| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Return arc hyperbole sine for float value, with the imaginary part | 
 | 2 |    of the result possibly adjusted for use in computing other | 
 | 3 |    functions. | 
 | 4 |    Copyright (C) 1997-2016 Free Software Foundation, Inc. | 
 | 5 |    This file is part of the GNU C Library. | 
 | 6 |  | 
 | 7 |    The GNU C Library is free software; you can redistribute it and/or | 
 | 8 |    modify it under the terms of the GNU Lesser General Public | 
 | 9 |    License as published by the Free Software Foundation; either | 
 | 10 |    version 2.1 of the License, or (at your option) any later version. | 
 | 11 |  | 
 | 12 |    The GNU C Library is distributed in the hope that it will be useful, | 
 | 13 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 14 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 | 15 |    Lesser General Public License for more details. | 
 | 16 |  | 
 | 17 |    You should have received a copy of the GNU Lesser General Public | 
 | 18 |    License along with the GNU C Library; if not, see | 
 | 19 |    <http://www.gnu.org/licenses/>.  */ | 
 | 20 |  | 
 | 21 | #include <complex.h> | 
 | 22 | #include <math.h> | 
 | 23 | #include <math_private.h> | 
 | 24 | #include <float.h> | 
 | 25 |  | 
 | 26 | /* Return the complex inverse hyperbolic sine of finite nonzero Z, | 
 | 27 |    with the imaginary part of the result subtracted from pi/2 if ADJ | 
 | 28 |    is nonzero.  */ | 
 | 29 |  | 
 | 30 | __complex__ float | 
 | 31 | __kernel_casinhf (__complex__ float x, int adj) | 
 | 32 | { | 
 | 33 |   __complex__ float res; | 
 | 34 |   float rx, ix; | 
 | 35 |   __complex__ float y; | 
 | 36 |  | 
 | 37 |   /* Avoid cancellation by reducing to the first quadrant.  */ | 
 | 38 |   rx = fabsf (__real__ x); | 
 | 39 |   ix = fabsf (__imag__ x); | 
 | 40 |  | 
 | 41 |   if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON) | 
 | 42 |     { | 
 | 43 |       /* For large x in the first quadrant, x + csqrt (1 + x * x) | 
 | 44 | 	 is sufficiently close to 2 * x to make no significant | 
 | 45 | 	 difference to the result; avoid possible overflow from | 
 | 46 | 	 the squaring and addition.  */ | 
 | 47 |       __real__ y = rx; | 
 | 48 |       __imag__ y = ix; | 
 | 49 |  | 
 | 50 |       if (adj) | 
 | 51 | 	{ | 
 | 52 | 	  float t = __real__ y; | 
 | 53 | 	  __real__ y = __copysignf (__imag__ y, __imag__ x); | 
 | 54 | 	  __imag__ y = t; | 
 | 55 | 	} | 
 | 56 |  | 
 | 57 |       res = __clogf (y); | 
 | 58 |       __real__ res += (float) M_LN2; | 
 | 59 |     } | 
 | 60 |   else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f) | 
 | 61 |     { | 
 | 62 |       float s = __ieee754_hypotf (1.0f, rx); | 
 | 63 |  | 
 | 64 |       __real__ res = __ieee754_logf (rx + s); | 
 | 65 |       if (adj) | 
 | 66 | 	__imag__ res = __ieee754_atan2f (s, __imag__ x); | 
 | 67 |       else | 
 | 68 | 	__imag__ res = __ieee754_atan2f (ix, s); | 
 | 69 |     } | 
 | 70 |   else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f) | 
 | 71 |     { | 
 | 72 |       float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f)); | 
 | 73 |  | 
 | 74 |       __real__ res = __ieee754_logf (ix + s); | 
 | 75 |       if (adj) | 
 | 76 | 	__imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); | 
 | 77 |       else | 
 | 78 | 	__imag__ res = __ieee754_atan2f (s, rx); | 
 | 79 |     } | 
 | 80 |   else if (ix > 1.0f && ix < 1.5f && rx < 0.5f) | 
 | 81 |     { | 
 | 82 |       if (rx < FLT_EPSILON * FLT_EPSILON) | 
 | 83 | 	{ | 
 | 84 | 	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f); | 
 | 85 | 	  float s = __ieee754_sqrtf (ix2m1); | 
 | 86 |  | 
 | 87 | 	  __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f; | 
 | 88 | 	  if (adj) | 
 | 89 | 	    __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x)); | 
 | 90 | 	  else | 
 | 91 | 	    __imag__ res = __ieee754_atan2f (s, rx); | 
 | 92 | 	} | 
 | 93 |       else | 
 | 94 | 	{ | 
 | 95 | 	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f); | 
 | 96 | 	  float rx2 = rx * rx; | 
 | 97 | 	  float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); | 
 | 98 | 	  float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f); | 
 | 99 | 	  float dp = d + ix2m1; | 
 | 100 | 	  float dm = f / dp; | 
