lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | =pod |
| 2 | |
| 3 | =head1 NAME |
| 4 | |
| 5 | bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, |
| 6 | bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8, |
| 7 | bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal, |
| 8 | bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, |
| 9 | bn_mul_low_recursive, bn_sqr_normal, bn_sqr_recursive, |
| 10 | bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, |
| 11 | bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM |
| 12 | library internal functions |
| 13 | |
| 14 | =head1 SYNOPSIS |
| 15 | |
| 16 | #include <openssl/bn.h> |
| 17 | |
| 18 | BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w); |
| 19 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, |
| 20 | BN_ULONG w); |
| 21 | void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num); |
| 22 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); |
| 23 | BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, |
| 24 | int num); |
| 25 | BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp, |
| 26 | int num); |
| 27 | |
| 28 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
| 29 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
| 30 | void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a); |
| 31 | void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a); |
| 32 | |
| 33 | int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n); |
| 34 | |
| 35 | void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, |
| 36 | int nb); |
| 37 | void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); |
| 38 | void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| 39 | int dna, int dnb, BN_ULONG *tmp); |
| 40 | void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, |
| 41 | int n, int tna, int tnb, BN_ULONG *tmp); |
| 42 | void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, |
| 43 | int n2, BN_ULONG *tmp); |
| 44 | |
| 45 | void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp); |
| 46 | void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp); |
| 47 | |
| 48 | void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); |
| 49 | void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c); |
| 50 | void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a); |
| 51 | |
| 52 | BIGNUM *bn_expand(BIGNUM *a, int bits); |
| 53 | BIGNUM *bn_wexpand(BIGNUM *a, int n); |
| 54 | BIGNUM *bn_expand2(BIGNUM *a, int n); |
| 55 | void bn_fix_top(BIGNUM *a); |
| 56 | |
| 57 | void bn_check_top(BIGNUM *a); |
| 58 | void bn_print(BIGNUM *a); |
| 59 | void bn_dump(BN_ULONG *d, int n); |
| 60 | void bn_set_max(BIGNUM *a); |
| 61 | void bn_set_high(BIGNUM *r, BIGNUM *a, int n); |
| 62 | void bn_set_low(BIGNUM *r, BIGNUM *a, int n); |
| 63 | |
| 64 | =head1 DESCRIPTION |
| 65 | |
| 66 | This page documents the internal functions used by the OpenSSL |
| 67 | B<BIGNUM> implementation. They are described here to facilitate |
| 68 | debugging and extending the library. They are I<not> to be used by |
| 69 | applications. |
| 70 | |
| 71 | =head2 The BIGNUM structure |
| 72 | |
| 73 | typedef struct bignum_st BIGNUM; |
| 74 | |
| 75 | struct bignum_st |
| 76 | { |
| 77 | BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */ |
| 78 | int top; /* Index of last used d +1. */ |
| 79 | /* The next are internal book keeping for bn_expand. */ |
| 80 | int dmax; /* Size of the d array. */ |
| 81 | int neg; /* one if the number is negative */ |
| 82 | int flags; |
| 83 | }; |
| 84 | |
| 85 | |
| 86 | The integer value is stored in B<d>, a malloc()ed array of words (B<BN_ULONG>), |
| 87 | least significant word first. A B<BN_ULONG> can be either 16, 32 or 64 bits |
| 88 | in size, depending on the 'number of bits' (B<BITS2>) specified in |
| 89 | C<openssl/bn.h>. |
| 90 | |
