lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* dnssec.c is Copyright (c) 2012 Giovanni Bajo <rasky@develer.com> |
| 2 | and Copyright (c) 2012-2020 Simon Kelley |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 dated June, 1991, or |
| 7 | (at your option) version 3 dated 29 June, 2007. |
| 8 | |
| 9 | This program is distributed in the hope that it will be useful, |
| 10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | GNU General Public License for more details. |
| 13 | |
| 14 | You should have received a copy of the GNU General Public License |
| 15 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 16 | */ |
| 17 | |
| 18 | #include "dnsmasq.h" |
| 19 | |
| 20 | #ifdef HAVE_DNSSEC |
| 21 | |
| 22 | #define SERIAL_UNDEF -100 |
| 23 | #define SERIAL_EQ 0 |
| 24 | #define SERIAL_LT -1 |
| 25 | #define SERIAL_GT 1 |
| 26 | |
| 27 | /* Convert from presentation format to wire format, in place. |
| 28 | Also map UC -> LC. |
| 29 | Note that using extract_name to get presentation format |
| 30 | then calling to_wire() removes compression and maps case, |
| 31 | thus generating names in canonical form. |
| 32 | Calling to_wire followed by from_wire is almost an identity, |
| 33 | except that the UC remains mapped to LC. |
| 34 | |
| 35 | Note that both /000 and '.' are allowed within labels. These get |
| 36 | represented in presentation format using NAME_ESCAPE as an escape |
| 37 | character. In theory, if all the characters in a name were /000 or |
| 38 | '.' or NAME_ESCAPE then all would have to be escaped, so the |
| 39 | presentation format would be twice as long as the spec (1024). |
| 40 | The buffers are all declared as 2049 (allowing for the trailing zero) |
| 41 | for this reason. |
| 42 | */ |
| 43 | static int to_wire(char *name) |
| 44 | { |
| 45 | unsigned char *l, *p, *q, term; |
| 46 | int len; |
| 47 | |
| 48 | for (l = (unsigned char*)name; *l != 0; l = p) |
| 49 | { |
| 50 | for (p = l; *p != '.' && *p != 0; p++) |
| 51 | if (*p >= 'A' && *p <= 'Z') |
| 52 | *p = *p - 'A' + 'a'; |
| 53 | else if (*p == NAME_ESCAPE) |
| 54 | { |
| 55 | for (q = p; *q; q++) |
| 56 | *q = *(q+1); |
| 57 | (*p)--; |
| 58 | } |
| 59 | term = *p; |
| 60 | |
| 61 | if ((len = p - l) != 0) |
| 62 | memmove(l+1, l, len); |
| 63 | *l = len; |
| 64 | |
| 65 | p++; |
| 66 | |
| 67 | if (term == 0) |
| 68 | *p = 0; |
| 69 | } |
| 70 | |
| 71 | return l + 1 - (unsigned char *)name; |
| 72 | } |
| 73 | |
| 74 | /* Note: no compression allowed in input. */ |
| 75 | static void from_wire(char *name) |
| 76 | { |
| 77 | unsigned char *l, *p, *last; |
| 78 | int len; |
| 79 | |
| 80 | for (last = (unsigned char *)name; *last != 0; last += *last+1); |
| 81 | |
| 82 | for (l = (unsigned char *)name; *l != 0; l += len+1) |
| 83 | { |
| 84 | len = *l; |
| 85 | memmove(l, l+1, len); |
| 86 | for (p = l; p < l + len; p++) |
| 87 | if (*p == '.' || *p == 0 || *p == NAME_ESCAPE) |
| 88 | { |
| 89 | memmove(p+1, p, 1 + last - p); |
| 90 | len++; |
| 91 | *p++ = NAME_ESCAPE; |
| 92 | (*p)++; |
| 93 | } |
| 94 | |
| 95 | l[len] = '.'; |
| 96 | } |
| 97 | |
| 98 | if ((char *)l != name) |
| 99 | *(l-1) = 0; |
| 100 | } |
| 101 | |
| 102 | /* Input in presentation format */ |
| 103 | static int count_labels(char *name) |
| 104 | { |
| 105 | int i; |
| 106 | char *p; |
| 107 | |
| 108 | if (*name == 0) |
| 109 | return 0; |
| 110 | |
| 111 | for (p = name, i = 0; *p; p++) |
| 112 | if (*p == '.') |
| 113 | i++; |
| 114 | |
| 115 | /* Don't count empty first label. */ |
| 116 | return *name == '.' ? i : i+1; |
| 117 | } |
| 118 | |
| 119 | /* Implement RFC1982 wrapped compare for 32-bit numbers */ |
| 120 | static int serial_compare_32(u32 s1, u32 s2) |
| 121 | { |
| 122 | if (s1 == s2) |
| 123 | return SERIAL_EQ; |
| 124 | |
| 125 | if ((s1 < s2 && (s2 - s1) < (1UL<<31)) || |
| 126 | (s1 > s2 && (s1 - s2) > (1UL<<31))) |
| 127 | return SERIAL_LT; |
| 128 | if ((s1 < s2 && (s2 - s1) > (1UL<<31)) || |
| 129 | (s1 > s2 && (s1 - s2) < (1UL<<31))) |
| 130 | return SERIAL_GT; |
| 131 | return SERIAL_UNDEF; |
| 132 | } |
| 133 | |
| 134 | /* Called at startup. If the timestamp file is configured and exists, put its mtime on |
| 135 | timestamp_time. If it doesn't exist, create it, and set the mtime to 1-1-2015. |
| 136 | return -1 -> Cannot create file. |
| 137 | 0 -> not using timestamp, or timestamp exists and is in past. |
| 138 | 1 -> timestamp exists and is in future. |
| 139 | */ |
| 140 | |
| 141 | static time_t timestamp_time; |
| 142 | |
| 143 | int setup_timestamp(void) |
| 144 | { |
| 145 | struct stat statbuf; |
| 146 | |
| 147 | daemon->back_to_the_future = 0; |
| 148 | |
| 149 | if (!daemon->timestamp_file) |
| 150 | return 0; |
| 151 | |
| 152 | if (stat(daemon->timestamp_file, &statbuf) != -1) |
| 153 | { |
| 154 | timestamp_time = statbuf.st_mtime; |
| 155 | check_and_exit: |
| 156 | if (difftime(timestamp_time, time(0)) <= 0) |
| 157 | { |
| 158 | /* time already OK, update timestamp, and do key checking from the start. */ |
| 159 | if (utimes(daemon->timestamp_file, NULL) == -1) |
| 160 | my_syslog(LOG_ERR, _("failed to update mtime on %s: %s"), daemon->timestamp_file, strerror(errno)); |
| 161 | daemon->back_to_the_future = 1; |
| 162 | return 0; |
| 163 | } |
| 164 | return 1; |
| 165 | } |
| 166 | |
| 167 | if (errno == ENOENT) |
| 168 | { |
| 169 | /* NB. for explanation of O_EXCL flag, see comment on pidfile in dnsmasq.c */ |
| 170 | int fd = open(daemon->timestamp_file, O_WRONLY | O_CREAT | O_NONBLOCK | O_EXCL, 0666); |
| 171 | if (fd != -1) |
| 172 | { |
| 173 | struct timeval tv[2]; |
| 174 | |
| 175 | close(fd); |
| 176 | |
| 177 | timestamp_time = 1420070400; /* 1-1-2015 */ |
| 178 | tv[0].tv_sec = tv[1].tv_sec = timestamp_time; |
| 179 | tv[0].tv_usec = tv[1].tv_usec = 0; |
| 180 | if (utimes(daemon->timestamp_file, tv) == 0) |
| 181 | goto check_and_exit; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | return -1; |
| 186 | } |
| 187 | |
| 188 | /* Check whether today/now is between date_start and date_end */ |
| 189 | static int is_check_date(unsigned long curtime) |
| 190 | { |
| 191 | /* Checking timestamps may be temporarily disabled */ |
| 192 | |
| 193 | /* If the current time if _before_ the timestamp |
| 194 | on our persistent timestamp file, then assume the |
| 195 | time if not yet correct, and don't check the |
| 196 | key timestamps. As soon as the current time is |
| 197 | later then the timestamp, update the timestamp |
| 198 | and start checking keys */ |
| 199 | if (daemon->timestamp_file) |
| 200 | { |
| 201 | if (daemon->back_to_the_future == 0 && difftime(timestamp_time, curtime) <= 0) |
| 202 | { |
| 203 | if (utimes(daemon->timestamp_file, NULL) != 0) |
| 204 | my_syslog(LOG_ERR, _("failed to update mtime on %s: %s"), daemon->timestamp_file, strerror(errno)); |
| 205 | |
| 206 | my_syslog(LOG_INFO, _("system time considered valid, now checking DNSSEC signature timestamps.")); |
| 207 | daemon->back_to_the_future = 1; |
| 208 | daemon->dnssec_no_time_check = 0; |
| 209 | queue_event(EVENT_RELOAD); /* purge cache */ |
| 210 | } |
| 211 | |
| 212 | return daemon->back_to_the_future; |
| 213 | } |
| 214 | else |
| 215 | return !daemon->dnssec_no_time_check; |
| 216 | } |
| 217 | |
| 218 | /* Return bytes of canonicalised rrdata one by one. |
| 219 | Init state->ip with the RR, and state->end with the end of same. |
| 220 | Init state->op to NULL. |
| 221 | Init state->desc to RR descriptor. |
| 222 | Init state->buff with a MAXDNAME * 2 buffer. |
| 223 | |
| 224 | After each call which returns 1, state->op points to the next byte of data. |
| 225 | On returning 0, the end has been reached. |
| 226 | */ |
| 227 | struct rdata_state { |
| 228 | u16 *desc; |
| 229 | size_t c; |
| 230 | unsigned char *end, *ip, *op; |
| 231 | char *buff; |
| 232 | }; |
| 233 | |
| 234 | static int get_rdata(struct dns_header *header, size_t plen, struct rdata_state *state) |
| 235 | { |
| 236 | int d; |
| 237 | |
| 238 | if (state->op && state->c != 1) |
| 239 | { |
| 240 | state->op++; |
| 241 | state->c--; |
| 242 | return 1; |
| 243 | } |
| 244 | |
| 245 | while (1) |
| 246 | { |
| 247 | d = *(state->desc); |
| 248 | |
| 249 | if (d == (u16)-1) |
| 250 | { |
| 251 | /* all the bytes to the end. */ |
| 252 | if ((state->c = state->end - state->ip) != 0) |
| 253 | { |
| 254 | state->op = state->ip; |
| 255 | state->ip = state->end;; |
| 256 | } |
| 257 | else |
| 258 | return 0; |
| 259 | } |
| 260 | else |
| 261 | { |
| 262 | state->desc++; |
| 263 | |
| 264 | if (d == (u16)0) |
| 265 | { |
| 266 | /* domain-name, canonicalise */ |
| 267 | int len; |
| 268 | |
| 269 | if (!extract_name(header, plen, &state->ip, state->buff, 1, 0) || |
| 270 | (len = to_wire(state->buff)) == 0) |
| 271 | continue; |
| 272 | |
| 273 | state->c = len; |
| 274 | state->op = (unsigned char *)state->buff; |
| 275 | } |
| 276 | else |
| 277 | { |
| 278 | /* plain data preceding a domain-name, don't run off the end of the data */ |
| 279 | if ((state->end - state->ip) < d) |
| 280 | d = state->end - state->ip; |
| 281 | |
| 282 | if (d == 0) |
| 283 | continue; |
| 284 | |
| 285 | state->op = state->ip; |
| 286 | state->c = d; |
| 287 | state->ip += d; |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | return 1; |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | /* Bubble sort the RRset into the canonical order. */ |
| 296 | |
| 297 | static int sort_rrset(struct dns_header *header, size_t plen, u16 *rr_desc, int rrsetidx, |
