datasz, 4); | 
 | 1218 |  | 
 | 1219 | 	return sz; | 
 | 1220 | } | 
 | 1221 |  | 
 | 1222 | #define DUMP_WRITE(addr, nr, foffset)	\ | 
 | 1223 | 	do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) | 
 | 1224 |  | 
 | 1225 | static int alignfile(struct file *file, loff_t *foffset) | 
 | 1226 | { | 
 | 1227 | 	static const char buf[4] = { 0, }; | 
 | 1228 | 	DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); | 
 | 1229 | 	return 1; | 
 | 1230 | } | 
 | 1231 |  | 
 | 1232 | static int writenote(struct memelfnote *men, struct file *file, | 
 | 1233 | 			loff_t *foffset) | 
 | 1234 | { | 
 | 1235 | 	struct elf_note en; | 
 | 1236 | 	en.n_namesz = strlen(men->name) + 1; | 
 | 1237 | 	en.n_descsz = men->datasz; | 
 | 1238 | 	en.n_type = men->type; | 
 | 1239 |  | 
 | 1240 | 	DUMP_WRITE(&en, sizeof(en), foffset); | 
 | 1241 | 	DUMP_WRITE(men->name, en.n_namesz, foffset); | 
 | 1242 | 	if (!alignfile(file, foffset)) | 
 | 1243 | 		return 0; | 
 | 1244 | 	DUMP_WRITE(men->data, men->datasz, foffset); | 
 | 1245 | 	if (!alignfile(file, foffset)) | 
 | 1246 | 		return 0; | 
 | 1247 |  | 
 | 1248 | 	return 1; | 
 | 1249 | } | 
 | 1250 | #undef DUMP_WRITE | 
 | 1251 |  | 
 | 1252 | static void fill_elf_header(struct elfhdr *elf, int segs, | 
 | 1253 | 			    u16 machine, u32 flags, u8 osabi) | 
 | 1254 | { | 
 | 1255 | 	memset(elf, 0, sizeof(*elf)); | 
 | 1256 |  | 
 | 1257 | 	memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
 | 1258 | 	elf->e_ident[EI_CLASS] = ELF_CLASS; | 
 | 1259 | 	elf->e_ident[EI_DATA] = ELF_DATA; | 
 | 1260 | 	elf->e_ident[EI_VERSION] = EV_CURRENT; | 
 | 1261 | 	elf->e_ident[EI_OSABI] = ELF_OSABI; | 
 | 1262 |  | 
 | 1263 | 	elf->e_type = ET_CORE; | 
 | 1264 | 	elf->e_machine = machine; | 
 | 1265 | 	elf->e_version = EV_CURRENT; | 
 | 1266 | 	elf->e_phoff = sizeof(struct elfhdr); | 
 | 1267 | 	elf->e_flags = flags; | 
 | 1268 | 	elf->e_ehsize = sizeof(struct elfhdr); | 
 | 1269 | 	elf->e_phentsize = sizeof(struct elf_phdr); | 
 | 1270 | 	elf->e_phnum = segs; | 
 | 1271 |  | 
 | 1272 | 	return; | 
 | 1273 | } | 
 | 1274 |  | 
 | 1275 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) | 
 | 1276 | { | 
 | 1277 | 	phdr->p_type = PT_NOTE; | 
 | 1278 | 	phdr->p_offset = offset; | 
 | 1279 | 	phdr->p_vaddr = 0; | 
 | 1280 | 	phdr->p_paddr = 0; | 
 | 1281 | 	phdr->p_filesz = sz; | 
 | 1282 | 	phdr->p_memsz = 0; | 
 | 1283 | 	phdr->p_flags = 0; | 
 | 1284 | 	phdr->p_align = 0; | 
 | 1285 | 	return; | 
 | 1286 | } | 
 | 1287 |  | 
 | 1288 | static void fill_note(struct memelfnote *note, const char *name, int type,  | 
 | 1289 | 		unsigned int sz, void *data) | 
 | 1290 | { | 
 | 1291 | 	note->name = name; | 
 | 1292 | 	note->type = type; | 
 | 1293 | 	note->datasz = sz; | 
 | 1294 | 	note->data = data; | 
 | 1295 | 	return; | 
 | 1296 | } | 
 | 1297 |  | 
 | 1298 | /* | 
 | 1299 |  * fill up all the fields in prstatus from the given task struct, except | 
 | 1300 |  * registers which need to be filled up separately. | 
 | 1301 |  */ | 
 | 1302 | static void fill_prstatus(struct elf_prstatus *prstatus, | 
 | 1303 | 		struct task_struct *p, long signr) | 
 | 1304 | { | 
 | 1305 | 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | 
 | 1306 | 	prstatus->pr_sigpend = p->pending.signal.sig[0]; | 
 | 1307 | 	prstatus->pr_sighold = p->blocked.sig[0]; | 
 | 1308 | 	rcu_read_lock(); | 
 | 1309 | 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | 
 | 1310 | 	rcu_read_unlock(); | 
 | 1311 | 	prstatus->pr_pid = task_pid_vnr(p); | 
 | 1312 | 	prstatus->pr_pgrp = task_pgrp_vnr(p); | 
 | 1313 | 	prstatus->pr_sid = task_session_vnr(p); | 
 | 1314 | 	if (thread_group_leader(p)) { | 
 | 1315 | 		struct task_cputime cputime; | 
 | 1316 |  | 
 | 1317 | 		/* | 
 | 1318 | 		 * This is the record for the group leader.  It shows the | 
 | 1319 | 		 * group-wide total, not its individual thread total. | 
 | 1320 | 		 */ | 
 | 1321 | 		thread_group_cputime(p, &cputime); | 
 | 1322 | 		cputime_to_timeval(cputime.utime, &prstatus->pr_utime); | 
 | 1323 | 		cputime_to_timeval(cputime.stime, &prstatus->pr_stime); | 
 | 1324 | 	} else { | 
 | 1325 | 		cputime_to_timeval(p->utime, &prstatus->pr_utime); | 
 | 1326 | 		cputime_to_timeval(p->stime, &prstatus->pr_stime); | 
 | 1327 | 	} | 
 | 1328 | 	cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); | 