 | 101 | 	  float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f); | 
 | 102 | 	  float r2 = rx * ix / r1; | 
 | 103 |  | 
 | 104 | 	  __real__ res | 
 | 105 | 	    = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f; | 
 | 106 | 	  if (adj) | 
 | 107 | 	    __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2, | 
 | 108 | 								   __imag__ x)); | 
 | 109 | 	  else | 
 | 110 | 	    __imag__ res = __ieee754_atan2f (ix + r2, rx + r1); | 
 | 111 | 	} | 
 | 112 |     } | 
 | 113 |   else if (ix == 1.0f && rx < 0.5f) | 
 | 114 |     { | 
 | 115 |       if (rx < FLT_EPSILON / 8.0f) | 
 | 116 | 	{ | 
 | 117 | 	  __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f; | 
 | 118 | 	  if (adj) | 
 | 119 | 	    __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx), | 
 | 120 | 					     __copysignf (1.0f, __imag__ x)); | 
 | 121 | 	  else | 
 | 122 | 	    __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx)); | 
 | 123 | 	} | 
 | 124 |       else | 
 | 125 | 	{ | 
 | 126 | 	  float d = rx * __ieee754_sqrtf (4.0f + rx * rx); | 
 | 127 | 	  float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f); | 
 | 128 | 	  float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f); | 
 | 129 |  | 
 | 130 | 	  __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f; | 
 | 131 | 	  if (adj) | 
 | 132 | 	    __imag__ res = __ieee754_atan2f (rx + s1, | 
 | 133 | 					     __copysignf (1.0f + s2, | 
 | 134 | 							  __imag__ x)); | 
 | 135 | 	  else | 
 | 136 | 	    __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1); | 
 | 137 | 	} | 
 | 138 |     } | 
 | 139 |   else if (ix < 1.0f && rx < 0.5f) | 
 | 140 |     { | 
 | 141 |       if (ix >= FLT_EPSILON) | 
 | 142 | 	{ | 
 | 143 | 	  if (rx < FLT_EPSILON * FLT_EPSILON) | 
 | 144 | 	    { | 
 | 145 | 	      float onemix2 = (1.0f + ix) * (1.0f - ix); | 
 | 146 | 	      float s = __ieee754_sqrtf (onemix2); | 
 | 147 |  | 
 | 148 | 	      __real__ res = __log1pf (2.0f * rx / s) / 2.0f; | 
 | 149 | 	      if (adj) | 
 | 150 | 		__imag__ res = __ieee754_atan2f (s, __imag__ x); | 
 | 151 | 	      else | 
 | 152 | 		__imag__ res = __ieee754_atan2f (ix, s); | 
 | 153 | 	    } | 
 | 154 | 	  else | 
 | 155 | 	    { | 
 | 156 | 	      float onemix2 = (1.0f + ix) * (1.0f - ix); | 
 | 157 | 	      float rx2 = rx * rx; | 
 | 158 | 	      float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix); | 
 | 159 | 	      float d = __ieee754_sqrtf (onemix2 * onemix2 + f); | 
 | 160 | 	      float dp = d + onemix2; | 
 | 161 | 	      float dm = f / dp; | 
 | 162 | 	      float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f); | 
 | 163 | 	      float r2 = rx * ix / r1; | 
 | 164 |  | 
 | 165 | 	      __real__ res | 
 | 166 | 		= __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f; | 
 | 167 | 	      if (adj) | 
 | 168 | 		__imag__ res = __ieee754_atan2f (rx + r1, | 
 | 169 | 						 __copysignf (ix + r2, | 
 | 170 | 							      __imag__ x)); | 
 | 171 | 	      else | 
 | 172 | 		__imag__ res = __ieee754_atan2f (ix + r2, rx + r1); | 
 | 173 | 	    } | 
 | 174 | 	} | 
 | 175 |       else | 
 | 176 | 	{ | 
 | 177 | 	  float s = __ieee754_hypotf (1.0f, rx); | 
 | 178 |  | 
 | 179 | 	  __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f; | 
 | 180 | 	  if (adj) | 
 | 181 | 	    __imag__ res = __ieee754_atan2f (s, __imag__ x); | 
 | 182 | 	  else | 
 | 183 | 	    __imag__ res = __ieee754_atan2f (ix, s); | 
 | 184 | 	} | 
 | 185 |       math_check_force_underflow_nonneg (__real__ res); | 
 | 186 |     } | 
 | 187 |   else | 
 | 188 |     { | 
 | 189 |       __real__ y = (rx - ix) * (rx + ix) + 1.0f; | 
 | 190 |       __imag__ y = 2.0f * rx * ix; | 
 | 191 |  | 
 | 192 |       y = __csqrtf (y); | 
 | 193 |  | 
 | 194 |       __real__ y += rx; | 
 | 195 |       __imag__ y += ix; | 
 | 196 |  | 
 | 197 |       if (adj) | 
 | 198 | 	{ | 
 | 199 | 	  float t = __real__ y; | 
 | 200 | 	  __real__ y = __copysignf (__imag__ y, __imag__ x); | 
 | 201 | 	  __imag__ y = t; | 
 | 202 | 	} | 
 | 203 |  | 
 | 204 |       res = __clogf (y); | 
 | 205 |     } | 
 | 206 |  | 
 | 207 |   /* Give results the correct sign for the original argument.  */ | 
 | 208 |   __real__ res = __copysignf (__real__ res, __real__ x); | 
 | 209 |   __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x)); | 
 | 210 |  | 
 | 211 |   return res; | 
 | 212 | } |