| 298 | unsigned char **rrset, char *buff1, char *buff2) |
| 299 | { |
| 300 | int swap, i, j; |
| 301 | |
| 302 | do |
| 303 | { |
| 304 | for (swap = 0, i = 0; i < rrsetidx-1; i++) |
| 305 | { |
| 306 | int rdlen1, rdlen2; |
| 307 | struct rdata_state state1, state2; |
| 308 | |
| 309 | /* Note that these have been determined to be OK previously, |
| 310 | so we don't need to check for NULL return here. */ |
| 311 | state1.ip = skip_name(rrset[i], header, plen, 10); |
| 312 | state2.ip = skip_name(rrset[i+1], header, plen, 10); |
| 313 | state1.op = state2.op = NULL; |
| 314 | state1.buff = buff1; |
| 315 | state2.buff = buff2; |
| 316 | state1.desc = state2.desc = rr_desc; |
| 317 | |
| 318 | state1.ip += 8; /* skip class, type, ttl */ |
| 319 | GETSHORT(rdlen1, state1.ip); |
| 320 | if (!CHECK_LEN(header, state1.ip, plen, rdlen1)) |
| 321 | return rrsetidx; /* short packet */ |
| 322 | state1.end = state1.ip + rdlen1; |
| 323 | |
| 324 | state2.ip += 8; /* skip class, type, ttl */ |
| 325 | GETSHORT(rdlen2, state2.ip); |
| 326 | if (!CHECK_LEN(header, state2.ip, plen, rdlen2)) |
| 327 | return rrsetidx; /* short packet */ |
| 328 | state2.end = state2.ip + rdlen2; |
| 329 | |
| 330 | /* If the RR has no names in it then canonicalisation |
| 331 | is the identity function and we can compare |
| 332 | the RRs directly. If not we compare the |
| 333 | canonicalised RRs one byte at a time. */ |
| 334 | if (*rr_desc == (u16)-1) |
| 335 | { |
| 336 | int rdmin = rdlen1 > rdlen2 ? rdlen2 : rdlen1; |
| 337 | int cmp = memcmp(state1.ip, state2.ip, rdmin); |
| 338 | |
| 339 | if (cmp > 0 || (cmp == 0 && rdlen1 > rdmin)) |
| 340 | { |
| 341 | unsigned char *tmp = rrset[i+1]; |
| 342 | rrset[i+1] = rrset[i]; |
| 343 | rrset[i] = tmp; |
| 344 | swap = 1; |
| 345 | } |
| 346 | else if (cmp == 0 && (rdlen1 == rdlen2)) |
| 347 | { |
| 348 | /* Two RRs are equal, remove one copy. RFC 4034, para 6.3 */ |
| 349 | for (j = i+1; j < rrsetidx-1; j++) |
| 350 | rrset[j] = rrset[j+1]; |
| 351 | rrsetidx--; |
| 352 | i--; |
| 353 | } |
| 354 | } |
| 355 | else |
| 356 | /* Comparing canonicalised RRs, byte-at-a-time. */ |
| 357 | while (1) |
| 358 | { |
| 359 | int ok1, ok2; |
| 360 | |
| 361 | ok1 = get_rdata(header, plen, &state1); |
| 362 | ok2 = get_rdata(header, plen, &state2); |
| 363 | |
| 364 | if (!ok1 && !ok2) |
| 365 | { |
| 366 | /* Two RRs are equal, remove one copy. RFC 4034, para 6.3 */ |
| 367 | for (j = i+1; j < rrsetidx-1; j++) |
| 368 | rrset[j] = rrset[j+1]; |
| 369 | rrsetidx--; |
| 370 | i--; |
| 371 | break; |
| 372 | } |
| 373 | else if (ok1 && (!ok2 || *state1.op > *state2.op)) |
| 374 | { |
| 375 | unsigned char *tmp = rrset[i+1]; |
| 376 | rrset[i+1] = rrset[i]; |
| 377 | rrset[i] = tmp; |
| 378 | swap = 1; |
| 379 | break; |
| 380 | } |
| 381 | else if (ok2 && (!ok1 || *state2.op > *state1.op)) |
| 382 | break; |
| 383 | |
| 384 | /* arrive here when bytes are equal, go round the loop again |
| 385 | and compare the next ones. */ |
| 386 | } |
| 387 | } |
| 388 | } while (swap); |
| 389 | |
| 390 | return rrsetidx; |
| 391 | } |
| 392 | |
| 393 | static unsigned char **rrset = NULL, **sigs = NULL; |
| 394 | |
| 395 | /* Get pointers to RRset members and signature(s) for same. |
| 396 | Check signatures, and return keyname associated in keyname. */ |
| 397 | static int explore_rrset(struct dns_header *header, size_t plen, int class, int type, |
| 398 | char *name, char *keyname, int *sigcnt, int *rrcnt) |
| 399 | { |
| 400 | static int rrset_sz = 0, sig_sz = 0; |
| 401 | unsigned char *p; |
| 402 | int rrsetidx, sigidx, j, rdlen, res; |
| 403 | int gotkey = 0; |
| 404 | |
| 405 | if (!(p = skip_questions(header, plen))) |
| 406 | return 0; |
| 407 | |
| 408 | /* look for RRSIGs for this RRset and get pointers to each RR in the set. */ |
| 409 | for (rrsetidx = 0, sigidx = 0, j = ntohs(header->ancount) + ntohs(header->nscount); |
| 410 | j != 0; j--) |
| 411 | { |
| 412 | unsigned char *pstart, *pdata; |
| 413 | int stype, sclass, type_covered; |
| 414 | |
| 415 | pstart = p; |
| 416 | |
| 417 | if (!(res = extract_name(header, plen, &p, name, 0, 10))) |
| 418 | return 0; /* bad packet */ |
| 419 | |
| 420 | GETSHORT(stype, p); |
| 421 | GETSHORT(sclass, p); |
| 422 | |
| 423 | pdata = p; |
| 424 | |
| 425 | p += 4; /* TTL */ |
| 426 | GETSHORT(rdlen, p); |
| 427 | |
| 428 | if (!CHECK_LEN(header, p, plen, rdlen)) |
| 429 | return 0; |
| 430 | |
| 431 | if (res == 1 && sclass == class) |
| 432 | { |
| 433 | if (stype == type) |
| 434 | { |
| 435 | if (!expand_workspace(&rrset, &rrset_sz, rrsetidx)) |
| 436 | return 0; |
| 437 | |
| 438 | rrset[rrsetidx++] = pstart; |
| 439 | } |
| 440 | |
| 441 | if (stype == T_RRSIG) |
| 442 | { |
| 443 | if (rdlen < 18) |
| 444 | return 0; /* bad packet */ |
| 445 | |
| 446 | GETSHORT(type_covered, p); |
| 447 | p += 16; /* algo, labels, orig_ttl, sig_expiration, sig_inception, key_tag */ |
| 448 | |
| 449 | if (gotkey) |
| 450 | { |
| 451 | /* If there's more than one SIG, ensure they all have same keyname */ |
| 452 | if (extract_name(header, plen, &p, keyname, 0, 0) != 1) |
| 453 | return 0; |
| 454 | } |
| 455 | else |
| 456 | { |
| 457 | gotkey = 1; |
| 458 | |
| 459 | if (!extract_name(header, plen, &p, keyname, 1, 0)) |
| 460 | return 0; |
| 461 | |
| 462 | /* RFC 4035 5.3.1 says that the Signer's Name field MUST equal |
| 463 | the name of the zone containing the RRset. We can't tell that |
| 464 | for certain, but we can check that the RRset name is equal to |
| 465 | or encloses the signers name, which should be enough to stop |
| 466 | an attacker using signatures made with the key of an unrelated |
| 467 | zone he controls. Note that the root key is always allowed. */ |
| 468 | if (*keyname != 0) |
| 469 | { |
| 470 | char *name_start; |
| 471 | for (name_start = name; !hostname_isequal(name_start, keyname); ) |
| 472 | if ((name_start = strchr(name_start, '.'))) |
| 473 | name_start++; /* chop a label off and try again */ |
| 474 | else |
| 475 | return 0; |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | |
| 480 | if (type_covered == type) |
| 481 | { |
| 482 | if (!expand_workspace(&sigs, &sig_sz, sigidx)) |
| 483 | return 0; |
| 484 | |
| 485 | sigs[sigidx++] = pdata; |
| 486 | } |
| 487 | |
| 488 | p = pdata + 6; /* restore for ADD_RDLEN */ |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | if (!ADD_RDLEN(header, p, plen, rdlen)) |
| 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | *sigcnt = sigidx; |
| 497 | *rrcnt = rrsetidx; |
| 498 | |
| 499 | return 1; |
| 500 | } |
| 501 | |
| 502 | /* Validate a single RRset (class, type, name) in the supplied DNS reply |
| 503 | Return code: |
| 504 | STAT_SECURE if it validates. |
| 505 | STAT_SECURE_WILDCARD if it validates and is the result of wildcard expansion. |
| 506 | (In this case *wildcard_out points to the "body" of the wildcard within name.) |
| 507 | STAT_BOGUS signature is wrong, bad packet. |
| 508 | STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname) |
| 509 | STAT_NEED_DS need DS to complete validation (name is returned in keyname) |
| 510 | |
| 511 | If key is non-NULL, use that key, which has the algo and tag given in the params of those names, |
| 512 | otherwise find the key in the cache. |
| 513 | |
| 514 | Name is unchanged on exit. keyname is used as workspace and trashed. |
| 515 | |
| 516 | Call explore_rrset first to find and count RRs and sigs. |
| 517 | |
| 518 | ttl_out is the floor on TTL, based on TTL and orig_ttl and expiration of sig used to validate. |
| 519 | */ |
| 520 | static int validate_rrset(time_t now, struct dns_header *header, size_t plen, int class, int type, int sigidx, int rrsetidx, |
| 521 | char *name, char *keyname, char **wildcard_out, struct blockdata *key, int keylen, |
| 522 | int algo_in, int keytag_in, unsigned long *ttl_out) |
| 523 | { |
| 524 | unsigned char *p; |
| 525 | int rdlen, j, name_labels, algo, labels, key_tag; |
| 526 | struct crec *crecp = NULL; |
| 527 | u16 *rr_desc = rrfilter_desc(type); |
| 528 | u32 sig_expiration, sig_inception; |
| 529 | int failflags = DNSSEC_FAIL_NOSIG | DNSSEC_FAIL_NYV | DNSSEC_FAIL_EXP | DNSSEC_FAIL_NOKEYSUP; |
| 530 | |
| 531 | unsigned long curtime = time(0); |
| 532 | int time_check = is_check_date(curtime); |
| 533 | |
| 534 | if (wildcard_out) |
| 535 | *wildcard_out = NULL; |
| 536 | |
| 537 | name_labels = count_labels(name); /* For 4035 5.3.2 check */ |
| 538 | |
| 539 | /* Sort RRset records into canonical order. |
| 540 | Note that at this point keyname and daemon->workspacename buffs are |
| 541 | unused, and used as workspace by the sort. */ |
| 542 | rrsetidx = sort_rrset(header, plen, rr_desc, rrsetidx, rrset, daemon->workspacename, keyname); |
| 543 | |
| 544 | /* Now try all the sigs to try and find one which validates */ |
| 545 | for (j = 0; j <sigidx; j++) |
| 546 | { |
| 547 | unsigned char *psav, *sig, *digest; |
| 548 | int i, wire_len, sig_len; |
| 549 | const struct nettle_hash *hash; |
| 550 | void *ctx; |
| 551 | char *name_start; |
| 552 | u32 nsigttl, ttl, orig_ttl; |
| 553 | |
| 554 | failflags &= ~DNSSEC_FAIL_NOSIG; |
| 555 | |
| 556 | p = sigs[j]; |
| 557 | GETLONG(ttl, p); |
| 558 | GETSHORT(rdlen, p); /* rdlen >= 18 checked previously */ |
| 559 | psav = p; |
| 560 | |
| 561 | p += 2; /* type_covered - already checked */ |
| 562 | algo = *p++; |
| 563 | labels = *p++; |
| 564 | GETLONG(orig_ttl, p); |
| 565 | GETLONG(sig_expiration, p); |
