blob: 42eee4cd48916987500c969600b24c0924bd02e0 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/debugobjects.h>
22#include <linux/kallsyms.h>
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
27#include <linux/pfn.h>
28#include <linux/kmemleak.h>
29#include <linux/atomic.h>
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
32#include <asm/shmparam.h>
33
34/*** Page table manipulation functions ***/
35
36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38 pte_t *pte;
39
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48{
49 pmd_t *pmd;
50 unsigned long next;
51
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
59}
60
61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62{
63 pud_t *pud;
64 unsigned long next;
65
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
73}
74
75static void vunmap_page_range(unsigned long addr, unsigned long end)
76{
77 pgd_t *pgd;
78 unsigned long next;
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
88}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92{
93 pte_t *pte;
94
95 /*
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
98 */
99
100 pte = pte_alloc_kernel(pmd, addr);
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = pages[*nr];
105
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*nr)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114}
115
116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118{
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131}
132
133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135{
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148}
149
150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
158{
159 pgd_t *pgd;
160 unsigned long next;
161 unsigned long addr = start;
162 int err = 0;
163 int nr = 0;
164
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
167 do {
168 next = pgd_addr_end(addr, end);
169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 if (err)
171 return err;
172 } while (pgd++, addr = next, addr != end);
173
174 return nr;
175}
176
177static int vmap_page_range(unsigned long start, unsigned long end,
178 pgprot_t prot, struct page **pages)
179{
180 int ret;
181
182 ret = vmap_page_range_noflush(start, end, prot, pages);
183 flush_cache_vmap(start, end);
184 return ret;
185}
186
187int is_vmalloc_or_module_addr(const void *x)
188{
189 /*
190 * ARM, x86-64 and sparc64 put modules in a special place,
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
193 */
194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr = (unsigned long)x;
196 if (addr >= MODULES_VADDR && addr < MODULES_END)
197 return 1;
198#endif
199 return is_vmalloc_addr(x);
200}
201
202/*
203 * Walk a vmap address to the struct page it maps.
204 */
205struct page *vmalloc_to_page(const void *vmalloc_addr)
206{
207 unsigned long addr = (unsigned long) vmalloc_addr;
208 struct page *page = NULL;
209 pgd_t *pgd = pgd_offset_k(addr);
210
211 /*
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
214 */
215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
216
217 if (!pgd_none(*pgd)) {
218 pud_t *pud = pud_offset(pgd, addr);
219 if (!pud_none(*pud)) {
220 pmd_t *pmd = pmd_offset(pud, addr);
221 if (!pmd_none(*pmd)) {
222 pte_t *ptep, pte;
223
224 ptep = pte_offset_map(pmd, addr);
225 pte = *ptep;
226 if (pte_present(pte))
227 page = pte_page(pte);
228 pte_unmap(ptep);
229 }
230 }
231 }
232 return page;
233}
234EXPORT_SYMBOL(vmalloc_to_page);
235
236/*
237 * Map a vmalloc()-space virtual address to the physical page frame number.
238 */
239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
240{
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242}
243EXPORT_SYMBOL(vmalloc_to_pfn);
244
245
246/*** Global kva allocator ***/
247
248#define VM_LAZY_FREE 0x01
249#define VM_LAZY_FREEING 0x02
250#define VM_VM_AREA 0x04
251
252struct vmap_area {
253 unsigned long va_start;
254 unsigned long va_end;
255 unsigned long flags;
256 struct rb_node rb_node; /* address sorted rbtree */
257 struct list_head list; /* address sorted list */
258 struct list_head purge_list; /* "lazy purge" list */
259 struct vm_struct *vm;
260 struct rcu_head rcu_head;
261};
262
263static DEFINE_SPINLOCK(vmap_area_lock);
264static LIST_HEAD(vmap_area_list);
265static struct rb_root vmap_area_root = RB_ROOT;
266
267/* The vmap cache globals are protected by vmap_area_lock */
268static struct rb_node *free_vmap_cache;
269static unsigned long cached_hole_size;
270static unsigned long cached_vstart;
271static unsigned long cached_align;
272
273static unsigned long vmap_area_pcpu_hole;
274
275static struct vmap_area *__find_vmap_area(unsigned long addr)
276{
277 struct rb_node *n = vmap_area_root.rb_node;
278
279 while (n) {
280 struct vmap_area *va;
281
282 va = rb_entry(n, struct vmap_area, rb_node);
283 if (addr < va->va_start)
284 n = n->rb_left;
285 else if (addr > va->va_start)
286 n = n->rb_right;
287 else
288 return va;
289 }
290
291 return NULL;
292}
293
294static void __insert_vmap_area(struct vmap_area *va)
295{
296 struct rb_node **p = &vmap_area_root.rb_node;
297 struct rb_node *parent = NULL;
298 struct rb_node *tmp;
299
300 while (*p) {
301 struct vmap_area *tmp_va;
302
303 parent = *p;
304 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305 if (va->va_start < tmp_va->va_end)
306 p = &(*p)->rb_left;
307 else if (va->va_end > tmp_va->va_start)
308 p = &(*p)->rb_right;
309 else
310 BUG();
311 }
312
313 rb_link_node(&va->rb_node, parent, p);
314 rb_insert_color(&va->rb_node, &vmap_area_root);
315
316 /* address-sort this list so it is usable like the vmlist */
317 tmp = rb_prev(&va->rb_node);
318 if (tmp) {
319 struct vmap_area *prev;
320 prev = rb_entry(tmp, struct vmap_area, rb_node);
321 list_add_rcu(&va->list, &prev->list);
322 } else
323 list_add_rcu(&va->list, &vmap_area_list);
324}
325
326static void purge_vmap_area_lazy(void);
327
328/*
329 * Allocate a region of KVA of the specified size and alignment, within the
330 * vstart and vend.
331 */
332static struct vmap_area *alloc_vmap_area(unsigned long size,
333 unsigned long align,
334 unsigned long vstart, unsigned long vend,
335 int node, gfp_t gfp_mask)
336{
337 struct vmap_area *va;
338 struct rb_node *n;
339 unsigned long addr;
340 int purged = 0;
341 struct vmap_area *first;
342
343 BUG_ON(!size);
344 BUG_ON(size & ~PAGE_MASK);
345 BUG_ON(!is_power_of_2(align));
346
347 va = kmalloc_node(sizeof(struct vmap_area),
348 gfp_mask & GFP_RECLAIM_MASK, node);
349 if (unlikely(!va))
350 return ERR_PTR(-ENOMEM);
351
352 /*
353 * Only scan the relevant parts containing pointers to other objects
354 * to avoid false negatives.
355 */
356 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
357
358retry:
359 spin_lock(&vmap_area_lock);
360 /*
361 * Invalidate cache if we have more permissive parameters.
362 * cached_hole_size notes the largest hole noticed _below_
363 * the vmap_area cached in free_vmap_cache: if size fits
364 * into that hole, we want to scan from vstart to reuse
365 * the hole instead of allocating above free_vmap_cache.
366 * Note that __free_vmap_area may update free_vmap_cache
367 * without updating cached_hole_size or cached_align.
368 */
369 if (!free_vmap_cache ||
370 size < cached_hole_size ||
371 vstart < cached_vstart ||
372 align < cached_align) {
373nocache:
374 cached_hole_size = 0;
375 free_vmap_cache = NULL;
376 }
377 /* record if we encounter less permissive parameters */
378 cached_vstart = vstart;
379 cached_align = align;
380
381 /* find starting point for our search */
382 if (free_vmap_cache) {
383 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
384 addr = ALIGN(first->va_end, align);
385 if (addr < vstart)
386 goto nocache;
387 if (addr + size - 1 < addr)
388 goto overflow;
389
390 } else {
391 addr = ALIGN(vstart, align);
392 if (addr + size - 1 < addr)
393 goto overflow;
394
395 n = vmap_area_root.rb_node;
396 first = NULL;
397
398 while (n) {
399 struct vmap_area *tmp;
400 tmp = rb_entry(n, struct vmap_area, rb_node);
401 if (tmp->va_end >= addr) {
402 first = tmp;
403 if (tmp->va_start <= addr)
404 break;
405 n = n->rb_left;
406 } else
407 n = n->rb_right;
408 }
409
410 if (!first)
411 goto found;
412 }
413
414 /* from the starting point, walk areas until a suitable hole is found */
415 while (addr + size > first->va_start && addr + size <= vend) {
416 if (addr + cached_hole_size < first->va_start)
417 cached_hole_size = first->va_start - addr;
418 addr = ALIGN(first->va_end, align);
419 if (addr + size - 1 < addr)
420 goto overflow;
421
422 n = rb_next(&first->rb_node);
423 if (n)
424 first = rb_entry(n, struct vmap_area, rb_node);
425 else
426 goto found;
427 }
428
429found:
430 if (addr + size > vend)
431 goto overflow;
432
433 va->va_start = addr;
434 va->va_end = addr + size;
435 va->flags = 0;
436 __insert_vmap_area(va);
437 free_vmap_cache = &va->rb_node;
438 spin_unlock(&vmap_area_lock);
439
440 BUG_ON(va->va_start & (align-1));
441 BUG_ON(va->va_start < vstart);
442 BUG_ON(va->va_end > vend);
443
444 return va;
445
446overflow:
447 spin_unlock(&vmap_area_lock);
448 if (!purged) {
449 purge_vmap_area_lazy();
450 purged = 1;
451 goto retry;
452 }
453 if (printk_ratelimit())
454 printk(KERN_WARNING
455 "vmap allocation for size %lu failed: "
456 "use vmalloc=<size> to increase size.\n", size);
457 kfree(va);
458 return ERR_PTR(-EBUSY);
459}
460
461static void __free_vmap_area(struct vmap_area *va)
462{
463 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
464
465 if (free_vmap_cache) {
466 if (va->va_end < cached_vstart) {
467 free_vmap_cache = NULL;
468 } else {
469 struct vmap_area *cache;
470 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
471 if (va->va_start <= cache->va_start) {
472 free_vmap_cache = rb_prev(&va->rb_node);
473 /*
474 * We don't try to update cached_hole_size or
475 * cached_align, but it won't go very wrong.
