| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. | 
|  | 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved | 
|  | 4 | * | 
|  | 5 | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | 6 | * this file except in compliance with the License.  You can obtain a copy | 
|  | 7 | * in the file LICENSE in the source distribution or at | 
|  | 8 | * https://www.openssl.org/source/license.html | 
|  | 9 | */ | 
|  | 10 |  | 
|  | 11 | #undef SECONDS | 
|  | 12 | #define SECONDS                 3 | 
|  | 13 | #define RSA_SECONDS             10 | 
|  | 14 | #define DSA_SECONDS             10 | 
|  | 15 | #define ECDSA_SECONDS   10 | 
|  | 16 | #define ECDH_SECONDS    10 | 
|  | 17 | #define EdDSA_SECONDS   10 | 
|  | 18 |  | 
|  | 19 | #include <stdio.h> | 
|  | 20 | #include <stdlib.h> | 
|  | 21 | #include <string.h> | 
|  | 22 | #include <math.h> | 
|  | 23 | #include "apps.h" | 
|  | 24 | #include "progs.h" | 
|  | 25 | #include <openssl/crypto.h> | 
|  | 26 | #include <openssl/rand.h> | 
|  | 27 | #include <openssl/err.h> | 
|  | 28 | #include <openssl/evp.h> | 
|  | 29 | #include <openssl/objects.h> | 
|  | 30 | #include <openssl/async.h> | 
|  | 31 | #if !defined(OPENSSL_SYS_MSDOS) | 
|  | 32 | # include OPENSSL_UNISTD | 
|  | 33 | #endif | 
|  | 34 |  | 
|  | 35 | #if defined(_WIN32) | 
|  | 36 | # include <windows.h> | 
|  | 37 | #endif | 
|  | 38 |  | 
|  | 39 | #include <openssl/bn.h> | 
|  | 40 | #ifndef OPENSSL_NO_DES | 
|  | 41 | # include <openssl/des.h> | 
|  | 42 | #endif | 
|  | 43 | #include <openssl/aes.h> | 
|  | 44 | #ifndef OPENSSL_NO_CAMELLIA | 
|  | 45 | # include <openssl/camellia.h> | 
|  | 46 | #endif | 
|  | 47 | #ifndef OPENSSL_NO_MD2 | 
|  | 48 | # include <openssl/md2.h> | 
|  | 49 | #endif | 
|  | 50 | #ifndef OPENSSL_NO_MDC2 | 
|  | 51 | # include <openssl/mdc2.h> | 
|  | 52 | #endif | 
|  | 53 | #ifndef OPENSSL_NO_MD4 | 
|  | 54 | # include <openssl/md4.h> | 
|  | 55 | #endif | 
|  | 56 | #ifndef OPENSSL_NO_MD5 | 
|  | 57 | # include <openssl/md5.h> | 
|  | 58 | #endif | 
|  | 59 | #include <openssl/hmac.h> | 
|  | 60 | #include <openssl/sha.h> | 
|  | 61 | #ifndef OPENSSL_NO_RMD160 | 
|  | 62 | # include <openssl/ripemd.h> | 
|  | 63 | #endif | 
|  | 64 | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | 65 | # include <openssl/whrlpool.h> | 
|  | 66 | #endif | 
|  | 67 | #ifndef OPENSSL_NO_RC4 | 
|  | 68 | # include <openssl/rc4.h> | 
|  | 69 | #endif | 
|  | 70 | #ifndef OPENSSL_NO_RC5 | 
|  | 71 | # include <openssl/rc5.h> | 
|  | 72 | #endif | 
|  | 73 | #ifndef OPENSSL_NO_RC2 | 
|  | 74 | # include <openssl/rc2.h> | 
|  | 75 | #endif | 
|  | 76 | #ifndef OPENSSL_NO_IDEA | 
|  | 77 | # include <openssl/idea.h> | 
|  | 78 | #endif | 
|  | 79 | #ifndef OPENSSL_NO_SEED | 
|  | 80 | # include <openssl/seed.h> | 
|  | 81 | #endif | 
|  | 82 | #ifndef OPENSSL_NO_BF | 
|  | 83 | # include <openssl/blowfish.h> | 
|  | 84 | #endif | 
|  | 85 | #ifndef OPENSSL_NO_CAST | 
|  | 86 | # include <openssl/cast.h> | 
|  | 87 | #endif | 
|  | 88 | #ifndef OPENSSL_NO_RSA | 
|  | 89 | # include <openssl/rsa.h> | 
|  | 90 | # include "./testrsa.h" | 
|  | 91 | #endif | 
|  | 92 | #include <openssl/x509.h> | 
|  | 93 | #ifndef OPENSSL_NO_DSA | 
|  | 94 | # include <openssl/dsa.h> | 
|  | 95 | # include "./testdsa.h" | 
|  | 96 | #endif | 
|  | 97 | #ifndef OPENSSL_NO_EC | 
|  | 98 | # include <openssl/ec.h> | 
|  | 99 | #endif | 
|  | 100 | #include <openssl/modes.h> | 
|  | 101 |  | 
|  | 102 | #ifndef HAVE_FORK | 
|  | 103 | # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS) | 
|  | 104 | #  define HAVE_FORK 0 | 
|  | 105 | # else | 
|  | 106 | #  define HAVE_FORK 1 | 
|  | 107 | # endif | 
|  | 108 | #endif | 
|  | 109 |  | 
|  | 110 | #if HAVE_FORK | 
|  | 111 | # undef NO_FORK | 
|  | 112 | #else | 
|  | 113 | # define NO_FORK | 
|  | 114 | #endif | 
|  | 115 |  | 
|  | 116 | #define MAX_MISALIGNMENT 63 | 
|  | 117 | #define MAX_ECDH_SIZE   256 | 
|  | 118 | #define MISALIGN        64 | 
|  | 119 |  | 
|  | 120 | typedef struct openssl_speed_sec_st { | 
|  | 121 | int sym; | 
|  | 122 | int rsa; | 
|  | 123 | int dsa; | 
|  | 124 | int ecdsa; | 
|  | 125 | int ecdh; | 
|  | 126 | int eddsa; | 
|  | 127 | } openssl_speed_sec_t; | 
|  | 128 |  | 
|  | 129 | static volatile int run = 0; | 
|  | 130 |  | 
|  | 131 | static int mr = 0; | 
|  | 132 | static int usertime = 1; | 
|  | 133 |  | 
|  | 134 | #ifndef OPENSSL_NO_MD2 | 
|  | 135 | static int EVP_Digest_MD2_loop(void *args); | 
|  | 136 | #endif | 
|  | 137 |  | 
|  | 138 | #ifndef OPENSSL_NO_MDC2 | 
|  | 139 | static int EVP_Digest_MDC2_loop(void *args); | 
|  | 140 | #endif | 
|  | 141 | #ifndef OPENSSL_NO_MD4 | 
|  | 142 | static int EVP_Digest_MD4_loop(void *args); | 
|  | 143 | #endif | 
|  | 144 | #ifndef OPENSSL_NO_MD5 | 
|  | 145 | static int MD5_loop(void *args); | 
|  | 146 | static int HMAC_loop(void *args); | 
|  | 147 | #endif | 
|  | 148 | static int SHA1_loop(void *args); | 
|  | 149 | static int SHA256_loop(void *args); | 
|  | 150 | static int SHA512_loop(void *args); | 
|  | 151 | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | 152 | static int WHIRLPOOL_loop(void *args); | 
|  | 153 | #endif | 
|  | 154 | #ifndef OPENSSL_NO_RMD160 | 
|  | 155 | static int EVP_Digest_RMD160_loop(void *args); | 
|  | 156 | #endif | 
|  | 157 | #ifndef OPENSSL_NO_RC4 | 
|  | 158 | static int RC4_loop(void *args); | 
|  | 159 | #endif | 
|  | 160 | #ifndef OPENSSL_NO_DES | 
|  | 161 | static int DES_ncbc_encrypt_loop(void *args); | 
|  | 162 | static int DES_ede3_cbc_encrypt_loop(void *args); | 
|  | 163 | #endif | 
|  | 164 | static int AES_cbc_128_encrypt_loop(void *args); | 
|  | 165 | static int AES_cbc_192_encrypt_loop(void *args); | 
|  | 166 | static int AES_ige_128_encrypt_loop(void *args); | 
|  | 167 | static int AES_cbc_256_encrypt_loop(void *args); | 
|  | 168 | static int AES_ige_192_encrypt_loop(void *args); | 
|  | 169 | static int AES_ige_256_encrypt_loop(void *args); | 
|  | 170 | static int CRYPTO_gcm128_aad_loop(void *args); | 
|  | 171 | static int RAND_bytes_loop(void *args); | 
|  | 172 | static int EVP_Update_loop(void *args); | 
|  | 173 | static int EVP_Update_loop_ccm(void *args); | 
|  | 174 | static int EVP_Update_loop_aead(void *args); | 
|  | 175 | static int EVP_Digest_loop(void *args); | 
|  | 176 | #ifndef OPENSSL_NO_RSA | 
|  | 177 | static int RSA_sign_loop(void *args); | 
|  | 178 | static int RSA_verify_loop(void *args); | 
|  | 179 | #endif | 
|  | 180 | #ifndef OPENSSL_NO_DSA | 
|  | 181 | static int DSA_sign_loop(void *args); | 
|  | 182 | static int DSA_verify_loop(void *args); | 
|  | 183 | #endif | 
|  | 184 | #ifndef OPENSSL_NO_EC | 
|  | 185 | static int ECDSA_sign_loop(void *args); | 
|  | 186 | static int ECDSA_verify_loop(void *args); | 
|  | 187 | static int EdDSA_sign_loop(void *args); | 
|  | 188 | static int EdDSA_verify_loop(void *args); | 
|  | 189 | #endif | 
|  | 190 |  | 
|  | 191 | static double Time_F(int s); | 
|  | 192 | static void print_message(const char *s, long num, int length, int tm); | 
|  | 193 | static void pkey_print_message(const char *str, const char *str2, | 
|  | 194 | long num, unsigned int bits, int sec); | 
|  | 195 | static void print_result(int alg, int run_no, int count, double time_used); | 
|  | 196 | #ifndef NO_FORK | 
|  | 197 | static int do_multi(int multi, int size_num); | 
|  | 198 | #endif | 
|  | 199 |  | 
|  | 200 | static const int lengths_list[] = { | 
|  | 201 | 16, 64, 256, 1024, 8 * 1024, 16 * 1024 | 
|  | 202 | }; | 
|  | 203 | static const int *lengths = lengths_list; | 
|  | 204 |  | 
|  | 205 | static const int aead_lengths_list[] = { | 
|  | 206 | 2, 31, 136, 1024, 8 * 1024, 16 * 1024 | 
|  | 207 | }; | 
|  | 208 |  | 
|  | 209 | #define START   0 | 
|  | 210 | #define STOP    1 | 
|  | 211 |  | 
|  | 212 | #ifdef SIGALRM | 
|  | 213 |  | 
|  | 214 | static void alarmed(int sig) | 
|  | 215 | { | 
|  | 216 | signal(SIGALRM, alarmed); | 
|  | 217 | run = 0; | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | static double Time_F(int s) | 
|  | 221 | { | 
|  | 222 | double ret = app_tminterval(s, usertime); | 
|  | 223 | if (s == STOP) | 
|  | 224 | alarm(0); | 
|  | 225 | return ret; | 
|  | 226 | } | 
|  | 227 |  | 
|  | 228 | #elif defined(_WIN32) | 
|  | 229 |  | 
|  | 230 | # define SIGALRM -1 | 
|  | 231 |  | 
|  | 232 | static unsigned int lapse; | 
|  | 233 | static volatile unsigned int schlock; | 
|  | 234 | static void alarm_win32(unsigned int secs) | 
|  | 235 | { | 
|  | 236 | lapse = secs * 1000; | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | # define alarm alarm_win32 | 
|  | 240 |  | 
|  | 241 | static DWORD WINAPI sleepy(VOID * arg) | 
|  | 242 | { | 
|  | 243 | schlock = 1; | 
|  | 244 | Sleep(lapse); | 
|  | 245 | run = 0; | 
|  | 246 | return 0; | 
|  | 247 | } | 
|  | 248 |  | 
|  | 249 | static double Time_F(int s) | 
|  | 250 | { | 
|  | 251 | double ret; | 
|  | 252 | static HANDLE thr; | 
|  | 253 |  | 
|  | 254 | if (s == START) { | 
|  | 255 | schlock = 0; | 
|  | 256 | thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); | 
|  | 257 | if (thr == NULL) { | 
|  | 258 | DWORD err = GetLastError(); | 
|  | 259 | BIO_printf(bio_err, "unable to CreateThread (%lu)", err); | 
|  | 260 | ExitProcess(err); | 
|  | 261 | } | 
|  | 262 | while (!schlock) | 
|  | 263 | Sleep(0);           /* scheduler spinlock */ | 
|  | 264 | ret = app_tminterval(s, usertime); | 
|  | 265 | } else { | 
|  | 266 | ret = app_tminterval(s, usertime); | 
|  | 267 | if (run) | 
|  | 268 | TerminateThread(thr, 0); | 
|  | 269 | CloseHandle(thr); | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | return ret; | 
|  | 273 | } | 
|  | 274 | #else | 
|  | 275 | static double Time_F(int s) | 
|  | 276 | { | 
|  | 277 | return app_tminterval(s, usertime); | 
|  | 278 | } | 
|  | 279 | #endif | 
|  | 280 |  | 
|  | 281 | static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, | 
|  | 282 | const openssl_speed_sec_t *seconds); | 
|  | 283 |  | 
|  | 284 | #define found(value, pairs, result)\ | 
|  | 285 | opt_found(value, result, pairs, OSSL_NELEM(pairs)) | 
|  | 286 | static int opt_found(const char *name, unsigned int *result, | 
|  | 287 | const OPT_PAIR pairs[], unsigned int nbelem) | 
|  | 288 | { | 
|  | 289 | unsigned int idx; | 
|  | 290 |  | 
|  | 291 | for (idx = 0; idx < nbelem; ++idx, pairs++) | 
|  | 292 | if (strcmp(name, pairs->name) == 0) { | 
|  | 293 | *result = pairs->retval; | 
|  | 294 | return 1; | 
|  | 295 | } | 
|  | 296 | return 0; | 
|  | 297 | } | 
|  | 298 |  | 
|  | 299 | typedef enum OPTION_choice { | 
|  | 300 | OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, | 
|  | 301 | OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, | 
|  | 302 | OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, | 
|  | 303 | OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD | 
|  | 304 | } OPTION_CHOICE; | 
|  | 305 |  | 
|  | 306 | const OPTIONS speed_options[] = { | 
|  | 307 | {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"}, | 
|  | 308 | {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, | 
|  | 309 | {"help", OPT_HELP, '-', "Display this summary"}, | 
|  | 310 | {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"}, | 
|  | 311 | {"decrypt", OPT_DECRYPT, '-', | 
|  | 312 | "Time decryption instead of encryption (only EVP)"}, | 
|  | 313 | {"aead", OPT_AEAD, '-', | 
|  | 314 | "Benchmark EVP-named AEAD cipher in TLS-like sequence"}, | 
|  | 315 | {"mb", OPT_MB, '-', | 
|  | 316 | "Enable (tls1>=1) multi-block mode on EVP-named cipher"}, | 
|  | 317 | {"mr", OPT_MR, '-', "Produce machine readable output"}, | 
|  | 318 | #ifndef NO_FORK | 
|  | 319 | {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, | 
|  | 320 | #endif | 
|  | 321 | #ifndef OPENSSL_NO_ASYNC | 
|  | 322 | {"async_jobs", OPT_ASYNCJOBS, 'p', | 
|  | 323 | "Enable async mode and start specified number of jobs"}, | 
|  | 324 | #endif | 
|  | 325 | OPT_R_OPTIONS, | 
|  | 326 | #ifndef OPENSSL_NO_ENGINE | 
|  | 327 | {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, | 
|  | 328 | #endif | 
|  | 329 | {"elapsed", OPT_ELAPSED, '-', | 
|  | 330 | "Use wall-clock time instead of CPU user time as divisor"}, | 
|  | 331 | {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"}, | 
|  | 332 | {"seconds", OPT_SECONDS, 'p', | 
|  | 333 | "Run benchmarks for specified amount of seconds"}, | 
|  | 334 | {"bytes", OPT_BYTES, 'p', | 
|  | 335 | "Run [non-PKI] benchmarks on custom-sized buffer"}, | 
|  | 336 | {"misalign", OPT_MISALIGN, 'p', | 
|  | 337 | "Use specified offset to mis-align buffers"}, | 
|  | 338 | {NULL} | 
|  | 339 | }; | 
|  | 340 |  | 
|  | 341 | #define D_MD2           0 | 
|  | 342 | #define D_MDC2          1 | 
|  | 343 | #define D_MD4           2 | 
|  | 344 | #define D_MD5           3 | 
|  | 345 | #define D_HMAC          4 | 
|  | 346 | #define D_SHA1          5 | 
|  | 347 | #define D_RMD160        6 | 
|  | 348 | #define D_RC4           7 | 
|  | 349 | #define D_CBC_DES       8 | 
|  | 350 | #define D_EDE3_DES      9 | 
|  | 351 | #define D_CBC_IDEA      10 | 
|  | 352 | #define D_CBC_SEED      11 | 
|  | 353 | #define D_CBC_RC2       12 | 
|  | 354 | #define D_CBC_RC5       13 | 
|  | 355 | #define D_CBC_BF        14 | 
|  | 356 | #define D_CBC_CAST      15 | 
|  | 357 | #define D_CBC_128_AES   16 | 
|  | 358 | #define D_CBC_192_AES   17 | 
|  | 359 | #define D_CBC_256_AES   18 | 
|  | 360 | #define D_CBC_128_CML   19 | 
|  | 361 | #define D_CBC_192_CML   20 | 
|  | 362 | #define D_CBC_256_CML   21 | 
|  | 363 | #define D_EVP           22 | 
|  | 364 | #define D_SHA256        23 | 
|  | 365 | #define D_SHA512        24 | 
|  | 366 | #define D_WHIRLPOOL     25 | 
|  | 367 | #define D_IGE_128_AES   26 | 
|  | 368 | #define D_IGE_192_AES   27 | 
|  | 369 | #define D_IGE_256_AES   28 | 
|  | 370 | #define D_GHASH         29 | 
|  | 371 | #define D_RAND          30 | 
|  | 372 | /* name of algorithms to test */ | 
|  | 373 | static const char *names[] = { | 
|  | 374 | "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", | 
|  | 375 | "des cbc", "des ede3", "idea cbc", "seed cbc", | 
|  | 376 | "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", | 
|  | 377 | "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", | 
|  | 378 | "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", | 
|  | 379 | "evp", "sha256", "sha512", "whirlpool", | 
|  | 380 | "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash", | 
|  | 381 | "rand" | 
|  | 382 | }; | 
|  | 383 | #define ALGOR_NUM       OSSL_NELEM(names) | 
|  | 384 |  | 
|  | 385 | /* list of configured algorithm (remaining) */ | 
|  | 386 | static const OPT_PAIR doit_choices[] = { | 
|  | 387 | #ifndef OPENSSL_NO_MD2 | 
|  | 388 | {"md2", D_MD2}, | 
|  | 389 | #endif | 
|  | 390 | #ifndef OPENSSL_NO_MDC2 | 
|  | 391 | {"mdc2", D_MDC2}, | 
|  | 392 | #endif | 
|  | 393 | #ifndef OPENSSL_NO_MD4 | 
|  | 394 | {"md4", D_MD4}, | 
|  | 395 | #endif | 
|  | 396 | #ifndef OPENSSL_NO_MD5 | 
|  | 397 | {"md5", D_MD5}, | 
|  | 398 | {"hmac", D_HMAC}, | 
|  | 399 | #endif | 
|  | 400 | {"sha1", D_SHA1}, | 
|  | 401 | {"sha256", D_SHA256}, | 
|  | 402 | {"sha512", D_SHA512}, | 
|  | 403 | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | 404 | {"whirlpool", D_WHIRLPOOL}, | 
|  | 405 | #endif | 
|  | 406 | #ifndef OPENSSL_NO_RMD160 | 
|  | 407 | {"ripemd", D_RMD160}, | 
|  | 408 | {"rmd160", D_RMD160}, | 
|  | 409 | {"ripemd160", D_RMD160}, | 
|  | 410 | #endif | 
|  | 411 | #ifndef OPENSSL_NO_RC4 | 
|  | 412 | {"rc4", D_RC4}, | 
|  | 413 | #endif | 
|  | 414 | #ifndef OPENSSL_NO_DES | 
|  | 415 | {"des-cbc", D_CBC_DES}, | 
|  | 416 | {"des-ede3", D_EDE3_DES}, | 
|  | 417 | #endif | 
|  | 418 | {"aes-128-cbc", D_CBC_128_AES}, | 
|  | 419 | {"aes-192-cbc", D_CBC_192_AES}, | 
|  | 420 | {"aes-256-cbc", D_CBC_256_AES}, | 
|  | 421 | {"aes-128-ige", D_IGE_128_AES}, | 
|  | 422 | {"aes-192-ige", D_IGE_192_AES}, | 
|  | 423 | {"aes-256-ige", D_IGE_256_AES}, | 
|  | 424 | #ifndef OPENSSL_NO_RC2 | 
|  | 425 | {"rc2-cbc", D_CBC_RC2}, | 
|  | 426 | {"rc2", D_CBC_RC2}, | 
|  | 427 | #endif | 
|  | 428 | #ifndef OPENSSL_NO_RC5 | 
|  | 429 | {"rc5-cbc", D_CBC_RC5}, | 
|  | 430 | {"rc5", D_CBC_RC5}, | 
|  | 431 | #endif | 
|  | 432 | #ifndef OPENSSL_NO_IDEA | 
|  | 433 | {"idea-cbc", D_CBC_IDEA}, | 
|  | 434 | {"idea", D_CBC_IDEA}, | 
|  | 435 | #endif | 
|  | 436 | #ifndef OPENSSL_NO_SEED | 
|  | 437 | {"seed-cbc", D_CBC_SEED}, | 
|  | 438 | {"seed", D_CBC_SEED}, | 
|  | 439 | #endif | 
|  | 440 | #ifndef OPENSSL_NO_BF | 
|  | 441 | {"bf-cbc", D_CBC_BF}, | 
|  | 442 | {"blowfish", D_CBC_BF}, | 
|  | 443 | {"bf", D_CBC_BF}, | 
|  | 444 | #endif | 
|  | 445 | #ifndef OPENSSL_NO_CAST | 
|  | 446 | {"cast-cbc", D_CBC_CAST}, | 
|  | 447 | {"cast", D_CBC_CAST}, | 
|  | 448 | {"cast5", D_CBC_CAST}, | 
|  | 449 | #endif | 
|  | 450 | {"ghash", D_GHASH}, | 
|  | 451 | {"rand", D_RAND} | 
|  | 452 | }; | 
|  | 453 |  | 
|  | 454 | static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)]; | 
|  | 455 |  | 
|  | 456 | #ifndef OPENSSL_NO_DSA | 
|  | 457 | # define R_DSA_512       0 | 