| 566 | GETLONG(sig_inception, p); |
| 567 | GETSHORT(key_tag, p); |
| 568 | |
| 569 | if (!extract_name(header, plen, &p, keyname, 1, 0)) |
| 570 | return STAT_BOGUS; |
| 571 | |
| 572 | if (!time_check) |
| 573 | failflags &= ~(DNSSEC_FAIL_NYV | DNSSEC_FAIL_EXP); |
| 574 | else |
| 575 | { |
| 576 | /* We must explicitly check against wanted values, because of SERIAL_UNDEF */ |
| 577 | if (serial_compare_32(curtime, sig_inception) == SERIAL_LT) |
| 578 | continue; |
| 579 | else |
| 580 | failflags &= ~DNSSEC_FAIL_NYV; |
| 581 | |
| 582 | if (serial_compare_32(curtime, sig_expiration) == SERIAL_GT) |
| 583 | continue; |
| 584 | else |
| 585 | failflags &= ~DNSSEC_FAIL_EXP; |
| 586 | } |
| 587 | |
| 588 | if (!(hash = hash_find(algo_digest_name(algo)))) |
| 589 | continue; |
| 590 | else |
| 591 | failflags &= ~DNSSEC_FAIL_NOKEYSUP; |
| 592 | |
| 593 | if (labels > name_labels || |
| 594 | !hash_init(hash, &ctx, &digest)) |
| 595 | continue; |
| 596 | |
| 597 | /* OK, we have the signature record, see if the relevant DNSKEY is in the cache. */ |
| 598 | if (!key && !(crecp = cache_find_by_name(NULL, keyname, now, F_DNSKEY))) |
| 599 | return STAT_NEED_KEY; |
| 600 | |
| 601 | if (ttl_out) |
| 602 | { |
| 603 | /* 4035 5.3.3 rules on TTLs */ |
| 604 | if (orig_ttl < ttl) |
| 605 | ttl = orig_ttl; |
| 606 | |
| 607 | if (time_check && difftime(sig_expiration, curtime) < ttl) |
| 608 | ttl = difftime(sig_expiration, curtime); |
| 609 | |
| 610 | *ttl_out = ttl; |
| 611 | } |
| 612 | |
| 613 | sig = p; |
| 614 | sig_len = rdlen - (p - psav); |
| 615 | |
| 616 | nsigttl = htonl(orig_ttl); |
| 617 | |
| 618 | hash->update(ctx, 18, psav); |
| 619 | wire_len = to_wire(keyname); |
| 620 | hash->update(ctx, (unsigned int)wire_len, (unsigned char*)keyname); |
| 621 | from_wire(keyname); |
| 622 | |
| 623 | #define RRBUFLEN 128 /* Most RRs are smaller than this. */ |
| 624 | |
| 625 | for (i = 0; i < rrsetidx; ++i) |
| 626 | { |
| 627 | int j; |
| 628 | struct rdata_state state; |
| 629 | u16 len; |
| 630 | unsigned char rrbuf[RRBUFLEN]; |
| 631 | |
| 632 | p = rrset[i]; |
| 633 | |
| 634 | if (!extract_name(header, plen, &p, name, 1, 10)) |
| 635 | return STAT_BOGUS; |
| 636 | |
| 637 | name_start = name; |
| 638 | |
| 639 | /* if more labels than in RRsig name, hash *.<no labels in rrsig labels field> 4035 5.3.2 */ |
| 640 | if (labels < name_labels) |
| 641 | { |
| 642 | for (j = name_labels - labels; j != 0; j--) |
| 643 | { |
| 644 | while (*name_start != '.' && *name_start != 0) |
| 645 | name_start++; |
| 646 | if (j != 1 && *name_start == '.') |
| 647 | name_start++; |
| 648 | } |
| 649 | |
| 650 | if (wildcard_out) |
| 651 | *wildcard_out = name_start+1; |
| 652 | |
| 653 | name_start--; |
| 654 | *name_start = '*'; |
| 655 | } |
| 656 | |
| 657 | wire_len = to_wire(name_start); |
| 658 | hash->update(ctx, (unsigned int)wire_len, (unsigned char *)name_start); |
| 659 | hash->update(ctx, 4, p); /* class and type */ |
| 660 | hash->update(ctx, 4, (unsigned char *)&nsigttl); |
| 661 | |
| 662 | p += 8; /* skip type, class, ttl */ |
| 663 | GETSHORT(rdlen, p); |
| 664 | if (!CHECK_LEN(header, p, plen, rdlen)) |
| 665 | return STAT_BOGUS; |
| 666 | |
| 667 | /* Optimisation for RR types which need no cannonicalisation. |
| 668 | This includes DNSKEY DS NSEC and NSEC3, which are also long, so |
| 669 | it saves lots of calls to get_rdata, and avoids the pessimal |
| 670 | segmented insertion, even with a small rrbuf[]. |
| 671 | |
| 672 | If canonicalisation is not needed, a simple insertion into the hash works. |
| 673 | */ |
| 674 | if (*rr_desc == (u16)-1) |
| 675 | { |
| 676 | len = htons(rdlen); |
| 677 | hash->update(ctx, 2, (unsigned char *)&len); |
| 678 | hash->update(ctx, rdlen, p); |
| 679 | } |
| 680 | else |
| 681 | { |
| 682 | /* canonicalise rdata and calculate length of same, use |
| 683 | name buffer as workspace for get_rdata. */ |
| 684 | state.ip = p; |
| 685 | state.op = NULL; |
| 686 | state.desc = rr_desc; |
| 687 | state.buff = name; |
| 688 | state.end = p + rdlen; |
| 689 | |
| 690 | for (j = 0; get_rdata(header, plen, &state); j++) |
| 691 | if (j < RRBUFLEN) |
| 692 | rrbuf[j] = *state.op; |
| 693 | |
| 694 | len = htons((u16)j); |
| 695 | hash->update(ctx, 2, (unsigned char *)&len); |
| 696 | |
| 697 | /* If the RR is shorter than RRBUFLEN (most of them, in practice) |
| 698 | then we can just digest it now. If it exceeds RRBUFLEN we have to |
| 699 | go back to the start and do it in chunks. */ |
| 700 | if (j >= RRBUFLEN) |
| 701 | { |
| 702 | state.ip = p; |
| 703 | state.op = NULL; |
| 704 | state.desc = rr_desc; |
| 705 | |
| 706 | for (j = 0; get_rdata(header, plen, &state); j++) |
| 707 | { |
| 708 | rrbuf[j] = *state.op; |
| 709 | |
| 710 | if (j == RRBUFLEN - 1) |
| 711 | { |
| 712 | hash->update(ctx, RRBUFLEN, rrbuf); |
| 713 | j = -1; |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | if (j != 0) |
| 719 | hash->update(ctx, j, rrbuf); |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | hash->digest(ctx, hash->digest_size, digest); |
| 724 | |
| 725 | /* namebuff used for workspace above, restore to leave unchanged on exit */ |
| 726 | p = (unsigned char*)(rrset[0]); |
| 727 | extract_name(header, plen, &p, name, 1, 0); |
| 728 | |
| 729 | if (key) |
| 730 | { |
| 731 | if (algo_in == algo && keytag_in == key_tag && |
| 732 | verify(key, keylen, sig, sig_len, digest, hash->digest_size, algo)) |
| 733 | return STAT_SECURE; |
| 734 | } |
| 735 | else |
| 736 | { |
| 737 | /* iterate through all possible keys 4035 5.3.1 */ |
| 738 | for (; crecp; crecp = cache_find_by_name(crecp, keyname, now, F_DNSKEY)) |
| 739 | if (crecp->addr.key.algo == algo && |
| 740 | crecp->addr.key.keytag == key_tag && |
| 741 | crecp->uid == (unsigned int)class && |
| 742 | verify(crecp->addr.key.keydata, crecp->addr.key.keylen, sig, sig_len, digest, hash->digest_size, algo)) |
| 743 | return (labels < name_labels) ? STAT_SECURE_WILDCARD : STAT_SECURE; |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | /* If we reach this point, no verifying key was found */ |
| 748 | return STAT_BOGUS | failflags | DNSSEC_FAIL_NOKEY; |
| 749 | } |
| 750 | |
| 751 | |
| 752 | /* The DNS packet is expected to contain the answer to a DNSKEY query. |
| 753 | Put all DNSKEYs in the answer which are valid into the cache. |
| 754 | return codes: |
| 755 | STAT_OK Done, key(s) in cache. |
| 756 | STAT_BOGUS No DNSKEYs found, which can be validated with DS, |
| 757 | or self-sign for DNSKEY RRset is not valid, bad packet. |
| 758 | STAT_NEED_DS DS records to validate a key not found, name in keyname |
| 759 | STAT_NEED_KEY DNSKEY records to validate a key not found, name in keyname |
| 760 | */ |
| 761 | int dnssec_validate_by_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class) |
| 762 | { |
| 763 | unsigned char *psave, *p = (unsigned char *)(header+1); |
| 764 | struct crec *crecp, *recp1; |
| 765 | int rc, j, qtype, qclass, rdlen, flags, algo, valid, keytag; |
| 766 | unsigned long ttl, sig_ttl; |
| 767 | struct blockdata *key; |
| 768 | union all_addr a; |
| 769 | int failflags = DNSSEC_FAIL_NOSIG | DNSSEC_FAIL_NODSSUP | DNSSEC_FAIL_NOZONE | DNSSEC_FAIL_NOKEY; |
| 770 | |
| 771 | if (ntohs(header->qdcount) != 1 || |
| 772 | RCODE(header) == SERVFAIL || RCODE(header) == REFUSED || |
| 773 | !extract_name(header, plen, &p, name, 1, 4)) |
| 774 | return STAT_BOGUS | DNSSEC_FAIL_NOKEY; |
| 775 | |
| 776 | GETSHORT(qtype, p); |
| 777 | GETSHORT(qclass, p); |
| 778 | |
| 779 | if (qtype != T_DNSKEY || qclass != class || ntohs(header->ancount) == 0) |
| 780 | return STAT_BOGUS | DNSSEC_FAIL_NOKEY; |
| 781 | |
| 782 | /* See if we have cached a DS record which validates this key */ |
| 783 | if (!(crecp = cache_find_by_name(NULL, name, now, F_DS))) |
| 784 | { |
| 785 | strcpy(keyname, name); |
| 786 | return STAT_NEED_DS; |
| 787 | } |
| 788 | |
| 789 | /* NOTE, we need to find ONE DNSKEY which matches the DS */ |
| 790 | for (valid = 0, j = ntohs(header->ancount); j != 0 && !valid; j--) |
| 791 | { |
| 792 | /* Ensure we have type, class TTL and length */ |
| 793 | if (!(rc = extract_name(header, plen, &p, name, 0, 10))) |
| 794 | return STAT_BOGUS; /* bad packet */ |
| 795 | |
| 796 | GETSHORT(qtype, p); |
| 797 | GETSHORT(qclass, p); |
| 798 | GETLONG(ttl, p); |
| 799 | GETSHORT(rdlen, p); |
| 800 | |
| 801 | if (!CHECK_LEN(header, p, plen, rdlen) || rdlen < 4) |
| 802 | return STAT_BOGUS; /* bad packet */ |
| 803 | |
| 804 | if (qclass != class || qtype != T_DNSKEY || rc == 2) |
| 805 | { |
| 806 | p += rdlen; |
| 807 | continue; |
| 808 | } |
| 809 | |
| 810 | psave = p; |
| 811 | |
| 812 | GETSHORT(flags, p); |
| 813 | if (*p++ != 3) |
| 814 | return STAT_BOGUS | DNSSEC_FAIL_NOKEY; |
| 815 | algo = *p++; |
| 816 | keytag = dnskey_keytag(algo, flags, p, rdlen - 4); |
| 817 | key = NULL; |
| 818 | |
| 819 | /* key must have zone key flag set */ |
| 820 | if (flags & 0x100) |
| 821 | { |
| 822 | key = blockdata_alloc((char*)p, rdlen - 4); |
| 823 | failflags &= ~DNSSEC_FAIL_NOZONE; |
| 824 | } |
| 825 | |
| 826 | p = psave; |
| 827 | |
| 828 | if (!ADD_RDLEN(header, p, plen, rdlen)) |
| 829 | { |
| 830 | if (key) |
| 831 | blockdata_free(key); |
| 832 | return STAT_BOGUS; /* bad packet */ |
| 833 | } |
| 834 | |
| 835 | /* No zone key flag or malloc failure */ |
| 836 | if (!key) |
| 837 | continue; |
| 838 | |
| 839 | for (recp1 = crecp; recp1; recp1 = cache_find_by_name(recp1, name, now, F_DS)) |