 | 1329 | 	cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); | 
 | 1330 | } | 
 | 1331 |  | 
 | 1332 | static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, | 
 | 1333 | 		       struct mm_struct *mm) | 
 | 1334 | { | 
 | 1335 | 	const struct cred *cred; | 
 | 1336 | 	unsigned int i, len; | 
 | 1337 | 	 | 
 | 1338 | 	/* first copy the parameters from user space */ | 
 | 1339 | 	memset(psinfo, 0, sizeof(struct elf_prpsinfo)); | 
 | 1340 |  | 
 | 1341 | 	len = mm->arg_end - mm->arg_start; | 
 | 1342 | 	if (len >= ELF_PRARGSZ) | 
 | 1343 | 		len = ELF_PRARGSZ-1; | 
 | 1344 | 	if (copy_from_user(&psinfo->pr_psargs, | 
 | 1345 | 		           (const char __user *)mm->arg_start, len)) | 
 | 1346 | 		return -EFAULT; | 
 | 1347 | 	for(i = 0; i < len; i++) | 
 | 1348 | 		if (psinfo->pr_psargs[i] == 0) | 
 | 1349 | 			psinfo->pr_psargs[i] = ' '; | 
 | 1350 | 	psinfo->pr_psargs[len] = 0; | 
 | 1351 |  | 
 | 1352 | 	rcu_read_lock(); | 
 | 1353 | 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent)); | 
 | 1354 | 	rcu_read_unlock(); | 
 | 1355 | 	psinfo->pr_pid = task_pid_vnr(p); | 
 | 1356 | 	psinfo->pr_pgrp = task_pgrp_vnr(p); | 
 | 1357 | 	psinfo->pr_sid = task_session_vnr(p); | 
 | 1358 |  | 
 | 1359 | 	i = p->state ? ffz(~p->state) + 1 : 0; | 
 | 1360 | 	psinfo->pr_state = i; | 
 | 1361 | 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; | 
 | 1362 | 	psinfo->pr_zomb = psinfo->pr_sname == 'Z'; | 
 | 1363 | 	psinfo->pr_nice = task_nice(p); | 
 | 1364 | 	psinfo->pr_flag = p->flags; | 
 | 1365 | 	rcu_read_lock(); | 
 | 1366 | 	cred = __task_cred(p); | 
 | 1367 | 	SET_UID(psinfo->pr_uid, cred->uid); | 
 | 1368 | 	SET_GID(psinfo->pr_gid, cred->gid); | 
 | 1369 | 	rcu_read_unlock(); | 
 | 1370 | 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); | 
 | 1371 | 	 | 
 | 1372 | 	return 0; | 
 | 1373 | } | 
 | 1374 |  | 
 | 1375 | static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm) | 
 | 1376 | { | 
 | 1377 | 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv; | 
 | 1378 | 	int i = 0; | 
 | 1379 | 	do | 
 | 1380 | 		i += 2; | 
 | 1381 | 	while (auxv[i - 2] != AT_NULL); | 
 | 1382 | 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv); | 
 | 1383 | } | 
 | 1384 |  | 
 | 1385 | #ifdef CORE_DUMP_USE_REGSET | 
 | 1386 | #include <linux/regset.h> | 
 | 1387 |  | 
 | 1388 | struct elf_thread_core_info { | 
 | 1389 | 	struct elf_thread_core_info *next; | 
 | 1390 | 	struct task_struct *task; | 
 | 1391 | 	struct elf_prstatus prstatus; | 
 | 1392 | 	struct memelfnote notes[0]; | 
 | 1393 | }; | 
 | 1394 |  | 
 | 1395 | struct elf_note_info { | 
 | 1396 | 	struct elf_thread_core_info *thread; | 
 | 1397 | 	struct memelfnote psinfo; | 
 | 1398 | 	struct memelfnote auxv; | 
 | 1399 | 	size_t size; | 
 | 1400 | 	int thread_notes; | 
 | 1401 | }; | 
 | 1402 |  | 
 | 1403 | /* | 
 | 1404 |  * When a regset has a writeback hook, we call it on each thread before | 
 | 1405 |  * dumping user memory.  On register window machines, this makes sure the | 
 | 1406 |  * user memory backing the register data is up to date before we read it. | 
 | 1407 |  */ | 
 | 1408 | static void do_thread_regset_writeback(struct task_struct *task, | 
 | 1409 | 				       const struct user_regset *regset) | 
 | 1410 | { | 
 | 1411 | 	if (regset->writeback) | 
 | 1412 | 		regset->writeback(task, regset, 1); | 
 | 1413 | } | 
 | 1414 |  | 
 | 1415 | #ifndef PR_REG_SIZE | 
 | 1416 | #define PR_REG_SIZE(S) sizeof(S) | 
 | 1417 | #endif | 
 | 1418 |  | 
 | 1419 | #ifndef PRSTATUS_SIZE | 
 | 1420 | #define PRSTATUS_SIZE(S) sizeof(S) | 
 | 1421 | #endif | 
 | 1422 |  | 
 | 1423 | #ifndef PR_REG_PTR | 
 | 1424 | #define PR_REG_PTR(S) (&((S)->pr_reg)) | 
 | 1425 | #endif | 
 | 1426 |  | 
 | 1427 | #ifndef SET_PR_FPVALID | 
 | 1428 | #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V)) | 
 | 1429 | #endif | 
 | 1430 |  | 
 | 1431 | static int fill_thread_core_info(struct elf_thread_core_info *t, | 
 | 1432 | 				 const struct user_regset_view *view, | 
 | 1433 | 				 long signr, size_t *total) | 
 | 1434 | { | 
 | 1435 | 	unsigned int i; | 
 | 1436 |  | 
 | 1437 | 	/* | 
 | 1438 | 	 * NT_PRSTATUS is the one special case, because the regset data | 
 | 1439 | 	 * goes into the pr_reg field inside the note contents, rather | 