|  | 458 | # define R_DSA_1024      1 | 
|  | 459 | # define R_DSA_2048      2 | 
|  | 460 | static const OPT_PAIR dsa_choices[] = { | 
|  | 461 | {"dsa512", R_DSA_512}, | 
|  | 462 | {"dsa1024", R_DSA_1024}, | 
|  | 463 | {"dsa2048", R_DSA_2048} | 
|  | 464 | }; | 
|  | 465 | # define DSA_NUM         OSSL_NELEM(dsa_choices) | 
|  | 466 |  | 
|  | 467 | static double dsa_results[DSA_NUM][2];  /* 2 ops: sign then verify */ | 
|  | 468 | #endif  /* OPENSSL_NO_DSA */ | 
|  | 469 |  | 
|  | 470 | #define R_RSA_512       0 | 
|  | 471 | #define R_RSA_1024      1 | 
|  | 472 | #define R_RSA_2048      2 | 
|  | 473 | #define R_RSA_3072      3 | 
|  | 474 | #define R_RSA_4096      4 | 
|  | 475 | #define R_RSA_7680      5 | 
|  | 476 | #define R_RSA_15360     6 | 
|  | 477 | #ifndef OPENSSL_NO_RSA | 
|  | 478 | static const OPT_PAIR rsa_choices[] = { | 
|  | 479 | {"rsa512", R_RSA_512}, | 
|  | 480 | {"rsa1024", R_RSA_1024}, | 
|  | 481 | {"rsa2048", R_RSA_2048}, | 
|  | 482 | {"rsa3072", R_RSA_3072}, | 
|  | 483 | {"rsa4096", R_RSA_4096}, | 
|  | 484 | {"rsa7680", R_RSA_7680}, | 
|  | 485 | {"rsa15360", R_RSA_15360} | 
|  | 486 | }; | 
|  | 487 | # define RSA_NUM OSSL_NELEM(rsa_choices) | 
|  | 488 |  | 
|  | 489 | static double rsa_results[RSA_NUM][2];  /* 2 ops: sign then verify */ | 
|  | 490 | #endif /* OPENSSL_NO_RSA */ | 
|  | 491 |  | 
|  | 492 | enum { | 
|  | 493 | R_EC_P160, | 
|  | 494 | R_EC_P192, | 
|  | 495 | R_EC_P224, | 
|  | 496 | R_EC_P256, | 
|  | 497 | R_EC_P384, | 
|  | 498 | R_EC_P521, | 
|  | 499 | #ifndef OPENSSL_NO_EC2M | 
|  | 500 | R_EC_K163, | 
|  | 501 | R_EC_K233, | 
|  | 502 | R_EC_K283, | 
|  | 503 | R_EC_K409, | 
|  | 504 | R_EC_K571, | 
|  | 505 | R_EC_B163, | 
|  | 506 | R_EC_B233, | 
|  | 507 | R_EC_B283, | 
|  | 508 | R_EC_B409, | 
|  | 509 | R_EC_B571, | 
|  | 510 | #endif | 
|  | 511 | R_EC_BRP256R1, | 
|  | 512 | R_EC_BRP256T1, | 
|  | 513 | R_EC_BRP384R1, | 
|  | 514 | R_EC_BRP384T1, | 
|  | 515 | R_EC_BRP512R1, | 
|  | 516 | R_EC_BRP512T1, | 
|  | 517 | R_EC_X25519, | 
|  | 518 | R_EC_X448 | 
|  | 519 | }; | 
|  | 520 |  | 
|  | 521 | #ifndef OPENSSL_NO_EC | 
|  | 522 | static OPT_PAIR ecdsa_choices[] = { | 
|  | 523 | {"ecdsap160", R_EC_P160}, | 
|  | 524 | {"ecdsap192", R_EC_P192}, | 
|  | 525 | {"ecdsap224", R_EC_P224}, | 
|  | 526 | {"ecdsap256", R_EC_P256}, | 
|  | 527 | {"ecdsap384", R_EC_P384}, | 
|  | 528 | {"ecdsap521", R_EC_P521}, | 
|  | 529 | # ifndef OPENSSL_NO_EC2M | 
|  | 530 | {"ecdsak163", R_EC_K163}, | 
|  | 531 | {"ecdsak233", R_EC_K233}, | 
|  | 532 | {"ecdsak283", R_EC_K283}, | 
|  | 533 | {"ecdsak409", R_EC_K409}, | 
|  | 534 | {"ecdsak571", R_EC_K571}, | 
|  | 535 | {"ecdsab163", R_EC_B163}, | 
|  | 536 | {"ecdsab233", R_EC_B233}, | 
|  | 537 | {"ecdsab283", R_EC_B283}, | 
|  | 538 | {"ecdsab409", R_EC_B409}, | 
|  | 539 | {"ecdsab571", R_EC_B571}, | 
|  | 540 | # endif | 
|  | 541 | {"ecdsabrp256r1", R_EC_BRP256R1}, | 
|  | 542 | {"ecdsabrp256t1", R_EC_BRP256T1}, | 
|  | 543 | {"ecdsabrp384r1", R_EC_BRP384R1}, | 
|  | 544 | {"ecdsabrp384t1", R_EC_BRP384T1}, | 
|  | 545 | {"ecdsabrp512r1", R_EC_BRP512R1}, | 
|  | 546 | {"ecdsabrp512t1", R_EC_BRP512T1} | 
|  | 547 | }; | 
|  | 548 | # define ECDSA_NUM       OSSL_NELEM(ecdsa_choices) | 
|  | 549 |  | 
|  | 550 | static double ecdsa_results[ECDSA_NUM][2];    /* 2 ops: sign then verify */ | 
|  | 551 |  | 
|  | 552 | static const OPT_PAIR ecdh_choices[] = { | 
|  | 553 | {"ecdhp160", R_EC_P160}, | 
|  | 554 | {"ecdhp192", R_EC_P192}, | 
|  | 555 | {"ecdhp224", R_EC_P224}, | 
|  | 556 | {"ecdhp256", R_EC_P256}, | 
|  | 557 | {"ecdhp384", R_EC_P384}, | 
|  | 558 | {"ecdhp521", R_EC_P521}, | 
|  | 559 | # ifndef OPENSSL_NO_EC2M | 
|  | 560 | {"ecdhk163", R_EC_K163}, | 
|  | 561 | {"ecdhk233", R_EC_K233}, | 
|  | 562 | {"ecdhk283", R_EC_K283}, | 
|  | 563 | {"ecdhk409", R_EC_K409}, | 
|  | 564 | {"ecdhk571", R_EC_K571}, | 
|  | 565 | {"ecdhb163", R_EC_B163}, | 
|  | 566 | {"ecdhb233", R_EC_B233}, | 
|  | 567 | {"ecdhb283", R_EC_B283}, | 
|  | 568 | {"ecdhb409", R_EC_B409}, | 
|  | 569 | {"ecdhb571", R_EC_B571}, | 
|  | 570 | # endif | 
|  | 571 | {"ecdhbrp256r1", R_EC_BRP256R1}, | 
|  | 572 | {"ecdhbrp256t1", R_EC_BRP256T1}, | 
|  | 573 | {"ecdhbrp384r1", R_EC_BRP384R1}, | 
|  | 574 | {"ecdhbrp384t1", R_EC_BRP384T1}, | 
|  | 575 | {"ecdhbrp512r1", R_EC_BRP512R1}, | 
|  | 576 | {"ecdhbrp512t1", R_EC_BRP512T1}, | 
|  | 577 | {"ecdhx25519", R_EC_X25519}, | 
|  | 578 | {"ecdhx448", R_EC_X448} | 
|  | 579 | }; | 
|  | 580 | # define EC_NUM       OSSL_NELEM(ecdh_choices) | 
|  | 581 |  | 
|  | 582 | static double ecdh_results[EC_NUM][1];  /* 1 op: derivation */ | 
|  | 583 |  | 
|  | 584 | #define R_EC_Ed25519    0 | 
|  | 585 | #define R_EC_Ed448      1 | 
|  | 586 | static OPT_PAIR eddsa_choices[] = { | 
|  | 587 | {"ed25519", R_EC_Ed25519}, | 
|  | 588 | {"ed448", R_EC_Ed448} | 
|  | 589 | }; | 
|  | 590 | # define EdDSA_NUM       OSSL_NELEM(eddsa_choices) | 
|  | 591 |  | 
|  | 592 | static double eddsa_results[EdDSA_NUM][2];    /* 2 ops: sign then verify */ | 
|  | 593 | #endif /* OPENSSL_NO_EC */ | 
|  | 594 |  | 
|  | 595 | #ifndef SIGALRM | 
|  | 596 | # define COND(d) (count < (d)) | 
|  | 597 | # define COUNT(d) (d) | 
|  | 598 | #else | 
|  | 599 | # define COND(unused_cond) (run && count<0x7fffffff) | 
|  | 600 | # define COUNT(d) (count) | 
|  | 601 | #endif                          /* SIGALRM */ | 
|  | 602 |  | 
|  | 603 | typedef struct loopargs_st { | 
|  | 604 | ASYNC_JOB *inprogress_job; | 
|  | 605 | ASYNC_WAIT_CTX *wait_ctx; | 
|  | 606 | unsigned char *buf; | 
|  | 607 | unsigned char *buf2; | 
|  | 608 | unsigned char *buf_malloc; | 
|  | 609 | unsigned char *buf2_malloc; | 
|  | 610 | unsigned char *key; | 
|  | 611 | unsigned int siglen; | 
|  | 612 | size_t sigsize; | 
|  | 613 | #ifndef OPENSSL_NO_RSA | 
|  | 614 | RSA *rsa_key[RSA_NUM]; | 
|  | 615 | #endif | 
|  | 616 | #ifndef OPENSSL_NO_DSA | 
|  | 617 | DSA *dsa_key[DSA_NUM]; | 
|  | 618 | #endif | 
|  | 619 | #ifndef OPENSSL_NO_EC | 
|  | 620 | EC_KEY *ecdsa[ECDSA_NUM]; | 
|  | 621 | EVP_PKEY_CTX *ecdh_ctx[EC_NUM]; | 
|  | 622 | EVP_MD_CTX *eddsa_ctx[EdDSA_NUM]; | 
|  | 623 | unsigned char *secret_a; | 
|  | 624 | unsigned char *secret_b; | 
|  | 625 | size_t outlen[EC_NUM]; | 
|  | 626 | #endif | 
|  | 627 | EVP_CIPHER_CTX *ctx; | 
|  | 628 | HMAC_CTX *hctx; | 
|  | 629 | GCM128_CONTEXT *gcm_ctx; | 
|  | 630 | } loopargs_t; | 
|  | 631 | static int run_benchmark(int async_jobs, int (*loop_function) (void *), | 
|  | 632 | loopargs_t * loopargs); | 
|  | 633 |  | 
|  | 634 | static unsigned int testnum; | 
|  | 635 |  | 
|  | 636 | /* Nb of iterations to do per algorithm and key-size */ | 
|  | 637 | static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)]; | 
|  | 638 |  | 
|  | 639 | #ifndef OPENSSL_NO_MD2 | 
|  | 640 | static int EVP_Digest_MD2_loop(void *args) | 
|  | 641 | { | 
|  | 642 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 643 | unsigned char *buf = tempargs->buf; | 
|  | 644 | unsigned char md2[MD2_DIGEST_LENGTH]; | 
|  | 645 | int count; | 
|  | 646 |  | 
|  | 647 | for (count = 0; COND(c[D_MD2][testnum]); count++) { | 
|  | 648 | if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(), | 
|  | 649 | NULL)) | 
|  | 650 | return -1; | 
|  | 651 | } | 
|  | 652 | return count; | 
|  | 653 | } | 
|  | 654 | #endif | 
|  | 655 |  | 
|  | 656 | #ifndef OPENSSL_NO_MDC2 | 
|  | 657 | static int EVP_Digest_MDC2_loop(void *args) | 
|  | 658 | { | 
|  | 659 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 660 | unsigned char *buf = tempargs->buf; | 
|  | 661 | unsigned char mdc2[MDC2_DIGEST_LENGTH]; | 
|  | 662 | int count; | 
|  | 663 |  | 
|  | 664 | for (count = 0; COND(c[D_MDC2][testnum]); count++) { | 
|  | 665 | if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(), | 
|  | 666 | NULL)) | 
|  | 667 | return -1; | 
|  | 668 | } | 
|  | 669 | return count; | 
|  | 670 | } | 
|  | 671 | #endif | 
|  | 672 |  | 
|  | 673 | #ifndef OPENSSL_NO_MD4 | 
|  | 674 | static int EVP_Digest_MD4_loop(void *args) | 
|  | 675 | { | 
|  | 676 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 677 | unsigned char *buf = tempargs->buf; | 
|  | 678 | unsigned char md4[MD4_DIGEST_LENGTH]; | 
|  | 679 | int count; | 
|  | 680 |  | 
|  | 681 | for (count = 0; COND(c[D_MD4][testnum]); count++) { | 
|  | 682 | if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(), | 
|  | 683 | NULL)) | 
|  | 684 | return -1; | 
|  | 685 | } | 
|  | 686 | return count; | 
|  | 687 | } | 
|  | 688 | #endif | 
|  | 689 |  | 
|  | 690 | #ifndef OPENSSL_NO_MD5 | 
|  | 691 | static int MD5_loop(void *args) | 
|  | 692 | { | 
|  | 693 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 694 | unsigned char *buf = tempargs->buf; | 
|  | 695 | unsigned char md5[MD5_DIGEST_LENGTH]; | 
|  | 696 | int count; | 
|  | 697 | for (count = 0; COND(c[D_MD5][testnum]); count++) | 
|  | 698 | MD5(buf, lengths[testnum], md5); | 
|  | 699 | return count; | 
|  | 700 | } | 
|  | 701 |  | 
|  | 702 | static int HMAC_loop(void *args) | 
|  | 703 | { | 
|  | 704 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 705 | unsigned char *buf = tempargs->buf; | 
|  | 706 | HMAC_CTX *hctx = tempargs->hctx; | 
|  | 707 | unsigned char hmac[MD5_DIGEST_LENGTH]; | 
|  | 708 | int count; | 
|  | 709 |  | 
|  | 710 | for (count = 0; COND(c[D_HMAC][testnum]); count++) { | 
|  | 711 | HMAC_Init_ex(hctx, NULL, 0, NULL, NULL); | 
|  | 712 | HMAC_Update(hctx, buf, lengths[testnum]); | 
|  | 713 | HMAC_Final(hctx, hmac, NULL); | 
|  | 714 | } | 
|  | 715 | return count; | 
|  | 716 | } | 
|  | 717 | #endif | 
|  | 718 |  | 
|  | 719 | static int SHA1_loop(void *args) | 
|  | 720 | { | 
|  | 721 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 722 | unsigned char *buf = tempargs->buf; | 
|  | 723 | unsigned char sha[SHA_DIGEST_LENGTH]; | 
|  | 724 | int count; | 
|  | 725 | for (count = 0; COND(c[D_SHA1][testnum]); count++) | 
|  | 726 | SHA1(buf, lengths[testnum], sha); | 
|  | 727 | return count; | 
|  | 728 | } | 
|  | 729 |  | 
|  | 730 | static int SHA256_loop(void *args) | 
|  | 731 | { | 
|  | 732 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 733 | unsigned char *buf = tempargs->buf; | 
|  | 734 | unsigned char sha256[SHA256_DIGEST_LENGTH]; | 
|  | 735 | int count; | 
|  | 736 | for (count = 0; COND(c[D_SHA256][testnum]); count++) | 
|  | 737 | SHA256(buf, lengths[testnum], sha256); | 
|  | 738 | return count; | 
|  | 739 | } | 
|  | 740 |  | 
|  | 741 | static int SHA512_loop(void *args) | 
|  | 742 | { | 
|  | 743 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 744 | unsigned char *buf = tempargs->buf; | 
|  | 745 | unsigned char sha512[SHA512_DIGEST_LENGTH]; | 
|  | 746 | int count; | 
|  | 747 | for (count = 0; COND(c[D_SHA512][testnum]); count++) | 
|  | 748 | SHA512(buf, lengths[testnum], sha512); | 
|  | 749 | return count; | 
|  | 750 | } | 
|  | 751 |  | 
|  | 752 | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | 753 | static int WHIRLPOOL_loop(void *args) | 
|  | 754 | { | 
|  | 755 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 756 | unsigned char *buf = tempargs->buf; | 
|  | 757 | unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; | 
|  | 758 | int count; | 
|  | 759 | for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++) | 
|  | 760 | WHIRLPOOL(buf, lengths[testnum], whirlpool); | 
|  | 761 | return count; | 
|  | 762 | } | 
|  | 763 | #endif | 
|  | 764 |  | 
|  | 765 | #ifndef OPENSSL_NO_RMD160 | 
|  | 766 | static int EVP_Digest_RMD160_loop(void *args) | 
|  | 767 | { | 
|  | 768 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 769 | unsigned char *buf = tempargs->buf; | 
|  | 770 | unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; | 
|  | 771 | int count; | 
|  | 772 | for (count = 0; COND(c[D_RMD160][testnum]); count++) { | 
|  | 773 | if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]), | 
|  | 774 | NULL, EVP_ripemd160(), NULL)) | 
|  | 775 | return -1; | 
|  | 776 | } | 
|  | 777 | return count; | 
|  | 778 | } | 
|  | 779 | #endif | 
|  | 780 |  | 
|  | 781 | #ifndef OPENSSL_NO_RC4 | 
|  | 782 | static RC4_KEY rc4_ks; | 
|  | 783 | static int RC4_loop(void *args) | 
|  | 784 | { | 
|  | 785 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 786 | unsigned char *buf = tempargs->buf; | 
|  | 787 | int count; | 
|  | 788 | for (count = 0; COND(c[D_RC4][testnum]); count++) | 
|  | 789 | RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf); | 
|  | 790 | return count; | 
|  | 791 | } | 
|  | 792 | #endif | 
|  | 793 |  | 
|  | 794 | #ifndef OPENSSL_NO_DES | 
|  | 795 | static unsigned char DES_iv[8]; | 
|  | 796 | static DES_key_schedule sch; | 
|  | 797 | static DES_key_schedule sch2; | 
|  | 798 | static DES_key_schedule sch3; | 
|  | 799 | static int DES_ncbc_encrypt_loop(void *args) | 
|  | 800 | { | 
|  | 801 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 802 | unsigned char *buf = tempargs->buf; | 
|  | 803 | int count; | 
|  | 804 | for (count = 0; COND(c[D_CBC_DES][testnum]); count++) | 
|  | 805 | DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch, | 
|  | 806 | &DES_iv, DES_ENCRYPT); | 
|  | 807 | return count; | 
|  | 808 | } | 
|  | 809 |  | 
|  | 810 | static int DES_ede3_cbc_encrypt_loop(void *args) | 
|  | 811 | { | 
|  | 812 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 813 | unsigned char *buf = tempargs->buf; | 
|  | 814 | int count; | 
|  | 815 | for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) | 
|  | 816 | DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], | 
|  | 817 | &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT); | 
|  | 818 | return count; | 
|  | 819 | } | 
|  | 820 | #endif | 
|  | 821 |  | 
|  | 822 | #define MAX_BLOCK_SIZE 128 | 
|  | 823 |  | 
|  | 824 | static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; | 
|  | 825 | static AES_KEY aes_ks1, aes_ks2, aes_ks3; | 
|  | 826 | static int AES_cbc_128_encrypt_loop(void *args) | 
|  | 827 | { | 
|  | 828 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 829 | unsigned char *buf = tempargs->buf; | 
|  | 830 | int count; | 
|  | 831 | for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) | 
|  | 832 | AES_cbc_encrypt(buf, buf, | 
|  | 833 | (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); | 
|  | 834 | return count; | 
|  | 835 | } | 
|  | 836 |  | 
|  | 837 | static int AES_cbc_192_encrypt_loop(void *args) | 
|  | 838 | { | 
|  | 839 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 840 | unsigned char *buf = tempargs->buf; | 
|  | 841 | int count; | 
|  | 842 | for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) | 
|  | 843 | AES_cbc_encrypt(buf, buf, | 
|  | 844 | (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); | 
|  | 845 | return count; | 
|  | 846 | } | 
|  | 847 |  | 
|  | 848 | static int AES_cbc_256_encrypt_loop(void *args) | 
|  | 849 | { | 
|  | 850 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 851 | unsigned char *buf = tempargs->buf; | 
|  | 852 | int count; | 
|  | 853 | for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) | 
|  | 854 | AES_cbc_encrypt(buf, buf, | 
|  | 855 | (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); | 
|  | 856 | return count; | 
|  | 857 | } | 
|  | 858 |  | 
|  | 859 | static int AES_ige_128_encrypt_loop(void *args) | 
|  | 860 | { | 
|  | 861 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 862 | unsigned char *buf = tempargs->buf; | 
|  | 863 | unsigned char *buf2 = tempargs->buf2; | 
|  | 864 | int count; | 
|  | 865 | for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) | 
|  | 866 | AES_ige_encrypt(buf, buf2, | 
|  | 867 | (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); | 
|  | 868 | return count; | 
|  | 869 | } | 
|  | 870 |  | 
|  | 871 | static int AES_ige_192_encrypt_loop(void *args) | 
|  | 872 | { | 
|  | 873 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 874 | unsigned char *buf = tempargs->buf; | 
|  | 875 | unsigned char *buf2 = tempargs->buf2; | 
|  | 876 | int count; | 
|  | 877 | for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) | 
|  | 878 | AES_ige_encrypt(buf, buf2, | 
|  | 879 | (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); | 
|  | 880 | return count; | 
|  | 881 | } | 
|  | 882 |  | 
|  | 883 | static int AES_ige_256_encrypt_loop(void *args) | 
|  | 884 | { | 
|  | 885 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 886 | unsigned char *buf = tempargs->buf; | 
|  | 887 | unsigned char *buf2 = tempargs->buf2; | 
|  | 888 | int count; | 
|  | 889 | for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) | 
|  | 890 | AES_ige_encrypt(buf, buf2, | 
|  | 891 | (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); | 
|  | 892 | return count; | 
|  | 893 | } | 
|  | 894 |  | 
|  | 895 | static int CRYPTO_gcm128_aad_loop(void *args) | 
|  | 896 | { | 
|  | 897 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 898 | unsigned char *buf = tempargs->buf; | 
|  | 899 | GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; | 
|  | 900 | int count; | 
|  | 901 | for (count = 0; COND(c[D_GHASH][testnum]); count++) | 