| 91 | B<dmax> is the size of the B<d> array that has been allocated. B<top> |
| 92 | is the number of words being used, so for a value of 4, bn.d[0]=4 and |
| 93 | bn.top=1. B<neg> is 1 if the number is negative. When a B<BIGNUM> is |
| 94 | B<0>, the B<d> field can be B<NULL> and B<top> == B<0>. |
| 95 | |
| 96 | B<flags> is a bit field of flags which are defined in C<openssl/bn.h>. The |
| 97 | flags begin with B<BN_FLG_>. The macros BN_set_flags(b, n) and |
| 98 | BN_get_flags(b, n) exist to enable or fetch flag(s) B<n> from B<BIGNUM> |
| 99 | structure B<b>. |
| 100 | |
| 101 | Various routines in this library require the use of temporary |
| 102 | B<BIGNUM> variables during their execution. Since dynamic memory |
| 103 | allocation to create B<BIGNUM>s is rather expensive when used in |
| 104 | conjunction with repeated subroutine calls, the B<BN_CTX> structure is |
| 105 | used. This structure contains B<BN_CTX_NUM> B<BIGNUM>s, see |
| 106 | L<BN_CTX_start(3)>. |
| 107 | |
| 108 | =head2 Low-level arithmetic operations |
| 109 | |
| 110 | These functions are implemented in C and for several platforms in |
| 111 | assembly language: |
| 112 | |
| 113 | bn_mul_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> word |
| 114 | arrays B<rp> and B<ap>. It computes B<ap> * B<w>, places the result |
| 115 | in B<rp>, and returns the high word (carry). |
| 116 | |
| 117 | bn_mul_add_words(B<rp>, B<ap>, B<num>, B<w>) operates on the B<num> |
| 118 | word arrays B<rp> and B<ap>. It computes B<ap> * B<w> + B<rp>, places |
| 119 | the result in B<rp>, and returns the high word (carry). |
| 120 | |
| 121 | bn_sqr_words(B<rp>, B<ap>, B<n>) operates on the B<num> word array |
| 122 | B<ap> and the 2*B<num> word array B<ap>. It computes B<ap> * B<ap> |
| 123 | word-wise, and places the low and high bytes of the result in B<rp>. |
| 124 | |
| 125 | bn_div_words(B<h>, B<l>, B<d>) divides the two word number (B<h>, B<l>) |
| 126 | by B<d> and returns the result. |
| 127 | |
| 128 | bn_add_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word |
| 129 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> + B<bp>, places the |
| 130 | result in B<rp>, and returns the high word (carry). |
| 131 | |
| 132 | bn_sub_words(B<rp>, B<ap>, B<bp>, B<num>) operates on the B<num> word |
| 133 | arrays B<ap>, B<bp> and B<rp>. It computes B<ap> - B<bp>, places the |
| 134 | result in B<rp>, and returns the carry (1 if B<bp> E<gt> B<ap>, 0 |
| 135 | otherwise). |
| 136 | |
| 137 | bn_mul_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and |
| 138 | B<b> and the 8 word array B<r>. It computes B<a>*B<b> and places the |
| 139 | result in B<r>. |
| 140 | |
| 141 | bn_mul_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and |
| 142 | B<b> and the 16 word array B<r>. It computes B<a>*B<b> and places the |
| 143 | result in B<r>. |
| 144 | |
| 145 | bn_sqr_comba4(B<r>, B<a>, B<b>) operates on the 4 word arrays B<a> and |
| 146 | B<b> and the 8 word array B<r>. |
| 147 | |
| 148 | bn_sqr_comba8(B<r>, B<a>, B<b>) operates on the 8 word arrays B<a> and |
| 149 | B<b> and the 16 word array B<r>. |
| 150 | |
| 151 | The following functions are implemented in C: |
| 152 | |
| 153 | bn_cmp_words(B<a>, B<b>, B<n>) operates on the B<n> word arrays B<a> |
| 154 | and B<b>. It returns 1, 0 and -1 if B<a> is greater than, equal and |
| 155 | less than B<b>. |
| 156 | |
| 157 | bn_mul_normal(B<r>, B<a>, B<na>, B<b>, B<nb>) operates on the B<na> |
| 158 | word array B<a>, the B<nb> word array B<b> and the B<na>+B<nb> word |
| 159 | array B<r>. It computes B<a>*B<b> and places the result in B<r>. |
| 160 | |
| 161 | bn_mul_low_normal(B<r>, B<a>, B<b>, B<n>) operates on the B<n> word |
| 162 | arrays B<r>, B<a> and B<b>. It computes the B<n> low words of |
| 163 | B<a>*B<b> and places the result in B<r>. |
| 164 | |