476 */
477 }
478 }
479 }
480 rb_erase(&va->rb_node, &vmap_area_root);
481 RB_CLEAR_NODE(&va->rb_node);
482 list_del_rcu(&va->list);
483
484 /*
485 * Track the highest possible candidate for pcpu area
486 * allocation. Areas outside of vmalloc area can be returned
487 * here too, consider only end addresses which fall inside
488 * vmalloc area proper.
489 */
490 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
491 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
492
493 kfree_rcu(va, rcu_head);
494}
495
496/*
497 * Free a region of KVA allocated by alloc_vmap_area
498 */
499static void free_vmap_area(struct vmap_area *va)
500{
501 spin_lock(&vmap_area_lock);
502 __free_vmap_area(va);
503 spin_unlock(&vmap_area_lock);
504}
505
506/*
507 * Clear the pagetable entries of a given vmap_area
508 */
509static void unmap_vmap_area(struct vmap_area *va)
510{
511 vunmap_page_range(va->va_start, va->va_end);
512}
513
514static void vmap_debug_free_range(unsigned long start, unsigned long end)
515{
516 /*
517 * Unmap page tables and force a TLB flush immediately if
518 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
519 * bugs similarly to those in linear kernel virtual address
520 * space after a page has been freed.
521 *
522 * All the lazy freeing logic is still retained, in order to
523 * minimise intrusiveness of this debugging feature.
524 *
525 * This is going to be *slow* (linear kernel virtual address
526 * debugging doesn't do a broadcast TLB flush so it is a lot
527 * faster).
528 */
529#ifdef CONFIG_DEBUG_PAGEALLOC
530 vunmap_page_range(start, end);
531 flush_tlb_kernel_range(start, end);
532#endif
533}
534
535/*
536 * lazy_max_pages is the maximum amount of virtual address space we gather up
537 * before attempting to purge with a TLB flush.
538 *
539 * There is a tradeoff here: a larger number will cover more kernel page tables
540 * and take slightly longer to purge, but it will linearly reduce the number of
541 * global TLB flushes that must be performed. It would seem natural to scale
542 * this number up linearly with the number of CPUs (because vmapping activity
543 * could also scale linearly with the number of CPUs), however it is likely
544 * that in practice, workloads might be constrained in other ways that mean
545 * vmap activity will not scale linearly with CPUs. Also, I want to be
546 * conservative and not introduce a big latency on huge systems, so go with
547 * a less aggressive log scale. It will still be an improvement over the old
548 * code, and it will be simple to change the scale factor if we find that it
549 * becomes a problem on bigger systems.
550 */
551static unsigned long lazy_max_pages(void)
552{
553 unsigned int log;
554
555 log = fls(num_online_cpus());
556
557 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
558}
559
560static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
561
562/* for per-CPU blocks */
563static void purge_fragmented_blocks_allcpus(void);
564
565/*
566 * called before a call to iounmap() if the caller wants vm_area_struct's
567 * immediately freed.
568 */
569void set_iounmap_nonlazy(void)
570{
571 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
572}
573
574/*
575 * Purges all lazily-freed vmap areas.
576 *
577 * If sync is 0 then don't purge if there is already a purge in progress.
578 * If force_flush is 1, then flush kernel TLBs between *start and *end even
579 * if we found no lazy vmap areas to unmap (callers can use this to optimise
580 * their own TLB flushing).
581 * Returns with *start = min(*start, lowest purged address)
582 * *end = max(*end, highest purged address)
583 */
584static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
585 int sync, int force_flush)
586{
587 static DEFINE_SPINLOCK(purge_lock);
588 LIST_HEAD(valist);
589 struct vmap_area *va;
590 struct vmap_area *n_va;
591 int nr = 0;
592
593 /*
594 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
595 * should not expect such behaviour. This just simplifies locking for
596 * the case that isn't actually used at the moment anyway.
597 */
598 if (!sync && !force_flush) {
599 if (!spin_trylock(&purge_lock))
600 return;
601 } else
602 spin_lock(&purge_lock);
603
604 if (sync)
605 purge_fragmented_blocks_allcpus();
606
607 rcu_read_lock();
608 list_for_each_entry_rcu(va, &vmap_area_list, list) {
609 if (va->flags & VM_LAZY_FREE) {
610 if (va->va_start < *start)
611 *start = va->va_start;
612 if (va->va_end > *end)
613 *end = va->va_end;
614 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
615 list_add_tail(&va->purge_list, &valist);
616 va->flags |= VM_LAZY_FREEING;
617 va->flags &= ~VM_LAZY_FREE;
618 }
619 }
620 rcu_read_unlock();
621
622 if (nr)
623 atomic_sub(nr, &vmap_lazy_nr);
624
625 if (nr || force_flush)
626 flush_tlb_kernel_range(*start, *end);
627
628 if (nr) {
629 spin_lock(&vmap_area_lock);
630 list_for_each_entry_safe(va, n_va, &valist, purge_list)
631 __free_vmap_area(va);
632 spin_unlock(&vmap_area_lock);
633 }
634 spin_unlock(&purge_lock);
635}
636
637/*
638 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
639 * is already purging.
640 */
641static void try_purge_vmap_area_lazy(void)
642{
643 unsigned long start = ULONG_MAX, end = 0;
644
645 __purge_vmap_area_lazy(&start, &end, 0, 0);
646}
647
648/*
649 * Kick off a purge of the outstanding lazy areas.
650 */
651static void purge_vmap_area_lazy(void)
652{
653 unsigned long start = ULONG_MAX, end = 0;
654
655 __purge_vmap_area_lazy(&start, &end, 1, 0);
656}
657
658/*
659 * Free a vmap area, caller ensuring that the area has been unmapped
660 * and flush_cache_vunmap had been called for the correct range
661 * previously.
662 */
663static void free_vmap_area_noflush(struct vmap_area *va)
664{
665 va->flags |= VM_LAZY_FREE;
666 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
667 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
668 try_purge_vmap_area_lazy();
669}
670
671/*
672 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
673 * called for the correct range previously.
674 */
675static void free_unmap_vmap_area_noflush(struct vmap_area *va)
676{
677 unmap_vmap_area(va);
678 free_vmap_area_noflush(va);
679}
680
681/*
682 * Free and unmap a vmap area
683 */
684static void free_unmap_vmap_area(struct vmap_area *va)
685{
686 flush_cache_vunmap(va->va_start, va->va_end);
687 free_unmap_vmap_area_noflush(va);
688}
689
690static struct vmap_area *find_vmap_area(unsigned long addr)
691{
692 struct vmap_area *va;
693
694 spin_lock(&vmap_area_lock);
695 va = __find_vmap_area(addr);
696 spin_unlock(&vmap_area_lock);
697
698 return va;
699}
700
701static void free_unmap_vmap_area_addr(unsigned long addr)
702{
703 struct vmap_area *va;
704
705 va = find_vmap_area(addr);
706 BUG_ON(!va);
707 free_unmap_vmap_area(va);
708}
709
710
711/*** Per cpu kva allocator ***/
712
713/*
714 * vmap space is limited especially on 32 bit architectures. Ensure there is
715 * room for at least 16 percpu vmap blocks per CPU.
716 */
717/*
718 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
719 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
720 * instead (we just need a rough idea)
721 */
722#if BITS_PER_LONG == 32
723#define VMALLOC_SPACE (128UL*1024*1024)
724#else
725#define VMALLOC_SPACE (128UL*1024*1024*1024)
726#endif
727
728#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
729#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
730#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
731#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
732#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
733#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
734#define VMAP_BBMAP_BITS \
735 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
736 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
737 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
738
739#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
740
741static bool vmap_initialized __read_mostly = false;
742
743struct vmap_block_queue {
744 spinlock_t lock;
745 struct list_head free;
746};
747
748struct vmap_block {
749 spinlock_t lock;
750 struct vmap_area *va;
751 struct vmap_block_queue *vbq;
752 unsigned long free, dirty;
753 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
754 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
755 struct list_head free_list;
756 struct rcu_head rcu_head;
757 struct list_head purge;
758};
759
760/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
761static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
762
763/*
764 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
765 * in the free path. Could get rid of this if we change the API to return a
766 * "cookie" from alloc, to be passed to free. But no big deal yet.
767 */
768static DEFINE_SPINLOCK(vmap_block_tree_lock);
769static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
770
771/*
772 * We should probably have a fallback mechanism to allocate virtual memory
773 * out of partially filled vmap blocks. However vmap block sizing should be
774 * fairly reasonable according to the vmalloc size, so it shouldn't be a
775 * big problem.