|  | 902 | CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]); | 
|  | 903 | return count; | 
|  | 904 | } | 
|  | 905 |  | 
|  | 906 | static int RAND_bytes_loop(void *args) | 
|  | 907 | { | 
|  | 908 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 909 | unsigned char *buf = tempargs->buf; | 
|  | 910 | int count; | 
|  | 911 |  | 
|  | 912 | for (count = 0; COND(c[D_RAND][testnum]); count++) | 
|  | 913 | RAND_bytes(buf, lengths[testnum]); | 
|  | 914 | return count; | 
|  | 915 | } | 
|  | 916 |  | 
|  | 917 | static long save_count = 0; | 
|  | 918 | static int decrypt = 0; | 
|  | 919 | static int EVP_Update_loop(void *args) | 
|  | 920 | { | 
|  | 921 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 922 | unsigned char *buf = tempargs->buf; | 
|  | 923 | EVP_CIPHER_CTX *ctx = tempargs->ctx; | 
|  | 924 | int outl, count, rc; | 
|  | 925 | #ifndef SIGALRM | 
|  | 926 | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; | 
|  | 927 | #endif | 
|  | 928 | if (decrypt) { | 
|  | 929 | for (count = 0; COND(nb_iter); count++) { | 
|  | 930 | rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); | 
|  | 931 | if (rc != 1) { | 
|  | 932 | /* reset iv in case of counter overflow */ | 
|  | 933 | EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); | 
|  | 934 | } | 
|  | 935 | } | 
|  | 936 | } else { | 
|  | 937 | for (count = 0; COND(nb_iter); count++) { | 
|  | 938 | rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); | 
|  | 939 | if (rc != 1) { | 
|  | 940 | /* reset iv in case of counter overflow */ | 
|  | 941 | EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); | 
|  | 942 | } | 
|  | 943 | } | 
|  | 944 | } | 
|  | 945 | if (decrypt) | 
|  | 946 | EVP_DecryptFinal_ex(ctx, buf, &outl); | 
|  | 947 | else | 
|  | 948 | EVP_EncryptFinal_ex(ctx, buf, &outl); | 
|  | 949 | return count; | 
|  | 950 | } | 
|  | 951 |  | 
|  | 952 | /* | 
|  | 953 | * CCM does not support streaming. For the purpose of performance measurement, | 
|  | 954 | * each message is encrypted using the same (key,iv)-pair. Do not use this | 
|  | 955 | * code in your application. | 
|  | 956 | */ | 
|  | 957 | static int EVP_Update_loop_ccm(void *args) | 
|  | 958 | { | 
|  | 959 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 960 | unsigned char *buf = tempargs->buf; | 
|  | 961 | EVP_CIPHER_CTX *ctx = tempargs->ctx; | 
|  | 962 | int outl, count; | 
|  | 963 | unsigned char tag[12]; | 
|  | 964 | #ifndef SIGALRM | 
|  | 965 | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; | 
|  | 966 | #endif | 
|  | 967 | if (decrypt) { | 
|  | 968 | for (count = 0; COND(nb_iter); count++) { | 
|  | 969 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag); | 
|  | 970 | /* reset iv */ | 
|  | 971 | EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); | 
|  | 972 | /* counter is reset on every update */ | 
|  | 973 | EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); | 
|  | 974 | } | 
|  | 975 | } else { | 
|  | 976 | for (count = 0; COND(nb_iter); count++) { | 
|  | 977 | /* restore iv length field */ | 
|  | 978 | EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]); | 
|  | 979 | /* counter is reset on every update */ | 
|  | 980 | EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); | 
|  | 981 | } | 
|  | 982 | } | 
|  | 983 | if (decrypt) | 
|  | 984 | EVP_DecryptFinal_ex(ctx, buf, &outl); | 
|  | 985 | else | 
|  | 986 | EVP_EncryptFinal_ex(ctx, buf, &outl); | 
|  | 987 | return count; | 
|  | 988 | } | 
|  | 989 |  | 
|  | 990 | /* | 
|  | 991 | * To make AEAD benchmarking more relevant perform TLS-like operations, | 
|  | 992 | * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as | 
|  | 993 | * payload length is not actually limited by 16KB... | 
|  | 994 | */ | 
|  | 995 | static int EVP_Update_loop_aead(void *args) | 
|  | 996 | { | 
|  | 997 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 998 | unsigned char *buf = tempargs->buf; | 
|  | 999 | EVP_CIPHER_CTX *ctx = tempargs->ctx; | 
|  | 1000 | int outl, count; | 
|  | 1001 | unsigned char aad[13] = { 0xcc }; | 
|  | 1002 | unsigned char faketag[16] = { 0xcc }; | 
|  | 1003 | #ifndef SIGALRM | 
|  | 1004 | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; | 
|  | 1005 | #endif | 
|  | 1006 | if (decrypt) { | 
|  | 1007 | for (count = 0; COND(nb_iter); count++) { | 
|  | 1008 | EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); | 
|  | 1009 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, | 
|  | 1010 | sizeof(faketag), faketag); | 
|  | 1011 | EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); | 
|  | 1012 | EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); | 
|  | 1013 | EVP_DecryptFinal_ex(ctx, buf + outl, &outl); | 
|  | 1014 | } | 
|  | 1015 | } else { | 
|  | 1016 | for (count = 0; COND(nb_iter); count++) { | 
|  | 1017 | EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv); | 
|  | 1018 | EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); | 
|  | 1019 | EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); | 
|  | 1020 | EVP_EncryptFinal_ex(ctx, buf + outl, &outl); | 
|  | 1021 | } | 
|  | 1022 | } | 
|  | 1023 | return count; | 
|  | 1024 | } | 
|  | 1025 |  | 
|  | 1026 | static const EVP_MD *evp_md = NULL; | 
|  | 1027 | static int EVP_Digest_loop(void *args) | 
|  | 1028 | { | 
|  | 1029 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1030 | unsigned char *buf = tempargs->buf; | 
|  | 1031 | unsigned char md[EVP_MAX_MD_SIZE]; | 
|  | 1032 | int count; | 
|  | 1033 | #ifndef SIGALRM | 
|  | 1034 | int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; | 
|  | 1035 | #endif | 
|  | 1036 |  | 
|  | 1037 | for (count = 0; COND(nb_iter); count++) { | 
|  | 1038 | if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL)) | 
|  | 1039 | return -1; | 
|  | 1040 | } | 
|  | 1041 | return count; | 
|  | 1042 | } | 
|  | 1043 |  | 
|  | 1044 | #ifndef OPENSSL_NO_RSA | 
|  | 1045 | static long rsa_c[RSA_NUM][2];  /* # RSA iteration test */ | 
|  | 1046 |  | 
|  | 1047 | static int RSA_sign_loop(void *args) | 
|  | 1048 | { | 
|  | 1049 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1050 | unsigned char *buf = tempargs->buf; | 
|  | 1051 | unsigned char *buf2 = tempargs->buf2; | 
|  | 1052 | unsigned int *rsa_num = &tempargs->siglen; | 
|  | 1053 | RSA **rsa_key = tempargs->rsa_key; | 
|  | 1054 | int ret, count; | 
|  | 1055 | for (count = 0; COND(rsa_c[testnum][0]); count++) { | 
|  | 1056 | ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); | 
|  | 1057 | if (ret == 0) { | 
|  | 1058 | BIO_printf(bio_err, "RSA sign failure\n"); | 
|  | 1059 | ERR_print_errors(bio_err); | 
|  | 1060 | count = -1; | 
|  | 1061 | break; | 
|  | 1062 | } | 
|  | 1063 | } | 
|  | 1064 | return count; | 
|  | 1065 | } | 
|  | 1066 |  | 
|  | 1067 | static int RSA_verify_loop(void *args) | 
|  | 1068 | { | 
|  | 1069 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1070 | unsigned char *buf = tempargs->buf; | 
|  | 1071 | unsigned char *buf2 = tempargs->buf2; | 
|  | 1072 | unsigned int rsa_num = tempargs->siglen; | 
|  | 1073 | RSA **rsa_key = tempargs->rsa_key; | 
|  | 1074 | int ret, count; | 
|  | 1075 | for (count = 0; COND(rsa_c[testnum][1]); count++) { | 
|  | 1076 | ret = | 
|  | 1077 | RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); | 
|  | 1078 | if (ret <= 0) { | 
|  | 1079 | BIO_printf(bio_err, "RSA verify failure\n"); | 
|  | 1080 | ERR_print_errors(bio_err); | 
|  | 1081 | count = -1; | 
|  | 1082 | break; | 
|  | 1083 | } | 
|  | 1084 | } | 
|  | 1085 | return count; | 
|  | 1086 | } | 
|  | 1087 | #endif | 
|  | 1088 |  | 
|  | 1089 | #ifndef OPENSSL_NO_DSA | 
|  | 1090 | static long dsa_c[DSA_NUM][2]; | 
|  | 1091 | static int DSA_sign_loop(void *args) | 
|  | 1092 | { | 
|  | 1093 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1094 | unsigned char *buf = tempargs->buf; | 
|  | 1095 | unsigned char *buf2 = tempargs->buf2; | 
|  | 1096 | DSA **dsa_key = tempargs->dsa_key; | 
|  | 1097 | unsigned int *siglen = &tempargs->siglen; | 
|  | 1098 | int ret, count; | 
|  | 1099 | for (count = 0; COND(dsa_c[testnum][0]); count++) { | 
|  | 1100 | ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); | 
|  | 1101 | if (ret == 0) { | 
|  | 1102 | BIO_printf(bio_err, "DSA sign failure\n"); | 
|  | 1103 | ERR_print_errors(bio_err); | 
|  | 1104 | count = -1; | 
|  | 1105 | break; | 
|  | 1106 | } | 
|  | 1107 | } | 
|  | 1108 | return count; | 
|  | 1109 | } | 
|  | 1110 |  | 
|  | 1111 | static int DSA_verify_loop(void *args) | 
|  | 1112 | { | 
|  | 1113 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1114 | unsigned char *buf = tempargs->buf; | 
|  | 1115 | unsigned char *buf2 = tempargs->buf2; | 
|  | 1116 | DSA **dsa_key = tempargs->dsa_key; | 
|  | 1117 | unsigned int siglen = tempargs->siglen; | 
|  | 1118 | int ret, count; | 
|  | 1119 | for (count = 0; COND(dsa_c[testnum][1]); count++) { | 
|  | 1120 | ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); | 
|  | 1121 | if (ret <= 0) { | 
|  | 1122 | BIO_printf(bio_err, "DSA verify failure\n"); | 
|  | 1123 | ERR_print_errors(bio_err); | 
|  | 1124 | count = -1; | 
|  | 1125 | break; | 
|  | 1126 | } | 
|  | 1127 | } | 
|  | 1128 | return count; | 
|  | 1129 | } | 
|  | 1130 | #endif | 
|  | 1131 |  | 
|  | 1132 | #ifndef OPENSSL_NO_EC | 
|  | 1133 | static long ecdsa_c[ECDSA_NUM][2]; | 
|  | 1134 | static int ECDSA_sign_loop(void *args) | 
|  | 1135 | { | 
|  | 1136 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1137 | unsigned char *buf = tempargs->buf; | 
|  | 1138 | EC_KEY **ecdsa = tempargs->ecdsa; | 
|  | 1139 | unsigned char *ecdsasig = tempargs->buf2; | 
|  | 1140 | unsigned int *ecdsasiglen = &tempargs->siglen; | 
|  | 1141 | int ret, count; | 
|  | 1142 | for (count = 0; COND(ecdsa_c[testnum][0]); count++) { | 
|  | 1143 | ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); | 
|  | 1144 | if (ret == 0) { | 
|  | 1145 | BIO_printf(bio_err, "ECDSA sign failure\n"); | 
|  | 1146 | ERR_print_errors(bio_err); | 
|  | 1147 | count = -1; | 
|  | 1148 | break; | 
|  | 1149 | } | 
|  | 1150 | } | 
|  | 1151 | return count; | 
|  | 1152 | } | 
|  | 1153 |  | 
|  | 1154 | static int ECDSA_verify_loop(void *args) | 
|  | 1155 | { | 
|  | 1156 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1157 | unsigned char *buf = tempargs->buf; | 
|  | 1158 | EC_KEY **ecdsa = tempargs->ecdsa; | 
|  | 1159 | unsigned char *ecdsasig = tempargs->buf2; | 
|  | 1160 | unsigned int ecdsasiglen = tempargs->siglen; | 
|  | 1161 | int ret, count; | 
|  | 1162 | for (count = 0; COND(ecdsa_c[testnum][1]); count++) { | 
|  | 1163 | ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); | 
|  | 1164 | if (ret != 1) { | 
|  | 1165 | BIO_printf(bio_err, "ECDSA verify failure\n"); | 
|  | 1166 | ERR_print_errors(bio_err); | 
|  | 1167 | count = -1; | 
|  | 1168 | break; | 
|  | 1169 | } | 
|  | 1170 | } | 
|  | 1171 | return count; | 
|  | 1172 | } | 
|  | 1173 |  | 
|  | 1174 | /* ******************************************************************** */ | 
|  | 1175 | static long ecdh_c[EC_NUM][1]; | 
|  | 1176 |  | 
|  | 1177 | static int ECDH_EVP_derive_key_loop(void *args) | 
|  | 1178 | { | 
|  | 1179 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1180 | EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum]; | 
|  | 1181 | unsigned char *derived_secret = tempargs->secret_a; | 
|  | 1182 | int count; | 
|  | 1183 | size_t *outlen = &(tempargs->outlen[testnum]); | 
|  | 1184 |  | 
|  | 1185 | for (count = 0; COND(ecdh_c[testnum][0]); count++) | 
|  | 1186 | EVP_PKEY_derive(ctx, derived_secret, outlen); | 
|  | 1187 |  | 
|  | 1188 | return count; | 
|  | 1189 | } | 
|  | 1190 |  | 
|  | 1191 | static long eddsa_c[EdDSA_NUM][2]; | 
|  | 1192 | static int EdDSA_sign_loop(void *args) | 
|  | 1193 | { | 
|  | 1194 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1195 | unsigned char *buf = tempargs->buf; | 
|  | 1196 | EVP_MD_CTX **edctx = tempargs->eddsa_ctx; | 
|  | 1197 | unsigned char *eddsasig = tempargs->buf2; | 
|  | 1198 | size_t *eddsasigsize = &tempargs->sigsize; | 
|  | 1199 | int ret, count; | 
|  | 1200 |  | 
|  | 1201 | for (count = 0; COND(eddsa_c[testnum][0]); count++) { | 
|  | 1202 | ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20); | 
|  | 1203 | if (ret == 0) { | 
|  | 1204 | BIO_printf(bio_err, "EdDSA sign failure\n"); | 
|  | 1205 | ERR_print_errors(bio_err); | 
|  | 1206 | count = -1; | 
|  | 1207 | break; | 
|  | 1208 | } | 
|  | 1209 | } | 
|  | 1210 | return count; | 
|  | 1211 | } | 
|  | 1212 |  | 
|  | 1213 | static int EdDSA_verify_loop(void *args) | 
|  | 1214 | { | 
|  | 1215 | loopargs_t *tempargs = *(loopargs_t **) args; | 
|  | 1216 | unsigned char *buf = tempargs->buf; | 
|  | 1217 | EVP_MD_CTX **edctx = tempargs->eddsa_ctx; | 
|  | 1218 | unsigned char *eddsasig = tempargs->buf2; | 
|  | 1219 | size_t eddsasigsize = tempargs->sigsize; | 
|  | 1220 | int ret, count; | 
|  | 1221 |  | 
|  | 1222 | for (count = 0; COND(eddsa_c[testnum][1]); count++) { | 
|  | 1223 | ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20); | 
|  | 1224 | if (ret != 1) { | 
|  | 1225 | BIO_printf(bio_err, "EdDSA verify failure\n"); | 
|  | 1226 | ERR_print_errors(bio_err); | 
|  | 1227 | count = -1; | 
|  | 1228 | break; | 
|  | 1229 | } | 
|  | 1230 | } | 
|  | 1231 | return count; | 
|  | 1232 | } | 
|  | 1233 | #endif                          /* OPENSSL_NO_EC */ | 
|  | 1234 |  | 
|  | 1235 | static int run_benchmark(int async_jobs, | 
|  | 1236 | int (*loop_function) (void *), loopargs_t * loopargs) | 
|  | 1237 | { | 
|  | 1238 | int job_op_count = 0; | 
|  | 1239 | int total_op_count = 0; | 
|  | 1240 | int num_inprogress = 0; | 
|  | 1241 | int error = 0, i = 0, ret = 0; | 
|  | 1242 | OSSL_ASYNC_FD job_fd = 0; | 
|  | 1243 | size_t num_job_fds = 0; | 
|  | 1244 |  | 
|  | 1245 | if (async_jobs == 0) { | 
|  | 1246 | return loop_function((void *)&loopargs); | 
|  | 1247 | } | 
|  | 1248 |  | 
|  | 1249 | for (i = 0; i < async_jobs && !error; i++) { | 
|  | 1250 | loopargs_t *looparg_item = loopargs + i; | 
|  | 1251 |  | 
|  | 1252 | /* Copy pointer content (looparg_t item address) into async context */ | 
|  | 1253 | ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, | 
|  | 1254 | &job_op_count, loop_function, | 
|  | 1255 | (void *)&looparg_item, sizeof(looparg_item)); | 
|  | 1256 | switch (ret) { | 
|  | 1257 | case ASYNC_PAUSE: | 
|  | 1258 | ++num_inprogress; | 
|  | 1259 | break; | 
|  | 1260 | case ASYNC_FINISH: | 
|  | 1261 | if (job_op_count == -1) { | 
|  | 1262 | error = 1; | 
|  | 1263 | } else { | 
|  | 1264 | total_op_count += job_op_count; | 
|  | 1265 | } | 
|  | 1266 | break; | 
|  | 1267 | case ASYNC_NO_JOBS: | 
|  | 1268 | case ASYNC_ERR: | 
|  | 1269 | BIO_printf(bio_err, "Failure in the job\n"); | 
|  | 1270 | ERR_print_errors(bio_err); | 
|  | 1271 | error = 1; | 
|  | 1272 | break; | 
|  | 1273 | } | 
|  | 1274 | } | 
|  | 1275 |  | 
|  | 1276 | while (num_inprogress > 0) { | 
|  | 1277 | #if defined(OPENSSL_SYS_WINDOWS) | 
|  | 1278 | DWORD avail = 0; | 
|  | 1279 | #elif defined(OPENSSL_SYS_UNIX) | 
|  | 1280 | int select_result = 0; | 
|  | 1281 | OSSL_ASYNC_FD max_fd = 0; | 
|  | 1282 | fd_set waitfdset; | 
|  | 1283 |  | 
|  | 1284 | FD_ZERO(&waitfdset); | 
|  | 1285 |  | 
|  | 1286 | for (i = 0; i < async_jobs && num_inprogress > 0; i++) { | 
|  | 1287 | if (loopargs[i].inprogress_job == NULL) | 
|  | 1288 | continue; | 
|  | 1289 |  | 
|  | 1290 | if (!ASYNC_WAIT_CTX_get_all_fds | 
|  | 1291 | (loopargs[i].wait_ctx, NULL, &num_job_fds) | 
|  | 1292 | || num_job_fds > 1) { | 
|  | 1293 | BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); | 
|  | 1294 | ERR_print_errors(bio_err); | 
|  | 1295 | error = 1; | 
|  | 1296 | break; | 
|  | 1297 | } | 
|  | 1298 | ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, | 
|  | 1299 | &num_job_fds); | 
|  | 1300 | FD_SET(job_fd, &waitfdset); | 
|  | 1301 | if (job_fd > max_fd) | 
|  | 1302 | max_fd = job_fd; | 
|  | 1303 | } | 
|  | 1304 |  | 
|  | 1305 | if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { | 
|  | 1306 | BIO_printf(bio_err, | 
|  | 1307 | "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " | 
|  | 1308 | "Decrease the value of async_jobs\n", | 
|  | 1309 | max_fd, FD_SETSIZE); | 
|  | 1310 | ERR_print_errors(bio_err); | 
|  | 1311 | error = 1; | 
|  | 1312 | break; | 
|  | 1313 | } | 
|  | 1314 |  | 
|  | 1315 | select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); | 
|  | 1316 | if (select_result == -1 && errno == EINTR) | 
|  | 1317 | continue; | 
|  | 1318 |  | 
|  | 1319 | if (select_result == -1) { | 
|  | 1320 | BIO_printf(bio_err, "Failure in the select\n"); | 
|  | 1321 | ERR_print_errors(bio_err); | 
|  | 1322 | error = 1; | 
|  | 1323 | break; | 
|  | 1324 | } | 
|  | 1325 |  | 
|  | 1326 | if (select_result == 0) | 
|  | 1327 | continue; | 
|  | 1328 | #endif | 
|  | 1329 |  | 
|  | 1330 | for (i = 0; i < async_jobs; i++) { | 
|  | 1331 | if (loopargs[i].inprogress_job == NULL) | 
|  | 1332 | continue; | 
|  | 1333 |  | 
|  | 1334 | if (!ASYNC_WAIT_CTX_get_all_fds | 