| 840 | { |
| 841 | void *ctx; |
| 842 | unsigned char *digest, *ds_digest; |
| 843 | const struct nettle_hash *hash; |
| 844 | int sigcnt, rrcnt; |
| 845 | int wire_len; |
| 846 | |
| 847 | if (recp1->addr.ds.algo == algo && |
| 848 | recp1->addr.ds.keytag == keytag && |
| 849 | recp1->uid == (unsigned int)class) |
| 850 | { |
| 851 | failflags &= ~DNSSEC_FAIL_NOKEY; |
| 852 | |
| 853 | if (!(hash = hash_find(ds_digest_name(recp1->addr.ds.digest)))) |
| 854 | continue; |
| 855 | else |
| 856 | failflags &= ~DNSSEC_FAIL_NODSSUP; |
| 857 | |
| 858 | if (!hash_init(hash, &ctx, &digest)) |
| 859 | continue; |
| 860 | |
| 861 | wire_len = to_wire(name); |
| 862 | |
| 863 | /* Note that digest may be different between DSs, so |
| 864 | we can't move this outside the loop. */ |
| 865 | hash->update(ctx, (unsigned int)wire_len, (unsigned char *)name); |
| 866 | hash->update(ctx, (unsigned int)rdlen, psave); |
| 867 | hash->digest(ctx, hash->digest_size, digest); |
| 868 | |
| 869 | from_wire(name); |
| 870 | |
| 871 | if (!(recp1->flags & F_NEG) && |
| 872 | recp1->addr.ds.keylen == (int)hash->digest_size && |
| 873 | (ds_digest = blockdata_retrieve(recp1->addr.ds.keydata, recp1->addr.ds.keylen, NULL)) && |
| 874 | memcmp(ds_digest, digest, recp1->addr.ds.keylen) == 0 && |
| 875 | explore_rrset(header, plen, class, T_DNSKEY, name, keyname, &sigcnt, &rrcnt) && |
| 876 | rrcnt != 0) |
| 877 | { |
| 878 | if (sigcnt == 0) |
| 879 | continue; |
| 880 | else |
| 881 | failflags &= ~DNSSEC_FAIL_NOSIG; |
| 882 | |
| 883 | rc = validate_rrset(now, header, plen, class, T_DNSKEY, sigcnt, rrcnt, name, keyname, |
| 884 | NULL, key, rdlen - 4, algo, keytag, &sig_ttl); |
| 885 | |
| 886 | failflags &= rc; |
| 887 | |
| 888 | if (STAT_ISEQUAL(rc, STAT_SECURE)) |
| 889 | { |
| 890 | valid = 1; |
| 891 | break; |
| 892 | } |
| 893 | } |
| 894 | } |
| 895 | } |
| 896 | blockdata_free(key); |
| 897 | } |
| 898 | |
| 899 | if (valid) |
| 900 | { |
| 901 | /* DNSKEY RRset determined to be OK, now cache it. */ |
| 902 | cache_start_insert(); |
| 903 | |
| 904 | p = skip_questions(header, plen); |
| 905 | |
| 906 | for (j = ntohs(header->ancount); j != 0; j--) |
| 907 | { |
| 908 | /* Ensure we have type, class TTL and length */ |
| 909 | if (!(rc = extract_name(header, plen, &p, name, 0, 10))) |
| 910 | return STAT_BOGUS; /* bad packet */ |
| 911 | |
| 912 | GETSHORT(qtype, p); |
| 913 | GETSHORT(qclass, p); |
| 914 | GETLONG(ttl, p); |
| 915 | GETSHORT(rdlen, p); |
| 916 | |
| 917 | /* TTL may be limited by sig. */ |
| 918 | if (sig_ttl < ttl) |
| 919 | ttl = sig_ttl; |
| 920 | |
| 921 | if (!CHECK_LEN(header, p, plen, rdlen)) |
| 922 | return STAT_BOGUS; /* bad packet */ |
| 923 | |
| 924 | if (qclass == class && rc == 1) |
| 925 | { |
| 926 | psave = p; |
| 927 | |
| 928 | if (qtype == T_DNSKEY) |
| 929 | { |
| 930 | if (rdlen < 4) |
| 931 | return STAT_BOGUS; /* bad packet */ |
| 932 | |
| 933 | GETSHORT(flags, p); |
| 934 | if (*p++ != 3) |
| 935 | return STAT_BOGUS; |
| 936 | algo = *p++; |
| 937 | keytag = dnskey_keytag(algo, flags, p, rdlen - 4); |
| 938 | |
| 939 | if ((key = blockdata_alloc((char*)p, rdlen - 4))) |
| 940 | { |
| 941 | a.key.keylen = rdlen - 4; |
| 942 | a.key.keydata = key; |
| 943 | a.key.algo = algo; |
| 944 | a.key.keytag = keytag; |
| 945 | a.key.flags = flags; |
| 946 | |
| 947 | if (!cache_insert(name, &a, class, now, ttl, F_FORWARD | F_DNSKEY | F_DNSSECOK)) |
| 948 | { |
| 949 | blockdata_free(key); |
| 950 | return STAT_BOGUS; |
| 951 | } |
| 952 | else |
| 953 | { |
| 954 | a.log.keytag = keytag; |
| 955 | a.log.algo = algo; |
| 956 | if (algo_digest_name(algo)) |
| 957 | log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %hu, algo %hu"); |
| 958 | else |
| 959 | log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DNSKEY keytag %hu, algo %hu (not supported)"); |
| 960 | } |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | p = psave; |
| 965 | } |
| 966 | |
| 967 | if (!ADD_RDLEN(header, p, plen, rdlen)) |
| 968 | return STAT_BOGUS; /* bad packet */ |
| 969 | } |
| 970 | |
| 971 | /* commit cache insert. */ |
| 972 | cache_end_insert(); |
| 973 | return STAT_OK; |
| 974 | } |
| 975 | |
| 976 | log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DNSKEY"); |
| 977 | return STAT_BOGUS | failflags; |
| 978 | } |
| 979 | |
| 980 | /* The DNS packet is expected to contain the answer to a DS query |
| 981 | Put all DSs in the answer which are valid into the cache. |
| 982 | Also handles replies which prove that there's no DS at this location, |
| 983 | either because the zone is unsigned or this isn't a zone cut. These are |
| 984 | cached too. |
| 985 | return codes: |
| 986 | STAT_OK At least one valid DS found and in cache. |
| 987 | STAT_BOGUS no DS in reply or not signed, fails validation, bad packet. |
| 988 | STAT_NEED_KEY DNSKEY records to validate a DS not found, name in keyname |
| 989 | STAT_NEED_DS DS record needed. |
| 990 | */ |
| 991 | |
| 992 | int dnssec_validate_ds(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, int class) |
| 993 | { |
| 994 | unsigned char *p = (unsigned char *)(header+1); |
| 995 | int qtype, qclass, rc, i, neganswer, nons, neg_ttl = 0; |
| 996 | int aclass, atype, rdlen; |
| 997 | unsigned long ttl; |
| 998 | union all_addr a; |
| 999 | |
| 1000 | if (ntohs(header->qdcount) != 1 || |
| 1001 | !(p = skip_name(p, header, plen, 4))) |
| 1002 | return STAT_BOGUS; |
| 1003 | |
| 1004 | GETSHORT(qtype, p); |
| 1005 | GETSHORT(qclass, p); |
| 1006 | |
| 1007 | if (qtype != T_DS || qclass != class) |
| 1008 | rc = STAT_BOGUS; |
| 1009 | else |
| 1010 | rc = dnssec_validate_reply(now, header, plen, name, keyname, NULL, 0, &neganswer, &nons, &neg_ttl); |
| 1011 | |
| 1012 | if (STAT_ISEQUAL(rc, STAT_INSECURE)) |
| 1013 | { |
| 1014 | my_syslog(LOG_WARNING, _("Insecure DS reply received for %s, check domain configuration and upstream DNS server DNSSEC support"), name); |
| 1015 | log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DS - not secure"); |
| 1016 | return STAT_BOGUS | DNSSEC_FAIL_INDET; |
| 1017 | } |
| 1018 | |
| 1019 | p = (unsigned char *)(header+1); |
| 1020 | extract_name(header, plen, &p, name, 1, 4); |
| 1021 | p += 4; /* qtype, qclass */ |
| 1022 | |
| 1023 | /* If the key needed to validate the DS is on the same domain as the DS, we'll |
| 1024 | loop getting nowhere. Stop that now. This can happen of the DS answer comes |
| 1025 | from the DS's zone, and not the parent zone. */ |
| 1026 | if (STAT_ISEQUAL(rc, STAT_NEED_KEY) && hostname_isequal(name, keyname)) |
| 1027 | { |
| 1028 | log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, "BOGUS DS"); |
| 1029 | return STAT_BOGUS; |
| 1030 | } |
| 1031 | |
| 1032 | if (!STAT_ISEQUAL(rc, STAT_SECURE)) |
| 1033 | return rc; |
| 1034 | |
| 1035 | if (!neganswer) |
| 1036 | { |
| 1037 | cache_start_insert(); |
| 1038 | |
| 1039 | for (i = 0; i < ntohs(header->ancount); i++) |
| 1040 | { |
| 1041 | if (!(rc = extract_name(header, plen, &p, name, 0, 10))) |
| 1042 | return STAT_BOGUS; /* bad packet */ |
| 1043 | |
| 1044 | GETSHORT(atype, p); |
| 1045 | GETSHORT(aclass, p); |
| 1046 | GETLONG(ttl, p); |
| 1047 | GETSHORT(rdlen, p); |
| 1048 | |
| 1049 | if (!CHECK_LEN(header, p, plen, rdlen)) |
| 1050 | return STAT_BOGUS; /* bad packet */ |
| 1051 | |
| 1052 | if (aclass == class && atype == T_DS && rc == 1) |
| 1053 | { |
| 1054 | int algo, digest, keytag; |
| 1055 | unsigned char *psave = p; |
| 1056 | struct blockdata *key; |
| 1057 | |
| 1058 | if (rdlen < 4) |
| 1059 | return STAT_BOGUS; /* bad packet */ |
| 1060 | |
| 1061 | GETSHORT(keytag, p); |
| 1062 | algo = *p++; |
| 1063 | digest = *p++; |
| 1064 | |
| 1065 | if ((key = blockdata_alloc((char*)p, rdlen - 4))) |
| 1066 | { |
| 1067 | a.ds.digest = digest; |
| 1068 | a.ds.keydata = key; |
| 1069 | a.ds.algo = algo; |
| 1070 | a.ds.keytag = keytag; |
| 1071 | a.ds.keylen = rdlen - 4; |
| 1072 | |
| 1073 | if (!cache_insert(name, &a, class, now, ttl, F_FORWARD | F_DS | F_DNSSECOK)) |
| 1074 | { |
| 1075 | blockdata_free(key); |
| 1076 | return STAT_BOGUS; |
| 1077 | } |
| 1078 | else |
| 1079 | { |
| 1080 | a.log.keytag = keytag; |
| 1081 | a.log.algo = algo; |
| 1082 | a.log.digest = digest; |
| 1083 | if (ds_digest_name(digest) && algo_digest_name(algo)) |
| 1084 | log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %hu, algo %hu, digest %hu"); |
| 1085 | else |
| 1086 | log_query(F_NOEXTRA | F_KEYTAG | F_UPSTREAM, name, &a, "DS keytag %hu, algo %hu, digest %hu (not supported)"); |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | p = psave; |
| 1091 | } |
| 1092 | if (!ADD_RDLEN(header, p, plen, rdlen)) |
| 1093 | return STAT_BOGUS; /* bad packet */ |
| 1094 | } |
| 1095 | |
| 1096 | cache_end_insert(); |
| 1097 | |
| 1098 | } |
| 1099 | else |
| 1100 | { |
| 1101 | int flags = F_FORWARD | F_DS | F_NEG | F_DNSSECOK; |
| 1102 | |
| 1103 | if (RCODE(header) == NXDOMAIN) |
| 1104 | flags |= F_NXDOMAIN; |
| 1105 | |
| 1106 | /* We only cache validated DS records, DNSSECOK flag hijacked |
| 1107 | to store presence/absence of NS. */ |
| 1108 | if (nons) |
| 1109 | flags &= ~F_DNSSECOK; |
| 1110 | |
| 1111 | cache_start_insert(); |
| 1112 | |
| 1113 | /* Use TTL from NSEC for negative cache entries */ |
| 1114 | if (!cache_insert(name, NULL, class, now, neg_ttl, flags)) |
| 1115 | return STAT_BOGUS; |
| 1116 | |
| 1117 | cache_end_insert(); |
| 1118 | |
| 1119 | log_query(F_NOEXTRA | F_UPSTREAM, name, NULL, nons ? "no DS/cut" : "no DS"); |