776 */
777
778static unsigned long addr_to_vb_idx(unsigned long addr)
779{
780 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
781 addr /= VMAP_BLOCK_SIZE;
782 return addr;
783}
784
785static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
786{
787 struct vmap_block_queue *vbq;
788 struct vmap_block *vb;
789 struct vmap_area *va;
790 unsigned long vb_idx;
791 int node, err, cpu;
792
793 node = numa_node_id();
794
795 vb = kmalloc_node(sizeof(struct vmap_block),
796 gfp_mask & GFP_RECLAIM_MASK, node);
797 if (unlikely(!vb))
798 return ERR_PTR(-ENOMEM);
799
800 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
801 VMALLOC_START, VMALLOC_END,
802 node, gfp_mask);
803 if (IS_ERR(va)) {
804 kfree(vb);
805 return ERR_CAST(va);
806 }
807
808 err = radix_tree_preload(gfp_mask);
809 if (unlikely(err)) {
810 kfree(vb);
811 free_vmap_area(va);
812 return ERR_PTR(err);
813 }
814
815 spin_lock_init(&vb->lock);
816 vb->va = va;
817 vb->free = VMAP_BBMAP_BITS;
818 vb->dirty = 0;
819 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
820 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
821 INIT_LIST_HEAD(&vb->free_list);
822
823 vb_idx = addr_to_vb_idx(va->va_start);
824 spin_lock(&vmap_block_tree_lock);
825 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
826 spin_unlock(&vmap_block_tree_lock);
827 BUG_ON(err);
828 radix_tree_preload_end();
829
830 cpu = get_cpu_light();
831 vbq = &__get_cpu_var(vmap_block_queue);
832 vb->vbq = vbq;
833 spin_lock(&vbq->lock);
834 list_add_rcu(&vb->free_list, &vbq->free);
835 spin_unlock(&vbq->lock);
836 put_cpu_light();
837
838 return vb;
839}
840
841static void free_vmap_block(struct vmap_block *vb)
842{
843 struct vmap_block *tmp;
844 unsigned long vb_idx;
845
846 vb_idx = addr_to_vb_idx(vb->va->va_start);
847 spin_lock(&vmap_block_tree_lock);
848 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
849 spin_unlock(&vmap_block_tree_lock);
850 BUG_ON(tmp != vb);
851
852 free_vmap_area_noflush(vb->va);
853 kfree_rcu(vb, rcu_head);
854}
855
856static void purge_fragmented_blocks(int cpu)
857{
858 LIST_HEAD(purge);
859 struct vmap_block *vb;
860 struct vmap_block *n_vb;
861 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
862
863 rcu_read_lock();
864 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
865
866 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
867 continue;
868
869 spin_lock(&vb->lock);
870 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
871 vb->free = 0; /* prevent further allocs after releasing lock */
872 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
873 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
874 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
875 spin_lock(&vbq->lock);
876 list_del_rcu(&vb->free_list);
877 spin_unlock(&vbq->lock);
878 spin_unlock(&vb->lock);
879 list_add_tail(&vb->purge, &purge);
880 } else
881 spin_unlock(&vb->lock);
882 }
883 rcu_read_unlock();
884
885 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
886 list_del(&vb->purge);
887 free_vmap_block(vb);
888 }
889}
890
891static void purge_fragmented_blocks_thiscpu(void)
892{
893 purge_fragmented_blocks(smp_processor_id());
894}
895
896static void purge_fragmented_blocks_allcpus(void)
897{
898 int cpu;
899
900 for_each_possible_cpu(cpu)
901 purge_fragmented_blocks(cpu);
902}
903
904static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
905{
906 struct vmap_block_queue *vbq;
907 struct vmap_block *vb;
908 unsigned long addr = 0;
909 unsigned int order;
910 int purge = 0, cpu;
911
912 BUG_ON(size & ~PAGE_MASK);
913 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
914 order = get_order(size);
915
916again:
917 rcu_read_lock();
918 cpu = get_cpu_light();
919 vbq = &__get_cpu_var(vmap_block_queue);
920 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
921 int i;
922
923 spin_lock(&vb->lock);
924 if (vb->free < 1UL << order)
925 goto next;
926
927 i = bitmap_find_free_region(vb->alloc_map,
928 VMAP_BBMAP_BITS, order);
929
930 if (i < 0) {
931 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
932 /* fragmented and no outstanding allocations */
933 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
934 purge = 1;
935 }
936 goto next;
937 }
938 addr = vb->va->va_start + (i << PAGE_SHIFT);
939 BUG_ON(addr_to_vb_idx(addr) !=
940 addr_to_vb_idx(vb->va->va_start));
941 vb->free -= 1UL << order;
942 if (vb->free == 0) {
943 spin_lock(&vbq->lock);
944 list_del_rcu(&vb->free_list);
945 spin_unlock(&vbq->lock);
946 }
947 spin_unlock(&vb->lock);
948 break;
949next:
950 spin_unlock(&vb->lock);
951 }
952
953 if (purge)
954 purge_fragmented_blocks_thiscpu();
955
956 put_cpu_light();
957 rcu_read_unlock();
958
959 if (!addr) {
960 vb = new_vmap_block(gfp_mask);
961 if (IS_ERR(vb))
962 return vb;
963 goto again;
964 }
965
966 return (void *)addr;
967}
968
969static void vb_free(const void *addr, unsigned long size)
970{
971 unsigned long offset;
972 unsigned long vb_idx;
973 unsigned int order;
974 struct vmap_block *vb;
975
976 BUG_ON(size & ~PAGE_MASK);
977 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
978
979 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
980
981 order = get_order(size);
982
983 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
984
985 vb_idx = addr_to_vb_idx((unsigned long)addr);
986 rcu_read_lock();
987 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
988 rcu_read_unlock();
989 BUG_ON(!vb);
990
991 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
992
993 spin_lock(&vb->lock);
994 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
995
996 vb->dirty += 1UL << order;
997 if (vb->dirty == VMAP_BBMAP_BITS) {
998 BUG_ON(vb->free);
999 spin_unlock(&vb->lock);
1000 free_vmap_block(vb);
1001 } else
1002 spin_unlock(&vb->lock);
1003}
1004
1005/**
1006 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1007 *
1008 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1009 * to amortize TLB flushing overheads. What this means is that any page you
1010 * have now, may, in a former life, have been mapped into kernel virtual
1011 * address by the vmap layer and so there might be some CPUs with TLB entries
1012 * still referencing that page (additional to the regular 1:1 kernel mapping).
1013 *
1014 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1015 * be sure that none of the pages we have control over will have any aliases
1016 * from the vmap layer.
1017 */
1018void vm_unmap_aliases(void)
1019{
1020 unsigned long start = ULONG_MAX, end = 0;
1021 int cpu;
1022 int flush = 0;
1023
1024 if (unlikely(!vmap_initialized))
1025 return;
1026
1027 for_each_possible_cpu(cpu) {
1028 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1029 struct vmap_block *vb;
1030
1031 rcu_read_lock();
1032 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1033 int i;
1034
1035 spin_lock(&vb->lock);
1036 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1037 while (i < VMAP_BBMAP_BITS) {
1038 unsigned long s, e;
1039 int j;
1040 j = find_next_zero_bit(vb->dirty_map,
1041 VMAP_BBMAP_BITS, i);
1042
1043 s = vb->va->va_start + (i << PAGE_SHIFT);
1044 e = vb->va->va_start + (j << PAGE_SHIFT);
1045 flush = 1;
1046
1047 if (s < start)
1048 start = s;
1049 if (e > end)
1050 end = e;
1051
1052 i = j;
1053 i = find_next_bit(vb->dirty_map,
1054 VMAP_BBMAP_BITS, i);
1055 }
1056 spin_unlock(&vb->lock);
1057 }
1058 rcu_read_unlock();
1059 }
1060
1061 __purge_vmap_area_lazy(&start, &end, 1, flush);
1062}
1063EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1064
1065/**
1066 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1067 * @mem: the pointer returned by vm_map_ram
1068 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1069 */
1070void vm_unmap_ram(const void *mem, unsigned int count)
1071{
1072 unsigned long size = count << PAGE_SHIFT;
1073 unsigned long addr = (unsigned long)mem;
1074
1075 BUG_ON(!addr);
1076 BUG_ON(addr < VMALLOC_START);
1077 BUG_ON(addr > VMALLOC_END);
1078 BUG_ON(addr & (PAGE_SIZE-1));
1079
1080 debug_check_no_locks_freed(mem, size);
1081 vmap_debug_free_range(addr, addr+size);
1082
1083 if (likely(count <= VMAP_MAX_ALLOC))
1084 vb_free(mem, size);
1085 else
1086 free_unmap_vmap_area_addr(addr);
1087}
1088EXPORT_SYMBOL(vm_unmap_ram);
1089
1090/**
1091 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1092 * @pages: an array of pointers to the pages to be mapped
1093 * @count: number of pages
1094 * @node: prefer to allocate data structures on this node
1095 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1096 *
1097 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1098 */
1099void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1100{
1101 unsigned long size = count << PAGE_SHIFT;
1102 unsigned long addr;
1103 void *mem;
1104
1105 if (likely(count <= VMAP_MAX_ALLOC)) {
1106 mem = vb_alloc(size, GFP_KERNEL);
1107 if (IS_ERR(mem))
1108 return NULL;
1109 addr = (unsigned long)mem;
1110 } else {
1111 struct vmap_area *va;
1112 va = alloc_vmap_area(size, PAGE_SIZE,
1113 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1114 if (IS_ERR(va))
1115 return NULL;
1116
1117 addr = va->va_start;
1118 mem = (void *)addr;
1119 }
1120 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1121 vm_unmap_ram(mem, count);
1122 return NULL;
1123 }
1124 return mem;
1125}
1126EXPORT_SYMBOL(vm_map_ram);
1127
1128/**
1129 * vm_area_add_early - add vmap area early during boot
1130 * @vm: vm_struct to add
1131 *
1132 * This function is used to add fixed kernel vm area to vmlist before
1133 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1134 * should contain proper values and the other fields should be zero.