|  | 1335 | (loopargs[i].wait_ctx, NULL, &num_job_fds) | 
|  | 1336 | || num_job_fds > 1) { | 
|  | 1337 | BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); | 
|  | 1338 | ERR_print_errors(bio_err); | 
|  | 1339 | error = 1; | 
|  | 1340 | break; | 
|  | 1341 | } | 
|  | 1342 | ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, | 
|  | 1343 | &num_job_fds); | 
|  | 1344 |  | 
|  | 1345 | #if defined(OPENSSL_SYS_UNIX) | 
|  | 1346 | if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) | 
|  | 1347 | continue; | 
|  | 1348 | #elif defined(OPENSSL_SYS_WINDOWS) | 
|  | 1349 | if (num_job_fds == 1 | 
|  | 1350 | && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) | 
|  | 1351 | && avail > 0) | 
|  | 1352 | continue; | 
|  | 1353 | #endif | 
|  | 1354 |  | 
|  | 1355 | ret = ASYNC_start_job(&loopargs[i].inprogress_job, | 
|  | 1356 | loopargs[i].wait_ctx, &job_op_count, | 
|  | 1357 | loop_function, (void *)(loopargs + i), | 
|  | 1358 | sizeof(loopargs_t)); | 
|  | 1359 | switch (ret) { | 
|  | 1360 | case ASYNC_PAUSE: | 
|  | 1361 | break; | 
|  | 1362 | case ASYNC_FINISH: | 
|  | 1363 | if (job_op_count == -1) { | 
|  | 1364 | error = 1; | 
|  | 1365 | } else { | 
|  | 1366 | total_op_count += job_op_count; | 
|  | 1367 | } | 
|  | 1368 | --num_inprogress; | 
|  | 1369 | loopargs[i].inprogress_job = NULL; | 
|  | 1370 | break; | 
|  | 1371 | case ASYNC_NO_JOBS: | 
|  | 1372 | case ASYNC_ERR: | 
|  | 1373 | --num_inprogress; | 
|  | 1374 | loopargs[i].inprogress_job = NULL; | 
|  | 1375 | BIO_printf(bio_err, "Failure in the job\n"); | 
|  | 1376 | ERR_print_errors(bio_err); | 
|  | 1377 | error = 1; | 
|  | 1378 | break; | 
|  | 1379 | } | 
|  | 1380 | } | 
|  | 1381 | } | 
|  | 1382 |  | 
|  | 1383 | return error ? -1 : total_op_count; | 
|  | 1384 | } | 
|  | 1385 |  | 
|  | 1386 | int speed_main(int argc, char **argv) | 
|  | 1387 | { | 
|  | 1388 | ENGINE *e = NULL; | 
|  | 1389 | loopargs_t *loopargs = NULL; | 
|  | 1390 | const char *prog; | 
|  | 1391 | const char *engine_id = NULL; | 
|  | 1392 | const EVP_CIPHER *evp_cipher = NULL; | 
|  | 1393 | double d = 0.0; | 
|  | 1394 | OPTION_CHOICE o; | 
|  | 1395 | int async_init = 0, multiblock = 0, pr_header = 0; | 
|  | 1396 | int doit[ALGOR_NUM] = { 0 }; | 
|  | 1397 | int ret = 1, misalign = 0, lengths_single = 0, aead = 0; | 
|  | 1398 | long count = 0; | 
|  | 1399 | unsigned int size_num = OSSL_NELEM(lengths_list); | 
|  | 1400 | unsigned int i, k, loop, loopargs_len = 0, async_jobs = 0; | 
|  | 1401 | int keylen; | 
|  | 1402 | int buflen; | 
|  | 1403 | #ifndef NO_FORK | 
|  | 1404 | int multi = 0; | 
|  | 1405 | #endif | 
|  | 1406 | #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \ | 
|  | 1407 | || !defined(OPENSSL_NO_EC) | 
|  | 1408 | long rsa_count = 1; | 
|  | 1409 | #endif | 
|  | 1410 | openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS, | 
|  | 1411 | ECDSA_SECONDS, ECDH_SECONDS, | 
|  | 1412 | EdDSA_SECONDS }; | 
|  | 1413 |  | 
|  | 1414 | /* What follows are the buffers and key material. */ | 
|  | 1415 | #ifndef OPENSSL_NO_RC5 | 
|  | 1416 | RC5_32_KEY rc5_ks; | 
|  | 1417 | #endif | 
|  | 1418 | #ifndef OPENSSL_NO_RC2 | 
|  | 1419 | RC2_KEY rc2_ks; | 
|  | 1420 | #endif | 
|  | 1421 | #ifndef OPENSSL_NO_IDEA | 
|  | 1422 | IDEA_KEY_SCHEDULE idea_ks; | 
|  | 1423 | #endif | 
|  | 1424 | #ifndef OPENSSL_NO_SEED | 
|  | 1425 | SEED_KEY_SCHEDULE seed_ks; | 
|  | 1426 | #endif | 
|  | 1427 | #ifndef OPENSSL_NO_BF | 
|  | 1428 | BF_KEY bf_ks; | 
|  | 1429 | #endif | 
|  | 1430 | #ifndef OPENSSL_NO_CAST | 
|  | 1431 | CAST_KEY cast_ks; | 
|  | 1432 | #endif | 
|  | 1433 | static const unsigned char key16[16] = { | 
|  | 1434 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 1435 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 | 
|  | 1436 | }; | 
|  | 1437 | static const unsigned char key24[24] = { | 
|  | 1438 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 1439 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, | 
|  | 1440 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 | 
|  | 1441 | }; | 
|  | 1442 | static const unsigned char key32[32] = { | 
|  | 1443 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 1444 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, | 
|  | 1445 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, | 
|  | 1446 | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 | 
|  | 1447 | }; | 
|  | 1448 | #ifndef OPENSSL_NO_CAMELLIA | 
|  | 1449 | static const unsigned char ckey24[24] = { | 
|  | 1450 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 1451 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, | 
|  | 1452 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 | 
|  | 1453 | }; | 
|  | 1454 | static const unsigned char ckey32[32] = { | 
|  | 1455 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, | 
|  | 1456 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, | 
|  | 1457 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, | 
|  | 1458 | 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 | 
|  | 1459 | }; | 
|  | 1460 | CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; | 
|  | 1461 | #endif | 
|  | 1462 | #ifndef OPENSSL_NO_DES | 
|  | 1463 | static DES_cblock key = { | 
|  | 1464 | 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 | 
|  | 1465 | }; | 
|  | 1466 | static DES_cblock key2 = { | 
|  | 1467 | 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 | 
|  | 1468 | }; | 
|  | 1469 | static DES_cblock key3 = { | 
|  | 1470 | 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 | 
|  | 1471 | }; | 
|  | 1472 | #endif | 
|  | 1473 | #ifndef OPENSSL_NO_RSA | 
|  | 1474 | static const unsigned int rsa_bits[RSA_NUM] = { | 
|  | 1475 | 512, 1024, 2048, 3072, 4096, 7680, 15360 | 
|  | 1476 | }; | 
|  | 1477 | static const unsigned char *rsa_data[RSA_NUM] = { | 
|  | 1478 | test512, test1024, test2048, test3072, test4096, test7680, test15360 | 
|  | 1479 | }; | 
|  | 1480 | static const int rsa_data_length[RSA_NUM] = { | 
|  | 1481 | sizeof(test512), sizeof(test1024), | 
|  | 1482 | sizeof(test2048), sizeof(test3072), | 
|  | 1483 | sizeof(test4096), sizeof(test7680), | 
|  | 1484 | sizeof(test15360) | 
|  | 1485 | }; | 
|  | 1486 | int rsa_doit[RSA_NUM] = { 0 }; | 
|  | 1487 | int primes = RSA_DEFAULT_PRIME_NUM; | 
|  | 1488 | #endif | 
|  | 1489 | #ifndef OPENSSL_NO_DSA | 
|  | 1490 | static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; | 
|  | 1491 | int dsa_doit[DSA_NUM] = { 0 }; | 
|  | 1492 | #endif | 
|  | 1493 | #ifndef OPENSSL_NO_EC | 
|  | 1494 | /* | 
|  | 1495 | * We only test over the following curves as they are representative, To | 
|  | 1496 | * add tests over more curves, simply add the curve NID and curve name to | 
|  | 1497 | * the following arrays and increase the |ecdh_choices| list accordingly. | 
|  | 1498 | */ | 
|  | 1499 | static const struct { | 
|  | 1500 | const char *name; | 
|  | 1501 | unsigned int nid; | 
|  | 1502 | unsigned int bits; | 
|  | 1503 | } test_curves[] = { | 
|  | 1504 | /* Prime Curves */ | 
|  | 1505 | {"secp160r1", NID_secp160r1, 160}, | 
|  | 1506 | {"nistp192", NID_X9_62_prime192v1, 192}, | 
|  | 1507 | {"nistp224", NID_secp224r1, 224}, | 
|  | 1508 | {"nistp256", NID_X9_62_prime256v1, 256}, | 
|  | 1509 | {"nistp384", NID_secp384r1, 384}, | 
|  | 1510 | {"nistp521", NID_secp521r1, 521}, | 
|  | 1511 | # ifndef OPENSSL_NO_EC2M | 
|  | 1512 | /* Binary Curves */ | 
|  | 1513 | {"nistk163", NID_sect163k1, 163}, | 
|  | 1514 | {"nistk233", NID_sect233k1, 233}, | 
|  | 1515 | {"nistk283", NID_sect283k1, 283}, | 
|  | 1516 | {"nistk409", NID_sect409k1, 409}, | 
|  | 1517 | {"nistk571", NID_sect571k1, 571}, | 
|  | 1518 | {"nistb163", NID_sect163r2, 163}, | 
|  | 1519 | {"nistb233", NID_sect233r1, 233}, | 
|  | 1520 | {"nistb283", NID_sect283r1, 283}, | 
|  | 1521 | {"nistb409", NID_sect409r1, 409}, | 
|  | 1522 | {"nistb571", NID_sect571r1, 571}, | 
|  | 1523 | # endif | 
|  | 1524 | {"brainpoolP256r1", NID_brainpoolP256r1, 256}, | 
|  | 1525 | {"brainpoolP256t1", NID_brainpoolP256t1, 256}, | 
|  | 1526 | {"brainpoolP384r1", NID_brainpoolP384r1, 384}, | 
|  | 1527 | {"brainpoolP384t1", NID_brainpoolP384t1, 384}, | 
|  | 1528 | {"brainpoolP512r1", NID_brainpoolP512r1, 512}, | 
|  | 1529 | {"brainpoolP512t1", NID_brainpoolP512t1, 512}, | 
|  | 1530 | /* Other and ECDH only ones */ | 
|  | 1531 | {"X25519", NID_X25519, 253}, | 
|  | 1532 | {"X448", NID_X448, 448} | 
|  | 1533 | }; | 
|  | 1534 | static const struct { | 
|  | 1535 | const char *name; | 
|  | 1536 | unsigned int nid; | 
|  | 1537 | unsigned int bits; | 
|  | 1538 | size_t sigsize; | 
|  | 1539 | } test_ed_curves[] = { | 
|  | 1540 | /* EdDSA */ | 
|  | 1541 | {"Ed25519", NID_ED25519, 253, 64}, | 
|  | 1542 | {"Ed448", NID_ED448, 456, 114} | 
|  | 1543 | }; | 
|  | 1544 | int ecdsa_doit[ECDSA_NUM] = { 0 }; | 
|  | 1545 | int ecdh_doit[EC_NUM] = { 0 }; | 
|  | 1546 | int eddsa_doit[EdDSA_NUM] = { 0 }; | 
|  | 1547 | OPENSSL_assert(OSSL_NELEM(test_curves) >= EC_NUM); | 
|  | 1548 | OPENSSL_assert(OSSL_NELEM(test_ed_curves) >= EdDSA_NUM); | 
|  | 1549 | #endif                          /* ndef OPENSSL_NO_EC */ | 
|  | 1550 |  | 
|  | 1551 | prog = opt_init(argc, argv, speed_options); | 
|  | 1552 | while ((o = opt_next()) != OPT_EOF) { | 
|  | 1553 | switch (o) { | 
|  | 1554 | case OPT_EOF: | 
|  | 1555 | case OPT_ERR: | 
|  | 1556 | opterr: | 
|  | 1557 | BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); | 
|  | 1558 | goto end; | 
|  | 1559 | case OPT_HELP: | 
|  | 1560 | opt_help(speed_options); | 
|  | 1561 | ret = 0; | 
|  | 1562 | goto end; | 
|  | 1563 | case OPT_ELAPSED: | 
|  | 1564 | usertime = 0; | 
|  | 1565 | break; | 
|  | 1566 | case OPT_EVP: | 
|  | 1567 | evp_md = NULL; | 
|  | 1568 | evp_cipher = EVP_get_cipherbyname(opt_arg()); | 
|  | 1569 | if (evp_cipher == NULL) | 
|  | 1570 | evp_md = EVP_get_digestbyname(opt_arg()); | 
|  | 1571 | if (evp_cipher == NULL && evp_md == NULL) { | 
|  | 1572 | BIO_printf(bio_err, | 
|  | 1573 | "%s: %s is an unknown cipher or digest\n", | 
|  | 1574 | prog, opt_arg()); | 
|  | 1575 | goto end; | 
|  | 1576 | } | 
|  | 1577 | doit[D_EVP] = 1; | 
|  | 1578 | break; | 
|  | 1579 | case OPT_DECRYPT: | 
|  | 1580 | decrypt = 1; | 
|  | 1581 | break; | 
|  | 1582 | case OPT_ENGINE: | 
|  | 1583 | /* | 
|  | 1584 | * In a forked execution, an engine might need to be | 
|  | 1585 | * initialised by each child process, not by the parent. | 
|  | 1586 | * So store the name here and run setup_engine() later on. | 
|  | 1587 | */ | 
|  | 1588 | engine_id = opt_arg(); | 
|  | 1589 | break; | 
|  | 1590 | case OPT_MULTI: | 
|  | 1591 | #ifndef NO_FORK | 
|  | 1592 | multi = atoi(opt_arg()); | 
|  | 1593 | if (multi >= INT_MAX / (int)sizeof(int)) { | 
|  | 1594 | BIO_printf(bio_err, "%s: multi argument too large\n", prog); | 
|  | 1595 | return 0; | 
|  | 1596 | } | 
|  | 1597 | #endif | 
|  | 1598 | break; | 
|  | 1599 | case OPT_ASYNCJOBS: | 
|  | 1600 | #ifndef OPENSSL_NO_ASYNC | 
|  | 1601 | async_jobs = atoi(opt_arg()); | 
|  | 1602 | if (!ASYNC_is_capable()) { | 
|  | 1603 | BIO_printf(bio_err, | 
|  | 1604 | "%s: async_jobs specified but async not supported\n", | 
|  | 1605 | prog); | 
|  | 1606 | goto opterr; | 
|  | 1607 | } | 
|  | 1608 | if (async_jobs > 99999) { | 
|  | 1609 | BIO_printf(bio_err, "%s: too many async_jobs\n", prog); | 
|  | 1610 | goto opterr; | 
|  | 1611 | } | 
|  | 1612 | #endif | 
|  | 1613 | break; | 
|  | 1614 | case OPT_MISALIGN: | 
|  | 1615 | if (!opt_int(opt_arg(), &misalign)) | 
|  | 1616 | goto end; | 
|  | 1617 | if (misalign > MISALIGN) { | 
|  | 1618 | BIO_printf(bio_err, | 
|  | 1619 | "%s: Maximum offset is %d\n", prog, MISALIGN); | 
|  | 1620 | goto opterr; | 
|  | 1621 | } | 
|  | 1622 | break; | 
|  | 1623 | case OPT_MR: | 
|  | 1624 | mr = 1; | 
|  | 1625 | break; | 
|  | 1626 | case OPT_MB: | 
|  | 1627 | multiblock = 1; | 
|  | 1628 | #ifdef OPENSSL_NO_MULTIBLOCK | 
|  | 1629 | BIO_printf(bio_err, | 
|  | 1630 | "%s: -mb specified but multi-block support is disabled\n", | 
|  | 1631 | prog); | 
|  | 1632 | goto end; | 
|  | 1633 | #endif | 
|  | 1634 | break; | 
|  | 1635 | case OPT_R_CASES: | 
|  | 1636 | if (!opt_rand(o)) | 
|  | 1637 | goto end; | 
|  | 1638 | break; | 
|  | 1639 | case OPT_PRIMES: | 
|  | 1640 | if (!opt_int(opt_arg(), &primes)) | 
|  | 1641 | goto end; | 
|  | 1642 | break; | 
|  | 1643 | case OPT_SECONDS: | 
|  | 1644 | seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa | 
|  | 1645 | = seconds.ecdh = seconds.eddsa = atoi(opt_arg()); | 
|  | 1646 | break; | 
|  | 1647 | case OPT_BYTES: | 
|  | 1648 | lengths_single = atoi(opt_arg()); | 
|  | 1649 | lengths = &lengths_single; | 
|  | 1650 | size_num = 1; | 
|  | 1651 | break; | 
|  | 1652 | case OPT_AEAD: | 
|  | 1653 | aead = 1; | 
|  | 1654 | break; | 
|  | 1655 | } | 
|  | 1656 | } | 
|  | 1657 | argc = opt_num_rest(); | 
|  | 1658 | argv = opt_rest(); | 
|  | 1659 |  | 
|  | 1660 | /* Remaining arguments are algorithms. */ | 
|  | 1661 | for (; *argv; argv++) { | 
|  | 1662 | if (found(*argv, doit_choices, &i)) { | 
|  | 1663 | doit[i] = 1; | 
|  | 1664 | continue; | 
|  | 1665 | } | 
|  | 1666 | #ifndef OPENSSL_NO_DES | 
|  | 1667 | if (strcmp(*argv, "des") == 0) { | 
|  | 1668 | doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; | 
|  | 1669 | continue; | 
|  | 1670 | } | 
|  | 1671 | #endif | 
|  | 1672 | if (strcmp(*argv, "sha") == 0) { | 
|  | 1673 | doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; | 
|  | 1674 | continue; | 
|  | 1675 | } | 
|  | 1676 | #ifndef OPENSSL_NO_RSA | 
|  | 1677 | if (strcmp(*argv, "openssl") == 0) | 
|  | 1678 | continue; | 
|  | 1679 | if (strcmp(*argv, "rsa") == 0) { | 
|  | 1680 | for (loop = 0; loop < OSSL_NELEM(rsa_doit); loop++) | 
|  | 1681 | rsa_doit[loop] = 1; | 
|  | 1682 | continue; | 
|  | 1683 | } | 
|  | 1684 | if (found(*argv, rsa_choices, &i)) { | 
|  | 1685 | rsa_doit[i] = 1; | 
|  | 1686 | continue; | 
|  | 1687 | } | 
|  | 1688 | #endif | 
|  | 1689 | #ifndef OPENSSL_NO_DSA | 
|  | 1690 | if (strcmp(*argv, "dsa") == 0) { | 
|  | 1691 | dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] = | 
|  | 1692 | dsa_doit[R_DSA_2048] = 1; | 
|  | 1693 | continue; | 
|  | 1694 | } | 
|  | 1695 | if (found(*argv, dsa_choices, &i)) { | 
|  | 1696 | dsa_doit[i] = 2; | 
|  | 1697 | continue; | 
|  | 1698 | } | 
|  | 1699 | #endif | 
|  | 1700 | if (strcmp(*argv, "aes") == 0) { | 
|  | 1701 | doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1; | 
|  | 1702 | continue; | 
|  | 1703 | } | 
|  | 1704 | #ifndef OPENSSL_NO_CAMELLIA | 
|  | 1705 | if (strcmp(*argv, "camellia") == 0) { | 
|  | 1706 | doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1; | 
|  | 1707 | continue; | 
|  | 1708 | } | 
|  | 1709 | #endif | 
|  | 1710 | #ifndef OPENSSL_NO_EC | 
|  | 1711 | if (strcmp(*argv, "ecdsa") == 0) { | 
|  | 1712 | for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++) | 
|  | 1713 | ecdsa_doit[loop] = 1; | 
|  | 1714 | continue; | 
|  | 1715 | } | 
|  | 1716 | if (found(*argv, ecdsa_choices, &i)) { | 
|  | 1717 | ecdsa_doit[i] = 2; | 
|  | 1718 | continue; | 
|  | 1719 | } | 
|  | 1720 | if (strcmp(*argv, "ecdh") == 0) { | 
|  | 1721 | for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++) | 
|  | 1722 | ecdh_doit[loop] = 1; | 
|  | 1723 | continue; | 
|  | 1724 | } | 
|  | 1725 | if (found(*argv, ecdh_choices, &i)) { | 
|  | 1726 | ecdh_doit[i] = 2; | 
|  | 1727 | continue; | 
|  | 1728 | } | 
|  | 1729 | if (strcmp(*argv, "eddsa") == 0) { | 
|  | 1730 | for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++) | 
|  | 1731 | eddsa_doit[loop] = 1; | 
|  | 1732 | continue; | 
|  | 1733 | } | 
|  | 1734 | if (found(*argv, eddsa_choices, &i)) { | 
|  | 1735 | eddsa_doit[i] = 2; | 
|  | 1736 | continue; | 
|  | 1737 | } | 
|  | 1738 | #endif | 
|  | 1739 | BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv); | 
|  | 1740 | goto end; | 
|  | 1741 | } | 
|  | 1742 |  | 
|  | 1743 | /* Sanity checks */ | 
|  | 1744 | if (aead) { | 
|  | 1745 | if (evp_cipher == NULL) { | 
|  | 1746 | BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n"); | 
|  | 1747 | goto end; | 
|  | 1748 | } else if (!(EVP_CIPHER_flags(evp_cipher) & | 
|  | 1749 | EVP_CIPH_FLAG_AEAD_CIPHER)) { | 
|  | 1750 | BIO_printf(bio_err, "%s is not an AEAD cipher\n", | 
|  | 1751 | OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); | 
|  | 1752 | goto end; | 
|  | 1753 | } | 
|  | 1754 | } | 
|  | 1755 | if (multiblock) { | 
|  | 1756 | if (evp_cipher == NULL) { | 
|  | 1757 | BIO_printf(bio_err,"-mb can be used only with a multi-block" | 
|  | 1758 | " capable cipher\n"); | 
|  | 1759 | goto end; | 
|  | 1760 | } else if (!(EVP_CIPHER_flags(evp_cipher) & | 
|  | 1761 | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { | 
|  | 1762 | BIO_printf(bio_err, "%s is not a multi-block capable\n", | 
|  | 1763 | OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); | 
|  | 1764 | goto end; | 
|  | 1765 | } else if (async_jobs > 0) { | 
|  | 1766 | BIO_printf(bio_err, "Async mode is not supported with -mb"); | 