 | 1440 | 	 * than being the whole note contents.  We fill the reset in here. | 
 | 1441 | 	 * We assume that regset 0 is NT_PRSTATUS. | 
 | 1442 | 	 */ | 
 | 1443 | 	fill_prstatus(&t->prstatus, t->task, signr); | 
 | 1444 | 	(void) view->regsets[0].get(t->task, &view->regsets[0], | 
 | 1445 | 				    0, PR_REG_SIZE(t->prstatus.pr_reg), | 
 | 1446 | 				    PR_REG_PTR(&t->prstatus), NULL); | 
 | 1447 |  | 
 | 1448 | 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, | 
 | 1449 | 		  PRSTATUS_SIZE(t->prstatus), &t->prstatus); | 
 | 1450 | 	*total += notesize(&t->notes[0]); | 
 | 1451 |  | 
 | 1452 | 	do_thread_regset_writeback(t->task, &view->regsets[0]); | 
 | 1453 |  | 
 | 1454 | 	/* | 
 | 1455 | 	 * Each other regset might generate a note too.  For each regset | 
 | 1456 | 	 * that has no core_note_type or is inactive, we leave t->notes[i] | 
 | 1457 | 	 * all zero and we'll know to skip writing it later. | 
 | 1458 | 	 */ | 
 | 1459 | 	for (i = 1; i < view->n; ++i) { | 
 | 1460 | 		const struct user_regset *regset = &view->regsets[i]; | 
 | 1461 | 		do_thread_regset_writeback(t->task, regset); | 
 | 1462 | 		if (regset->core_note_type && regset->get && | 
 | 1463 | 		    (!regset->active || regset->active(t->task, regset))) { | 
 | 1464 | 			int ret; | 
 | 1465 | 			size_t size = regset->n * regset->size; | 
 | 1466 | 			void *data = kmalloc(size, GFP_KERNEL); | 
 | 1467 | 			if (unlikely(!data)) | 
 | 1468 | 				return 0; | 
 | 1469 | 			ret = regset->get(t->task, regset, | 
 | 1470 | 					  0, size, data, NULL); | 
 | 1471 | 			if (unlikely(ret)) | 
 | 1472 | 				kfree(data); | 
 | 1473 | 			else { | 
 | 1474 | 				if (regset->core_note_type != NT_PRFPREG) | 
 | 1475 | 					fill_note(&t->notes[i], "LINUX", | 
 | 1476 | 						  regset->core_note_type, | 
 | 1477 | 						  size, data); | 
 | 1478 | 				else { | 
 | 1479 | 					SET_PR_FPVALID(&t->prstatus, 1); | 
 | 1480 | 					fill_note(&t->notes[i], "CORE", | 
 | 1481 | 						  NT_PRFPREG, size, data); | 
 | 1482 | 				} | 
 | 1483 | 				*total += notesize(&t->notes[i]); | 
 | 1484 | 			} | 
 | 1485 | 		} | 
 | 1486 | 	} | 
 | 1487 |  | 
 | 1488 | 	return 1; | 
 | 1489 | } | 
 | 1490 |  | 
 | 1491 | static int fill_note_info(struct elfhdr *elf, int phdrs, | 
 | 1492 | 			  struct elf_note_info *info, | 
 | 1493 | 			  long signr, struct pt_regs *regs) | 
 | 1494 | { | 
 | 1495 | 	struct task_struct *dump_task = current; | 
 | 1496 | 	const struct user_regset_view *view = task_user_regset_view(dump_task); | 
 | 1497 | 	struct elf_thread_core_info *t; | 
 | 1498 | 	struct elf_prpsinfo *psinfo; | 
 | 1499 | 	struct core_thread *ct; | 
 | 1500 | 	unsigned int i; | 
 | 1501 |  | 
 | 1502 | 	info->size = 0; | 
 | 1503 | 	info->thread = NULL; | 
 | 1504 |  | 
 | 1505 | 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); | 
 | 1506 | 	if (psinfo == NULL) | 
 | 1507 | 		return 0; | 
 | 1508 |  | 
 | 1509 | 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); | 
 | 1510 |  | 
 | 1511 | 	/* | 
 | 1512 | 	 * Figure out how many notes we're going to need for each thread. | 
 | 1513 | 	 */ | 
 | 1514 | 	info->thread_notes = 0; | 
 | 1515 | 	for (i = 0; i < view->n; ++i) | 
 | 1516 | 		if (view->regsets[i].core_note_type != 0) | 
 | 1517 | 			++info->thread_notes; | 
 | 1518 |  | 
 | 1519 | 	/* | 
 | 1520 | 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS, | 
 | 1521 | 	 * since it is our one special case. | 
 | 1522 | 	 */ | 
 | 1523 | 	if (unlikely(info->thread_notes == 0) || | 
 | 1524 | 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) { | 
 | 1525 | 		WARN_ON(1); | 
 | 1526 | 		return 0; | 
 | 1527 | 	} | 
 | 1528 |  | 
 | 1529 | 	/* | 
 | 1530 | 	 * Initialize the ELF file header. | 
 | 1531 | 	 */ | 
 | 1532 | 	fill_elf_header(elf, phdrs, | 
 | 1533 | 			view->e_machine, view->e_flags, view->ei_osabi); | 
 | 1534 |  | 
 | 1535 | 	/* | 
 | 1536 | 	 * Allocate a structure for each thread. | 
 | 1537 | 	 */ | 
 | 1538 | 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) { | 
 | 1539 | 		t = kzalloc(offsetof(struct elf_thread_core_info, | 
 | 1540 | 				     notes[info->thread_notes]), | 
 | 1541 | 			    GFP_KERNEL); | 
 | 1542 | 		if (unlikely(!t)) | 
 | 1543 | 			return 0; | 
 | 1544 |  | 
 | 1545 | 		t->task = ct->task; | 