| 1120 | } |
| 1121 | |
| 1122 | return STAT_OK; |
| 1123 | } |
| 1124 | |
| 1125 | |
| 1126 | /* 4034 6.1 */ |
| 1127 | static int hostname_cmp(const char *a, const char *b) |
| 1128 | { |
| 1129 | char *sa, *ea, *ca, *sb, *eb, *cb; |
| 1130 | unsigned char ac, bc; |
| 1131 | |
| 1132 | sa = ea = (char *)a + strlen(a); |
| 1133 | sb = eb = (char *)b + strlen(b); |
| 1134 | |
| 1135 | while (1) |
| 1136 | { |
| 1137 | while (sa != a && *(sa-1) != '.') |
| 1138 | sa--; |
| 1139 | |
| 1140 | while (sb != b && *(sb-1) != '.') |
| 1141 | sb--; |
| 1142 | |
| 1143 | ca = sa; |
| 1144 | cb = sb; |
| 1145 | |
| 1146 | while (1) |
| 1147 | { |
| 1148 | if (ca == ea) |
| 1149 | { |
| 1150 | if (cb == eb) |
| 1151 | break; |
| 1152 | |
| 1153 | return -1; |
| 1154 | } |
| 1155 | |
| 1156 | if (cb == eb) |
| 1157 | return 1; |
| 1158 | |
| 1159 | ac = (unsigned char) *ca++; |
| 1160 | bc = (unsigned char) *cb++; |
| 1161 | |
| 1162 | if (ac >= 'A' && ac <= 'Z') |
| 1163 | ac += 'a' - 'A'; |
| 1164 | if (bc >= 'A' && bc <= 'Z') |
| 1165 | bc += 'a' - 'A'; |
| 1166 | |
| 1167 | if (ac < bc) |
| 1168 | return -1; |
| 1169 | else if (ac != bc) |
| 1170 | return 1; |
| 1171 | } |
| 1172 | |
| 1173 | |
| 1174 | if (sa == a) |
| 1175 | { |
| 1176 | if (sb == b) |
| 1177 | return 0; |
| 1178 | |
| 1179 | return -1; |
| 1180 | } |
| 1181 | |
| 1182 | if (sb == b) |
| 1183 | return 1; |
| 1184 | |
| 1185 | ea = --sa; |
| 1186 | eb = --sb; |
| 1187 | } |
| 1188 | } |
| 1189 | |
| 1190 | static int prove_non_existence_nsec(struct dns_header *header, size_t plen, unsigned char **nsecs, unsigned char **labels, int nsec_count, |
| 1191 | char *workspace1_in, char *workspace2, char *name, int type, int *nons) |
| 1192 | { |
| 1193 | int i, rc, rdlen; |
| 1194 | unsigned char *p, *psave; |
| 1195 | int offset = (type & 0xff) >> 3; |
| 1196 | int mask = 0x80 >> (type & 0x07); |
| 1197 | |
| 1198 | if (nons) |
| 1199 | *nons = 1; |
| 1200 | |
| 1201 | /* Find NSEC record that proves name doesn't exist */ |
| 1202 | for (i = 0; i < nsec_count; i++) |
| 1203 | { |
| 1204 | char *workspace1 = workspace1_in; |
| 1205 | int sig_labels, name_labels; |
| 1206 | |
| 1207 | p = nsecs[i]; |
| 1208 | if (!extract_name(header, plen, &p, workspace1, 1, 10)) |
| 1209 | return 0; |
| 1210 | p += 8; /* class, type, TTL */ |
| 1211 | GETSHORT(rdlen, p); |
| 1212 | psave = p; |
| 1213 | if (!extract_name(header, plen, &p, workspace2, 1, 10)) |
| 1214 | return 0; |
| 1215 | |
| 1216 | /* If NSEC comes from wildcard expansion, use original wildcard |
| 1217 | as name for computation. */ |
| 1218 | sig_labels = *labels[i]; |
| 1219 | name_labels = count_labels(workspace1); |
| 1220 | |
| 1221 | if (sig_labels < name_labels) |
| 1222 | { |
| 1223 | int k; |
| 1224 | for (k = name_labels - sig_labels; k != 0; k--) |
| 1225 | { |
| 1226 | while (*workspace1 != '.' && *workspace1 != 0) |
| 1227 | workspace1++; |
| 1228 | if (k != 1 && *workspace1 == '.') |
| 1229 | workspace1++; |
| 1230 | } |
| 1231 | |
| 1232 | workspace1--; |
| 1233 | *workspace1 = '*'; |
| 1234 | } |
| 1235 | |
| 1236 | rc = hostname_cmp(workspace1, name); |
| 1237 | |
| 1238 | if (rc == 0) |
| 1239 | { |
| 1240 | /* 4035 para 5.4. Last sentence */ |
| 1241 | if (type == T_NSEC || type == T_RRSIG) |
| 1242 | return 1; |
| 1243 | |
| 1244 | /* NSEC with the same name as the RR we're testing, check |
| 1245 | that the type in question doesn't appear in the type map */ |
| 1246 | rdlen -= p - psave; |
| 1247 | /* rdlen is now length of type map, and p points to it */ |
| 1248 | |
| 1249 | /* If we can prove that there's no NS record, return that information. */ |
| 1250 | if (nons && rdlen >= 2 && p[0] == 0 && (p[2] & (0x80 >> T_NS)) != 0) |
| 1251 | *nons = 0; |
| 1252 | |
| 1253 | if (rdlen >= 2 && p[0] == 0) |
| 1254 | { |
| 1255 | /* A CNAME answer would also be valid, so if there's a CNAME is should |
| 1256 | have been returned. */ |
| 1257 | if ((p[2] & (0x80 >> T_CNAME)) != 0) |
| 1258 | return 0; |
| 1259 | |
| 1260 | /* If the SOA bit is set for a DS record, then we have the |
| 1261 | DS from the wrong side of the delegation. For the root DS, |
| 1262 | this is expected. */ |
| 1263 | if (name_labels != 0 && type == T_DS && (p[2] & (0x80 >> T_SOA)) != 0) |
| 1264 | return 0; |
| 1265 | } |
| 1266 | |
| 1267 | while (rdlen >= 2) |
| 1268 | { |
| 1269 | if (!CHECK_LEN(header, p, plen, rdlen)) |
| 1270 | return 0; |
| 1271 | |
| 1272 | if (p[0] == type >> 8) |
| 1273 | { |
| 1274 | /* Does the NSEC say our type exists? */ |
| 1275 | if (offset < p[1] && (p[offset+2] & mask) != 0) |
| 1276 | return 0; |
| 1277 | |
| 1278 | break; /* finished checking */ |
| 1279 | } |
| 1280 | |
| 1281 | rdlen -= p[1]; |
| 1282 | p += p[1]; |
| 1283 | } |
| 1284 | |
| 1285 | return 1; |
| 1286 | } |
| 1287 | else if (rc == -1) |
| 1288 | { |
| 1289 | /* Normal case, name falls between NSEC name and next domain name, |
| 1290 | wrap around case, name falls between NSEC name (rc == -1) and end */ |
| 1291 | if (hostname_cmp(workspace2, name) >= 0 || hostname_cmp(workspace1, workspace2) >= 0) |
| 1292 | return 1; |
| 1293 | } |
| 1294 | else |
| 1295 | { |
| 1296 | /* wrap around case, name falls between start and next domain name */ |
| 1297 | if (hostname_cmp(workspace1, workspace2) >= 0 && hostname_cmp(workspace2, name) >=0 ) |
| 1298 | return 1; |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | return 0; |
| 1303 | } |
| 1304 | |
| 1305 | /* return digest length, or zero on error */ |
| 1306 | static int hash_name(char *in, unsigned char **out, struct nettle_hash const *hash, |
| 1307 | unsigned char *salt, int salt_len, int iterations) |
| 1308 | { |
| 1309 | void *ctx; |
| 1310 | unsigned char *digest; |
| 1311 | int i; |
| 1312 | |
| 1313 | if (!hash_init(hash, &ctx, &digest)) |
| 1314 | return 0; |
| 1315 | |
| 1316 | hash->update(ctx, to_wire(in), (unsigned char *)in); |
| 1317 | hash->update(ctx, salt_len, salt); |
| 1318 | hash->digest(ctx, hash->digest_size, digest); |
| 1319 | |
| 1320 | for(i = 0; i < iterations; i++) |
| 1321 | { |
| 1322 | hash->update(ctx, hash->digest_size, digest); |
| 1323 | hash->update(ctx, salt_len, salt); |
| 1324 | hash->digest(ctx, hash->digest_size, digest); |
| 1325 | } |
| 1326 | |
| 1327 | from_wire(in); |
| 1328 | |
| 1329 | *out = digest; |
| 1330 | return hash->digest_size; |
| 1331 | } |
| 1332 | |
| 1333 | /* Decode base32 to first "." or end of string */ |
| 1334 | static int base32_decode(char *in, unsigned char *out) |
| 1335 | { |
| 1336 | int oc, on, c, mask, i; |
| 1337 | unsigned char *p = out; |
| 1338 | |
| 1339 | for (c = *in, oc = 0, on = 0; c != 0 && c != '.'; c = *++in) |
| 1340 | { |
| 1341 | if (c >= '0' && c <= '9') |
| 1342 | c -= '0'; |
| 1343 | else if (c >= 'a' && c <= 'v') |
| 1344 | c -= 'a', c += 10; |
| 1345 | else if (c >= 'A' && c <= 'V') |
| 1346 | c -= 'A', c += 10; |
| 1347 | else |
| 1348 | return 0; |
| 1349 | |
| 1350 | for (mask = 0x10, i = 0; i < 5; i++) |
| 1351 | { |
| 1352 | if (c & mask) |
| 1353 | oc |= 1; |
| 1354 | mask = mask >> 1; |
| 1355 | if (((++on) & 7) == 0) |
| 1356 | *p++ = oc; |
| 1357 | oc = oc << 1; |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | if ((on & 7) != 0) |
| 1362 | return 0; |
| 1363 | |
| 1364 | return p - out; |
| 1365 | } |
| 1366 | |
| 1367 | static int check_nsec3_coverage(struct dns_header *header, size_t plen, int digest_len, unsigned char *digest, int type, |
| 1368 | char *workspace1, char *workspace2, unsigned char **nsecs, int nsec_count, int *nons, int name_labels) |
| 1369 | { |
| 1370 | int i, hash_len, salt_len, base32_len, rdlen, flags; |
| 1371 | unsigned char *p, *psave; |
| 1372 | |
| 1373 | for (i = 0; i < nsec_count; i++) |
| 1374 | if ((p = nsecs[i])) |
| 1375 | { |
| 1376 | if (!extract_name(header, plen, &p, workspace1, 1, 0) || |
| 1377 | !(base32_len = base32_decode(workspace1, (unsigned char *)workspace2))) |
| 1378 | return 0; |
| 1379 | |
| 1380 | p += 8; /* class, type, TTL */ |
| 1381 | GETSHORT(rdlen, p); |
| 1382 | psave = p; |
| 1383 | p++; /* algo */ |
| 1384 | flags = *p++; /* flags */ |
| 1385 | p += 2; /* iterations */ |
| 1386 | salt_len = *p++; /* salt_len */ |
| 1387 | p += salt_len; /* salt */ |
| 1388 | hash_len = *p++; /* p now points to next hashed name */ |
| 1389 | |
| 1390 | if (!CHECK_LEN(header, p, plen, hash_len)) |
| 1391 | return 0; |
| 1392 | |
| 1393 | if (digest_len == base32_len && hash_len == base32_len) |
| 1394 | { |
| 1395 | int rc = memcmp(workspace2, digest, digest_len); |
| 1396 | |
| 1397 | if (rc == 0) |
| 1398 | { |
| 1399 | /* We found an NSEC3 whose hashed name exactly matches the query, so |
| 1400 | we just need to check the type map. p points to the RR data for the record. */ |
| 1401 | |
| 1402 | int offset = (type & 0xff) >> 3; |
| 1403 | int mask = 0x80 >> (type & 0x07); |
| 1404 | |
| 1405 | p += hash_len; /* skip next-domain hash */ |
| 1406 | rdlen -= p - psave; |
| 1407 | |
| 1408 | if (!CHECK_LEN(header, p, plen, rdlen)) |
| 1409 | return 0; |
| 1410 | |
| 1411 | if (rdlen >= 2 && p[0] == 0) |
| 1412 | { |
| 1413 | /* If we can prove that there's no NS record, return that information. */ |
| 1414 | if (nons && (p[2] & (0x80 >> T_NS)) != 0) |
| 1415 | *nons = 0; |
| 1416 | |
| 1417 | /* A CNAME answer would also be valid, so if there's a CNAME is should |
| 1418 | have been returned. */ |
| 1419 | if ((p[2] & (0x80 >> T_CNAME)) != 0) |
| 1420 | return 0; |
| 1421 | |