1135 *
1136 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1137 */
1138void __init vm_area_add_early(struct vm_struct *vm)
1139{
1140 struct vm_struct *tmp, **p;
1141
1142 BUG_ON(vmap_initialized);
1143 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1144 if (tmp->addr >= vm->addr) {
1145 BUG_ON(tmp->addr < vm->addr + vm->size);
1146 break;
1147 } else
1148 BUG_ON(tmp->addr + tmp->size > vm->addr);
1149 }
1150 vm->next = *p;
1151 *p = vm;
1152}
1153
1154/**
1155 * vm_area_register_early - register vmap area early during boot
1156 * @vm: vm_struct to register
1157 * @align: requested alignment
1158 *
1159 * This function is used to register kernel vm area before
1160 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1161 * proper values on entry and other fields should be zero. On return,
1162 * vm->addr contains the allocated address.
1163 *
1164 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1165 */
1166void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1167{
1168 static size_t vm_init_off __initdata;
1169 unsigned long addr;
1170
1171 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1172 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1173
1174 vm->addr = (void *)addr;
1175
1176 vm_area_add_early(vm);
1177}
1178
1179void __init vmalloc_init(void)
1180{
1181 struct vmap_area *va;
1182 struct vm_struct *tmp;
1183 int i;
1184
1185 for_each_possible_cpu(i) {
1186 struct vmap_block_queue *vbq;
1187
1188 vbq = &per_cpu(vmap_block_queue, i);
1189 spin_lock_init(&vbq->lock);
1190 INIT_LIST_HEAD(&vbq->free);
1191 }
1192
1193 /* Import existing vmlist entries. */
1194 for (tmp = vmlist; tmp; tmp = tmp->next) {
1195 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1196 va->flags = VM_VM_AREA;
1197 va->va_start = (unsigned long)tmp->addr;
1198 va->va_end = va->va_start + tmp->size;
1199 va->vm = tmp;
1200 __insert_vmap_area(va);
1201 }
1202
1203 vmap_area_pcpu_hole = VMALLOC_END;
1204
1205 vmap_initialized = true;
1206}
1207
1208/**
1209 * map_kernel_range_noflush - map kernel VM area with the specified pages
1210 * @addr: start of the VM area to map
1211 * @size: size of the VM area to map
1212 * @prot: page protection flags to use
1213 * @pages: pages to map
1214 *
1215 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1216 * specify should have been allocated using get_vm_area() and its
1217 * friends.
1218 *
1219 * NOTE:
1220 * This function does NOT do any cache flushing. The caller is
1221 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1222 * before calling this function.
1223 *
1224 * RETURNS:
1225 * The number of pages mapped on success, -errno on failure.
1226 */
1227int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1228 pgprot_t prot, struct page **pages)
1229{
1230 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1231}
1232
1233/**
1234 * unmap_kernel_range_noflush - unmap kernel VM area
1235 * @addr: start of the VM area to unmap
1236 * @size: size of the VM area to unmap
1237 *
1238 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1239 * specify should have been allocated using get_vm_area() and its
1240 * friends.
1241 *
1242 * NOTE:
1243 * This function does NOT do any cache flushing. The caller is
1244 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1245 * before calling this function and flush_tlb_kernel_range() after.
1246 */
1247void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1248{
1249 vunmap_page_range(addr, addr + size);
1250}
1251EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1252
1253/**
1254 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1255 * @addr: start of the VM area to unmap
1256 * @size: size of the VM area to unmap
1257 *
1258 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1259 * the unmapping and tlb after.
1260 */
1261void unmap_kernel_range(unsigned long addr, unsigned long size)
1262{
1263 unsigned long end = addr + size;
1264
1265 flush_cache_vunmap(addr, end);
1266 vunmap_page_range(addr, end);
1267 flush_tlb_kernel_range(addr, end);
1268}
1269
1270int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1271{
1272 unsigned long addr = (unsigned long)area->addr;
1273 unsigned long end = addr + area->size - PAGE_SIZE;
1274 int err;
1275
1276 err = vmap_page_range(addr, end, prot, *pages);
1277 if (err > 0) {
1278 *pages += err;
1279 err = 0;
1280 }
1281
1282 return err;
1283}
1284EXPORT_SYMBOL_GPL(map_vm_area);
1285
1286/*** Old vmalloc interfaces ***/
1287DEFINE_RWLOCK(vmlist_lock);
1288struct vm_struct *vmlist;
1289
1290static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1291 unsigned long flags, void *caller)
1292{
1293 vm->flags = flags;
1294 vm->addr = (void *)va->va_start;
1295 vm->size = va->va_end - va->va_start;
1296 vm->caller = caller;
1297 va->vm = vm;
1298 va->flags |= VM_VM_AREA;
1299}
1300
1301static void insert_vmalloc_vmlist(struct vm_struct *vm)
1302{
1303 struct vm_struct *tmp, **p;
1304
1305 vm->flags &= ~VM_UNLIST;
1306 write_lock(&vmlist_lock);
1307 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1308 if (tmp->addr >= vm->addr)
1309 break;
1310 }
1311 vm->next = *p;
1312 *p = vm;
1313 write_unlock(&vmlist_lock);
1314}
1315
1316static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1317 unsigned long flags, void *caller)
1318{
1319 setup_vmalloc_vm(vm, va, flags, caller);
1320 insert_vmalloc_vmlist(vm);
1321}
1322
1323static struct vm_struct *__get_vm_area_node(unsigned long size,
1324 unsigned long align, unsigned long flags, unsigned long start,
1325 unsigned long end, int node, gfp_t gfp_mask, void *caller)
1326{
1327 struct vmap_area *va;
1328 struct vm_struct *area;
1329
1330 BUG_ON(in_interrupt());
1331 if (flags & VM_IOREMAP) {
1332 int bit = fls(size);
1333
1334 if (bit > IOREMAP_MAX_ORDER)
1335 bit = IOREMAP_MAX_ORDER;
1336 else if (bit < PAGE_SHIFT)
1337 bit = PAGE_SHIFT;
1338
1339 align = 1ul << bit;
1340 }
1341
1342 size = PAGE_ALIGN(size);
1343 if (unlikely(!size))
1344 return NULL;
1345
1346 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1347 if (unlikely(!area))
1348 return NULL;
1349
1350 /*
1351 * We always allocate a guard page.
1352 */
1353 size += PAGE_SIZE;
1354
1355 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1356 if (IS_ERR(va)) {
1357 kfree(area);
1358 return NULL;
1359 }
1360
1361 /*
1362 * When this function is called from __vmalloc_node_range,
1363 * we do not add vm_struct to vmlist here to avoid
1364 * accessing uninitialized members of vm_struct such as
1365 * pages and nr_pages fields. They will be set later.
1366 * To distinguish it from others, we use a VM_UNLIST flag.
1367 */
1368 if (flags & VM_UNLIST)
1369 setup_vmalloc_vm(area, va, flags, caller);
1370 else
1371 insert_vmalloc_vm(area, va, flags, caller);
1372
1373 return area;
1374}
1375
1376struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1377 unsigned long start, unsigned long end)
1378{
1379 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1380 __builtin_return_address(0));
1381}
1382EXPORT_SYMBOL_GPL(__get_vm_area);
1383
1384struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1385 unsigned long start, unsigned long end,
1386 void *caller)
1387{
1388 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1389 caller);
1390}
1391
1392/**
1393 * get_vm_area - reserve a contiguous kernel virtual area
1394 * @size: size of the area
1395 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1396 *
1397 * Search an area of @size in the kernel virtual mapping area,
1398 * and reserved it for out purposes. Returns the area descriptor
1399 * on success or %NULL on failure.
1400 */
1401struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1402{
1403 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1404 -1, GFP_KERNEL, __builtin_return_address(0));
1405}
1406
1407struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1408 void *caller)
1409{
1410 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1411 -1, GFP_KERNEL, caller);
1412}
1413
1414static struct vm_struct *find_vm_area(const void *addr)
1415{
1416 struct vmap_area *va;
1417
1418 va = find_vmap_area((unsigned long)addr);
1419 if (va && va->flags & VM_VM_AREA)
1420 return va->vm;
1421
1422 return NULL;
1423}
1424
1425/**
1426 * remove_vm_area - find and remove a continuous kernel virtual area
1427 * @addr: base address
1428 *
1429 * Search for the kernel VM area starting at @addr, and remove it.
1430 * This function returns the found VM area, but using it is NOT safe
1431 * on SMP machines, except for its size or flags.