 | 1546 | 		if (ct->task == dump_task || !info->thread) { | 
 | 1547 | 			t->next = info->thread; | 
 | 1548 | 			info->thread = t; | 
 | 1549 | 		} else { | 
 | 1550 | 			/* | 
 | 1551 | 			 * Make sure to keep the original task at | 
 | 1552 | 			 * the head of the list. | 
 | 1553 | 			 */ | 
 | 1554 | 			t->next = info->thread->next; | 
 | 1555 | 			info->thread->next = t; | 
 | 1556 | 		} | 
 | 1557 | 	} | 
 | 1558 |  | 
 | 1559 | 	/* | 
 | 1560 | 	 * Now fill in each thread's information. | 
 | 1561 | 	 */ | 
 | 1562 | 	for (t = info->thread; t != NULL; t = t->next) | 
 | 1563 | 		if (!fill_thread_core_info(t, view, signr, &info->size)) | 
 | 1564 | 			return 0; | 
 | 1565 |  | 
 | 1566 | 	/* | 
 | 1567 | 	 * Fill in the two process-wide notes. | 
 | 1568 | 	 */ | 
 | 1569 | 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm); | 
 | 1570 | 	info->size += notesize(&info->psinfo); | 
 | 1571 |  | 
 | 1572 | 	fill_auxv_note(&info->auxv, current->mm); | 
 | 1573 | 	info->size += notesize(&info->auxv); | 
 | 1574 |  | 
 | 1575 | 	return 1; | 
 | 1576 | } | 
 | 1577 |  | 
 | 1578 | static size_t get_note_info_size(struct elf_note_info *info) | 
 | 1579 | { | 
 | 1580 | 	return info->size; | 
 | 1581 | } | 
 | 1582 |  | 
 | 1583 | /* | 
 | 1584 |  * Write all the notes for each thread.  When writing the first thread, the | 
 | 1585 |  * process-wide notes are interleaved after the first thread-specific note. | 
 | 1586 |  */ | 
 | 1587 | static int write_note_info(struct elf_note_info *info, | 
 | 1588 | 			   struct file *file, loff_t *foffset) | 
 | 1589 | { | 
 | 1590 | 	bool first = 1; | 
 | 1591 | 	struct elf_thread_core_info *t = info->thread; | 
 | 1592 |  | 
 | 1593 | 	do { | 
 | 1594 | 		int i; | 
 | 1595 |  | 
 | 1596 | 		if (!writenote(&t->notes[0], file, foffset)) | 
 | 1597 | 			return 0; | 
 | 1598 |  | 
 | 1599 | 		if (first && !writenote(&info->psinfo, file, foffset)) | 
 | 1600 | 			return 0; | 
 | 1601 | 		if (first && !writenote(&info->auxv, file, foffset)) | 
 | 1602 | 			return 0; | 
 | 1603 |  | 
 | 1604 | 		for (i = 1; i < info->thread_notes; ++i) | 
 | 1605 | 			if (t->notes[i].data && | 
 | 1606 | 			    !writenote(&t->notes[i], file, foffset)) | 
 | 1607 | 				return 0; | 
 | 1608 |  | 
 | 1609 | 		first = 0; | 
 | 1610 | 		t = t->next; | 
 | 1611 | 	} while (t); | 
 | 1612 |  | 
 | 1613 | 	return 1; | 
 | 1614 | } | 
 | 1615 |  | 
 | 1616 | static void free_note_info(struct elf_note_info *info) | 
 | 1617 | { | 
 | 1618 | 	struct elf_thread_core_info *threads = info->thread; | 
 | 1619 | 	while (threads) { | 
 | 1620 | 		unsigned int i; | 
 | 1621 | 		struct elf_thread_core_info *t = threads; | 
 | 1622 | 		threads = t->next; | 
 | 1623 | 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus); | 
 | 1624 | 		for (i = 1; i < info->thread_notes; ++i) | 
 | 1625 | 			kfree(t->notes[i].data); | 
 | 1626 | 		kfree(t); | 
 | 1627 | 	} | 
 | 1628 | 	kfree(info->psinfo.data); | 
 | 1629 | } | 
 | 1630 |  | 
 | 1631 | #else | 
 | 1632 |  | 
 | 1633 | /* Here is the structure in which status of each thread is captured. */ | 
 | 1634 | struct elf_thread_status | 
 | 1635 | { | 
 | 1636 | 	struct list_head list; | 
 | 1637 | 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */ | 
 | 1638 | 	elf_fpregset_t fpu;		/* NT_PRFPREG */ | 
 | 1639 | 	struct task_struct *thread; | 
 | 1640 | #ifdef ELF_CORE_COPY_XFPREGS | 
 | 1641 | 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */ | 
 | 1642 | #endif | 
 | 1643 | 	struct memelfnote notes[3]; | 
 | 1644 | 	int num_notes; | 
 | 1645 | }; | 
 | 1646 |  | 
 | 1647 | /* | 
 | 1648 |  * In order to add the specific thread information for the elf file format, | 
 | 1649 |  * we need to keep a linked list of every threads pr_status and then create | 
 | 1650 |  * a single section for them in the final core file. | 
 | 1651 |  */ | 
 | 1652 | static int elf_dump_thread_status(long signr, struct elf_thread_status *t) | 
 | 1653 | { | 
 | 1654 | 	int sz = 0; | 
 | 1655 | 	struct task_struct *p = t->thread; | 
 | 1656 | 	t->num_notes = 0; | 
 | 1657 |  | 
 | 1658 | 	fill_prstatus(&t->prstatus, p, signr); | 
 | 1659 | 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);	 | 
 | 1660 | 	 | 
 | 1661 | 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), | 
 | 1662 | 		  &(t->prstatus)); | 