| 1422 | /* If the SOA bit is set for a DS record, then we have the |
| 1423 | DS from the wrong side of the delegation. For the root DS, |
| 1424 | this is expected. */ |
| 1425 | if (name_labels != 0 && type == T_DS && (p[2] & (0x80 >> T_SOA)) != 0) |
| 1426 | return 0; |
| 1427 | } |
| 1428 | |
| 1429 | while (rdlen >= 2) |
| 1430 | { |
| 1431 | if (p[0] == type >> 8) |
| 1432 | { |
| 1433 | /* Does the NSEC3 say our type exists? */ |
| 1434 | if (offset < p[1] && (p[offset+2] & mask) != 0) |
| 1435 | return 0; |
| 1436 | |
| 1437 | break; /* finished checking */ |
| 1438 | } |
| 1439 | |
| 1440 | rdlen -= p[1]; |
| 1441 | p += p[1]; |
| 1442 | } |
| 1443 | |
| 1444 | return 1; |
| 1445 | } |
| 1446 | else if (rc < 0) |
| 1447 | { |
| 1448 | /* Normal case, hash falls between NSEC3 name-hash and next domain name-hash, |
| 1449 | wrap around case, name-hash falls between NSEC3 name-hash and end */ |
| 1450 | if (memcmp(p, digest, digest_len) >= 0 || memcmp(workspace2, p, digest_len) >= 0) |
| 1451 | { |
| 1452 | if ((flags & 0x01) && nons) /* opt out */ |
| 1453 | *nons = 0; |
| 1454 | |
| 1455 | return 1; |
| 1456 | } |
| 1457 | } |
| 1458 | else |
| 1459 | { |
| 1460 | /* wrap around case, name falls between start and next domain name */ |
| 1461 | if (memcmp(workspace2, p, digest_len) >= 0 && memcmp(p, digest, digest_len) >= 0) |
| 1462 | { |
| 1463 | if ((flags & 0x01) && nons) /* opt out */ |
| 1464 | *nons = 0; |
| 1465 | |
| 1466 | return 1; |
| 1467 | } |
| 1468 | } |
| 1469 | } |
| 1470 | } |
| 1471 | |
| 1472 | return 0; |
| 1473 | } |
| 1474 | |
| 1475 | static int prove_non_existence_nsec3(struct dns_header *header, size_t plen, unsigned char **nsecs, int nsec_count, |
| 1476 | char *workspace1, char *workspace2, char *name, int type, char *wildname, int *nons) |
| 1477 | { |
| 1478 | unsigned char *salt, *p, *digest; |
| 1479 | int digest_len, i, iterations, salt_len, base32_len, algo = 0; |
| 1480 | struct nettle_hash const *hash; |
| 1481 | char *closest_encloser, *next_closest, *wildcard; |
| 1482 | |
| 1483 | if (nons) |
| 1484 | *nons = 1; |
| 1485 | |
| 1486 | /* Look though the NSEC3 records to find the first one with |
| 1487 | an algorithm we support. |
| 1488 | |
| 1489 | Take the algo, iterations, and salt of that record |
| 1490 | as the ones we're going to use, and prune any |
| 1491 | that don't match. */ |
| 1492 | |
| 1493 | for (i = 0; i < nsec_count; i++) |
| 1494 | { |
| 1495 | if (!(p = skip_name(nsecs[i], header, plen, 15))) |
| 1496 | return 0; /* bad packet */ |
| 1497 | |
| 1498 | p += 10; /* type, class, TTL, rdlen */ |
| 1499 | algo = *p++; |
| 1500 | |
| 1501 | if ((hash = hash_find(nsec3_digest_name(algo)))) |
| 1502 | break; /* known algo */ |
| 1503 | } |
| 1504 | |
| 1505 | /* No usable NSEC3s */ |
| 1506 | if (i == nsec_count) |
| 1507 | return 0; |
| 1508 | |
| 1509 | p++; /* flags */ |
| 1510 | |
| 1511 | GETSHORT (iterations, p); |
| 1512 | /* Upper-bound iterations, to avoid DoS. |
| 1513 | Strictly, there are lower bounds for small keys, but |
| 1514 | since we don't have key size info here, at least limit |
| 1515 | to the largest bound, for 4096-bit keys. RFC 5155 10.3 */ |
| 1516 | if (iterations > 2500) |
| 1517 | return 0; |
| 1518 | |
| 1519 | salt_len = *p++; |
| 1520 | salt = p; |
| 1521 | if (!CHECK_LEN(header, salt, plen, salt_len)) |
| 1522 | return 0; /* bad packet */ |
| 1523 | |
| 1524 | /* Now prune so we only have NSEC3 records with same iterations, salt and algo */ |
| 1525 | for (i = 0; i < nsec_count; i++) |
| 1526 | { |
| 1527 | unsigned char *nsec3p = nsecs[i]; |
| 1528 | int this_iter, flags; |
| 1529 | |
| 1530 | nsecs[i] = NULL; /* Speculative, will be restored if OK. */ |
| 1531 | |
| 1532 | if (!(p = skip_name(nsec3p, header, plen, 15))) |
| 1533 | return 0; /* bad packet */ |
| 1534 | |
| 1535 | p += 10; /* type, class, TTL, rdlen */ |
| 1536 | |
| 1537 | if (*p++ != algo) |
| 1538 | continue; |
| 1539 | |
| 1540 | flags = *p++; /* flags */ |
| 1541 | |
| 1542 | /* 5155 8.2 */ |
| 1543 | if (flags != 0 && flags != 1) |
| 1544 | continue; |
| 1545 | |
| 1546 | GETSHORT(this_iter, p); |
| 1547 | if (this_iter != iterations) |
| 1548 | continue; |
| 1549 | |
| 1550 | if (salt_len != *p++) |
| 1551 | continue; |
| 1552 | |
| 1553 | if (!CHECK_LEN(header, p, plen, salt_len)) |
| 1554 | return 0; /* bad packet */ |
| 1555 | |
| 1556 | if (memcmp(p, salt, salt_len) != 0) |
| 1557 | continue; |
| 1558 | |
| 1559 | /* All match, put the pointer back */ |
| 1560 | nsecs[i] = nsec3p; |
| 1561 | } |
| 1562 | |
| 1563 | if ((digest_len = hash_name(name, &digest, hash, salt, salt_len, iterations)) == 0) |
| 1564 | return 0; |
| 1565 | |
| 1566 | if (check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, nons, count_labels(name))) |
| 1567 | return 1; |
| 1568 | |
| 1569 | /* Can't find an NSEC3 which covers the name directly, we need the "closest encloser NSEC3" |
| 1570 | or an answer inferred from a wildcard record. */ |
| 1571 | closest_encloser = name; |
| 1572 | next_closest = NULL; |
| 1573 | |
| 1574 | do |
| 1575 | { |
| 1576 | if (*closest_encloser == '.') |
| 1577 | closest_encloser++; |
| 1578 | |
| 1579 | if (wildname && hostname_isequal(closest_encloser, wildname)) |
| 1580 | break; |
| 1581 | |
| 1582 | if ((digest_len = hash_name(closest_encloser, &digest, hash, salt, salt_len, iterations)) == 0) |
| 1583 | return 0; |
| 1584 | |
| 1585 | for (i = 0; i < nsec_count; i++) |
| 1586 | if ((p = nsecs[i])) |
| 1587 | { |
| 1588 | if (!extract_name(header, plen, &p, workspace1, 1, 0) || |
| 1589 | !(base32_len = base32_decode(workspace1, (unsigned char *)workspace2))) |
| 1590 | return 0; |
| 1591 | |
| 1592 | if (digest_len == base32_len && |
| 1593 | memcmp(digest, workspace2, digest_len) == 0) |
| 1594 | break; /* Gotit */ |
| 1595 | } |
| 1596 | |
| 1597 | if (i != nsec_count) |
| 1598 | break; |
| 1599 | |
| 1600 | next_closest = closest_encloser; |
| 1601 | } |
| 1602 | while ((closest_encloser = strchr(closest_encloser, '.'))); |
| 1603 | |
| 1604 | if (!closest_encloser || !next_closest) |
| 1605 | return 0; |
| 1606 | |
| 1607 | /* Look for NSEC3 that proves the non-existence of the next-closest encloser */ |
| 1608 | if ((digest_len = hash_name(next_closest, &digest, hash, salt, salt_len, iterations)) == 0) |
| 1609 | return 0; |
| 1610 | |
| 1611 | if (!check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, NULL, 1)) |
| 1612 | return 0; |
| 1613 | |
| 1614 | /* Finally, check that there's no seat of wildcard synthesis */ |
| 1615 | if (!wildname) |
| 1616 | { |
| 1617 | if (!(wildcard = strchr(next_closest, '.')) || wildcard == next_closest) |
| 1618 | return 0; |
| 1619 | |
| 1620 | wildcard--; |
| 1621 | *wildcard = '*'; |
| 1622 | |
| 1623 | if ((digest_len = hash_name(wildcard, &digest, hash, salt, salt_len, iterations)) == 0) |
| 1624 | return 0; |
| 1625 | |
| 1626 | if (!check_nsec3_coverage(header, plen, digest_len, digest, type, workspace1, workspace2, nsecs, nsec_count, NULL, 1)) |
| 1627 | return 0; |
| 1628 | } |
| 1629 | |
| 1630 | return 1; |
| 1631 | } |
| 1632 | |
| 1633 | static int prove_non_existence(struct dns_header *header, size_t plen, char *keyname, char *name, int qtype, int qclass, char *wildname, int *nons, int *nsec_ttl) |
| 1634 | { |
| 1635 | static unsigned char **nsecset = NULL, **rrsig_labels = NULL; |
| 1636 | static int nsecset_sz = 0, rrsig_labels_sz = 0; |
| 1637 | |
| 1638 | int type_found = 0; |
| 1639 | unsigned char *auth_start, *p = skip_questions(header, plen); |
| 1640 | int type, class, rdlen, i, nsecs_found; |
| 1641 | unsigned long ttl; |
| 1642 | |
| 1643 | /* Move to NS section */ |
| 1644 | if (!p || !(p = skip_section(p, ntohs(header->ancount), header, plen))) |
| 1645 | return 0; |
| 1646 | |
| 1647 | auth_start = p; |
| 1648 | |
| 1649 | for (nsecs_found = 0, i = 0; i < ntohs(header->nscount); i++) |
| 1650 | { |
| 1651 | unsigned char *pstart = p; |
| 1652 | |
| 1653 | if (!extract_name(header, plen, &p, daemon->workspacename, 1, 10)) |
| 1654 | return 0; |
| 1655 | |
| 1656 | GETSHORT(type, p); |
| 1657 | GETSHORT(class, p); |
| 1658 | GETLONG(ttl, p); |
| 1659 | GETSHORT(rdlen, p); |
| 1660 | |
| 1661 | if (class == qclass && (type == T_NSEC || type == T_NSEC3)) |
| 1662 | { |
| 1663 | if (nsec_ttl) |
| 1664 | { |
| 1665 | /* Limit TTL with sig TTL */ |
| 1666 | if (daemon->rr_status[ntohs(header->ancount) + i] < ttl) |
| 1667 | ttl = daemon->rr_status[ntohs(header->ancount) + i]; |
| 1668 | *nsec_ttl = ttl; |
| 1669 | } |
| 1670 | |
| 1671 | /* No mixed NSECing 'round here, thankyouverymuch */ |
| 1672 | if (type_found != 0 && type_found != type) |
| 1673 | return 0; |
| 1674 | |
| 1675 | type_found = type; |
| 1676 | |
| 1677 | if (!expand_workspace(&nsecset, &nsecset_sz, nsecs_found)) |
| 1678 | return 0; |
| 1679 | |
| 1680 | if (type == T_NSEC) |
| 1681 | { |
| 1682 | /* If we're looking for NSECs, find the corresponding SIGs, to |
| 1683 | extract the labels value, which we need in case the NSECs |
| 1684 | are the result of wildcard expansion. |
| 1685 | Note that the NSEC may not have been validated yet |
| 1686 | so if there are multiple SIGs, make sure the label value |
| 1687 | is the same in all, to avoid be duped by a rogue one. |
| 1688 | If there are no SIGs, that's an error */ |
| 1689 | unsigned char *p1 = auth_start; |
| 1690 | int res, j, rdlen1, type1, class1; |
| 1691 | |
| 1692 | if (!expand_workspace(&rrsig_labels, &rrsig_labels_sz, nsecs_found)) |