|  | 1767 | goto end; | 
|  | 1768 | } | 
|  | 1769 | } | 
|  | 1770 |  | 
|  | 1771 | /* Initialize the job pool if async mode is enabled */ | 
|  | 1772 | if (async_jobs > 0) { | 
|  | 1773 | async_init = ASYNC_init_thread(async_jobs, async_jobs); | 
|  | 1774 | if (!async_init) { | 
|  | 1775 | BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); | 
|  | 1776 | goto end; | 
|  | 1777 | } | 
|  | 1778 | } | 
|  | 1779 |  | 
|  | 1780 | loopargs_len = (async_jobs == 0 ? 1 : async_jobs); | 
|  | 1781 | loopargs = | 
|  | 1782 | app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); | 
|  | 1783 | memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); | 
|  | 1784 |  | 
|  | 1785 | for (i = 0; i < loopargs_len; i++) { | 
|  | 1786 | if (async_jobs > 0) { | 
|  | 1787 | loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); | 
|  | 1788 | if (loopargs[i].wait_ctx == NULL) { | 
|  | 1789 | BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); | 
|  | 1790 | goto end; | 
|  | 1791 | } | 
|  | 1792 | } | 
|  | 1793 |  | 
|  | 1794 | buflen = lengths[size_num - 1]; | 
|  | 1795 | if (buflen < 36)    /* size of random vector in RSA benchmark */ | 
|  | 1796 | buflen = 36; | 
|  | 1797 | buflen += MAX_MISALIGNMENT + 1; | 
|  | 1798 | loopargs[i].buf_malloc = app_malloc(buflen, "input buffer"); | 
|  | 1799 | loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer"); | 
|  | 1800 | memset(loopargs[i].buf_malloc, 0, buflen); | 
|  | 1801 | memset(loopargs[i].buf2_malloc, 0, buflen); | 
|  | 1802 |  | 
|  | 1803 | /* Align the start of buffers on a 64 byte boundary */ | 
|  | 1804 | loopargs[i].buf = loopargs[i].buf_malloc + misalign; | 
|  | 1805 | loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; | 
|  | 1806 | #ifndef OPENSSL_NO_EC | 
|  | 1807 | loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); | 
|  | 1808 | loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); | 
|  | 1809 | #endif | 
|  | 1810 | } | 
|  | 1811 |  | 
|  | 1812 | #ifndef NO_FORK | 
|  | 1813 | if (multi && do_multi(multi, size_num)) | 
|  | 1814 | goto show_res; | 
|  | 1815 | #endif | 
|  | 1816 |  | 
|  | 1817 | /* Initialize the engine after the fork */ | 
|  | 1818 | e = setup_engine(engine_id, 0); | 
|  | 1819 |  | 
|  | 1820 | /* No parameters; turn on everything. */ | 
|  | 1821 | if ((argc == 0) && !doit[D_EVP]) { | 
|  | 1822 | for (i = 0; i < ALGOR_NUM; i++) | 
|  | 1823 | if (i != D_EVP) | 
|  | 1824 | doit[i] = 1; | 
|  | 1825 | #ifndef OPENSSL_NO_RSA | 
|  | 1826 | for (i = 0; i < RSA_NUM; i++) | 
|  | 1827 | rsa_doit[i] = 1; | 
|  | 1828 | #endif | 
|  | 1829 | #ifndef OPENSSL_NO_DSA | 
|  | 1830 | for (i = 0; i < DSA_NUM; i++) | 
|  | 1831 | dsa_doit[i] = 1; | 
|  | 1832 | #endif | 
|  | 1833 | #ifndef OPENSSL_NO_EC | 
|  | 1834 | for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++) | 
|  | 1835 | ecdsa_doit[loop] = 1; | 
|  | 1836 | for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++) | 
|  | 1837 | ecdh_doit[loop] = 1; | 
|  | 1838 | for (loop = 0; loop < OSSL_NELEM(eddsa_doit); loop++) | 
|  | 1839 | eddsa_doit[loop] = 1; | 
|  | 1840 | #endif | 
|  | 1841 | } | 
|  | 1842 | for (i = 0; i < ALGOR_NUM; i++) | 
|  | 1843 | if (doit[i]) | 
|  | 1844 | pr_header++; | 
|  | 1845 |  | 
|  | 1846 | if (usertime == 0 && !mr) | 
|  | 1847 | BIO_printf(bio_err, | 
|  | 1848 | "You have chosen to measure elapsed time " | 
|  | 1849 | "instead of user CPU time.\n"); | 
|  | 1850 |  | 
|  | 1851 | #ifndef OPENSSL_NO_RSA | 
|  | 1852 | for (i = 0; i < loopargs_len; i++) { | 
|  | 1853 | if (primes > RSA_DEFAULT_PRIME_NUM) { | 
|  | 1854 | /* for multi-prime RSA, skip this */ | 
|  | 1855 | break; | 
|  | 1856 | } | 
|  | 1857 | for (k = 0; k < RSA_NUM; k++) { | 
|  | 1858 | const unsigned char *p; | 
|  | 1859 |  | 
|  | 1860 | p = rsa_data[k]; | 
|  | 1861 | loopargs[i].rsa_key[k] = | 
|  | 1862 | d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); | 
|  | 1863 | if (loopargs[i].rsa_key[k] == NULL) { | 
|  | 1864 | BIO_printf(bio_err, | 
|  | 1865 | "internal error loading RSA key number %d\n", k); | 
|  | 1866 | goto end; | 
|  | 1867 | } | 
|  | 1868 | } | 
|  | 1869 | } | 
|  | 1870 | #endif | 
|  | 1871 | #ifndef OPENSSL_NO_DSA | 
|  | 1872 | for (i = 0; i < loopargs_len; i++) { | 
|  | 1873 | loopargs[i].dsa_key[0] = get_dsa(512); | 
|  | 1874 | loopargs[i].dsa_key[1] = get_dsa(1024); | 
|  | 1875 | loopargs[i].dsa_key[2] = get_dsa(2048); | 
|  | 1876 | } | 
|  | 1877 | #endif | 
|  | 1878 | #ifndef OPENSSL_NO_DES | 
|  | 1879 | DES_set_key_unchecked(&key, &sch); | 
|  | 1880 | DES_set_key_unchecked(&key2, &sch2); | 
|  | 1881 | DES_set_key_unchecked(&key3, &sch3); | 
|  | 1882 | #endif | 
|  | 1883 | AES_set_encrypt_key(key16, 128, &aes_ks1); | 
|  | 1884 | AES_set_encrypt_key(key24, 192, &aes_ks2); | 
|  | 1885 | AES_set_encrypt_key(key32, 256, &aes_ks3); | 
|  | 1886 | #ifndef OPENSSL_NO_CAMELLIA | 
|  | 1887 | Camellia_set_key(key16, 128, &camellia_ks1); | 
|  | 1888 | Camellia_set_key(ckey24, 192, &camellia_ks2); | 
|  | 1889 | Camellia_set_key(ckey32, 256, &camellia_ks3); | 
|  | 1890 | #endif | 
|  | 1891 | #ifndef OPENSSL_NO_IDEA | 
|  | 1892 | IDEA_set_encrypt_key(key16, &idea_ks); | 
|  | 1893 | #endif | 
|  | 1894 | #ifndef OPENSSL_NO_SEED | 
|  | 1895 | SEED_set_key(key16, &seed_ks); | 
|  | 1896 | #endif | 
|  | 1897 | #ifndef OPENSSL_NO_RC4 | 
|  | 1898 | RC4_set_key(&rc4_ks, 16, key16); | 
|  | 1899 | #endif | 
|  | 1900 | #ifndef OPENSSL_NO_RC2 | 
|  | 1901 | RC2_set_key(&rc2_ks, 16, key16, 128); | 
|  | 1902 | #endif | 
|  | 1903 | #ifndef OPENSSL_NO_RC5 | 
|  | 1904 | RC5_32_set_key(&rc5_ks, 16, key16, 12); | 
|  | 1905 | #endif | 
|  | 1906 | #ifndef OPENSSL_NO_BF | 
|  | 1907 | BF_set_key(&bf_ks, 16, key16); | 
|  | 1908 | #endif | 
|  | 1909 | #ifndef OPENSSL_NO_CAST | 
|  | 1910 | CAST_set_key(&cast_ks, 16, key16); | 
|  | 1911 | #endif | 
|  | 1912 | #ifndef SIGALRM | 
|  | 1913 | # ifndef OPENSSL_NO_DES | 
|  | 1914 | BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); | 
|  | 1915 | count = 10; | 
|  | 1916 | do { | 
|  | 1917 | long it; | 
|  | 1918 | count *= 2; | 
|  | 1919 | Time_F(START); | 
|  | 1920 | for (it = count; it; it--) | 
|  | 1921 | DES_ecb_encrypt((DES_cblock *)loopargs[0].buf, | 
|  | 1922 | (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT); | 
|  | 1923 | d = Time_F(STOP); | 
|  | 1924 | } while (d < 3); | 
|  | 1925 | save_count = count; | 
|  | 1926 | c[D_MD2][0] = count / 10; | 
|  | 1927 | c[D_MDC2][0] = count / 10; | 
|  | 1928 | c[D_MD4][0] = count; | 
|  | 1929 | c[D_MD5][0] = count; | 
|  | 1930 | c[D_HMAC][0] = count; | 
|  | 1931 | c[D_SHA1][0] = count; | 
|  | 1932 | c[D_RMD160][0] = count; | 
|  | 1933 | c[D_RC4][0] = count * 5; | 
|  | 1934 | c[D_CBC_DES][0] = count; | 
|  | 1935 | c[D_EDE3_DES][0] = count / 3; | 
|  | 1936 | c[D_CBC_IDEA][0] = count; | 
|  | 1937 | c[D_CBC_SEED][0] = count; | 
|  | 1938 | c[D_CBC_RC2][0] = count; | 
|  | 1939 | c[D_CBC_RC5][0] = count; | 
|  | 1940 | c[D_CBC_BF][0] = count; | 
|  | 1941 | c[D_CBC_CAST][0] = count; | 
|  | 1942 | c[D_CBC_128_AES][0] = count; | 
|  | 1943 | c[D_CBC_192_AES][0] = count; | 
|  | 1944 | c[D_CBC_256_AES][0] = count; | 
|  | 1945 | c[D_CBC_128_CML][0] = count; | 
|  | 1946 | c[D_CBC_192_CML][0] = count; | 
|  | 1947 | c[D_CBC_256_CML][0] = count; | 
|  | 1948 | c[D_SHA256][0] = count; | 
|  | 1949 | c[D_SHA512][0] = count; | 
|  | 1950 | c[D_WHIRLPOOL][0] = count; | 
|  | 1951 | c[D_IGE_128_AES][0] = count; | 
|  | 1952 | c[D_IGE_192_AES][0] = count; | 
|  | 1953 | c[D_IGE_256_AES][0] = count; | 
|  | 1954 | c[D_GHASH][0] = count; | 
|  | 1955 | c[D_RAND][0] = count; | 
|  | 1956 |  | 
|  | 1957 | for (i = 1; i < size_num; i++) { | 
|  | 1958 | long l0, l1; | 
|  | 1959 |  | 
|  | 1960 | l0 = (long)lengths[0]; | 
|  | 1961 | l1 = (long)lengths[i]; | 
|  | 1962 |  | 
|  | 1963 | c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1; | 
|  | 1964 | c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1; | 
|  | 1965 | c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1; | 
|  | 1966 | c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1; | 
|  | 1967 | c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1; | 
|  | 1968 | c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1; | 
|  | 1969 | c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1; | 
|  | 1970 | c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1; | 
|  | 1971 | c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1; | 
|  | 1972 | c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1; | 
|  | 1973 | c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1; | 
|  | 1974 | c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1; | 
|  | 1975 |  | 
|  | 1976 | l0 = (long)lengths[i - 1]; | 
|  | 1977 |  | 
|  | 1978 | c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; | 
|  | 1979 | c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; | 
|  | 1980 | c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; | 
|  | 1981 | c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; | 
|  | 1982 | c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; | 
|  | 1983 | c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; | 
|  | 1984 | c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; | 
|  | 1985 | c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; | 
|  | 1986 | c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; | 
|  | 1987 | c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; | 
|  | 1988 | c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; | 
|  | 1989 | c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; | 
|  | 1990 | c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; | 
|  | 1991 | c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; | 
|  | 1992 | c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; | 
|  | 1993 | c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; | 
|  | 1994 | c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; | 
|  | 1995 | c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; | 
|  | 1996 | } | 
|  | 1997 |  | 
|  | 1998 | #  ifndef OPENSSL_NO_RSA | 
|  | 1999 | rsa_c[R_RSA_512][0] = count / 2000; | 
|  | 2000 | rsa_c[R_RSA_512][1] = count / 400; | 
|  | 2001 | for (i = 1; i < RSA_NUM; i++) { | 
|  | 2002 | rsa_c[i][0] = rsa_c[i - 1][0] / 8; | 
|  | 2003 | rsa_c[i][1] = rsa_c[i - 1][1] / 4; | 
|  | 2004 | if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0) | 
|  | 2005 | rsa_doit[i] = 0; | 
|  | 2006 | else { | 
|  | 2007 | if (rsa_c[i][0] == 0) { | 
|  | 2008 | rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ | 
|  | 2009 | rsa_c[i][1] = 20; | 
|  | 2010 | } | 
|  | 2011 | } | 
|  | 2012 | } | 
|  | 2013 | #  endif | 
|  | 2014 |  | 
|  | 2015 | #  ifndef OPENSSL_NO_DSA | 
|  | 2016 | dsa_c[R_DSA_512][0] = count / 1000; | 
|  | 2017 | dsa_c[R_DSA_512][1] = count / 1000 / 2; | 
|  | 2018 | for (i = 1; i < DSA_NUM; i++) { | 
|  | 2019 | dsa_c[i][0] = dsa_c[i - 1][0] / 4; | 
|  | 2020 | dsa_c[i][1] = dsa_c[i - 1][1] / 4; | 
|  | 2021 | if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0) | 
|  | 2022 | dsa_doit[i] = 0; | 
|  | 2023 | else { | 
|  | 2024 | if (dsa_c[i][0] == 0) { | 
|  | 2025 | dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ | 
|  | 2026 | dsa_c[i][1] = 1; | 
|  | 2027 | } | 
|  | 2028 | } | 
|  | 2029 | } | 
|  | 2030 | #  endif | 
|  | 2031 |  | 
|  | 2032 | #  ifndef OPENSSL_NO_EC | 
|  | 2033 | ecdsa_c[R_EC_P160][0] = count / 1000; | 
|  | 2034 | ecdsa_c[R_EC_P160][1] = count / 1000 / 2; | 
|  | 2035 | for (i = R_EC_P192; i <= R_EC_P521; i++) { | 
|  | 2036 | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; | 
|  | 2037 | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; | 
|  | 2038 | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) | 
|  | 2039 | ecdsa_doit[i] = 0; | 
|  | 2040 | else { | 
|  | 2041 | if (ecdsa_c[i][0] == 0) { | 
|  | 2042 | ecdsa_c[i][0] = 1; | 
|  | 2043 | ecdsa_c[i][1] = 1; | 
|  | 2044 | } | 
|  | 2045 | } | 
|  | 2046 | } | 
|  | 2047 | #   ifndef OPENSSL_NO_EC2M | 
|  | 2048 | ecdsa_c[R_EC_K163][0] = count / 1000; | 
|  | 2049 | ecdsa_c[R_EC_K163][1] = count / 1000 / 2; | 
|  | 2050 | for (i = R_EC_K233; i <= R_EC_K571; i++) { | 
|  | 2051 | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; | 
|  | 2052 | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; | 
|  | 2053 | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) | 
|  | 2054 | ecdsa_doit[i] = 0; | 
|  | 2055 | else { | 
|  | 2056 | if (ecdsa_c[i][0] == 0) { | 
|  | 2057 | ecdsa_c[i][0] = 1; | 
|  | 2058 | ecdsa_c[i][1] = 1; | 
|  | 2059 | } | 
|  | 2060 | } | 
|  | 2061 | } | 
|  | 2062 | ecdsa_c[R_EC_B163][0] = count / 1000; | 
|  | 2063 | ecdsa_c[R_EC_B163][1] = count / 1000 / 2; | 
|  | 2064 | for (i = R_EC_B233; i <= R_EC_B571; i++) { | 
|  | 2065 | ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; | 
|  | 2066 | ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; | 
|  | 2067 | if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) | 
|  | 2068 | ecdsa_doit[i] = 0; | 
|  | 2069 | else { | 
|  | 2070 | if (ecdsa_c[i][0] == 0) { | 
|  | 2071 | ecdsa_c[i][0] = 1; | 
|  | 2072 | ecdsa_c[i][1] = 1; | 
|  | 2073 | } | 
|  | 2074 | } | 
|  | 2075 | } | 
|  | 2076 | #   endif | 
|  | 2077 |  | 
|  | 2078 | ecdh_c[R_EC_P160][0] = count / 1000; | 
|  | 2079 | for (i = R_EC_P192; i <= R_EC_P521; i++) { | 
|  | 2080 | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; | 
|  | 2081 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) | 
|  | 2082 | ecdh_doit[i] = 0; | 
|  | 2083 | else { | 
|  | 2084 | if (ecdh_c[i][0] == 0) { | 
|  | 2085 | ecdh_c[i][0] = 1; | 
|  | 2086 | } | 
|  | 2087 | } | 
|  | 2088 | } | 
|  | 2089 | #   ifndef OPENSSL_NO_EC2M | 
|  | 2090 | ecdh_c[R_EC_K163][0] = count / 1000; | 
|  | 2091 | for (i = R_EC_K233; i <= R_EC_K571; i++) { | 
|  | 2092 | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; | 
|  | 2093 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) | 
|  | 2094 | ecdh_doit[i] = 0; | 
|  | 2095 | else { | 
|  | 2096 | if (ecdh_c[i][0] == 0) { | 
|  | 2097 | ecdh_c[i][0] = 1; | 
|  | 2098 | } | 
|  | 2099 | } | 
|  | 2100 | } | 
|  | 2101 | ecdh_c[R_EC_B163][0] = count / 1000; | 
|  | 2102 | for (i = R_EC_B233; i <= R_EC_B571; i++) { | 
|  | 2103 | ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; | 
|  | 2104 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) | 
|  | 2105 | ecdh_doit[i] = 0; | 
|  | 2106 | else { | 
|  | 2107 | if (ecdh_c[i][0] == 0) { | 
|  | 2108 | ecdh_c[i][0] = 1; | 
|  | 2109 | } | 
|  | 2110 | } | 
|  | 2111 | } | 
|  | 2112 | #   endif | 
|  | 2113 | /* repeated code good to factorize */ | 
|  | 2114 | ecdh_c[R_EC_BRP256R1][0] = count / 1000; | 
|  | 2115 | for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) { | 
|  | 2116 | ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; | 
|  | 2117 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) | 
|  | 2118 | ecdh_doit[i] = 0; | 
|  | 2119 | else { | 
|  | 2120 | if (ecdh_c[i][0] == 0) { | 
|  | 2121 | ecdh_c[i][0] = 1; | 
|  | 2122 | } | 
|  | 2123 | } | 
|  | 2124 | } | 
|  | 2125 | ecdh_c[R_EC_BRP256T1][0] = count / 1000; | 
|  | 2126 | for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) { | 
|  | 2127 | ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; | 
|  | 2128 | if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) | 
|  | 2129 | ecdh_doit[i] = 0; | 
|  | 2130 | else { | 
|  | 2131 | if (ecdh_c[i][0] == 0) { | 
|  | 2132 | ecdh_c[i][0] = 1; | 
|  | 2133 | } | 
|  | 2134 | } | 
|  | 2135 | } | 
|  | 2136 | /* default iteration count for the last two EC Curves */ | 
|  | 2137 | ecdh_c[R_EC_X25519][0] = count / 1800; | 
|  | 2138 | ecdh_c[R_EC_X448][0] = count / 7200; | 
|  | 2139 |  | 
|  | 2140 | eddsa_c[R_EC_Ed25519][0] = count / 1800; | 
|  | 2141 | eddsa_c[R_EC_Ed448][0] = count / 7200; | 
|  | 2142 | #  endif | 
|  | 2143 |  | 
|  | 2144 | # else | 
|  | 2145 | /* not worth fixing */ | 
|  | 2146 | #  error "You cannot disable DES on systems without SIGALRM." | 
|  | 2147 | # endif                         /* OPENSSL_NO_DES */ | 
|  | 2148 | #elif SIGALRM > 0 | 
|  | 2149 | signal(SIGALRM, alarmed); | 
|  | 2150 | #endif                          /* SIGALRM */ | 
|  | 2151 |  | 
|  | 2152 | #ifndef OPENSSL_NO_MD2 | 
|  | 2153 | if (doit[D_MD2]) { | 
|  | 2154 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2155 | print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum], | 
|  | 2156 | seconds.sym); | 
|  | 2157 | Time_F(START); | 
|  | 2158 | count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); | 
|  | 2159 | d = Time_F(STOP); | 
|  | 2160 | print_result(D_MD2, testnum, count, d); | 
|  | 2161 | } | 
|  | 2162 | } | 
|  | 2163 | #endif | 
|  | 2164 | #ifndef OPENSSL_NO_MDC2 | 
|  | 2165 | if (doit[D_MDC2]) { | 
|  | 2166 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2167 | print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum], | 
|  | 2168 | seconds.sym); | 
|  | 2169 | Time_F(START); | 
|  | 2170 | count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); | 