 | 1663 | 	t->num_notes++; | 
 | 1664 | 	sz += notesize(&t->notes[0]); | 
 | 1665 |  | 
 | 1666 | 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, | 
 | 1667 | 								&t->fpu))) { | 
 | 1668 | 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), | 
 | 1669 | 			  &(t->fpu)); | 
 | 1670 | 		t->num_notes++; | 
 | 1671 | 		sz += notesize(&t->notes[1]); | 
 | 1672 | 	} | 
 | 1673 |  | 
 | 1674 | #ifdef ELF_CORE_COPY_XFPREGS | 
 | 1675 | 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { | 
 | 1676 | 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE, | 
 | 1677 | 			  sizeof(t->xfpu), &t->xfpu); | 
 | 1678 | 		t->num_notes++; | 
 | 1679 | 		sz += notesize(&t->notes[2]); | 
 | 1680 | 	} | 
 | 1681 | #endif	 | 
 | 1682 | 	return sz; | 
 | 1683 | } | 
 | 1684 |  | 
 | 1685 | struct elf_note_info { | 
 | 1686 | 	struct memelfnote *notes; | 
 | 1687 | 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */ | 
 | 1688 | 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */ | 
 | 1689 | 	struct list_head thread_list; | 
 | 1690 | 	elf_fpregset_t *fpu; | 
 | 1691 | #ifdef ELF_CORE_COPY_XFPREGS | 
 | 1692 | 	elf_fpxregset_t *xfpu; | 
 | 1693 | #endif | 
 | 1694 | 	int thread_status_size; | 
 | 1695 | 	int numnote; | 
 | 1696 | }; | 
 | 1697 |  | 
 | 1698 | static int elf_note_info_init(struct elf_note_info *info) | 
 | 1699 | { | 
 | 1700 | 	memset(info, 0, sizeof(*info)); | 
 | 1701 | 	INIT_LIST_HEAD(&info->thread_list); | 
 | 1702 |  | 
 | 1703 | 	/* Allocate space for six ELF notes */ | 
 | 1704 | 	info->notes = kmalloc(6 * sizeof(struct memelfnote), GFP_KERNEL); | 
 | 1705 | 	if (!info->notes) | 
 | 1706 | 		return 0; | 
 | 1707 | 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL); | 
 | 1708 | 	if (!info->psinfo) | 
 | 1709 | 		return 0; | 
 | 1710 | 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL); | 
 | 1711 | 	if (!info->prstatus) | 
 | 1712 | 		return 0; | 
 | 1713 | 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL); | 
 | 1714 | 	if (!info->fpu) | 
 | 1715 | 		return 0; | 
 | 1716 | #ifdef ELF_CORE_COPY_XFPREGS | 
 | 1717 | 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL); | 
 | 1718 | 	if (!info->xfpu) | 
 | 1719 | 		return 0; | 
 | 1720 | #endif | 
 | 1721 | 	return 1; | 
 | 1722 | } | 
 | 1723 |  | 
 | 1724 | static int fill_note_info(struct elfhdr *elf, int phdrs, | 
 | 1725 | 			  struct elf_note_info *info, | 
 | 1726 | 			  long signr, struct pt_regs *regs) | 
 | 1727 | { | 
 | 1728 | 	struct list_head *t; | 
 | 1729 |  | 
 | 1730 | 	if (!elf_note_info_init(info)) | 
 | 1731 | 		return 0; | 
 | 1732 |  | 
 | 1733 | 	if (signr) { | 
 | 1734 | 		struct core_thread *ct; | 
 | 1735 | 		struct elf_thread_status *ets; | 
 | 1736 |  | 
 | 1737 | 		for (ct = current->mm->core_state->dumper.next; | 
 | 1738 | 						ct; ct = ct->next) { | 
 | 1739 | 			ets = kzalloc(sizeof(*ets), GFP_KERNEL); | 
 | 1740 | 			if (!ets) | 
 | 1741 | 				return 0; | 
 | 1742 |  | 
 | 1743 | 			ets->thread = ct->task; | 
 | 1744 | 			list_add(&ets->list, &info->thread_list); | 
 | 1745 | 		} | 
 | 1746 |  | 
 | 1747 | 		list_for_each(t, &info->thread_list) { | 
 | 1748 | 			int sz; | 
 | 1749 |  | 
 | 1750 | 			ets = list_entry(t, struct elf_thread_status, list); | 
 | 1751 | 			sz = elf_dump_thread_status(signr, ets); | 
 | 1752 | 			info->thread_status_size += sz; | 
 | 1753 | 		} | 
 | 1754 | 	} | 
 | 1755 | 	/* now collect the dump for the current */ | 
 | 1756 | 	memset(info->prstatus, 0, sizeof(*info->prstatus)); | 
 | 1757 | 	fill_prstatus(info->prstatus, current, signr); | 
 | 1758 | 	elf_core_copy_regs(&info->prstatus->pr_reg, regs); | 
 | 1759 |  | 
 | 1760 | 	/* Set up header */ | 
 | 1761 | 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS, ELF_OSABI); | 
 | 1762 |  | 
 | 1763 | 	/* | 
 | 1764 | 	 * Set up the notes in similar form to SVR4 core dumps made | 
 | 1765 | 	 * with info from their /proc. | 
 | 1766 | 	 */ | 
 | 1767 |  | 
 | 1768 | 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS, | 
 | 1769 | 		  sizeof(*info->prstatus), info->prstatus); | 
 | 1770 | 	fill_psinfo(info->psinfo, current->group_leader, current->mm); | 
 | 1771 | 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO, | 
 | 1772 | 		  sizeof(*info->psinfo), info->psinfo); | 
 | 1773 |  | 
 | 1774 | 	info->numnote = 2; | 