1432 */
1433struct vm_struct *remove_vm_area(const void *addr)
1434{
1435 struct vmap_area *va;
1436
1437 va = find_vmap_area((unsigned long)addr);
1438 if (va && va->flags & VM_VM_AREA) {
1439 struct vm_struct *vm = va->vm;
1440
1441 if (!(vm->flags & VM_UNLIST)) {
1442 struct vm_struct *tmp, **p;
1443 /*
1444 * remove from list and disallow access to
1445 * this vm_struct before unmap. (address range
1446 * confliction is maintained by vmap.)
1447 */
1448 write_lock(&vmlist_lock);
1449 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1450 ;
1451 *p = tmp->next;
1452 write_unlock(&vmlist_lock);
1453 }
1454
1455 vmap_debug_free_range(va->va_start, va->va_end);
1456 free_unmap_vmap_area(va);
1457 vm->size -= PAGE_SIZE;
1458
1459 return vm;
1460 }
1461 return NULL;
1462}
1463
1464static void __vunmap(const void *addr, int deallocate_pages)
1465{
1466 struct vm_struct *area;
1467
1468 if (!addr)
1469 return;
1470
1471 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1472 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1473 return;
1474 }
1475
1476 area = remove_vm_area(addr);
1477 if (unlikely(!area)) {
1478 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1479 addr);
1480 return;
1481 }
1482
1483 debug_check_no_locks_freed(addr, area->size);
1484 debug_check_no_obj_freed(addr, area->size);
1485
1486 if (deallocate_pages) {
1487 int i;
1488
1489 for (i = 0; i < area->nr_pages; i++) {
1490 struct page *page = area->pages[i];
1491
1492 BUG_ON(!page);
1493 __free_page(page);
1494 }
1495
1496 if (area->flags & VM_VPAGES)
1497 vfree(area->pages);
1498 else
1499 kfree(area->pages);
1500 }
1501
1502 kfree(area);
1503 return;
1504}
1505
1506/**
1507 * vfree - release memory allocated by vmalloc()
1508 * @addr: memory base address
1509 *
1510 * Free the virtually continuous memory area starting at @addr, as
1511 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1512 * NULL, no operation is performed.
1513 *
1514 * Must not be called in interrupt context.
1515 */
1516void vfree(const void *addr)
1517{
1518 BUG_ON(in_interrupt());
1519
1520 kmemleak_free(addr);
1521
1522 __vunmap(addr, 1);
1523}
1524EXPORT_SYMBOL(vfree);
1525
1526#ifdef CONFIG_MODEM_CODE_IS_MAPPING
1527void vfree_modem_section(unsigned long start,unsigned long end)
1528{
1529 struct vmap_area *va;
1530 if (!start)
1531 return;
1532 if ((PAGE_SIZE-1) & (unsigned long)start)
1533 {
1534 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", start);
1535 return;
1536 }
1537
1538 va = find_vmap_area(MODULES_VADDR);
1539 if (va && va->flags & VM_VM_AREA)
1540 {
1541 struct vm_struct *vm = va->vm;
1542 int i = 0;
1543 unsigned long nr_pages = 0;
1544 flush_icache_range(start,end);
1545 flush_cache_vunmap(start, end);
1546 vunmap_page_range(start, end);
1547 flush_tlb_kernel_range(start, end);
1548
1549 nr_pages = (end-MODULES_VADDR) >> PAGE_SHIFT;
1550 for (i = (start-MODULES_VADDR) >> PAGE_SHIFT; i < nr_pages; i++)
1551 {
1552 struct page *page = vm->pages[i];
1553 BUG_ON(!page);
1554 __free_page(page);
1555 }
1556 }
1557}
1558EXPORT_SYMBOL(vfree_modem_section);
1559#endif
1560/**
1561 * vunmap - release virtual mapping obtained by vmap()
1562 * @addr: memory base address
1563 *
1564 * Free the virtually contiguous memory area starting at @addr,
1565 * which was created from the page array passed to vmap().
1566 *
1567 * Must not be called in interrupt context.
1568 */
1569void vunmap(const void *addr)
1570{
1571 BUG_ON(in_interrupt());
1572 might_sleep();
1573 __vunmap(addr, 0);
1574}
1575EXPORT_SYMBOL(vunmap);
1576
1577/**
1578 * vmap - map an array of pages into virtually contiguous space
1579 * @pages: array of page pointers
1580 * @count: number of pages to map
1581 * @flags: vm_area->flags
1582 * @prot: page protection for the mapping
1583 *
1584 * Maps @count pages from @pages into contiguous kernel virtual
1585 * space.
1586 */
1587void *vmap(struct page **pages, unsigned int count,
1588 unsigned long flags, pgprot_t prot)
1589{
1590 struct vm_struct *area;
1591
1592 might_sleep();
1593
1594 if (count > totalram_pages)
1595 return NULL;
1596
1597 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1598 __builtin_return_address(0));
1599 if (!area)
1600 return NULL;
1601
1602 if (map_vm_area(area, prot, &pages)) {
1603 vunmap(area->addr);
1604 return NULL;
1605 }
1606
1607 return area->addr;
1608}
1609EXPORT_SYMBOL(vmap);
1610
1611static void *__vmalloc_node(unsigned long size, unsigned long align,
1612 gfp_t gfp_mask, pgprot_t prot,
1613 int node, void *caller);
1614static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1615 pgprot_t prot, int node, void *caller)
1616{
1617 const int order = 0;
1618 struct page **pages;
1619 unsigned int nr_pages, array_size, i;
1620 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1621
1622 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1623 array_size = (nr_pages * sizeof(struct page *));
1624
1625 area->nr_pages = nr_pages;
1626 /* Please note that the recursion is strictly bounded. */
1627 if (array_size > PAGE_SIZE) {
1628 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1629 PAGE_KERNEL, node, caller);
1630 area->flags |= VM_VPAGES;
1631 } else {
1632 pages = kmalloc_node(array_size, nested_gfp, node);
1633 }
1634 area->pages = pages;
1635 area->caller = caller;
1636 if (!area->pages) {
1637 remove_vm_area(area->addr);
1638 kfree(area);
1639 return NULL;
1640 }
1641
1642 for (i = 0; i < area->nr_pages; i++) {
1643 struct page *page;
1644 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1645
1646 if (node < 0)
1647 page = alloc_page(tmp_mask);
1648 else
1649 page = alloc_pages_node(node, tmp_mask, order);
1650
1651 if (unlikely(!page)) {
1652 /* Successfully allocated i pages, free them in __vunmap() */
1653 area->nr_pages = i;
1654 goto fail;
1655 }
1656 area->pages[i] = page;
1657 }
1658
1659 if (map_vm_area(area, prot, &pages))
1660 goto fail;
1661 return area->addr;
1662
1663fail:
1664 warn_alloc_failed(gfp_mask, order,
1665 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1666 (area->nr_pages*PAGE_SIZE), area->size);
1667 vfree(area->addr);
1668 return NULL;
1669}
1670
1671/**
1672 * __vmalloc_node_range - allocate virtually contiguous memory
1673 * @size: allocation size
1674 * @align: desired alignment
1675 * @start: vm area range start
1676 * @end: vm area range end
1677 * @gfp_mask: flags for the page level allocator
1678 * @prot: protection mask for the allocated pages
1679 * @node: node to use for allocation or -1
1680 * @caller: caller's return address
1681 *
1682 * Allocate enough pages to cover @size from the page level
1683 * allocator with @gfp_mask flags. Map them into contiguous
1684 * kernel virtual space, using a pagetable protection of @prot.
1685 */
1686void *__vmalloc_node_range(unsigned long size, unsigned long align,
1687 unsigned long start, unsigned long end, gfp_t gfp_mask,
1688 pgprot_t prot, int node, void *caller)
1689{
1690 struct vm_struct *area;
1691 void *addr;
1692 unsigned long real_size = size;
1693
1694#ifdef CONFIG_MEM_CHECK
1695 if (size > CONFIG_MEM_CHECK_SIZE) {
1696 printk(KERN_ALERT"memcheck_vmalloc %d %s (%pS)\n", size, current->comm, __builtin_return_address(0));
1697 if (strcmp(current->comm,MEM_CHECK_THREAD_NAME)==0)
1698 dump_stack();
1699 }
1700#endif
1701
1702 size = PAGE_ALIGN(size);
1703 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1704 goto fail;
1705
1706 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1707 start, end, node, gfp_mask, caller);
1708 if (!area)
1709 goto fail;
1710
1711 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1712 if (!addr)
1713 return NULL;
1714
1715 /*
1716 * In this function, newly allocated vm_struct is not added
1717 * to vmlist at __get_vm_area_node(). so, it is added here.
1718 */
1719 insert_vmalloc_vmlist(area);
1720
1721 /*
1722 * A ref_count = 2 is needed because vm_struct allocated in
1723 * __get_vm_area_node() contains a reference to the virtual address of
1724 * the vmalloc'ed block.
1725 */
1726 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1727
1728 return addr;
1729
1730fail:
1731 warn_alloc_failed(gfp_mask, 0,
1732 "vmalloc: allocation failure: %lu bytes\n",
1733 real_size);
1734 return NULL;
1735}
1736
1737/**
1738 * __vmalloc_node - allocate virtually contiguous memory
1739 * @size: allocation size
1740 * @align: desired alignment
1741 * @gfp_mask: flags for the page level allocator
1742 * @prot: protection mask for the allocated pages
1743 * @node: node to use for allocation or -1
1744 * @caller: caller's return address
1745 *
1746 * Allocate enough pages to cover @size from the page level
1747 * allocator with @gfp_mask flags. Map them into contiguous
1748 * kernel virtual space, using a pagetable protection of @prot.