|  | 2171 | d = Time_F(STOP); | 
|  | 2172 | print_result(D_MDC2, testnum, count, d); | 
|  | 2173 | } | 
|  | 2174 | } | 
|  | 2175 | #endif | 
|  | 2176 |  | 
|  | 2177 | #ifndef OPENSSL_NO_MD4 | 
|  | 2178 | if (doit[D_MD4]) { | 
|  | 2179 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2180 | print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum], | 
|  | 2181 | seconds.sym); | 
|  | 2182 | Time_F(START); | 
|  | 2183 | count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); | 
|  | 2184 | d = Time_F(STOP); | 
|  | 2185 | print_result(D_MD4, testnum, count, d); | 
|  | 2186 | } | 
|  | 2187 | } | 
|  | 2188 | #endif | 
|  | 2189 |  | 
|  | 2190 | #ifndef OPENSSL_NO_MD5 | 
|  | 2191 | if (doit[D_MD5]) { | 
|  | 2192 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2193 | print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum], | 
|  | 2194 | seconds.sym); | 
|  | 2195 | Time_F(START); | 
|  | 2196 | count = run_benchmark(async_jobs, MD5_loop, loopargs); | 
|  | 2197 | d = Time_F(STOP); | 
|  | 2198 | print_result(D_MD5, testnum, count, d); | 
|  | 2199 | } | 
|  | 2200 | } | 
|  | 2201 |  | 
|  | 2202 | if (doit[D_HMAC]) { | 
|  | 2203 | static const char hmac_key[] = "This is a key..."; | 
|  | 2204 | int len = strlen(hmac_key); | 
|  | 2205 |  | 
|  | 2206 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2207 | loopargs[i].hctx = HMAC_CTX_new(); | 
|  | 2208 | if (loopargs[i].hctx == NULL) { | 
|  | 2209 | BIO_printf(bio_err, "HMAC malloc failure, exiting..."); | 
|  | 2210 | exit(1); | 
|  | 2211 | } | 
|  | 2212 |  | 
|  | 2213 | HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL); | 
|  | 2214 | } | 
|  | 2215 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2216 | print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum], | 
|  | 2217 | seconds.sym); | 
|  | 2218 | Time_F(START); | 
|  | 2219 | count = run_benchmark(async_jobs, HMAC_loop, loopargs); | 
|  | 2220 | d = Time_F(STOP); | 
|  | 2221 | print_result(D_HMAC, testnum, count, d); | 
|  | 2222 | } | 
|  | 2223 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2224 | HMAC_CTX_free(loopargs[i].hctx); | 
|  | 2225 | } | 
|  | 2226 | } | 
|  | 2227 | #endif | 
|  | 2228 | if (doit[D_SHA1]) { | 
|  | 2229 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2230 | print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum], | 
|  | 2231 | seconds.sym); | 
|  | 2232 | Time_F(START); | 
|  | 2233 | count = run_benchmark(async_jobs, SHA1_loop, loopargs); | 
|  | 2234 | d = Time_F(STOP); | 
|  | 2235 | print_result(D_SHA1, testnum, count, d); | 
|  | 2236 | } | 
|  | 2237 | } | 
|  | 2238 | if (doit[D_SHA256]) { | 
|  | 2239 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2240 | print_message(names[D_SHA256], c[D_SHA256][testnum], | 
|  | 2241 | lengths[testnum], seconds.sym); | 
|  | 2242 | Time_F(START); | 
|  | 2243 | count = run_benchmark(async_jobs, SHA256_loop, loopargs); | 
|  | 2244 | d = Time_F(STOP); | 
|  | 2245 | print_result(D_SHA256, testnum, count, d); | 
|  | 2246 | } | 
|  | 2247 | } | 
|  | 2248 | if (doit[D_SHA512]) { | 
|  | 2249 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2250 | print_message(names[D_SHA512], c[D_SHA512][testnum], | 
|  | 2251 | lengths[testnum], seconds.sym); | 
|  | 2252 | Time_F(START); | 
|  | 2253 | count = run_benchmark(async_jobs, SHA512_loop, loopargs); | 
|  | 2254 | d = Time_F(STOP); | 
|  | 2255 | print_result(D_SHA512, testnum, count, d); | 
|  | 2256 | } | 
|  | 2257 | } | 
|  | 2258 | #ifndef OPENSSL_NO_WHIRLPOOL | 
|  | 2259 | if (doit[D_WHIRLPOOL]) { | 
|  | 2260 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2261 | print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], | 
|  | 2262 | lengths[testnum], seconds.sym); | 
|  | 2263 | Time_F(START); | 
|  | 2264 | count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); | 
|  | 2265 | d = Time_F(STOP); | 
|  | 2266 | print_result(D_WHIRLPOOL, testnum, count, d); | 
|  | 2267 | } | 
|  | 2268 | } | 
|  | 2269 | #endif | 
|  | 2270 |  | 
|  | 2271 | #ifndef OPENSSL_NO_RMD160 | 
|  | 2272 | if (doit[D_RMD160]) { | 
|  | 2273 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2274 | print_message(names[D_RMD160], c[D_RMD160][testnum], | 
|  | 2275 | lengths[testnum], seconds.sym); | 
|  | 2276 | Time_F(START); | 
|  | 2277 | count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); | 
|  | 2278 | d = Time_F(STOP); | 
|  | 2279 | print_result(D_RMD160, testnum, count, d); | 
|  | 2280 | } | 
|  | 2281 | } | 
|  | 2282 | #endif | 
|  | 2283 | #ifndef OPENSSL_NO_RC4 | 
|  | 2284 | if (doit[D_RC4]) { | 
|  | 2285 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2286 | print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum], | 
|  | 2287 | seconds.sym); | 
|  | 2288 | Time_F(START); | 
|  | 2289 | count = run_benchmark(async_jobs, RC4_loop, loopargs); | 
|  | 2290 | d = Time_F(STOP); | 
|  | 2291 | print_result(D_RC4, testnum, count, d); | 
|  | 2292 | } | 
|  | 2293 | } | 
|  | 2294 | #endif | 
|  | 2295 | #ifndef OPENSSL_NO_DES | 
|  | 2296 | if (doit[D_CBC_DES]) { | 
|  | 2297 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2298 | print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], | 
|  | 2299 | lengths[testnum], seconds.sym); | 
|  | 2300 | Time_F(START); | 
|  | 2301 | count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); | 
|  | 2302 | d = Time_F(STOP); | 
|  | 2303 | print_result(D_CBC_DES, testnum, count, d); | 
|  | 2304 | } | 
|  | 2305 | } | 
|  | 2306 |  | 
|  | 2307 | if (doit[D_EDE3_DES]) { | 
|  | 2308 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2309 | print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], | 
|  | 2310 | lengths[testnum], seconds.sym); | 
|  | 2311 | Time_F(START); | 
|  | 2312 | count = | 
|  | 2313 | run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); | 
|  | 2314 | d = Time_F(STOP); | 
|  | 2315 | print_result(D_EDE3_DES, testnum, count, d); | 
|  | 2316 | } | 
|  | 2317 | } | 
|  | 2318 | #endif | 
|  | 2319 |  | 
|  | 2320 | if (doit[D_CBC_128_AES]) { | 
|  | 2321 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2322 | print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], | 
|  | 2323 | lengths[testnum], seconds.sym); | 
|  | 2324 | Time_F(START); | 
|  | 2325 | count = | 
|  | 2326 | run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); | 
|  | 2327 | d = Time_F(STOP); | 
|  | 2328 | print_result(D_CBC_128_AES, testnum, count, d); | 
|  | 2329 | } | 
|  | 2330 | } | 
|  | 2331 | if (doit[D_CBC_192_AES]) { | 
|  | 2332 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2333 | print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], | 
|  | 2334 | lengths[testnum], seconds.sym); | 
|  | 2335 | Time_F(START); | 
|  | 2336 | count = | 
|  | 2337 | run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); | 
|  | 2338 | d = Time_F(STOP); | 
|  | 2339 | print_result(D_CBC_192_AES, testnum, count, d); | 
|  | 2340 | } | 
|  | 2341 | } | 
|  | 2342 | if (doit[D_CBC_256_AES]) { | 
|  | 2343 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2344 | print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], | 
|  | 2345 | lengths[testnum], seconds.sym); | 
|  | 2346 | Time_F(START); | 
|  | 2347 | count = | 
|  | 2348 | run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); | 
|  | 2349 | d = Time_F(STOP); | 
|  | 2350 | print_result(D_CBC_256_AES, testnum, count, d); | 
|  | 2351 | } | 
|  | 2352 | } | 
|  | 2353 |  | 
|  | 2354 | if (doit[D_IGE_128_AES]) { | 
|  | 2355 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2356 | print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], | 
|  | 2357 | lengths[testnum], seconds.sym); | 
|  | 2358 | Time_F(START); | 
|  | 2359 | count = | 
|  | 2360 | run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); | 
|  | 2361 | d = Time_F(STOP); | 
|  | 2362 | print_result(D_IGE_128_AES, testnum, count, d); | 
|  | 2363 | } | 
|  | 2364 | } | 
|  | 2365 | if (doit[D_IGE_192_AES]) { | 
|  | 2366 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2367 | print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], | 
|  | 2368 | lengths[testnum], seconds.sym); | 
|  | 2369 | Time_F(START); | 
|  | 2370 | count = | 
|  | 2371 | run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); | 
|  | 2372 | d = Time_F(STOP); | 
|  | 2373 | print_result(D_IGE_192_AES, testnum, count, d); | 
|  | 2374 | } | 
|  | 2375 | } | 
|  | 2376 | if (doit[D_IGE_256_AES]) { | 
|  | 2377 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2378 | print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], | 
|  | 2379 | lengths[testnum], seconds.sym); | 
|  | 2380 | Time_F(START); | 
|  | 2381 | count = | 
|  | 2382 | run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); | 
|  | 2383 | d = Time_F(STOP); | 
|  | 2384 | print_result(D_IGE_256_AES, testnum, count, d); | 
|  | 2385 | } | 
|  | 2386 | } | 
|  | 2387 | if (doit[D_GHASH]) { | 
|  | 2388 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2389 | loopargs[i].gcm_ctx = | 
|  | 2390 | CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); | 
|  | 2391 | CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, | 
|  | 2392 | (unsigned char *)"0123456789ab", 12); | 
|  | 2393 | } | 
|  | 2394 |  | 
|  | 2395 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2396 | print_message(names[D_GHASH], c[D_GHASH][testnum], | 
|  | 2397 | lengths[testnum], seconds.sym); | 
|  | 2398 | Time_F(START); | 
|  | 2399 | count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); | 
|  | 2400 | d = Time_F(STOP); | 
|  | 2401 | print_result(D_GHASH, testnum, count, d); | 
|  | 2402 | } | 
|  | 2403 | for (i = 0; i < loopargs_len; i++) | 
|  | 2404 | CRYPTO_gcm128_release(loopargs[i].gcm_ctx); | 
|  | 2405 | } | 
|  | 2406 | #ifndef OPENSSL_NO_CAMELLIA | 
|  | 2407 | if (doit[D_CBC_128_CML]) { | 
|  | 2408 | if (async_jobs > 0) { | 
|  | 2409 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2410 | names[D_CBC_128_CML]); | 
|  | 2411 | doit[D_CBC_128_CML] = 0; | 
|  | 2412 | } | 
|  | 2413 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2414 | print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], | 
|  | 2415 | lengths[testnum], seconds.sym); | 
|  | 2416 | Time_F(START); | 
|  | 2417 | for (count = 0; COND(c[D_CBC_128_CML][testnum]); count++) | 
|  | 2418 | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2419 | (size_t)lengths[testnum], &camellia_ks1, | 
|  | 2420 | iv, CAMELLIA_ENCRYPT); | 
|  | 2421 | d = Time_F(STOP); | 
|  | 2422 | print_result(D_CBC_128_CML, testnum, count, d); | 
|  | 2423 | } | 
|  | 2424 | } | 
|  | 2425 | if (doit[D_CBC_192_CML]) { | 
|  | 2426 | if (async_jobs > 0) { | 
|  | 2427 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2428 | names[D_CBC_192_CML]); | 
|  | 2429 | doit[D_CBC_192_CML] = 0; | 
|  | 2430 | } | 
|  | 2431 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2432 | print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], | 
|  | 2433 | lengths[testnum], seconds.sym); | 
|  | 2434 | if (async_jobs > 0) { | 
|  | 2435 | BIO_printf(bio_err, "Async mode is not supported, exiting..."); | 
|  | 2436 | exit(1); | 
|  | 2437 | } | 
|  | 2438 | Time_F(START); | 
|  | 2439 | for (count = 0; COND(c[D_CBC_192_CML][testnum]); count++) | 
|  | 2440 | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2441 | (size_t)lengths[testnum], &camellia_ks2, | 
|  | 2442 | iv, CAMELLIA_ENCRYPT); | 
|  | 2443 | d = Time_F(STOP); | 
|  | 2444 | print_result(D_CBC_192_CML, testnum, count, d); | 
|  | 2445 | } | 
|  | 2446 | } | 
|  | 2447 | if (doit[D_CBC_256_CML]) { | 
|  | 2448 | if (async_jobs > 0) { | 
|  | 2449 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2450 | names[D_CBC_256_CML]); | 
|  | 2451 | doit[D_CBC_256_CML] = 0; | 
|  | 2452 | } | 
|  | 2453 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2454 | print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], | 
|  | 2455 | lengths[testnum], seconds.sym); | 
|  | 2456 | Time_F(START); | 
|  | 2457 | for (count = 0; COND(c[D_CBC_256_CML][testnum]); count++) | 
|  | 2458 | Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2459 | (size_t)lengths[testnum], &camellia_ks3, | 
|  | 2460 | iv, CAMELLIA_ENCRYPT); | 
|  | 2461 | d = Time_F(STOP); | 
|  | 2462 | print_result(D_CBC_256_CML, testnum, count, d); | 
|  | 2463 | } | 
|  | 2464 | } | 
|  | 2465 | #endif | 
|  | 2466 | #ifndef OPENSSL_NO_IDEA | 
|  | 2467 | if (doit[D_CBC_IDEA]) { | 
|  | 2468 | if (async_jobs > 0) { | 
|  | 2469 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2470 | names[D_CBC_IDEA]); | 
|  | 2471 | doit[D_CBC_IDEA] = 0; | 
|  | 2472 | } | 
|  | 2473 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2474 | print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], | 
|  | 2475 | lengths[testnum], seconds.sym); | 
|  | 2476 | Time_F(START); | 
|  | 2477 | for (count = 0; COND(c[D_CBC_IDEA][testnum]); count++) | 
|  | 2478 | IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2479 | (size_t)lengths[testnum], &idea_ks, | 
|  | 2480 | iv, IDEA_ENCRYPT); | 
|  | 2481 | d = Time_F(STOP); | 
|  | 2482 | print_result(D_CBC_IDEA, testnum, count, d); | 
|  | 2483 | } | 
|  | 2484 | } | 
|  | 2485 | #endif | 
|  | 2486 | #ifndef OPENSSL_NO_SEED | 
|  | 2487 | if (doit[D_CBC_SEED]) { | 
|  | 2488 | if (async_jobs > 0) { | 
|  | 2489 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2490 | names[D_CBC_SEED]); | 
|  | 2491 | doit[D_CBC_SEED] = 0; | 
|  | 2492 | } | 
|  | 2493 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2494 | print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], | 
|  | 2495 | lengths[testnum], seconds.sym); | 
|  | 2496 | Time_F(START); | 
|  | 2497 | for (count = 0; COND(c[D_CBC_SEED][testnum]); count++) | 
|  | 2498 | SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2499 | (size_t)lengths[testnum], &seed_ks, iv, 1); | 
|  | 2500 | d = Time_F(STOP); | 
|  | 2501 | print_result(D_CBC_SEED, testnum, count, d); | 
|  | 2502 | } | 
|  | 2503 | } | 
|  | 2504 | #endif | 
|  | 2505 | #ifndef OPENSSL_NO_RC2 | 
|  | 2506 | if (doit[D_CBC_RC2]) { | 
|  | 2507 | if (async_jobs > 0) { | 
|  | 2508 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2509 | names[D_CBC_RC2]); | 
|  | 2510 | doit[D_CBC_RC2] = 0; | 
|  | 2511 | } | 
|  | 2512 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2513 | print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], | 
|  | 2514 | lengths[testnum], seconds.sym); | 
|  | 2515 | if (async_jobs > 0) { | 
|  | 2516 | BIO_printf(bio_err, "Async mode is not supported, exiting..."); | 
|  | 2517 | exit(1); | 
|  | 2518 | } | 
|  | 2519 | Time_F(START); | 
|  | 2520 | for (count = 0; COND(c[D_CBC_RC2][testnum]); count++) | 
|  | 2521 | RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2522 | (size_t)lengths[testnum], &rc2_ks, | 
|  | 2523 | iv, RC2_ENCRYPT); | 
|  | 2524 | d = Time_F(STOP); | 
|  | 2525 | print_result(D_CBC_RC2, testnum, count, d); | 
|  | 2526 | } | 
|  | 2527 | } | 
|  | 2528 | #endif | 
|  | 2529 | #ifndef OPENSSL_NO_RC5 | 
|  | 2530 | if (doit[D_CBC_RC5]) { | 
|  | 2531 | if (async_jobs > 0) { | 
|  | 2532 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2533 | names[D_CBC_RC5]); | 
|  | 2534 | doit[D_CBC_RC5] = 0; | 
|  | 2535 | } | 
|  | 2536 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2537 | print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], | 
|  | 2538 | lengths[testnum], seconds.sym); | 
|  | 2539 | if (async_jobs > 0) { | 
|  | 2540 | BIO_printf(bio_err, "Async mode is not supported, exiting..."); | 
|  | 2541 | exit(1); | 
|  | 2542 | } | 
|  | 2543 | Time_F(START); | 
|  | 2544 | for (count = 0; COND(c[D_CBC_RC5][testnum]); count++) | 
|  | 2545 | RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2546 | (size_t)lengths[testnum], &rc5_ks, | 
|  | 2547 | iv, RC5_ENCRYPT); | 
|  | 2548 | d = Time_F(STOP); | 
|  | 2549 | print_result(D_CBC_RC5, testnum, count, d); | 
|  | 2550 | } | 
|  | 2551 | } | 
|  | 2552 | #endif | 
|  | 2553 | #ifndef OPENSSL_NO_BF | 
|  | 2554 | if (doit[D_CBC_BF]) { | 
|  | 2555 | if (async_jobs > 0) { | 
|  | 2556 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2557 | names[D_CBC_BF]); | 
|  | 2558 | doit[D_CBC_BF] = 0; | 
|  | 2559 | } | 
|  | 2560 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2561 | print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], | 
|  | 2562 | lengths[testnum], seconds.sym); | 
|  | 2563 | Time_F(START); | 
|  | 2564 | for (count = 0; COND(c[D_CBC_BF][testnum]); count++) | 
|  | 2565 | BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2566 | (size_t)lengths[testnum], &bf_ks, | 
|  | 2567 | iv, BF_ENCRYPT); | 
|  | 2568 | d = Time_F(STOP); | 
|  | 2569 | print_result(D_CBC_BF, testnum, count, d); | 
|  | 2570 | } | 
|  | 2571 | } | 
|  | 2572 | #endif | 
|  | 2573 | #ifndef OPENSSL_NO_CAST | 
|  | 2574 | if (doit[D_CBC_CAST]) { | 
|  | 2575 | if (async_jobs > 0) { | 
|  | 2576 | BIO_printf(bio_err, "Async mode is not supported with %s\n", | 
|  | 2577 | names[D_CBC_CAST]); | 
|  | 2578 | doit[D_CBC_CAST] = 0; | 
|  | 2579 | } | 