| 1693 | return 0; |
| 1694 | |
| 1695 | rrsig_labels[nsecs_found] = NULL; |
| 1696 | |
| 1697 | for (j = ntohs(header->nscount); j != 0; j--) |
| 1698 | { |
| 1699 | if (!(res = extract_name(header, plen, &p1, daemon->workspacename, 0, 10))) |
| 1700 | return 0; |
| 1701 | |
| 1702 | GETSHORT(type1, p1); |
| 1703 | GETSHORT(class1, p1); |
| 1704 | p1 += 4; /* TTL */ |
| 1705 | GETSHORT(rdlen1, p1); |
| 1706 | |
| 1707 | if (!CHECK_LEN(header, p1, plen, rdlen1)) |
| 1708 | return 0; |
| 1709 | |
| 1710 | if (res == 1 && class1 == qclass && type1 == T_RRSIG) |
| 1711 | { |
| 1712 | int type_covered; |
| 1713 | unsigned char *psav = p1; |
| 1714 | |
| 1715 | if (rdlen1 < 18) |
| 1716 | return 0; /* bad packet */ |
| 1717 | |
| 1718 | GETSHORT(type_covered, p1); |
| 1719 | |
| 1720 | if (type_covered == T_NSEC) |
| 1721 | { |
| 1722 | p1++; /* algo */ |
| 1723 | |
| 1724 | /* labels field must be the same in every SIG we find. */ |
| 1725 | if (!rrsig_labels[nsecs_found]) |
| 1726 | rrsig_labels[nsecs_found] = p1; |
| 1727 | else if (*rrsig_labels[nsecs_found] != *p1) /* algo */ |
| 1728 | return 0; |
| 1729 | } |
| 1730 | p1 = psav; |
| 1731 | } |
| 1732 | |
| 1733 | if (!ADD_RDLEN(header, p1, plen, rdlen1)) |
| 1734 | return 0; |
| 1735 | } |
| 1736 | |
| 1737 | /* Must have found at least one sig. */ |
| 1738 | if (!rrsig_labels[nsecs_found]) |
| 1739 | return 0; |
| 1740 | } |
| 1741 | |
| 1742 | nsecset[nsecs_found++] = pstart; |
| 1743 | } |
| 1744 | |
| 1745 | if (!ADD_RDLEN(header, p, plen, rdlen)) |
| 1746 | return 0; |
| 1747 | } |
| 1748 | |
| 1749 | if (type_found == T_NSEC) |
| 1750 | return prove_non_existence_nsec(header, plen, nsecset, rrsig_labels, nsecs_found, daemon->workspacename, keyname, name, qtype, nons); |
| 1751 | else if (type_found == T_NSEC3) |
| 1752 | return prove_non_existence_nsec3(header, plen, nsecset, nsecs_found, daemon->workspacename, keyname, name, qtype, wildname, nons); |
| 1753 | else |
| 1754 | return 0; |
| 1755 | } |
| 1756 | |
| 1757 | /* Check signing status of name. |
| 1758 | returns: |
| 1759 | STAT_SECURE zone is signed. |
| 1760 | STAT_INSECURE zone proved unsigned. |
| 1761 | STAT_NEED_DS require DS record of name returned in keyname. |
| 1762 | STAT_NEED_KEY require DNSKEY record of name returned in keyname. |
| 1763 | name returned unaltered. |
| 1764 | */ |
| 1765 | static int zone_status(char *name, int class, char *keyname, time_t now) |
| 1766 | { |
| 1767 | int name_start = strlen(name); /* for when TA is root */ |
| 1768 | struct crec *crecp; |
| 1769 | char *p; |
| 1770 | |
| 1771 | /* First, work towards the root, looking for a trust anchor. |
| 1772 | This can either be one configured, or one previously cached. |
| 1773 | We can assume, if we don't find one first, that there is |
| 1774 | a trust anchor at the root. */ |
| 1775 | for (p = name; p; p = strchr(p, '.')) |
| 1776 | { |
| 1777 | if (*p == '.') |
| 1778 | p++; |
| 1779 | |
| 1780 | if (cache_find_by_name(NULL, p, now, F_DS)) |
| 1781 | { |
| 1782 | name_start = p - name; |
| 1783 | break; |
| 1784 | } |
| 1785 | } |
| 1786 | |
| 1787 | /* Now work away from the trust anchor */ |
| 1788 | while (1) |
| 1789 | { |
| 1790 | strcpy(keyname, &name[name_start]); |
| 1791 | |
| 1792 | if (!(crecp = cache_find_by_name(NULL, keyname, now, F_DS))) |
| 1793 | return STAT_NEED_DS; |
| 1794 | |
| 1795 | /* F_DNSSECOK misused in DS cache records to non-existence of NS record. |
| 1796 | F_NEG && !F_DNSSECOK implies that we've proved there's no DS record here, |
| 1797 | but that's because there's no NS record either, ie this isn't the start |
| 1798 | of a zone. We only prove that the DNS tree below a node is unsigned when |
| 1799 | we prove that we're at a zone cut AND there's no DS record. */ |
| 1800 | if (crecp->flags & F_NEG) |
| 1801 | { |
| 1802 | if (crecp->flags & F_DNSSECOK) |
| 1803 | return STAT_INSECURE; /* proved no DS here */ |
| 1804 | } |
| 1805 | else |
| 1806 | { |
| 1807 | /* If all the DS records have digest and/or sig algos we don't support, |
| 1808 | then the zone is insecure. Note that if an algo |
| 1809 | appears in the DS, then RRSIGs for that algo MUST |
| 1810 | exist for each RRset: 4035 para 2.2 So if we find |
| 1811 | a DS here with digest and sig we can do, we're entitled |
| 1812 | to assume we can validate the zone and if we can't later, |
| 1813 | because an RRSIG is missing we return BOGUS. |
| 1814 | */ |
| 1815 | do |
| 1816 | { |
| 1817 | if (crecp->uid == (unsigned int)class && |
| 1818 | ds_digest_name(crecp->addr.ds.digest) && |
| 1819 | algo_digest_name(crecp->addr.ds.algo)) |
| 1820 | break; |
| 1821 | } |
| 1822 | while ((crecp = cache_find_by_name(crecp, keyname, now, F_DS))); |
| 1823 | |
| 1824 | if (!crecp) |
| 1825 | return STAT_INSECURE; |
| 1826 | } |
| 1827 | |
| 1828 | if (name_start == 0) |
| 1829 | break; |
| 1830 | |
| 1831 | for (p = &name[name_start-2]; (*p != '.') && (p != name); p--); |
| 1832 | |
| 1833 | if (p != name) |
| 1834 | p++; |
| 1835 | |
| 1836 | name_start = p - name; |
| 1837 | } |
| 1838 | |
| 1839 | return STAT_SECURE; |
| 1840 | } |
| 1841 | |
| 1842 | /* Validate all the RRsets in the answer and authority sections of the reply (4035:3.2.3) |
| 1843 | Return code: |
| 1844 | STAT_SECURE if it validates. |
| 1845 | STAT_INSECURE at least one RRset not validated, because in unsigned zone. |
| 1846 | STAT_BOGUS signature is wrong, bad packet, no validation where there should be. |
| 1847 | STAT_NEED_KEY need DNSKEY to complete validation (name is returned in keyname, class in *class) |
| 1848 | STAT_NEED_DS need DS to complete validation (name is returned in keyname) |
| 1849 | |
| 1850 | daemon->rr_status points to a char array which corressponds to the RRs in the |
| 1851 | answer and auth sections. This is set to 1 for each RR which is validated, and 0 for any which aren't. |
| 1852 | |
| 1853 | When validating replies to DS records, we're only interested in the NSEC{3} RRs in the auth section. |
| 1854 | Other RRs in that section missing sigs will not cause am INSECURE reply. We determine this mode |
| 1855 | is the nons argument is non-NULL. |
| 1856 | */ |
| 1857 | int dnssec_validate_reply(time_t now, struct dns_header *header, size_t plen, char *name, char *keyname, |
| 1858 | int *class, int check_unsigned, int *neganswer, int *nons, int *nsec_ttl) |
| 1859 | { |
| 1860 | static unsigned char **targets = NULL; |
| 1861 | static int target_sz = 0; |
| 1862 | |
| 1863 | unsigned char *ans_start, *p1, *p2; |
| 1864 | int type1, class1, rdlen1 = 0, type2, class2, rdlen2, qclass, qtype, targetidx; |
| 1865 | int i, j, rc = STAT_INSECURE; |
| 1866 | int secure = STAT_SECURE; |
| 1867 | |
| 1868 | /* extend rr_status if necessary */ |
| 1869 | if (daemon->rr_status_sz < ntohs(header->ancount) + ntohs(header->nscount)) |
| 1870 | { |
| 1871 | unsigned long *new = whine_malloc(sizeof(*daemon->rr_status) * (ntohs(header->ancount) + ntohs(header->nscount) + 64)); |
| 1872 | |
| 1873 | if (!new) |
| 1874 | return STAT_BOGUS; |
| 1875 | |
| 1876 | free(daemon->rr_status); |
| 1877 | daemon->rr_status = new; |
| 1878 | daemon->rr_status_sz = ntohs(header->ancount) + ntohs(header->nscount) + 64; |
| 1879 | } |
| 1880 | |
| 1881 | memset(daemon->rr_status, 0, sizeof(*daemon->rr_status) * daemon->rr_status_sz); |
| 1882 | |
| 1883 | if (neganswer) |
| 1884 | *neganswer = 0; |
| 1885 | |
| 1886 | if (RCODE(header) == SERVFAIL || ntohs(header->qdcount) != 1) |
| 1887 | return STAT_BOGUS; |
| 1888 | |
| 1889 | if (RCODE(header) != NXDOMAIN && RCODE(header) != NOERROR) |
| 1890 | return STAT_INSECURE; |
| 1891 | |
| 1892 | p1 = (unsigned char *)(header+1); |
| 1893 | |
| 1894 | /* Find all the targets we're looking for answers to. |
| 1895 | The zeroth array element is for the query, subsequent ones |
| 1896 | for CNAME targets, unless the query is for a CNAME or ANY. */ |
| 1897 | |
| 1898 | if (!expand_workspace(&targets, &target_sz, 0)) |
| 1899 | return STAT_BOGUS; |
| 1900 | |
| 1901 | targets[0] = p1; |
| 1902 | targetidx = 1; |
| 1903 | |
| 1904 | if (!extract_name(header, plen, &p1, name, 1, 4)) |
| 1905 | return STAT_BOGUS; |
| 1906 | |
| 1907 | GETSHORT(qtype, p1); |
| 1908 | GETSHORT(qclass, p1); |
| 1909 | ans_start = p1; |
| 1910 | |
| 1911 | /* Can't validate an RRSIG query */ |
| 1912 | if (qtype == T_RRSIG) |
| 1913 | return STAT_INSECURE; |
| 1914 | |
| 1915 | if (qtype != T_CNAME && qtype != T_ANY) |
| 1916 | for (j = ntohs(header->ancount); j != 0; j--) |
| 1917 | { |
| 1918 | if (!(p1 = skip_name(p1, header, plen, 10))) |
| 1919 | return STAT_BOGUS; /* bad packet */ |
| 1920 | |
| 1921 | GETSHORT(type2, p1); |
| 1922 | p1 += 6; /* class, TTL */ |
| 1923 | GETSHORT(rdlen2, p1); |
| 1924 | |
| 1925 | if (type2 == T_CNAME) |
| 1926 | { |
| 1927 | if (!expand_workspace(&targets, &target_sz, targetidx)) |
| 1928 | return STAT_BOGUS; |
| 1929 | |
| 1930 | targets[targetidx++] = p1; /* pointer to target name */ |
| 1931 | } |
| 1932 | |
| 1933 | if (!ADD_RDLEN(header, p1, plen, rdlen2)) |
| 1934 | return STAT_BOGUS; |
| 1935 | } |
| 1936 | |
| 1937 | for (p1 = ans_start, i = 0; i < ntohs(header->ancount) + ntohs(header->nscount); i++) |
| 1938 | { |
| 1939 | if (i != 0 && !ADD_RDLEN(header, p1, plen, rdlen1)) |
| 1940 | return STAT_BOGUS; |
| 1941 | |
| 1942 | if (!extract_name(header, plen, &p1, name, 1, 10)) |
| 1943 | return STAT_BOGUS; /* bad packet */ |
| 1944 | |
| 1945 | GETSHORT(type1, p1); |
| 1946 | GETSHORT(class1, p1); |