1749 */
1750static void *__vmalloc_node(unsigned long size, unsigned long align,
1751 gfp_t gfp_mask, pgprot_t prot,
1752 int node, void *caller)
1753{
1754 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1755 gfp_mask, prot, node, caller);
1756}
1757
1758void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1759{
1760 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1761 __builtin_return_address(0));
1762}
1763EXPORT_SYMBOL(__vmalloc);
1764
1765static inline void *__vmalloc_node_flags(unsigned long size,
1766 int node, gfp_t flags)
1767{
1768 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1769 node, __builtin_return_address(0));
1770}
1771
1772/**
1773 * vmalloc - allocate virtually contiguous memory
1774 * @size: allocation size
1775 * Allocate enough pages to cover @size from the page level
1776 * allocator and map them into contiguous kernel virtual space.
1777 *
1778 * For tight control over page level allocator and protection flags
1779 * use __vmalloc() instead.
1780 */
1781void *vmalloc(unsigned long size)
1782{
1783 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1784}
1785EXPORT_SYMBOL(vmalloc);
1786
1787/**
1788 * vzalloc - allocate virtually contiguous memory with zero fill
1789 * @size: allocation size
1790 * Allocate enough pages to cover @size from the page level
1791 * allocator and map them into contiguous kernel virtual space.
1792 * The memory allocated is set to zero.
1793 *
1794 * For tight control over page level allocator and protection flags
1795 * use __vmalloc() instead.
1796 */
1797void *vzalloc(unsigned long size)
1798{
1799 return __vmalloc_node_flags(size, -1,
1800 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1801}
1802EXPORT_SYMBOL(vzalloc);
1803
1804/**
1805 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1806 * @size: allocation size
1807 *
1808 * The resulting memory area is zeroed so it can be mapped to userspace
1809 * without leaking data.
1810 */
1811void *vmalloc_user(unsigned long size)
1812{
1813 struct vm_struct *area;
1814 void *ret;
1815
1816 ret = __vmalloc_node(size, SHMLBA,
1817 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1818 PAGE_KERNEL, -1, __builtin_return_address(0));
1819 if (ret) {
1820 area = find_vm_area(ret);
1821 if (area)
1822 area->flags |= VM_USERMAP;
1823 }
1824 return ret;
1825}
1826EXPORT_SYMBOL(vmalloc_user);
1827
1828/**
1829 * vmalloc_node - allocate memory on a specific node
1830 * @size: allocation size
1831 * @node: numa node
1832 *
1833 * Allocate enough pages to cover @size from the page level
1834 * allocator and map them into contiguous kernel virtual space.
1835 *
1836 * For tight control over page level allocator and protection flags
1837 * use __vmalloc() instead.
1838 */
1839void *vmalloc_node(unsigned long size, int node)
1840{
1841 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1842 node, __builtin_return_address(0));
1843}
1844EXPORT_SYMBOL(vmalloc_node);
1845
1846/**
1847 * vzalloc_node - allocate memory on a specific node with zero fill
1848 * @size: allocation size
1849 * @node: numa node
1850 *
1851 * Allocate enough pages to cover @size from the page level
1852 * allocator and map them into contiguous kernel virtual space.
1853 * The memory allocated is set to zero.
1854 *
1855 * For tight control over page level allocator and protection flags
1856 * use __vmalloc_node() instead.
1857 */
1858void *vzalloc_node(unsigned long size, int node)
1859{
1860 return __vmalloc_node_flags(size, node,
1861 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1862}
1863EXPORT_SYMBOL(vzalloc_node);
1864
1865#ifndef PAGE_KERNEL_EXEC
1866# define PAGE_KERNEL_EXEC PAGE_KERNEL
1867#endif
1868
1869/**
1870 * vmalloc_exec - allocate virtually contiguous, executable memory
1871 * @size: allocation size
1872 *
1873 * Kernel-internal function to allocate enough pages to cover @size
1874 * the page level allocator and map them into contiguous and
1875 * executable kernel virtual space.
1876 *
1877 * For tight control over page level allocator and protection flags
1878 * use __vmalloc() instead.
1879 */
1880
1881void *vmalloc_exec(unsigned long size)
1882{
1883 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1884 -1, __builtin_return_address(0));
1885}
1886
1887#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1888#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1889#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1890#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1891#else
1892#define GFP_VMALLOC32 GFP_KERNEL
1893#endif
1894
1895/**
1896 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1897 * @size: allocation size
1898 *
1899 * Allocate enough 32bit PA addressable pages to cover @size from the
1900 * page level allocator and map them into contiguous kernel virtual space.
1901 */
1902void *vmalloc_32(unsigned long size)
1903{
1904 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1905 -1, __builtin_return_address(0));
1906}
1907EXPORT_SYMBOL(vmalloc_32);
1908
1909/**
1910 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1911 * @size: allocation size
1912 *
1913 * The resulting memory area is 32bit addressable and zeroed so it can be
1914 * mapped to userspace without leaking data.
1915 */
1916void *vmalloc_32_user(unsigned long size)
1917{
1918 struct vm_struct *area;
1919 void *ret;
1920
1921 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1922 -1, __builtin_return_address(0));
1923 if (ret) {
1924 area = find_vm_area(ret);
1925 if (area)
1926 area->flags |= VM_USERMAP;
1927 }
1928 return ret;
1929}
1930EXPORT_SYMBOL(vmalloc_32_user);
1931
1932/*
1933 * small helper routine , copy contents to buf from addr.
1934 * If the page is not present, fill zero.
1935 */
1936
1937static int aligned_vread(char *buf, char *addr, unsigned long count)
1938{
1939 struct page *p;
1940 int copied = 0;
1941
1942 while (count) {
1943 unsigned long offset, length;
1944
1945 offset = (unsigned long)addr & ~PAGE_MASK;
1946 length = PAGE_SIZE - offset;
1947 if (length > count)
1948 length = count;
1949 p = vmalloc_to_page(addr);
1950 /*
1951 * To do safe access to this _mapped_ area, we need
1952 * lock. But adding lock here means that we need to add
1953 * overhead of vmalloc()/vfree() calles for this _debug_
1954 * interface, rarely used. Instead of that, we'll use
1955 * kmap() and get small overhead in this access function.
1956 */
1957 if (p) {
1958 /*
1959 * we can expect USER0 is not used (see vread/vwrite's
1960 * function description)
1961 */
1962 void *map = kmap_atomic(p);
1963 memcpy(buf, map + offset, length);
1964 kunmap_atomic(map);
1965 } else
1966 memset(buf, 0, length);
1967
1968 addr += length;
1969 buf += length;
1970 copied += length;
1971 count -= length;
1972 }
1973 return copied;
1974}
1975
1976static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1977{
1978 struct page *p;
1979 int copied = 0;
1980
1981 while (count) {
1982 unsigned long offset, length;
1983
1984 offset = (unsigned long)addr & ~PAGE_MASK;
1985 length = PAGE_SIZE - offset;
1986 if (length > count)
1987 length = count;
1988 p = vmalloc_to_page(addr);
1989 /*
1990 * To do safe access to this _mapped_ area, we need
1991 * lock. But adding lock here means that we need to add
1992 * overhead of vmalloc()/vfree() calles for this _debug_
1993 * interface, rarely used. Instead of that, we'll use
1994 * kmap() and get small overhead in this access function.
1995 */
1996 if (p) {
1997 /*
1998 * we can expect USER0 is not used (see vread/vwrite's
1999 * function description)
2000 */
2001 void *map = kmap_atomic(p);
2002 memcpy(map + offset, buf, length);
2003 kunmap_atomic(map);
2004 }
2005 addr += length;
2006 buf += length;
2007 copied += length;
2008 count -= length;
2009 }
2010 return copied;
2011}
2012
2013/**
2014 * vread() - read vmalloc area in a safe way.
2015 * @buf: buffer for reading data
2016 * @addr: vm address.
2017 * @count: number of bytes to be read.
2018 *
2019 * Returns # of bytes which addr and buf should be increased.
2020 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2021 * includes any intersect with alive vmalloc area.
2022 *
2023 * This function checks that addr is a valid vmalloc'ed area, and
2024 * copy data from that area to a given buffer. If the given memory range
2025 * of [addr...addr+count) includes some valid address, data is copied to
2026 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2027 * IOREMAP area is treated as memory hole and no copy is done.
2028 *
2029 * If [addr...addr+count) doesn't includes any intersects with alive
2030 * vm_struct area, returns 0.
2031 * @buf should be kernel's buffer. Because this function uses KM_USER0,
2032 * the caller should guarantee KM_USER0 is not used.
2033 *
2034 * Note: In usual ops, vread() is never necessary because the caller
2035 * should know vmalloc() area is valid and can use memcpy().
2036 * This is for routines which have to access vmalloc area without
2037 * any informaion, as /dev/kmem.