| 165 | bn_mul_recursive(B<r>, B<a>, B<b>, B<n2>, B<dna>, B<dnb>, B<t>) operates |
| 166 | on the word arrays B<a> and B<b> of length B<n2>+B<dna> and B<n2>+B<dnb> |
| 167 | (B<dna> and B<dnb> are currently allowed to be 0 or negative) and the 2*B<n2> |
| 168 | word arrays B<r> and B<t>. B<n2> must be a power of 2. It computes |
| 169 | B<a>*B<b> and places the result in B<r>. |
| 170 | |
| 171 | bn_mul_part_recursive(B<r>, B<a>, B<b>, B<n>, B<tna>, B<tnb>, B<tmp>) |
| 172 | operates on the word arrays B<a> and B<b> of length B<n>+B<tna> and |
| 173 | B<n>+B<tnb> and the 4*B<n> word arrays B<r> and B<tmp>. |
| 174 | |
| 175 | bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the |
| 176 | B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a> |
| 177 | and B<b>. |
| 178 | |
| 179 | BN_mul() calls bn_mul_normal(), or an optimized implementation if the |
| 180 | factors have the same size: bn_mul_comba8() is used if they are 8 |
| 181 | words long, bn_mul_recursive() if they are larger than |
| 182 | B<BN_MULL_SIZE_NORMAL> and the size is an exact multiple of the word |
| 183 | size, and bn_mul_part_recursive() for others that are larger than |
| 184 | B<BN_MULL_SIZE_NORMAL>. |
| 185 | |
| 186 | bn_sqr_normal(B<r>, B<a>, B<n>, B<tmp>) operates on the B<n> word array |
| 187 | B<a> and the 2*B<n> word arrays B<tmp> and B<r>. |
| 188 | |
| 189 | The implementations use the following macros which, depending on the |
| 190 | architecture, may use "long long" C operations or inline assembler. |
| 191 | They are defined in C<bn_local.h>. |
| 192 | |
| 193 | mul(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<c> and places the |
| 194 | low word of the result in B<r> and the high word in B<c>. |
| 195 | |
| 196 | mul_add(B<r>, B<a>, B<w>, B<c>) computes B<w>*B<a>+B<r>+B<c> and |
| 197 | places the low word of the result in B<r> and the high word in B<c>. |
| 198 | |
| 199 | sqr(B<r0>, B<r1>, B<a>) computes B<a>*B<a> and places the low word |
| 200 | of the result in B<r0> and the high word in B<r1>. |
| 201 | |
| 202 | =head2 Size changes |
| 203 | |
| 204 | bn_expand() ensures that B<b> has enough space for a B<bits> bit |
| 205 | number. bn_wexpand() ensures that B<b> has enough space for an |
| 206 | B<n> word number. If the number has to be expanded, both macros |
| 207 | call bn_expand2(), which allocates a new B<d> array and copies the |
| 208 | data. They return B<NULL> on error, B<b> otherwise. |
| 209 | |
| 210 | The bn_fix_top() macro reduces B<a-E<gt>top> to point to the most |
| 211 | significant non-zero word plus one when B<a> has shrunk. |
| 212 | |
| 213 | =head2 Debugging |
| 214 | |
| 215 | bn_check_top() verifies that C<((a)-E<gt>top E<gt>= 0 && (a)-E<gt>top |
| 216 | E<lt>= (a)-E<gt>dmax)>. A violation will cause the program to abort. |
| 217 | |
| 218 | bn_print() prints B<a> to stderr. bn_dump() prints B<n> words at B<d> |
| 219 | (in reverse order, i.e. most significant word first) to stderr. |
| 220 | |
| 221 | bn_set_max() makes B<a> a static number with a B<dmax> of its current size. |
| 222 | This is used by bn_set_low() and bn_set_high() to make B<r> a read-only |
| 223 | B<BIGNUM> that contains the B<n> low or high words of B<a>. |
| 224 | |
| 225 | If B<BN_DEBUG> is not defined, bn_check_top(), bn_print(), bn_dump() |
| 226 | and bn_set_max() are defined as empty macros. |
| 227 | |
| 228 | =head1 SEE ALSO |
| 229 | |
| 230 | L<bn(3)> |
| 231 | |
| 232 | =head1 COPYRIGHT |
| 233 | |
| 234 | Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. |
| 235 | |
| 236 | Licensed under the OpenSSL license (the "License"). You may not use |
| 237 | this file except in compliance with the License. You can obtain a copy |
| 238 | in the file LICENSE in the source distribution or at |
| 239 | L<https://www.openssl.org/source/license.html>. |
| 240 | |
| 241 | =cut |