|  | 2580 | for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { | 
|  | 2581 | print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], | 
|  | 2582 | lengths[testnum], seconds.sym); | 
|  | 2583 | Time_F(START); | 
|  | 2584 | for (count = 0; COND(c[D_CBC_CAST][testnum]); count++) | 
|  | 2585 | CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, | 
|  | 2586 | (size_t)lengths[testnum], &cast_ks, | 
|  | 2587 | iv, CAST_ENCRYPT); | 
|  | 2588 | d = Time_F(STOP); | 
|  | 2589 | print_result(D_CBC_CAST, testnum, count, d); | 
|  | 2590 | } | 
|  | 2591 | } | 
|  | 2592 | #endif | 
|  | 2593 | if (doit[D_RAND]) { | 
|  | 2594 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2595 | print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum], | 
|  | 2596 | seconds.sym); | 
|  | 2597 | Time_F(START); | 
|  | 2598 | count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs); | 
|  | 2599 | d = Time_F(STOP); | 
|  | 2600 | print_result(D_RAND, testnum, count, d); | 
|  | 2601 | } | 
|  | 2602 | } | 
|  | 2603 |  | 
|  | 2604 | if (doit[D_EVP]) { | 
|  | 2605 | if (evp_cipher != NULL) { | 
|  | 2606 | int (*loopfunc)(void *args) = EVP_Update_loop; | 
|  | 2607 |  | 
|  | 2608 | if (multiblock && (EVP_CIPHER_flags(evp_cipher) & | 
|  | 2609 | EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { | 
|  | 2610 | multiblock_speed(evp_cipher, lengths_single, &seconds); | 
|  | 2611 | ret = 0; | 
|  | 2612 | goto end; | 
|  | 2613 | } | 
|  | 2614 |  | 
|  | 2615 | names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); | 
|  | 2616 |  | 
|  | 2617 | if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) { | 
|  | 2618 | loopfunc = EVP_Update_loop_ccm; | 
|  | 2619 | } else if (aead && (EVP_CIPHER_flags(evp_cipher) & | 
|  | 2620 | EVP_CIPH_FLAG_AEAD_CIPHER)) { | 
|  | 2621 | loopfunc = EVP_Update_loop_aead; | 
|  | 2622 | if (lengths == lengths_list) { | 
|  | 2623 | lengths = aead_lengths_list; | 
|  | 2624 | size_num = OSSL_NELEM(aead_lengths_list); | 
|  | 2625 | } | 
|  | 2626 | } | 
|  | 2627 |  | 
|  | 2628 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2629 | print_message(names[D_EVP], save_count, lengths[testnum], | 
|  | 2630 | seconds.sym); | 
|  | 2631 |  | 
|  | 2632 | for (k = 0; k < loopargs_len; k++) { | 
|  | 2633 | loopargs[k].ctx = EVP_CIPHER_CTX_new(); | 
|  | 2634 | if (loopargs[k].ctx == NULL) { | 
|  | 2635 | BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n"); | 
|  | 2636 | exit(1); | 
|  | 2637 | } | 
|  | 2638 | if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, | 
|  | 2639 | NULL, iv, decrypt ? 0 : 1)) { | 
|  | 2640 | BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); | 
|  | 2641 | ERR_print_errors(bio_err); | 
|  | 2642 | exit(1); | 
|  | 2643 | } | 
|  | 2644 |  | 
|  | 2645 | EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); | 
|  | 2646 |  | 
|  | 2647 | keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx); | 
|  | 2648 | loopargs[k].key = app_malloc(keylen, "evp_cipher key"); | 
|  | 2649 | EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key); | 
|  | 2650 | if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL, | 
|  | 2651 | loopargs[k].key, NULL, -1)) { | 
|  | 2652 | BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); | 
|  | 2653 | ERR_print_errors(bio_err); | 
|  | 2654 | exit(1); | 
|  | 2655 | } | 
|  | 2656 | OPENSSL_clear_free(loopargs[k].key, keylen); | 
|  | 2657 | } | 
|  | 2658 |  | 
|  | 2659 | Time_F(START); | 
|  | 2660 | count = run_benchmark(async_jobs, loopfunc, loopargs); | 
|  | 2661 | d = Time_F(STOP); | 
|  | 2662 | for (k = 0; k < loopargs_len; k++) { | 
|  | 2663 | EVP_CIPHER_CTX_free(loopargs[k].ctx); | 
|  | 2664 | } | 
|  | 2665 | print_result(D_EVP, testnum, count, d); | 
|  | 2666 | } | 
|  | 2667 | } else if (evp_md != NULL) { | 
|  | 2668 | names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md)); | 
|  | 2669 |  | 
|  | 2670 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 2671 | print_message(names[D_EVP], save_count, lengths[testnum], | 
|  | 2672 | seconds.sym); | 
|  | 2673 | Time_F(START); | 
|  | 2674 | count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs); | 
|  | 2675 | d = Time_F(STOP); | 
|  | 2676 | print_result(D_EVP, testnum, count, d); | 
|  | 2677 | } | 
|  | 2678 | } | 
|  | 2679 | } | 
|  | 2680 |  | 
|  | 2681 | for (i = 0; i < loopargs_len; i++) | 
|  | 2682 | if (RAND_bytes(loopargs[i].buf, 36) <= 0) | 
|  | 2683 | goto end; | 
|  | 2684 |  | 
|  | 2685 | #ifndef OPENSSL_NO_RSA | 
|  | 2686 | for (testnum = 0; testnum < RSA_NUM; testnum++) { | 
|  | 2687 | int st = 0; | 
|  | 2688 | if (!rsa_doit[testnum]) | 
|  | 2689 | continue; | 
|  | 2690 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2691 | if (primes > 2) { | 
|  | 2692 | /* we haven't set keys yet,  generate multi-prime RSA keys */ | 
|  | 2693 | BIGNUM *bn = BN_new(); | 
|  | 2694 |  | 
|  | 2695 | if (bn == NULL) | 
|  | 2696 | goto end; | 
|  | 2697 | if (!BN_set_word(bn, RSA_F4)) { | 
|  | 2698 | BN_free(bn); | 
|  | 2699 | goto end; | 
|  | 2700 | } | 
|  | 2701 |  | 
|  | 2702 | BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n", | 
|  | 2703 | rsa_choices[testnum].name); | 
|  | 2704 |  | 
|  | 2705 | loopargs[i].rsa_key[testnum] = RSA_new(); | 
|  | 2706 | if (loopargs[i].rsa_key[testnum] == NULL) { | 
|  | 2707 | BN_free(bn); | 
|  | 2708 | goto end; | 
|  | 2709 | } | 
|  | 2710 |  | 
|  | 2711 | if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum], | 
|  | 2712 | rsa_bits[testnum], | 
|  | 2713 | primes, bn, NULL)) { | 
|  | 2714 | BN_free(bn); | 
|  | 2715 | goto end; | 
|  | 2716 | } | 
|  | 2717 | BN_free(bn); | 
|  | 2718 | } | 
|  | 2719 | st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, | 
|  | 2720 | &loopargs[i].siglen, loopargs[i].rsa_key[testnum]); | 
|  | 2721 | if (st == 0) | 
|  | 2722 | break; | 
|  | 2723 | } | 
|  | 2724 | if (st == 0) { | 
|  | 2725 | BIO_printf(bio_err, | 
|  | 2726 | "RSA sign failure.  No RSA sign will be done.\n"); | 
|  | 2727 | ERR_print_errors(bio_err); | 
|  | 2728 | rsa_count = 1; | 
|  | 2729 | } else { | 
|  | 2730 | pkey_print_message("private", "rsa", | 
|  | 2731 | rsa_c[testnum][0], rsa_bits[testnum], | 
|  | 2732 | seconds.rsa); | 
|  | 2733 | /* RSA_blinding_on(rsa_key[testnum],NULL); */ | 
|  | 2734 | Time_F(START); | 
|  | 2735 | count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); | 
|  | 2736 | d = Time_F(STOP); | 
|  | 2737 | BIO_printf(bio_err, | 
|  | 2738 | mr ? "+R1:%ld:%d:%.2f\n" | 
|  | 2739 | : "%ld %u bits private RSA's in %.2fs\n", | 
|  | 2740 | count, rsa_bits[testnum], d); | 
|  | 2741 | rsa_results[testnum][0] = (double)count / d; | 
|  | 2742 | rsa_count = count; | 
|  | 2743 | } | 
|  | 2744 |  | 
|  | 2745 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2746 | st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, | 
|  | 2747 | loopargs[i].siglen, loopargs[i].rsa_key[testnum]); | 
|  | 2748 | if (st <= 0) | 
|  | 2749 | break; | 
|  | 2750 | } | 
|  | 2751 | if (st <= 0) { | 
|  | 2752 | BIO_printf(bio_err, | 
|  | 2753 | "RSA verify failure.  No RSA verify will be done.\n"); | 
|  | 2754 | ERR_print_errors(bio_err); | 
|  | 2755 | rsa_doit[testnum] = 0; | 
|  | 2756 | } else { | 
|  | 2757 | pkey_print_message("public", "rsa", | 
|  | 2758 | rsa_c[testnum][1], rsa_bits[testnum], | 
|  | 2759 | seconds.rsa); | 
|  | 2760 | Time_F(START); | 
|  | 2761 | count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); | 
|  | 2762 | d = Time_F(STOP); | 
|  | 2763 | BIO_printf(bio_err, | 
|  | 2764 | mr ? "+R2:%ld:%d:%.2f\n" | 
|  | 2765 | : "%ld %u bits public RSA's in %.2fs\n", | 
|  | 2766 | count, rsa_bits[testnum], d); | 
|  | 2767 | rsa_results[testnum][1] = (double)count / d; | 
|  | 2768 | } | 
|  | 2769 |  | 
|  | 2770 | if (rsa_count <= 1) { | 
|  | 2771 | /* if longer than 10s, don't do any more */ | 
|  | 2772 | for (testnum++; testnum < RSA_NUM; testnum++) | 
|  | 2773 | rsa_doit[testnum] = 0; | 
|  | 2774 | } | 
|  | 2775 | } | 
|  | 2776 | #endif                          /* OPENSSL_NO_RSA */ | 
|  | 2777 |  | 
|  | 2778 | for (i = 0; i < loopargs_len; i++) | 
|  | 2779 | if (RAND_bytes(loopargs[i].buf, 36) <= 0) | 
|  | 2780 | goto end; | 
|  | 2781 |  | 
|  | 2782 | #ifndef OPENSSL_NO_DSA | 
|  | 2783 | for (testnum = 0; testnum < DSA_NUM; testnum++) { | 
|  | 2784 | int st = 0; | 
|  | 2785 | if (!dsa_doit[testnum]) | 
|  | 2786 | continue; | 
|  | 2787 |  | 
|  | 2788 | /* DSA_generate_key(dsa_key[testnum]); */ | 
|  | 2789 | /* DSA_sign_setup(dsa_key[testnum],NULL); */ | 
|  | 2790 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2791 | st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, | 
|  | 2792 | &loopargs[i].siglen, loopargs[i].dsa_key[testnum]); | 
|  | 2793 | if (st == 0) | 
|  | 2794 | break; | 
|  | 2795 | } | 
|  | 2796 | if (st == 0) { | 
|  | 2797 | BIO_printf(bio_err, | 
|  | 2798 | "DSA sign failure.  No DSA sign will be done.\n"); | 
|  | 2799 | ERR_print_errors(bio_err); | 
|  | 2800 | rsa_count = 1; | 
|  | 2801 | } else { | 
|  | 2802 | pkey_print_message("sign", "dsa", | 
|  | 2803 | dsa_c[testnum][0], dsa_bits[testnum], | 
|  | 2804 | seconds.dsa); | 
|  | 2805 | Time_F(START); | 
|  | 2806 | count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); | 
|  | 2807 | d = Time_F(STOP); | 
|  | 2808 | BIO_printf(bio_err, | 
|  | 2809 | mr ? "+R3:%ld:%u:%.2f\n" | 
|  | 2810 | : "%ld %u bits DSA signs in %.2fs\n", | 
|  | 2811 | count, dsa_bits[testnum], d); | 
|  | 2812 | dsa_results[testnum][0] = (double)count / d; | 
|  | 2813 | rsa_count = count; | 
|  | 2814 | } | 
|  | 2815 |  | 
|  | 2816 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2817 | st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, | 
|  | 2818 | loopargs[i].siglen, loopargs[i].dsa_key[testnum]); | 
|  | 2819 | if (st <= 0) | 
|  | 2820 | break; | 
|  | 2821 | } | 
|  | 2822 | if (st <= 0) { | 
|  | 2823 | BIO_printf(bio_err, | 
|  | 2824 | "DSA verify failure.  No DSA verify will be done.\n"); | 
|  | 2825 | ERR_print_errors(bio_err); | 
|  | 2826 | dsa_doit[testnum] = 0; | 
|  | 2827 | } else { | 
|  | 2828 | pkey_print_message("verify", "dsa", | 
|  | 2829 | dsa_c[testnum][1], dsa_bits[testnum], | 
|  | 2830 | seconds.dsa); | 
|  | 2831 | Time_F(START); | 
|  | 2832 | count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); | 
|  | 2833 | d = Time_F(STOP); | 
|  | 2834 | BIO_printf(bio_err, | 
|  | 2835 | mr ? "+R4:%ld:%u:%.2f\n" | 
|  | 2836 | : "%ld %u bits DSA verify in %.2fs\n", | 
|  | 2837 | count, dsa_bits[testnum], d); | 
|  | 2838 | dsa_results[testnum][1] = (double)count / d; | 
|  | 2839 | } | 
|  | 2840 |  | 
|  | 2841 | if (rsa_count <= 1) { | 
|  | 2842 | /* if longer than 10s, don't do any more */ | 
|  | 2843 | for (testnum++; testnum < DSA_NUM; testnum++) | 
|  | 2844 | dsa_doit[testnum] = 0; | 
|  | 2845 | } | 
|  | 2846 | } | 
|  | 2847 | #endif                          /* OPENSSL_NO_DSA */ | 
|  | 2848 |  | 
|  | 2849 | #ifndef OPENSSL_NO_EC | 
|  | 2850 | for (testnum = 0; testnum < ECDSA_NUM; testnum++) { | 
|  | 2851 | int st = 1; | 
|  | 2852 |  | 
|  | 2853 | if (!ecdsa_doit[testnum]) | 
|  | 2854 | continue;           /* Ignore Curve */ | 
|  | 2855 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2856 | loopargs[i].ecdsa[testnum] = | 
|  | 2857 | EC_KEY_new_by_curve_name(test_curves[testnum].nid); | 
|  | 2858 | if (loopargs[i].ecdsa[testnum] == NULL) { | 
|  | 2859 | st = 0; | 
|  | 2860 | break; | 
|  | 2861 | } | 
|  | 2862 | } | 
|  | 2863 | if (st == 0) { | 
|  | 2864 | BIO_printf(bio_err, "ECDSA failure.\n"); | 
|  | 2865 | ERR_print_errors(bio_err); | 
|  | 2866 | rsa_count = 1; | 
|  | 2867 | } else { | 
|  | 2868 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2869 | EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL); | 
|  | 2870 | /* Perform ECDSA signature test */ | 
|  | 2871 | EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); | 
|  | 2872 | st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, | 
|  | 2873 | &loopargs[i].siglen, | 
|  | 2874 | loopargs[i].ecdsa[testnum]); | 
|  | 2875 | if (st == 0) | 
|  | 2876 | break; | 
|  | 2877 | } | 
|  | 2878 | if (st == 0) { | 
|  | 2879 | BIO_printf(bio_err, | 
|  | 2880 | "ECDSA sign failure.  No ECDSA sign will be done.\n"); | 
|  | 2881 | ERR_print_errors(bio_err); | 
|  | 2882 | rsa_count = 1; | 
|  | 2883 | } else { | 
|  | 2884 | pkey_print_message("sign", "ecdsa", | 
|  | 2885 | ecdsa_c[testnum][0], | 
|  | 2886 | test_curves[testnum].bits, seconds.ecdsa); | 
|  | 2887 | Time_F(START); | 
|  | 2888 | count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); | 
|  | 2889 | d = Time_F(STOP); | 
|  | 2890 |  | 
|  | 2891 | BIO_printf(bio_err, | 
|  | 2892 | mr ? "+R5:%ld:%u:%.2f\n" : | 
|  | 2893 | "%ld %u bits ECDSA signs in %.2fs \n", | 
|  | 2894 | count, test_curves[testnum].bits, d); | 
|  | 2895 | ecdsa_results[testnum][0] = (double)count / d; | 
|  | 2896 | rsa_count = count; | 
|  | 2897 | } | 
|  | 2898 |  | 
|  | 2899 | /* Perform ECDSA verification test */ | 
|  | 2900 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2901 | st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, | 
|  | 2902 | loopargs[i].siglen, | 
|  | 2903 | loopargs[i].ecdsa[testnum]); | 
|  | 2904 | if (st != 1) | 
|  | 2905 | break; | 
|  | 2906 | } | 
|  | 2907 | if (st != 1) { | 
|  | 2908 | BIO_printf(bio_err, | 
|  | 2909 | "ECDSA verify failure.  No ECDSA verify will be done.\n"); | 
|  | 2910 | ERR_print_errors(bio_err); | 
|  | 2911 | ecdsa_doit[testnum] = 0; | 
|  | 2912 | } else { | 
|  | 2913 | pkey_print_message("verify", "ecdsa", | 
|  | 2914 | ecdsa_c[testnum][1], | 
|  | 2915 | test_curves[testnum].bits, seconds.ecdsa); | 
|  | 2916 | Time_F(START); | 
|  | 2917 | count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); | 
|  | 2918 | d = Time_F(STOP); | 
|  | 2919 | BIO_printf(bio_err, | 
|  | 2920 | mr ? "+R6:%ld:%u:%.2f\n" | 
|  | 2921 | : "%ld %u bits ECDSA verify in %.2fs\n", | 
|  | 2922 | count, test_curves[testnum].bits, d); | 
|  | 2923 | ecdsa_results[testnum][1] = (double)count / d; | 
|  | 2924 | } | 
|  | 2925 |  | 
|  | 2926 | if (rsa_count <= 1) { | 
|  | 2927 | /* if longer than 10s, don't do any more */ | 
|  | 2928 | for (testnum++; testnum < ECDSA_NUM; testnum++) | 
|  | 2929 | ecdsa_doit[testnum] = 0; | 
|  | 2930 | } | 
|  | 2931 | } | 
|  | 2932 | } | 
|  | 2933 |  | 
|  | 2934 | for (testnum = 0; testnum < EC_NUM; testnum++) { | 
|  | 2935 | int ecdh_checks = 1; | 
|  | 2936 |  | 
|  | 2937 | if (!ecdh_doit[testnum]) | 
|  | 2938 | continue; | 
|  | 2939 |  | 
|  | 2940 | for (i = 0; i < loopargs_len; i++) { | 
|  | 2941 | EVP_PKEY_CTX *kctx = NULL; | 
|  | 2942 | EVP_PKEY_CTX *test_ctx = NULL; | 
|  | 2943 | EVP_PKEY_CTX *ctx = NULL; | 
|  | 2944 | EVP_PKEY *key_A = NULL; | 
|  | 2945 | EVP_PKEY *key_B = NULL; | 
|  | 2946 | size_t outlen; | 
|  | 2947 | size_t test_outlen; | 
|  | 2948 |  | 
|  | 2949 | /* Ensure that the error queue is empty */ | 
|  | 2950 | if (ERR_peek_error()) { | 
|  | 2951 | BIO_printf(bio_err, | 
|  | 2952 | "WARNING: the error queue contains previous unhandled errors.\n"); | 
|  | 2953 | ERR_print_errors(bio_err); | 
|  | 2954 | } | 
|  | 2955 |  | 
|  | 2956 | /* Let's try to create a ctx directly from the NID: this works for | 
|  | 2957 | * curves like Curve25519 that are not implemented through the low | 
|  | 2958 | * level EC interface. | 
|  | 2959 | * If this fails we try creating a EVP_PKEY_EC generic param ctx, | 
|  | 2960 | * then we set the curve by NID before deriving the actual keygen | 
|  | 2961 | * ctx for that specific curve. */ | 
|  | 2962 | kctx = EVP_PKEY_CTX_new_id(test_curves[testnum].nid, NULL); /* keygen ctx from NID */ | 
|  | 2963 | if (!kctx) { | 
|  | 2964 | EVP_PKEY_CTX *pctx = NULL; | 
|  | 2965 | EVP_PKEY *params = NULL; | 
|  | 2966 |  | 
|  | 2967 | /* If we reach this code EVP_PKEY_CTX_new_id() failed and a | 
|  | 2968 | * "int_ctx_new:unsupported algorithm" error was added to the | 
|  | 2969 | * error queue. | 
|  | 2970 | * We remove it from the error queue as we are handling it. */ | 
|  | 2971 | unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */ | 
|  | 2972 | if (error == ERR_peek_last_error() && /* oldest and latest errors match */ | 
|  | 2973 | /* check that the error origin matches */ | 
|  | 2974 | ERR_GET_LIB(error) == ERR_LIB_EVP && | 
|  | 2975 | ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW && | 
|  | 2976 | ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM) | 
|  | 2977 | ERR_get_error(); /* pop error from queue */ | 
|  | 2978 | if (ERR_peek_error()) { | 
|  | 2979 | BIO_printf(bio_err, | 
|  | 2980 | "Unhandled error in the error queue during ECDH init.\n"); | 
|  | 2981 | ERR_print_errors(bio_err); | 
|  | 2982 | rsa_count = 1; | 
|  | 2983 | break; | 
|  | 2984 | } | 
|  | 2985 |  | 
|  | 2986 | if (            /* Create the context for parameter generation */ | 
|  | 2987 | !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) || | 
|  | 2988 | /* Initialise the parameter generation */ | 
|  | 2989 | !EVP_PKEY_paramgen_init(pctx) || | 