2038 *
2039 */
2040
2041long vread(char *buf, char *addr, unsigned long count)
2042{
2043 struct vm_struct *tmp;
2044 char *vaddr, *buf_start = buf;
2045 unsigned long buflen = count;
2046 unsigned long n;
2047
2048 /* Don't allow overflow */
2049 if ((unsigned long) addr + count < count)
2050 count = -(unsigned long) addr;
2051
2052 read_lock(&vmlist_lock);
2053 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2054 vaddr = (char *) tmp->addr;
2055 if (addr >= vaddr + tmp->size - PAGE_SIZE)
2056 continue;
2057 while (addr < vaddr) {
2058 if (count == 0)
2059 goto finished;
2060 *buf = '\0';
2061 buf++;
2062 addr++;
2063 count--;
2064 }
2065 n = vaddr + tmp->size - PAGE_SIZE - addr;
2066 if (n > count)
2067 n = count;
2068 if (!(tmp->flags & VM_IOREMAP))
2069 aligned_vread(buf, addr, n);
2070 else /* IOREMAP area is treated as memory hole */
2071 memset(buf, 0, n);
2072 buf += n;
2073 addr += n;
2074 count -= n;
2075 }
2076finished:
2077 read_unlock(&vmlist_lock);
2078
2079 if (buf == buf_start)
2080 return 0;
2081 /* zero-fill memory holes */
2082 if (buf != buf_start + buflen)
2083 memset(buf, 0, buflen - (buf - buf_start));
2084
2085 return buflen;
2086}
2087
2088/**
2089 * vwrite() - write vmalloc area in a safe way.
2090 * @buf: buffer for source data
2091 * @addr: vm address.
2092 * @count: number of bytes to be read.
2093 *
2094 * Returns # of bytes which addr and buf should be incresed.
2095 * (same number to @count).
2096 * If [addr...addr+count) doesn't includes any intersect with valid
2097 * vmalloc area, returns 0.
2098 *
2099 * This function checks that addr is a valid vmalloc'ed area, and
2100 * copy data from a buffer to the given addr. If specified range of
2101 * [addr...addr+count) includes some valid address, data is copied from
2102 * proper area of @buf. If there are memory holes, no copy to hole.
2103 * IOREMAP area is treated as memory hole and no copy is done.
2104 *
2105 * If [addr...addr+count) doesn't includes any intersects with alive
2106 * vm_struct area, returns 0.
2107 * @buf should be kernel's buffer. Because this function uses KM_USER0,
2108 * the caller should guarantee KM_USER0 is not used.
2109 *
2110 * Note: In usual ops, vwrite() is never necessary because the caller
2111 * should know vmalloc() area is valid and can use memcpy().
2112 * This is for routines which have to access vmalloc area without
2113 * any informaion, as /dev/kmem.
2114 */
2115
2116long vwrite(char *buf, char *addr, unsigned long count)
2117{
2118 struct vm_struct *tmp;
2119 char *vaddr;
2120 unsigned long n, buflen;
2121 int copied = 0;
2122
2123 /* Don't allow overflow */
2124 if ((unsigned long) addr + count < count)
2125 count = -(unsigned long) addr;
2126 buflen = count;
2127
2128 read_lock(&vmlist_lock);
2129 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2130 vaddr = (char *) tmp->addr;
2131 if (addr >= vaddr + tmp->size - PAGE_SIZE)
2132 continue;
2133 while (addr < vaddr) {
2134 if (count == 0)
2135 goto finished;
2136 buf++;
2137 addr++;
2138 count--;
2139 }
2140 n = vaddr + tmp->size - PAGE_SIZE - addr;
2141 if (n > count)
2142 n = count;
2143 if (!(tmp->flags & VM_IOREMAP)) {
2144 aligned_vwrite(buf, addr, n);
2145 copied++;
2146 }
2147 buf += n;
2148 addr += n;
2149 count -= n;
2150 }
2151finished:
2152 read_unlock(&vmlist_lock);
2153 if (!copied)
2154 return 0;
2155 return buflen;
2156}
2157
2158/**
2159 * remap_vmalloc_range - map vmalloc pages to userspace
2160 * @vma: vma to cover (map full range of vma)
2161 * @addr: vmalloc memory
2162 * @pgoff: number of pages into addr before first page to map
2163 *
2164 * Returns: 0 for success, -Exxx on failure
2165 *
2166 * This function checks that addr is a valid vmalloc'ed area, and
2167 * that it is big enough to cover the vma. Will return failure if
2168 * that criteria isn't met.
2169 *
2170 * Similar to remap_pfn_range() (see mm/memory.c)
2171 */
2172int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2173 unsigned long pgoff)
2174{
2175 struct vm_struct *area;
2176 unsigned long uaddr = vma->vm_start;
2177 unsigned long usize = vma->vm_end - vma->vm_start;
2178
2179 if ((PAGE_SIZE-1) & (unsigned long)addr)
2180 return -EINVAL;
2181
2182 area = find_vm_area(addr);
2183 if (!area)
2184 return -EINVAL;
2185
2186 if (!(area->flags & VM_USERMAP))
2187 return -EINVAL;
2188
2189 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2190 return -EINVAL;
2191
2192 addr += pgoff << PAGE_SHIFT;
2193 do {
2194 struct page *page = vmalloc_to_page(addr);
2195 int ret;
2196
2197 ret = vm_insert_page(vma, uaddr, page);
2198 if (ret)
2199 return ret;
2200
2201 uaddr += PAGE_SIZE;
2202 addr += PAGE_SIZE;
2203 usize -= PAGE_SIZE;
2204 } while (usize > 0);
2205
2206 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2207 vma->vm_flags |= VM_RESERVED;
2208
2209 return 0;
2210}
2211EXPORT_SYMBOL(remap_vmalloc_range);
2212
2213/*
2214 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2215 * have one.
2216 */
2217void __attribute__((weak)) vmalloc_sync_all(void)
2218{
2219}
2220
2221
2222static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2223{
2224 pte_t ***p = data;
2225
2226 if (p) {
2227 *(*p) = pte;
2228 (*p)++;
2229 }
2230 return 0;
2231}
2232
2233/**
2234 * alloc_vm_area - allocate a range of kernel address space
2235 * @size: size of the area
2236 * @ptes: returns the PTEs for the address space
2237 *
2238 * Returns: NULL on failure, vm_struct on success
2239 *
2240 * This function reserves a range of kernel address space, and
2241 * allocates pagetables to map that range. No actual mappings
2242 * are created.
2243 *
2244 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2245 * allocated for the VM area are returned.
2246 */
2247struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2248{
2249 struct vm_struct *area;
2250
2251 area = get_vm_area_caller(size, VM_IOREMAP,
2252 __builtin_return_address(0));
2253 if (area == NULL)
2254 return NULL;
2255
2256 /*
2257 * This ensures that page tables are constructed for this region
2258 * of kernel virtual address space and mapped into init_mm.
2259 */
2260 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2261 size, f, ptes ? &ptes : NULL)) {
2262 free_vm_area(area);
2263 return NULL;
2264 }
2265
2266 return area;
2267}
2268EXPORT_SYMBOL_GPL(alloc_vm_area);
2269
2270void free_vm_area(struct vm_struct *area)
2271{
2272 struct vm_struct *ret;
2273 ret = remove_vm_area(area->addr);
2274 BUG_ON(ret != area);
2275 kfree(area);
2276}
2277EXPORT_SYMBOL_GPL(free_vm_area);
2278
2279#ifdef CONFIG_SMP
2280static struct vmap_area *node_to_va(struct rb_node *n)
2281{
2282 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2283}
2284
2285/**
2286 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2287 * @end: target address
2288 * @pnext: out arg for the next vmap_area
2289 * @pprev: out arg for the previous vmap_area
2290 *
2291 * Returns: %true if either or both of next and prev are found,
2292 * %false if no vmap_area exists
2293 *
2294 * Find vmap_areas end addresses of which enclose @end. ie. if not
2295 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2296 */
2297static bool pvm_find_next_prev(unsigned long end,
2298 struct vmap_area **pnext,
2299 struct vmap_area **pprev)
2300{
2301 struct rb_node *n = vmap_area_root.rb_node;
2302 struct vmap_area *va = NULL;
2303
2304 while (n) {
2305 va = rb_entry(n, struct vmap_area, rb_node);
2306 if (end < va->va_end)
2307 n = n->rb_left;
2308 else if (end > va->va_end)
2309 n = n->rb_right;
2310 else
2311 break;
2312 }
2313
2314 if (!va)
2315 return false;
2316
2317 if (va->va_end > end) {
2318 *pnext = va;
2319 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2320 } else {
2321 *pprev = va;
2322 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2323 }
2324 return true;
2325}
2326
2327/**
2328 * pvm_determine_end - find the highest aligned address between two vmap_areas
2329 * @pnext: in/out arg for the next vmap_area
2330 * @pprev: in/out arg for the previous vmap_area
2331 * @align: alignment
2332 *
2333 * Returns: determined end address
2334 *
2335 * Find the highest aligned address between *@pnext and *@pprev below
2336 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2337 * down address is between the end addresses of the two vmap_areas.
2338 *
2339 * Please note that the address returned by this function may fall
2340 * inside *@pnext vmap_area. The caller is responsible for checking
2341 * that.
2342 */
2343static unsigned long pvm_determine_end(struct vmap_area **pnext,
2344 struct vmap_area **pprev,
2345 unsigned long align)
2346{
2347 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2348 unsigned long addr;
2349
2350 if (*pnext)
2351 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2352 else
2353 addr = vmalloc_end;
2354
2355 while (*pprev && (*pprev)->va_end > addr) {
2356 *pnext = *pprev;
2357 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2358 }
2359
2360 return addr;
2361}
2362
2363/**
2364 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2365 * @offsets: array containing offset of each area
2366 * @sizes: array containing size of each area
2367 * @nr_vms: the number of areas to allocate
2368 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2369 *
2370 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2371 * vm_structs on success, %NULL on failure
2372 *
2373 * Percpu allocator wants to use congruent vm areas so that it can
2374 * maintain the offsets among percpu areas. This function allocates
2375 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2376 * be scattered pretty far, distance between two areas easily going up
2377 * to gigabytes. To avoid interacting with regular vmallocs, these
2378 * areas are allocated from top.