 | 1775 |  | 
 | 1776 | 	fill_auxv_note(&info->notes[info->numnote++], current->mm); | 
 | 1777 |  | 
 | 1778 | 	/* Try to dump the FPU. */ | 
 | 1779 | 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs, | 
 | 1780 | 							       info->fpu); | 
 | 1781 | 	if (info->prstatus->pr_fpvalid) | 
 | 1782 | 		fill_note(info->notes + info->numnote++, | 
 | 1783 | 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu); | 
 | 1784 | #ifdef ELF_CORE_COPY_XFPREGS | 
 | 1785 | 	if (elf_core_copy_task_xfpregs(current, info->xfpu)) | 
 | 1786 | 		fill_note(info->notes + info->numnote++, | 
 | 1787 | 			  "LINUX", ELF_CORE_XFPREG_TYPE, | 
 | 1788 | 			  sizeof(*info->xfpu), info->xfpu); | 
 | 1789 | #endif | 
 | 1790 |  | 
 | 1791 | 	return 1; | 
 | 1792 | } | 
 | 1793 |  | 
 | 1794 | static size_t get_note_info_size(struct elf_note_info *info) | 
 | 1795 | { | 
 | 1796 | 	int sz = 0; | 
 | 1797 | 	int i; | 
 | 1798 |  | 
 | 1799 | 	for (i = 0; i < info->numnote; i++) | 
 | 1800 | 		sz += notesize(info->notes + i); | 
 | 1801 |  | 
 | 1802 | 	sz += info->thread_status_size; | 
 | 1803 |  | 
 | 1804 | 	return sz; | 
 | 1805 | } | 
 | 1806 |  | 
 | 1807 | static int write_note_info(struct elf_note_info *info, | 
 | 1808 | 			   struct file *file, loff_t *foffset) | 
 | 1809 | { | 
 | 1810 | 	int i; | 
 | 1811 | 	struct list_head *t; | 
 | 1812 |  | 
 | 1813 | 	for (i = 0; i < info->numnote; i++) | 
 | 1814 | 		if (!writenote(info->notes + i, file, foffset)) | 
 | 1815 | 			return 0; | 
 | 1816 |  | 
 | 1817 | 	/* write out the thread status notes section */ | 
 | 1818 | 	list_for_each(t, &info->thread_list) { | 
 | 1819 | 		struct elf_thread_status *tmp = | 
 | 1820 | 				list_entry(t, struct elf_thread_status, list); | 
 | 1821 |  | 
 | 1822 | 		for (i = 0; i < tmp->num_notes; i++) | 
 | 1823 | 			if (!writenote(&tmp->notes[i], file, foffset)) | 
 | 1824 | 				return 0; | 
 | 1825 | 	} | 
 | 1826 |  | 
 | 1827 | 	return 1; | 
 | 1828 | } | 
 | 1829 |  | 
 | 1830 | static void free_note_info(struct elf_note_info *info) | 
 | 1831 | { | 
 | 1832 | 	while (!list_empty(&info->thread_list)) { | 
 | 1833 | 		struct list_head *tmp = info->thread_list.next; | 
 | 1834 | 		list_del(tmp); | 
 | 1835 | 		kfree(list_entry(tmp, struct elf_thread_status, list)); | 
 | 1836 | 	} | 
 | 1837 |  | 
 | 1838 | 	kfree(info->prstatus); | 
 | 1839 | 	kfree(info->psinfo); | 
 | 1840 | 	kfree(info->notes); | 
 | 1841 | 	kfree(info->fpu); | 
 | 1842 | #ifdef ELF_CORE_COPY_XFPREGS | 
 | 1843 | 	kfree(info->xfpu); | 
 | 1844 | #endif | 
 | 1845 | } | 
 | 1846 |  | 
 | 1847 | #endif | 
 | 1848 |  | 
 | 1849 | static struct vm_area_struct *first_vma(struct task_struct *tsk, | 
 | 1850 | 					struct vm_area_struct *gate_vma) | 
 | 1851 | { | 
 | 1852 | 	struct vm_area_struct *ret = tsk->mm->mmap; | 
 | 1853 |  | 
 | 1854 | 	if (ret) | 
 | 1855 | 		return ret; | 
 | 1856 | 	return gate_vma; | 
 | 1857 | } | 
 | 1858 | /* | 
 | 1859 |  * Helper function for iterating across a vma list.  It ensures that the caller | 
 | 1860 |  * will visit `gate_vma' prior to terminating the search. | 
 | 1861 |  */ | 
 | 1862 | static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, | 
 | 1863 | 					struct vm_area_struct *gate_vma) | 
 | 1864 | { | 
 | 1865 | 	struct vm_area_struct *ret; | 
 | 1866 |  | 
 | 1867 | 	ret = this_vma->vm_next; | 
 | 1868 | 	if (ret) | 
 | 1869 | 		return ret; | 
 | 1870 | 	if (this_vma == gate_vma) | 
 | 1871 | 		return NULL; | 
 | 1872 | 	return gate_vma; | 
 | 1873 | } | 
 | 1874 |  | 
 | 1875 | static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum, | 
 | 1876 | 			     elf_addr_t e_shoff, int segs) | 
 | 1877 | { | 
 | 1878 | 	elf->e_shoff = e_shoff; | 
 | 1879 | 	elf->e_shentsize = sizeof(*shdr4extnum); | 
 | 1880 | 	elf->e_shnum = 1; | 
 | 1881 | 	elf->e_shstrndx = SHN_UNDEF; | 
 | 1882 |  | 
 | 1883 | 	memset(shdr4extnum, 0, sizeof(*shdr4extnum)); | 
 | 1884 |  | 
 | 1885 | 	shdr4extnum->sh_type = SHT_NULL; | 
 | 1886 | 	shdr4extnum->sh_size = elf->e_shnum; | 
 | 1887 | 	shdr4extnum->sh_link = elf->e_shstrndx; | 
 | 1888 | 	shdr4extnum->sh_info = segs; | 
 | 1889 | } | 
 | 1890 |  | 
 | 1891 | static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma, | 
 | 1892 | 				     unsigned long mm_flags) | 
 | 1893 | { | 