| 1947 | p1 += 4; /* TTL */ |
| 1948 | GETSHORT(rdlen1, p1); |
| 1949 | |
| 1950 | /* Don't try and validate RRSIGs! */ |
| 1951 | if (type1 == T_RRSIG) |
| 1952 | continue; |
| 1953 | |
| 1954 | /* Check if we've done this RRset already */ |
| 1955 | for (p2 = ans_start, j = 0; j < i; j++) |
| 1956 | { |
| 1957 | if (!(rc = extract_name(header, plen, &p2, name, 0, 10))) |
| 1958 | return STAT_BOGUS; /* bad packet */ |
| 1959 | |
| 1960 | GETSHORT(type2, p2); |
| 1961 | GETSHORT(class2, p2); |
| 1962 | p2 += 4; /* TTL */ |
| 1963 | GETSHORT(rdlen2, p2); |
| 1964 | |
| 1965 | if (type2 == type1 && class2 == class1 && rc == 1) |
| 1966 | break; /* Done it before: name, type, class all match. */ |
| 1967 | |
| 1968 | if (!ADD_RDLEN(header, p2, plen, rdlen2)) |
| 1969 | return STAT_BOGUS; |
| 1970 | } |
| 1971 | |
| 1972 | /* Done already: copy the validation status */ |
| 1973 | if (j != i) |
| 1974 | daemon->rr_status[i] = daemon->rr_status[j]; |
| 1975 | else |
| 1976 | { |
| 1977 | /* Not done, validate now */ |
| 1978 | int sigcnt, rrcnt; |
| 1979 | char *wildname; |
| 1980 | |
| 1981 | if (!explore_rrset(header, plen, class1, type1, name, keyname, &sigcnt, &rrcnt)) |
| 1982 | return STAT_BOGUS; |
| 1983 | |
| 1984 | /* No signatures for RRset. We can be configured to assume this is OK and return an INSECURE result. */ |
| 1985 | if (sigcnt == 0) |
| 1986 | { |
| 1987 | /* NSEC and NSEC3 records must be signed. We make this assumption elsewhere. */ |
| 1988 | if (type1 == T_NSEC || type1 == T_NSEC3) |
| 1989 | rc = STAT_INSECURE; |
| 1990 | else if (nons && i >= ntohs(header->ancount)) |
| 1991 | /* If we're validating a DS reply, rather than looking for the value of AD bit, |
| 1992 | we only care that NSEC and NSEC3 RRs in the auth section are signed. |
| 1993 | Return SECURE even if others (SOA....) are not. */ |
| 1994 | rc = STAT_SECURE; |
| 1995 | else |
| 1996 | { |
| 1997 | /* unsigned RRsets in auth section are not BOGUS, but do make reply insecure. */ |
| 1998 | if (check_unsigned && i < ntohs(header->ancount)) |
| 1999 | { |
| 2000 | rc = zone_status(name, class1, keyname, now); |
| 2001 | if (STAT_ISEQUAL(rc, STAT_SECURE)) |
| 2002 | rc = STAT_BOGUS | DNSSEC_FAIL_NOSIG; |
| 2003 | if (class) |
| 2004 | *class = class1; /* Class for NEED_DS or NEED_KEY */ |
| 2005 | } |
| 2006 | else |
| 2007 | rc = STAT_INSECURE; |
| 2008 | |
| 2009 | if (!STAT_ISEQUAL(rc, STAT_INSECURE)) |
| 2010 | return rc; |
| 2011 | } |
| 2012 | } |
| 2013 | else |
| 2014 | { |
| 2015 | /* explore_rrset() gives us key name from sigs in keyname. |
| 2016 | Can't overwrite name here. */ |
| 2017 | strcpy(daemon->workspacename, keyname); |
| 2018 | rc = zone_status(daemon->workspacename, class1, keyname, now); |
| 2019 | |
| 2020 | if (STAT_ISEQUAL(rc, STAT_BOGUS) || STAT_ISEQUAL(rc, STAT_NEED_KEY) || STAT_ISEQUAL(rc, STAT_NEED_DS)) |
| 2021 | { |
| 2022 | if (class) |
| 2023 | *class = class1; /* Class for NEED_DS or NEED_KEY */ |
| 2024 | return rc; |
| 2025 | } |
| 2026 | |
| 2027 | /* Zone is insecure, don't need to validate RRset */ |
| 2028 | if (STAT_ISEQUAL(rc, STAT_SECURE)) |
| 2029 | { |
| 2030 | unsigned long sig_ttl; |
| 2031 | rc = validate_rrset(now, header, plen, class1, type1, sigcnt, |
| 2032 | rrcnt, name, keyname, &wildname, NULL, 0, 0, 0, &sig_ttl); |
| 2033 | |
| 2034 | if (STAT_ISEQUAL(rc, STAT_BOGUS) || STAT_ISEQUAL(rc, STAT_NEED_KEY) || STAT_ISEQUAL(rc, STAT_NEED_DS)) |
| 2035 | { |
| 2036 | if (class) |
| 2037 | *class = class1; /* Class for DS or DNSKEY */ |
| 2038 | return rc; |
| 2039 | } |
| 2040 | |
| 2041 | /* rc is now STAT_SECURE or STAT_SECURE_WILDCARD */ |
| 2042 | |
| 2043 | /* Note that RR is validated */ |
| 2044 | daemon->rr_status[i] = sig_ttl; |
| 2045 | |
| 2046 | /* Note if we've validated either the answer to the question |
| 2047 | or the target of a CNAME. Any not noted will need NSEC or |
| 2048 | to be in unsigned space. */ |
| 2049 | for (j = 0; j <targetidx; j++) |
| 2050 | if ((p2 = targets[j])) |
| 2051 | { |
| 2052 | int rc1; |
| 2053 | if (!(rc1 = extract_name(header, plen, &p2, name, 0, 10))) |
| 2054 | return STAT_BOGUS; /* bad packet */ |
| 2055 | |
| 2056 | if (class1 == qclass && rc1 == 1 && (type1 == T_CNAME || type1 == qtype || qtype == T_ANY )) |
| 2057 | targets[j] = NULL; |
| 2058 | } |
| 2059 | |
| 2060 | /* An attacker replay a wildcard answer with a different |
| 2061 | answer and overlay a genuine RR. To prove this |
| 2062 | hasn't happened, the answer must prove that |
| 2063 | the genuine record doesn't exist. Check that here. |
| 2064 | Note that we may not yet have validated the NSEC/NSEC3 RRsets. |
| 2065 | That's not a problem since if the RRsets later fail |
| 2066 | we'll return BOGUS then. */ |
| 2067 | if (STAT_ISEQUAL(rc, STAT_SECURE_WILDCARD) && |
| 2068 | !prove_non_existence(header, plen, keyname, name, type1, class1, wildname, NULL, NULL)) |
| 2069 | return STAT_BOGUS | DNSSEC_FAIL_NONSEC; |
| 2070 | |
| 2071 | rc = STAT_SECURE; |
| 2072 | } |
| 2073 | } |
| 2074 | } |
| 2075 | |
| 2076 | if (STAT_ISEQUAL(rc, STAT_INSECURE)) |
| 2077 | secure = STAT_INSECURE; |
| 2078 | } |
| 2079 | |
| 2080 | /* OK, all the RRsets validate, now see if we have a missing answer or CNAME target. */ |
| 2081 | if (STAT_ISEQUAL(secure, STAT_SECURE)) |
| 2082 | for (j = 0; j <targetidx; j++) |
| 2083 | if ((p2 = targets[j])) |
| 2084 | { |
| 2085 | if (neganswer) |
| 2086 | *neganswer = 1; |
| 2087 | |
| 2088 | if (!extract_name(header, plen, &p2, name, 1, 10)) |
| 2089 | return STAT_BOGUS; /* bad packet */ |
| 2090 | |
| 2091 | /* NXDOMAIN or NODATA reply, unanswered question is (name, qclass, qtype) */ |
| 2092 | |
| 2093 | /* For anything other than a DS record, this situation is OK if either |
| 2094 | the answer is in an unsigned zone, or there's a NSEC records. */ |
| 2095 | if (!prove_non_existence(header, plen, keyname, name, qtype, qclass, NULL, nons, nsec_ttl)) |
| 2096 | { |
| 2097 | /* Empty DS without NSECS */ |
| 2098 | if (qtype == T_DS) |
| 2099 | return STAT_BOGUS | DNSSEC_FAIL_NONSEC; |
| 2100 | |
| 2101 | if (STAT_ISEQUAL((rc = zone_status(name, qclass, keyname, now)), STAT_SECURE)) |
| 2102 | { |
| 2103 | if (class) |
| 2104 | *class = qclass; /* Class for NEED_DS or NEED_KEY */ |
| 2105 | return rc; |
| 2106 | } |
| 2107 | |
| 2108 | return STAT_BOGUS | DNSSEC_FAIL_NONSEC; /* signed zone, no NSECs */ |
| 2109 | } |
| 2110 | } |
| 2111 | |
| 2112 | return secure; |
| 2113 | } |
| 2114 | |
| 2115 | |
| 2116 | /* Compute keytag (checksum to quickly index a key). See RFC4034 */ |
| 2117 | int dnskey_keytag(int alg, int flags, unsigned char *key, int keylen) |
| 2118 | { |
| 2119 | if (alg == 1) |
| 2120 | { |
| 2121 | /* Algorithm 1 (RSAMD5) has a different (older) keytag calculation algorithm. |
| 2122 | See RFC4034, Appendix B.1 */ |
| 2123 | return key[keylen-4] * 256 + key[keylen-3]; |
| 2124 | } |
| 2125 | else |
| 2126 | { |
| 2127 | unsigned long ac = flags + 0x300 + alg; |
| 2128 | int i; |
| 2129 | |
| 2130 | for (i = 0; i < keylen; ++i) |
| 2131 | ac += (i & 1) ? key[i] : key[i] << 8; |
| 2132 | |
| 2133 | ac += (ac >> 16) & 0xffff; |
| 2134 | return ac & 0xffff; |
| 2135 | } |
| 2136 | } |
| 2137 | |
| 2138 | size_t dnssec_generate_query(struct dns_header *header, unsigned char *end, char *name, int class, |
| 2139 | int type, int edns_pktsz) |
| 2140 | { |
| 2141 | unsigned char *p; |
| 2142 | size_t ret; |
| 2143 | |
| 2144 | header->qdcount = htons(1); |
| 2145 | header->ancount = htons(0); |
| 2146 | header->nscount = htons(0); |
| 2147 | header->arcount = htons(0); |
| 2148 | |
| 2149 | header->hb3 = HB3_RD; |
| 2150 | SET_OPCODE(header, QUERY); |
| 2151 | /* For debugging, set Checking Disabled, otherwise, have the upstream check too, |
| 2152 | this allows it to select auth servers when one is returning bad data. */ |
| 2153 | header->hb4 = option_bool(OPT_DNSSEC_DEBUG) ? HB4_CD : 0; |
| 2154 | |
| 2155 | /* ID filled in later */ |
| 2156 | |
| 2157 | p = (unsigned char *)(header+1); |
| 2158 | |
| 2159 | p = do_rfc1035_name(p, name, NULL); |
| 2160 | *p++ = 0; |
| 2161 | PUTSHORT(type, p); |
| 2162 | PUTSHORT(class, p); |
| 2163 | |
| 2164 | ret = add_do_bit(header, p - (unsigned char *)header, end); |
| 2165 | |
| 2166 | if (find_pseudoheader(header, ret, NULL, &p, NULL, NULL)) |
| 2167 | PUTSHORT(edns_pktsz, p); |
| 2168 | |
| 2169 | return ret; |
| 2170 | } |
| 2171 | |
| 2172 | int errflags_to_ede(int status) |
| 2173 | { |
| 2174 | /* We can end up with more than one flag set for some errors, |
| 2175 | so this encodes a rough priority so the (eg) No sig is reported |
| 2176 | before no-unexpired-sig. */ |
| 2177 | |
| 2178 | if (status & DNSSEC_FAIL_NYV) |
| 2179 | return EDE_SIG_NYV; |
| 2180 | else if (status & DNSSEC_FAIL_EXP) |
| 2181 | return EDE_SIG_EXP; |
| 2182 | else if (status & DNSSEC_FAIL_NOKEYSUP) |
| 2183 | return EDE_USUPDNSKEY; |
| 2184 | else if (status & DNSSEC_FAIL_NOZONE) |
| 2185 | return EDE_NO_ZONEKEY; |
| 2186 | else if (status & DNSSEC_FAIL_NOKEY) |
| 2187 | return EDE_NO_DNSKEY; |
| 2188 | else if (status & DNSSEC_FAIL_NODSSUP) |
| 2189 | return EDE_USUPDS; |
| 2190 | else if (status & DNSSEC_FAIL_NONSEC) |
| 2191 | return EDE_NO_NSEC; |
| 2192 | else if (status & DNSSEC_FAIL_INDET) |
| 2193 | return EDE_DNSSEC_IND; |
| 2194 | else if (status & DNSSEC_FAIL_NOSIG) |
| 2195 | return EDE_NO_RRSIG; |
| 2196 | else |
| 2197 | return EDE_UNSET; |
| 2198 | } |
| 2199 | #endif /* HAVE_DNSSEC */ |