2379 *
2380 * Despite its complicated look, this allocator is rather simple. It
2381 * does everything top-down and scans areas from the end looking for
2382 * matching slot. While scanning, if any of the areas overlaps with
2383 * existing vmap_area, the base address is pulled down to fit the
2384 * area. Scanning is repeated till all the areas fit and then all
2385 * necessary data structres are inserted and the result is returned.
2386 */
2387struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2388 const size_t *sizes, int nr_vms,
2389 size_t align)
2390{
2391 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2392 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2393 struct vmap_area **vas, *prev, *next;
2394 struct vm_struct **vms;
2395 int area, area2, last_area, term_area;
2396 unsigned long base, start, end, last_end;
2397 bool purged = false;
2398
2399 /* verify parameters and allocate data structures */
2400 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2401 for (last_area = 0, area = 0; area < nr_vms; area++) {
2402 start = offsets[area];
2403 end = start + sizes[area];
2404
2405 /* is everything aligned properly? */
2406 BUG_ON(!IS_ALIGNED(offsets[area], align));
2407 BUG_ON(!IS_ALIGNED(sizes[area], align));
2408
2409 /* detect the area with the highest address */
2410 if (start > offsets[last_area])
2411 last_area = area;
2412
2413 for (area2 = 0; area2 < nr_vms; area2++) {
2414 unsigned long start2 = offsets[area2];
2415 unsigned long end2 = start2 + sizes[area2];
2416
2417 if (area2 == area)
2418 continue;
2419
2420 BUG_ON(start2 >= start && start2 < end);
2421 BUG_ON(end2 <= end && end2 > start);
2422 }
2423 }
2424 last_end = offsets[last_area] + sizes[last_area];
2425
2426 if (vmalloc_end - vmalloc_start < last_end) {
2427 WARN_ON(true);
2428 return NULL;
2429 }
2430
2431 vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2432 vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2433 if (!vas || !vms)
2434 goto err_free2;
2435
2436 for (area = 0; area < nr_vms; area++) {
2437 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2438 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2439 if (!vas[area] || !vms[area])
2440 goto err_free;
2441 }
2442retry:
2443 spin_lock(&vmap_area_lock);
2444
2445 /* start scanning - we scan from the top, begin with the last area */
2446 area = term_area = last_area;
2447 start = offsets[area];
2448 end = start + sizes[area];
2449
2450 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2451 base = vmalloc_end - last_end;
2452 goto found;
2453 }
2454 base = pvm_determine_end(&next, &prev, align) - end;
2455
2456 while (true) {
2457 BUG_ON(next && next->va_end <= base + end);
2458 BUG_ON(prev && prev->va_end > base + end);
2459
2460 /*
2461 * base might have underflowed, add last_end before
2462 * comparing.
2463 */
2464 if (base + last_end < vmalloc_start + last_end) {
2465 spin_unlock(&vmap_area_lock);
2466 if (!purged) {
2467 purge_vmap_area_lazy();
2468 purged = true;
2469 goto retry;
2470 }
2471 goto err_free;
2472 }
2473
2474 /*
2475 * If next overlaps, move base downwards so that it's
2476 * right below next and then recheck.
2477 */
2478 if (next && next->va_start < base + end) {
2479 base = pvm_determine_end(&next, &prev, align) - end;
2480 term_area = area;
2481 continue;
2482 }
2483
2484 /*
2485 * If prev overlaps, shift down next and prev and move
2486 * base so that it's right below new next and then
2487 * recheck.
2488 */
2489 if (prev && prev->va_end > base + start) {
2490 next = prev;
2491 prev = node_to_va(rb_prev(&next->rb_node));
2492 base = pvm_determine_end(&next, &prev, align) - end;
2493 term_area = area;
2494 continue;
2495 }
2496
2497 /*
2498 * This area fits, move on to the previous one. If
2499 * the previous one is the terminal one, we're done.
2500 */
2501 area = (area + nr_vms - 1) % nr_vms;
2502 if (area == term_area)
2503 break;
2504 start = offsets[area];
2505 end = start + sizes[area];
2506 pvm_find_next_prev(base + end, &next, &prev);
2507 }
2508found:
2509 /* we've found a fitting base, insert all va's */
2510 for (area = 0; area < nr_vms; area++) {
2511 struct vmap_area *va = vas[area];
2512
2513 va->va_start = base + offsets[area];
2514 va->va_end = va->va_start + sizes[area];
2515 __insert_vmap_area(va);
2516 }
2517
2518 vmap_area_pcpu_hole = base + offsets[last_area];
2519
2520 spin_unlock(&vmap_area_lock);
2521
2522 /* insert all vm's */
2523 for (area = 0; area < nr_vms; area++)
2524 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2525 pcpu_get_vm_areas);
2526
2527 kfree(vas);
2528 return vms;
2529
2530err_free:
2531 for (area = 0; area < nr_vms; area++) {
2532 kfree(vas[area]);
2533 kfree(vms[area]);
2534 }
2535err_free2:
2536 kfree(vas);
2537 kfree(vms);
2538 return NULL;
2539}
2540
2541/**
2542 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2543 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2544 * @nr_vms: the number of allocated areas
2545 *
2546 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2547 */
2548void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2549{
2550 int i;
2551
2552 for (i = 0; i < nr_vms; i++)
2553 free_vm_area(vms[i]);
2554 kfree(vms);
2555}
2556#endif /* CONFIG_SMP */
2557
2558#ifdef CONFIG_PROC_FS
2559static void *s_start(struct seq_file *m, loff_t *pos)
2560 __acquires(&vmlist_lock)
2561{
2562 loff_t n = *pos;
2563 struct vm_struct *v;
2564
2565 read_lock(&vmlist_lock);
2566 v = vmlist;
2567 while (n > 0 && v) {
2568 n--;
2569 v = v->next;
2570 }
2571 if (!n)
2572 return v;
2573
2574 return NULL;
2575
2576}
2577
2578static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2579{
2580 struct vm_struct *v = p;
2581
2582 ++*pos;
2583 return v->next;
2584}
2585
2586static void s_stop(struct seq_file *m, void *p)
2587 __releases(&vmlist_lock)
2588{
2589 read_unlock(&vmlist_lock);
2590}
2591
2592static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2593{
2594 if (NUMA_BUILD) {
2595 unsigned int nr, *counters = m->private;
2596
2597 if (!counters)
2598 return;
2599
2600 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2601
2602 for (nr = 0; nr < v->nr_pages; nr++)
2603 counters[page_to_nid(v->pages[nr])]++;
2604
2605 for_each_node_state(nr, N_HIGH_MEMORY)
2606 if (counters[nr])
2607 seq_printf(m, " N%u=%u", nr, counters[nr]);
2608 }
2609}
2610
2611static int s_show(struct seq_file *m, void *p)
2612{
2613 struct vm_struct *v = p;
2614
2615 seq_printf(m, "0x%p-0x%p %7ld",
2616 v->addr, v->addr + v->size, v->size);
2617
2618 if (v->caller)
2619 seq_printf(m, " %pS", v->caller);
2620
2621 if (v->nr_pages)
2622 seq_printf(m, " pages=%d", v->nr_pages);
2623
2624 if (v->phys_addr)
2625 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2626
2627 if (v->flags & VM_IOREMAP)
2628 seq_printf(m, " ioremap");
2629
2630 if (v->flags & VM_ALLOC)
2631 seq_printf(m, " vmalloc");
2632
2633 if (v->flags & VM_MAP)
2634 seq_printf(m, " vmap");
2635
2636 if (v->flags & VM_USERMAP)
2637 seq_printf(m, " user");
2638
2639 if (v->flags & VM_VPAGES)
2640 seq_printf(m, " vpages");
2641
2642 show_numa_info(m, v);
2643 seq_putc(m, '\n');
2644 return 0;
2645}
2646
2647static const struct seq_operations vmalloc_op = {
2648 .start = s_start,
2649 .next = s_next,
2650 .stop = s_stop,
2651 .show = s_show,
2652};
2653
2654static int vmalloc_open(struct inode *inode, struct file *file)
2655{
2656 unsigned int *ptr = NULL;
2657 int ret;
2658
2659 if (NUMA_BUILD) {
2660 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2661 if (ptr == NULL)
2662 return -ENOMEM;
2663 }
2664 ret = seq_open(file, &vmalloc_op);
2665 if (!ret) {
2666 struct seq_file *m = file->private_data;
2667 m->private = ptr;
2668 } else
2669 kfree(ptr);
2670 return ret;
2671}
2672
2673static const struct file_operations proc_vmalloc_operations = {
2674 .open = vmalloc_open,
2675 .read = seq_read,
2676 .llseek = seq_lseek,
2677 .release = seq_release_private,
2678};
2679
2680static int __init proc_vmalloc_init(void)
2681{
2682 if (IS_ENABLED(CONFIG_PROC_STRIPPED))
2683 return 0;
2684
2685 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2686 return 0;
2687}
2688module_init(proc_vmalloc_init);
2689#endif
2690