 | 1894 | 	struct vm_area_struct *vma; | 
 | 1895 | 	size_t size = 0; | 
 | 1896 |  | 
 | 1897 | 	for (vma = first_vma(current, gate_vma); vma != NULL; | 
 | 1898 | 	     vma = next_vma(vma, gate_vma)) | 
 | 1899 | 		size += vma_dump_size(vma, mm_flags); | 
 | 1900 | 	return size; | 
 | 1901 | } | 
 | 1902 |  | 
 | 1903 | /* | 
 | 1904 |  * Actual dumper | 
 | 1905 |  * | 
 | 1906 |  * This is a two-pass process; first we find the offsets of the bits, | 
 | 1907 |  * and then they are actually written out.  If we run out of core limit | 
 | 1908 |  * we just truncate. | 
 | 1909 |  */ | 
 | 1910 | static int elf_core_dump(struct coredump_params *cprm) | 
 | 1911 | { | 
 | 1912 | 	int has_dumped = 0; | 
 | 1913 | 	mm_segment_t fs; | 
 | 1914 | 	int segs; | 
 | 1915 | 	size_t size = 0; | 
 | 1916 | 	struct vm_area_struct *vma, *gate_vma; | 
 | 1917 | 	struct elfhdr *elf = NULL; | 
 | 1918 | 	loff_t offset = 0, dataoff, foffset; | 
 | 1919 | 	struct elf_note_info info; | 
 | 1920 | 	struct elf_phdr *phdr4note = NULL; | 
 | 1921 | 	struct elf_shdr *shdr4extnum = NULL; | 
 | 1922 | 	Elf_Half e_phnum; | 
 | 1923 | 	elf_addr_t e_shoff; | 
 | 1924 |  | 
 | 1925 | 	/* | 
 | 1926 | 	 * We no longer stop all VM operations. | 
 | 1927 | 	 *  | 
 | 1928 | 	 * This is because those proceses that could possibly change map_count | 
 | 1929 | 	 * or the mmap / vma pages are now blocked in do_exit on current | 
 | 1930 | 	 * finishing this core dump. | 
 | 1931 | 	 * | 
 | 1932 | 	 * Only ptrace can touch these memory addresses, but it doesn't change | 
 | 1933 | 	 * the map_count or the pages allocated. So no possibility of crashing | 
 | 1934 | 	 * exists while dumping the mm->vm_next areas to the core file. | 
 | 1935 | 	 */ | 
 | 1936 |    | 
 | 1937 | 	/* alloc memory for large data structures: too large to be on stack */ | 
 | 1938 | 	elf = kmalloc(sizeof(*elf), GFP_KERNEL); | 
 | 1939 | 	if (!elf) | 
 | 1940 | 		goto out; | 
 | 1941 | 	/* | 
 | 1942 | 	 * The number of segs are recored into ELF header as 16bit value. | 
 | 1943 | 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here. | 
 | 1944 | 	 */ | 
 | 1945 | 	segs = current->mm->map_count; | 
 | 1946 | 	segs += elf_core_extra_phdrs(); | 
 | 1947 |  | 
 | 1948 | 	gate_vma = get_gate_vma(current->mm); | 
 | 1949 | 	if (gate_vma != NULL) | 
 | 1950 | 		segs++; | 
 | 1951 |  | 
 | 1952 | 	/* for notes section */ | 
 | 1953 | 	segs++; | 
 | 1954 |  | 
 | 1955 | 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid | 
 | 1956 | 	 * this, kernel supports extended numbering. Have a look at | 
 | 1957 | 	 * include/linux/elf.h for further information. */ | 
 | 1958 | 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs; | 
 | 1959 |  | 
 | 1960 | 	/* | 
 | 1961 | 	 * Collect all the non-memory information about the process for the | 
 | 1962 | 	 * notes.  This also sets up the file header. | 
 | 1963 | 	 */ | 
 | 1964 | 	if (!fill_note_info(elf, e_phnum, &info, cprm->signr, cprm->regs)) | 
 | 1965 | 		goto cleanup; | 
 | 1966 |  | 
 | 1967 | 	has_dumped = 1; | 
 | 1968 | 	current->flags |= PF_DUMPCORE; | 
 | 1969 |    | 
 | 1970 | 	fs = get_fs(); | 
 | 1971 | 	set_fs(KERNEL_DS); | 
 | 1972 |  | 
 | 1973 | 	offset += sizeof(*elf);				/* Elf header */ | 
 | 1974 | 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */ | 
 | 1975 | 	foffset = offset; | 
 | 1976 |  | 
 | 1977 | 	/* Write notes phdr entry */ | 
 | 1978 | 	{ | 
 | 1979 | 		size_t sz = get_note_info_size(&info); | 
 | 1980 |  | 
 | 1981 | 		sz += elf_coredump_extra_notes_size(); | 
 | 1982 |  | 
 | 1983 | 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL); | 
 | 1984 | 		if (!phdr4note) | 
 | 1985 | 			goto end_coredump; | 
 | 1986 |  | 
 | 1987 | 		fill_elf_note_phdr(phdr4note, sz, offset); | 
 | 1988 | 		offset += sz; | 
 | 1989 | 	} | 
 | 1990 |  | 
 | 1991 | 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); | 
 | 1992 |  | 
 | 1993 | 	offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags); | 
 | 1994 | 	offset += elf_core_extra_data_size(); | 
 | 1995 | 	e_shoff = offset; | 
 | 1996 |  | 
 | 1997 | 	if (e_phnum == PN_XNUM) { | 
 | 1998 | 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL); | 
 | 1999 | 		if (!shdr4extnum) | 
 | 2000 | 			goto end_coredump; | 
 | 2001 | 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs); | 
 | 2002 | 	} | 
 | 2003 |  | 
 | 2004 | 	offset = dataoff; | 
 | 2005 |  | 
 | 2006 | 	size += sizeof(*elf); | 
 | 2007 | 	if (size > cprm->limit || !dump_write(cprm->file, elf, sizeof(*elf))) | 
 | 2008 | 		goto end_coredump; | 
 | 2009 |  | 
 | 2010 | 	size += sizeof(*phdr4note); | 
 | 2011 | 	if (size > cprm->limit | 
 | 2012 | 	    || !dump_write(cprm->file, phdr4note, sizeof(*phdr4note))) | 
 | 2013 | 		goto end_coredump; | 
 | 2014 |  | 
 | 2015 | 	/* Write program headers for segments dump */ | 
 | 2016 | 	for (vma = first_vma(current, gate_vma); vma != NULL; | 
 | 2017 | 			vma = next_vma(vma, gate_vma)) { | 
 | 2018 | 		struct elf_phdr phdr; | 
 | 2019 |  | 
 | 2020 | 		phdr.p_type = PT_LOAD; | 
 | 2021 | 		phdr.p_offset = offset; | 
 | 2022 | 		phdr.p_vaddr = vma->vm_start; | 
 | 2023 | 		phdr.p_paddr = 0; | 
 | 2024 | 		phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags); | 
 | 2025 | 		phdr.p_memsz = vma->vm_end - vma->vm_start; | 
 | 2026 | 		offset += phdr.p_filesz; | 
 | 2027 | 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; | 
 | 2028 | 		if (vma->vm_flags & VM_WRITE) | 
 | 2029 | 			phdr.p_flags |= PF_W; | 
 | 2030 | 		if (vma->vm_flags & VM_EXEC) | 
 | 2031 | 			phdr.p_flags |= PF_X; | 
 | 2032 | 		phdr.p_align = ELF_EXEC_PAGESIZE; | 
 | 2033 |  | 
 | 2034 | 		size += sizeof(phdr); | 
 | 2035 | 		if (size > cprm->limit | 
 | 2036 | 		    || !dump_write(cprm->file, &phdr, sizeof(phdr))) | 
 | 2037 | 			goto end_coredump; | 
 | 2038 | 	} | 
 | 2039 |  | 
 | 2040 | 	if (!elf_core_write_extra_phdrs(cprm->file, offset, &size, cprm->limit)) | 
 | 2041 | 		goto end_coredump; | 
 | 2042 |  | 
 | 2043 |  	/* write out the notes section */ | 
 | 2044 | 	if (!write_note_info(&info, cprm->file, &foffset)) | 
 | 2045 | 		goto end_coredump; | 
 | 2046 |  | 
 | 2047 | 	if (elf_coredump_extra_notes_write(cprm->file, &foffset)) | 
 | 2048 | 		goto end_coredump; | 
 | 2049 |  | 
 | 2050 | 	/* Align to page */ | 
 | 2051 | 	if (!dump_seek(cprm->file, dataoff - foffset)) | 
 | 2052 | 		goto end_coredump; | 
 | 2053 |  | 
 | 2054 | 	for (vma = first_vma(current, gate_vma); vma != NULL; | 
 | 2055 | 			vma = next_vma(vma, gate_vma)) { | 
 | 2056 | 		unsigned long addr; | 
 | 2057 | 		unsigned long end; | 
 | 2058 |  | 
 | 2059 | 		end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags); | 
 | 2060 |  | 
 | 2061 | 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) { | 
 | 2062 | 			struct page *page; | 
 | 2063 | 			int stop; | 
 | 2064 |  | 
 | 2065 | 			page = get_dump_page(addr); | 
 | 2066 | 			if (page) { | 
 | 2067 | 				void *kaddr = kmap(page); | 
 | 2068 | 				stop = ((size += PAGE_SIZE) > cprm->limit) || | 
 | 2069 | 					!dump_write(cprm->file, kaddr, | 
 | 2070 | 						    PAGE_SIZE); | 
 | 2071 | 				kunmap(page); | 
 | 2072 | 				page_cache_release(page); | 
 | 2073 | 			} else | 
 | 2074 | 				stop = !dump_seek(cprm->file, PAGE_SIZE); | 
 | 2075 | 			if (stop) | 
 | 2076 | 				goto end_coredump; | 
 | 2077 | 		} | 
 | 2078 | 	} | 
 | 2079 |  | 
 | 2080 | 	if (!elf_core_write_extra_data(cprm->file, &size, cprm->limit)) | 
 | 2081 | 		goto end_coredump; | 
 | 2082 |  | 
 | 2083 | 	if (e_phnum == PN_XNUM) { | 
 | 2084 | 		size += sizeof(*shdr4extnum); | 
 | 2085 | 		if (size > cprm->limit | 
 | 2086 | 		    || !dump_write(cprm->file, shdr4extnum, | 
 | 2087 | 				   sizeof(*shdr4extnum))) | 
 | 2088 | 			goto end_coredump; | 
 | 2089 | 	} | 
 | 2090 |  | 
 | 2091 | end_coredump: | 
 | 2092 | 	set_fs(fs); | 
 | 2093 |  | 
 | 2094 | cleanup: | 
 | 2095 | 	free_note_info(&info); | 
 | 2096 | 	kfree(shdr4extnum); | 
 | 2097 | 	kfree(phdr4note); | 
 | 2098 | 	kfree(elf); | 
 | 2099 | out: | 
 | 2100 | 	return has_dumped; | 
 | 2101 | } | 
 | 2102 |  | 
 | 2103 | #endif		/* CONFIG_ELF_CORE */ | 
 | 2104 |  | 
 | 2105 | static int __init init_elf_binfmt(void) | 
 | 2106 | { | 
 | 2107 | 	register_binfmt(&elf_format); | 
 | 2108 | 	return 0; | 
 | 2109 | } | 
 | 2110 |  | 
 | 2111 | static void __exit exit_elf_binfmt(void) | 
 | 2112 | { | 
 | 2113 | 	/* Remove the COFF and ELF loaders. */ | 
 | 2114 | 	unregister_binfmt(&elf_format); | 
 | 2115 | } | 
 | 2116 |  | 
 | 2117 | core_initcall(init_elf_binfmt); | 
 | 2118 | module_exit(exit_elf_binfmt); | 
 | 2119 | MODULE_LICENSE("GPL"); |