|  | 2990 | /* Set the curve by NID */ | 
|  | 2991 | !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, | 
|  | 2992 | test_curves | 
|  | 2993 | [testnum].nid) || | 
|  | 2994 | /* Create the parameter object params */ | 
|  | 2995 | !EVP_PKEY_paramgen(pctx, ¶ms)) { | 
|  | 2996 | ecdh_checks = 0; | 
|  | 2997 | BIO_printf(bio_err, "ECDH EC params init failure.\n"); | 
|  | 2998 | ERR_print_errors(bio_err); | 
|  | 2999 | rsa_count = 1; | 
|  | 3000 | break; | 
|  | 3001 | } | 
|  | 3002 | /* Create the context for the key generation */ | 
|  | 3003 | kctx = EVP_PKEY_CTX_new(params, NULL); | 
|  | 3004 |  | 
|  | 3005 | EVP_PKEY_free(params); | 
|  | 3006 | params = NULL; | 
|  | 3007 | EVP_PKEY_CTX_free(pctx); | 
|  | 3008 | pctx = NULL; | 
|  | 3009 | } | 
|  | 3010 | if (kctx == NULL ||      /* keygen ctx is not null */ | 
|  | 3011 | EVP_PKEY_keygen_init(kctx) <= 0/* init keygen ctx */ ) { | 
|  | 3012 | ecdh_checks = 0; | 
|  | 3013 | BIO_printf(bio_err, "ECDH keygen failure.\n"); | 
|  | 3014 | ERR_print_errors(bio_err); | 
|  | 3015 | rsa_count = 1; | 
|  | 3016 | break; | 
|  | 3017 | } | 
|  | 3018 |  | 
|  | 3019 | if (EVP_PKEY_keygen(kctx, &key_A) <= 0 || /* generate secret key A */ | 
|  | 3020 | EVP_PKEY_keygen(kctx, &key_B) <= 0 || /* generate secret key B */ | 
|  | 3021 | !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */ | 
|  | 3022 | EVP_PKEY_derive_init(ctx) <= 0 || /* init derivation ctx */ | 
|  | 3023 | EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 || /* set peer pubkey in ctx */ | 
|  | 3024 | EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 || /* determine max length */ | 
|  | 3025 | outlen == 0 ||  /* ensure outlen is a valid size */ | 
|  | 3026 | outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) { | 
|  | 3027 | ecdh_checks = 0; | 
|  | 3028 | BIO_printf(bio_err, "ECDH key generation failure.\n"); | 
|  | 3029 | ERR_print_errors(bio_err); | 
|  | 3030 | rsa_count = 1; | 
|  | 3031 | break; | 
|  | 3032 | } | 
|  | 3033 |  | 
|  | 3034 | /* Here we perform a test run, comparing the output of a*B and b*A; | 
|  | 3035 | * we try this here and assume that further EVP_PKEY_derive calls | 
|  | 3036 | * never fail, so we can skip checks in the actually benchmarked | 
|  | 3037 | * code, for maximum performance. */ | 
|  | 3038 | if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */ | 
|  | 3039 | !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */ | 
|  | 3040 | !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */ | 
|  | 3041 | !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */ | 
|  | 3042 | !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */ | 
|  | 3043 | !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */ | 
|  | 3044 | test_outlen != outlen /* compare output length */ ) { | 
|  | 3045 | ecdh_checks = 0; | 
|  | 3046 | BIO_printf(bio_err, "ECDH computation failure.\n"); | 
|  | 3047 | ERR_print_errors(bio_err); | 
|  | 3048 | rsa_count = 1; | 
|  | 3049 | break; | 
|  | 3050 | } | 
|  | 3051 |  | 
|  | 3052 | /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */ | 
|  | 3053 | if (CRYPTO_memcmp(loopargs[i].secret_a, | 
|  | 3054 | loopargs[i].secret_b, outlen)) { | 
|  | 3055 | ecdh_checks = 0; | 
|  | 3056 | BIO_printf(bio_err, "ECDH computations don't match.\n"); | 
|  | 3057 | ERR_print_errors(bio_err); | 
|  | 3058 | rsa_count = 1; | 
|  | 3059 | break; | 
|  | 3060 | } | 
|  | 3061 |  | 
|  | 3062 | loopargs[i].ecdh_ctx[testnum] = ctx; | 
|  | 3063 | loopargs[i].outlen[testnum] = outlen; | 
|  | 3064 |  | 
|  | 3065 | EVP_PKEY_free(key_A); | 
|  | 3066 | EVP_PKEY_free(key_B); | 
|  | 3067 | EVP_PKEY_CTX_free(kctx); | 
|  | 3068 | kctx = NULL; | 
|  | 3069 | EVP_PKEY_CTX_free(test_ctx); | 
|  | 3070 | test_ctx = NULL; | 
|  | 3071 | } | 
|  | 3072 | if (ecdh_checks != 0) { | 
|  | 3073 | pkey_print_message("", "ecdh", | 
|  | 3074 | ecdh_c[testnum][0], | 
|  | 3075 | test_curves[testnum].bits, seconds.ecdh); | 
|  | 3076 | Time_F(START); | 
|  | 3077 | count = | 
|  | 3078 | run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs); | 
|  | 3079 | d = Time_F(STOP); | 
|  | 3080 | BIO_printf(bio_err, | 
|  | 3081 | mr ? "+R7:%ld:%d:%.2f\n" : | 
|  | 3082 | "%ld %u-bits ECDH ops in %.2fs\n", count, | 
|  | 3083 | test_curves[testnum].bits, d); | 
|  | 3084 | ecdh_results[testnum][0] = (double)count / d; | 
|  | 3085 | rsa_count = count; | 
|  | 3086 | } | 
|  | 3087 |  | 
|  | 3088 | if (rsa_count <= 1) { | 
|  | 3089 | /* if longer than 10s, don't do any more */ | 
|  | 3090 | for (testnum++; testnum < OSSL_NELEM(ecdh_doit); testnum++) | 
|  | 3091 | ecdh_doit[testnum] = 0; | 
|  | 3092 | } | 
|  | 3093 | } | 
|  | 3094 |  | 
|  | 3095 | for (testnum = 0; testnum < EdDSA_NUM; testnum++) { | 
|  | 3096 | int st = 1; | 
|  | 3097 | EVP_PKEY *ed_pkey = NULL; | 
|  | 3098 | EVP_PKEY_CTX *ed_pctx = NULL; | 
|  | 3099 |  | 
|  | 3100 | if (!eddsa_doit[testnum]) | 
|  | 3101 | continue;           /* Ignore Curve */ | 
|  | 3102 | for (i = 0; i < loopargs_len; i++) { | 
|  | 3103 | loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new(); | 
|  | 3104 | if (loopargs[i].eddsa_ctx[testnum] == NULL) { | 
|  | 3105 | st = 0; | 
|  | 3106 | break; | 
|  | 3107 | } | 
|  | 3108 |  | 
|  | 3109 | if ((ed_pctx = EVP_PKEY_CTX_new_id(test_ed_curves[testnum].nid, NULL)) | 
|  | 3110 | == NULL | 
|  | 3111 | || EVP_PKEY_keygen_init(ed_pctx) <= 0 | 
|  | 3112 | || EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) { | 
|  | 3113 | st = 0; | 
|  | 3114 | EVP_PKEY_CTX_free(ed_pctx); | 
|  | 3115 | break; | 
|  | 3116 | } | 
|  | 3117 | EVP_PKEY_CTX_free(ed_pctx); | 
|  | 3118 |  | 
|  | 3119 | if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL, | 
|  | 3120 | NULL, ed_pkey)) { | 
|  | 3121 | st = 0; | 
|  | 3122 | EVP_PKEY_free(ed_pkey); | 
|  | 3123 | break; | 
|  | 3124 | } | 
|  | 3125 | EVP_PKEY_free(ed_pkey); | 
|  | 3126 | } | 
|  | 3127 | if (st == 0) { | 
|  | 3128 | BIO_printf(bio_err, "EdDSA failure.\n"); | 
|  | 3129 | ERR_print_errors(bio_err); | 
|  | 3130 | rsa_count = 1; | 
|  | 3131 | } else { | 
|  | 3132 | for (i = 0; i < loopargs_len; i++) { | 
|  | 3133 | /* Perform EdDSA signature test */ | 
|  | 3134 | loopargs[i].sigsize = test_ed_curves[testnum].sigsize; | 
|  | 3135 | st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum], | 
|  | 3136 | loopargs[i].buf2, &loopargs[i].sigsize, | 
|  | 3137 | loopargs[i].buf, 20); | 
|  | 3138 | if (st == 0) | 
|  | 3139 | break; | 
|  | 3140 | } | 
|  | 3141 | if (st == 0) { | 
|  | 3142 | BIO_printf(bio_err, | 
|  | 3143 | "EdDSA sign failure.  No EdDSA sign will be done.\n"); | 
|  | 3144 | ERR_print_errors(bio_err); | 
|  | 3145 | rsa_count = 1; | 
|  | 3146 | } else { | 
|  | 3147 | pkey_print_message("sign", test_ed_curves[testnum].name, | 
|  | 3148 | eddsa_c[testnum][0], | 
|  | 3149 | test_ed_curves[testnum].bits, seconds.eddsa); | 
|  | 3150 | Time_F(START); | 
|  | 3151 | count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs); | 
|  | 3152 | d = Time_F(STOP); | 
|  | 3153 |  | 
|  | 3154 | BIO_printf(bio_err, | 
|  | 3155 | mr ? "+R8:%ld:%u:%s:%.2f\n" : | 
|  | 3156 | "%ld %u bits %s signs in %.2fs \n", | 
|  | 3157 | count, test_ed_curves[testnum].bits, | 
|  | 3158 | test_ed_curves[testnum].name, d); | 
|  | 3159 | eddsa_results[testnum][0] = (double)count / d; | 
|  | 3160 | rsa_count = count; | 
|  | 3161 | } | 
|  | 3162 |  | 
|  | 3163 | /* Perform EdDSA verification test */ | 
|  | 3164 | for (i = 0; i < loopargs_len; i++) { | 
|  | 3165 | st = EVP_DigestVerify(loopargs[i].eddsa_ctx[testnum], | 
|  | 3166 | loopargs[i].buf2, loopargs[i].sigsize, | 
|  | 3167 | loopargs[i].buf, 20); | 
|  | 3168 | if (st != 1) | 
|  | 3169 | break; | 
|  | 3170 | } | 
|  | 3171 | if (st != 1) { | 
|  | 3172 | BIO_printf(bio_err, | 
|  | 3173 | "EdDSA verify failure.  No EdDSA verify will be done.\n"); | 
|  | 3174 | ERR_print_errors(bio_err); | 
|  | 3175 | eddsa_doit[testnum] = 0; | 
|  | 3176 | } else { | 
|  | 3177 | pkey_print_message("verify", test_ed_curves[testnum].name, | 
|  | 3178 | eddsa_c[testnum][1], | 
|  | 3179 | test_ed_curves[testnum].bits, seconds.eddsa); | 
|  | 3180 | Time_F(START); | 
|  | 3181 | count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs); | 
|  | 3182 | d = Time_F(STOP); | 
|  | 3183 | BIO_printf(bio_err, | 
|  | 3184 | mr ? "+R9:%ld:%u:%s:%.2f\n" | 
|  | 3185 | : "%ld %u bits %s verify in %.2fs\n", | 
|  | 3186 | count, test_ed_curves[testnum].bits, | 
|  | 3187 | test_ed_curves[testnum].name, d); | 
|  | 3188 | eddsa_results[testnum][1] = (double)count / d; | 
|  | 3189 | } | 
|  | 3190 |  | 
|  | 3191 | if (rsa_count <= 1) { | 
|  | 3192 | /* if longer than 10s, don't do any more */ | 
|  | 3193 | for (testnum++; testnum < EdDSA_NUM; testnum++) | 
|  | 3194 | eddsa_doit[testnum] = 0; | 
|  | 3195 | } | 
|  | 3196 | } | 
|  | 3197 | } | 
|  | 3198 |  | 
|  | 3199 | #endif                          /* OPENSSL_NO_EC */ | 
|  | 3200 | #ifndef NO_FORK | 
|  | 3201 | show_res: | 
|  | 3202 | #endif | 
|  | 3203 | if (!mr) { | 
|  | 3204 | printf("%s\n", OpenSSL_version(OPENSSL_VERSION)); | 
|  | 3205 | printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON)); | 
|  | 3206 | printf("options:"); | 
|  | 3207 | printf("%s ", BN_options()); | 
|  | 3208 | #ifndef OPENSSL_NO_MD2 | 
|  | 3209 | printf("%s ", MD2_options()); | 
|  | 3210 | #endif | 
|  | 3211 | #ifndef OPENSSL_NO_RC4 | 
|  | 3212 | printf("%s ", RC4_options()); | 
|  | 3213 | #endif | 
|  | 3214 | #ifndef OPENSSL_NO_DES | 
|  | 3215 | printf("%s ", DES_options()); | 
|  | 3216 | #endif | 
|  | 3217 | printf("%s ", AES_options()); | 
|  | 3218 | #ifndef OPENSSL_NO_IDEA | 
|  | 3219 | printf("%s ", IDEA_options()); | 
|  | 3220 | #endif | 
|  | 3221 | #ifndef OPENSSL_NO_BF | 
|  | 3222 | printf("%s ", BF_options()); | 
|  | 3223 | #endif | 
|  | 3224 | printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS)); | 
|  | 3225 | } | 
|  | 3226 |  | 
|  | 3227 | if (pr_header) { | 
|  | 3228 | if (mr) | 
|  | 3229 | printf("+H"); | 
|  | 3230 | else { | 
|  | 3231 | printf | 
|  | 3232 | ("The 'numbers' are in 1000s of bytes per second processed.\n"); | 
|  | 3233 | printf("type        "); | 
|  | 3234 | } | 
|  | 3235 | for (testnum = 0; testnum < size_num; testnum++) | 
|  | 3236 | printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); | 
|  | 3237 | printf("\n"); | 
|  | 3238 | } | 
|  | 3239 |  | 
|  | 3240 | for (k = 0; k < ALGOR_NUM; k++) { | 
|  | 3241 | if (!doit[k]) | 
|  | 3242 | continue; | 
|  | 3243 | if (mr) | 
|  | 3244 | printf("+F:%u:%s", k, names[k]); | 
|  | 3245 | else | 
|  | 3246 | printf("%-13s", names[k]); | 
|  | 3247 | for (testnum = 0; testnum < size_num; testnum++) { | 
|  | 3248 | if (results[k][testnum] > 10000 && !mr) | 
|  | 3249 | printf(" %11.2fk", results[k][testnum] / 1e3); | 
|  | 3250 | else | 
|  | 3251 | printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); | 
|  | 3252 | } | 
|  | 3253 | printf("\n"); | 
|  | 3254 | } | 
|  | 3255 | #ifndef OPENSSL_NO_RSA | 
|  | 3256 | testnum = 1; | 
|  | 3257 | for (k = 0; k < RSA_NUM; k++) { | 
|  | 3258 | if (!rsa_doit[k]) | 
|  | 3259 | continue; | 
|  | 3260 | if (testnum && !mr) { | 
|  | 3261 | printf("%18ssign    verify    sign/s verify/s\n", " "); | 
|  | 3262 | testnum = 0; | 
|  | 3263 | } | 
|  | 3264 | if (mr) | 
|  | 3265 | printf("+F2:%u:%u:%f:%f\n", | 
|  | 3266 | k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); | 
|  | 3267 | else | 
|  | 3268 | printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", | 
|  | 3269 | rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1], | 
|  | 3270 | rsa_results[k][0], rsa_results[k][1]); | 
|  | 3271 | } | 
|  | 3272 | #endif | 
|  | 3273 | #ifndef OPENSSL_NO_DSA | 
|  | 3274 | testnum = 1; | 
|  | 3275 | for (k = 0; k < DSA_NUM; k++) { | 
|  | 3276 | if (!dsa_doit[k]) | 
|  | 3277 | continue; | 
|  | 3278 | if (testnum && !mr) { | 
|  | 3279 | printf("%18ssign    verify    sign/s verify/s\n", " "); | 
|  | 3280 | testnum = 0; | 
|  | 3281 | } | 
|  | 3282 | if (mr) | 
|  | 3283 | printf("+F3:%u:%u:%f:%f\n", | 
|  | 3284 | k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); | 
|  | 3285 | else | 
|  | 3286 | printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", | 
|  | 3287 | dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1], | 
|  | 3288 | dsa_results[k][0], dsa_results[k][1]); | 
|  | 3289 | } | 
|  | 3290 | #endif | 
|  | 3291 | #ifndef OPENSSL_NO_EC | 
|  | 3292 | testnum = 1; | 
|  | 3293 | for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) { | 
|  | 3294 | if (!ecdsa_doit[k]) | 
|  | 3295 | continue; | 
|  | 3296 | if (testnum && !mr) { | 
|  | 3297 | printf("%30ssign    verify    sign/s verify/s\n", " "); | 
|  | 3298 | testnum = 0; | 
|  | 3299 | } | 
|  | 3300 |  | 
|  | 3301 | if (mr) | 
|  | 3302 | printf("+F4:%u:%u:%f:%f\n", | 
|  | 3303 | k, test_curves[k].bits, | 
|  | 3304 | ecdsa_results[k][0], ecdsa_results[k][1]); | 
|  | 3305 | else | 
|  | 3306 | printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", | 
|  | 3307 | test_curves[k].bits, test_curves[k].name, | 
|  | 3308 | 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1], | 
|  | 3309 | ecdsa_results[k][0], ecdsa_results[k][1]); | 
|  | 3310 | } | 
|  | 3311 |  | 
|  | 3312 | testnum = 1; | 
|  | 3313 | for (k = 0; k < EC_NUM; k++) { | 
|  | 3314 | if (!ecdh_doit[k]) | 
|  | 3315 | continue; | 
|  | 3316 | if (testnum && !mr) { | 
|  | 3317 | printf("%30sop      op/s\n", " "); | 
|  | 3318 | testnum = 0; | 
|  | 3319 | } | 
|  | 3320 | if (mr) | 
|  | 3321 | printf("+F5:%u:%u:%f:%f\n", | 
|  | 3322 | k, test_curves[k].bits, | 
|  | 3323 | ecdh_results[k][0], 1.0 / ecdh_results[k][0]); | 
|  | 3324 |  | 
|  | 3325 | else | 
|  | 3326 | printf("%4u bits ecdh (%s) %8.4fs %8.1f\n", | 
|  | 3327 | test_curves[k].bits, test_curves[k].name, | 
|  | 3328 | 1.0 / ecdh_results[k][0], ecdh_results[k][0]); | 
|  | 3329 | } | 
|  | 3330 |  | 
|  | 3331 | testnum = 1; | 
|  | 3332 | for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) { | 
|  | 3333 | if (!eddsa_doit[k]) | 
|  | 3334 | continue; | 
|  | 3335 | if (testnum && !mr) { | 
|  | 3336 | printf("%30ssign    verify    sign/s verify/s\n", " "); | 
|  | 3337 | testnum = 0; | 
|  | 3338 | } | 
|  | 3339 |  | 
|  | 3340 | if (mr) | 
|  | 3341 | printf("+F6:%u:%u:%s:%f:%f\n", | 
|  | 3342 | k, test_ed_curves[k].bits, test_ed_curves[k].name, | 
|  | 3343 | eddsa_results[k][0], eddsa_results[k][1]); | 
|  | 3344 | else | 
|  | 3345 | printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n", | 
|  | 3346 | test_ed_curves[k].bits, test_ed_curves[k].name, | 
|  | 3347 | 1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1], | 
|  | 3348 | eddsa_results[k][0], eddsa_results[k][1]); | 
|  | 3349 | } | 
|  | 3350 | #endif | 
|  | 3351 |  | 
|  | 3352 | ret = 0; | 
|  | 3353 |  | 
|  | 3354 | end: | 
|  | 3355 | ERR_print_errors(bio_err); | 
|  | 3356 | for (i = 0; i < loopargs_len; i++) { | 
|  | 3357 | OPENSSL_free(loopargs[i].buf_malloc); | 
|  | 3358 | OPENSSL_free(loopargs[i].buf2_malloc); | 
|  | 3359 |  | 
|  | 3360 | #ifndef OPENSSL_NO_RSA | 
|  | 3361 | for (k = 0; k < RSA_NUM; k++) | 
|  | 3362 | RSA_free(loopargs[i].rsa_key[k]); | 
|  | 3363 | #endif | 
|  | 3364 | #ifndef OPENSSL_NO_DSA | 
|  | 3365 | for (k = 0; k < DSA_NUM; k++) | 
|  | 3366 | DSA_free(loopargs[i].dsa_key[k]); | 
|  | 3367 | #endif | 
|  | 3368 | #ifndef OPENSSL_NO_EC | 
|  | 3369 | for (k = 0; k < ECDSA_NUM; k++) | 
|  | 3370 | EC_KEY_free(loopargs[i].ecdsa[k]); | 
|  | 3371 | for (k = 0; k < EC_NUM; k++) | 
|  | 3372 | EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]); | 
|  | 3373 | for (k = 0; k < EdDSA_NUM; k++) | 
|  | 3374 | EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]); | 
|  | 3375 | OPENSSL_free(loopargs[i].secret_a); | 
|  | 3376 | OPENSSL_free(loopargs[i].secret_b); | 
|  | 3377 | #endif | 
|  | 3378 | } | 
|  | 3379 |  | 
|  | 3380 | if (async_jobs > 0) { | 
|  | 3381 | for (i = 0; i < loopargs_len; i++) | 
|  | 3382 | ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); | 
|  | 3383 | } | 
|  | 3384 |  | 
|  | 3385 | if (async_init) { | 
|  | 3386 | ASYNC_cleanup_thread(); | 
|  | 3387 | } | 
|  | 3388 | OPENSSL_free(loopargs); | 
|  | 3389 | release_engine(e); | 
|  | 3390 | return ret; | 
|  | 3391 | } | 
|  | 3392 |  | 
|  | 3393 | static void print_message(const char *s, long num, int length, int tm) | 
|  | 3394 | { | 
|  | 3395 | #ifdef SIGALRM | 
|  | 3396 | BIO_printf(bio_err, | 
|  | 3397 | mr ? "+DT:%s:%d:%d\n" | 
|  | 3398 | : "Doing %s for %ds on %d size blocks: ", s, tm, length); | 
|  | 3399 | (void)BIO_flush(bio_err); | 
|  | 3400 | run = 1; | 
|  | 3401 | alarm(tm); | 
|  | 3402 | #else | 
|  | 3403 | BIO_printf(bio_err, | 
|  | 3404 | mr ? "+DN:%s:%ld:%d\n" | 
|  | 3405 | : "Doing %s %ld times on %d size blocks: ", s, num, length); | 
|  | 3406 | (void)BIO_flush(bio_err); | 
|  | 3407 | #endif | 
|  | 3408 | } | 
|  | 3409 |  | 
|  | 3410 | static void pkey_print_message(const char *str, const char *str2, long num, | 
|  | 3411 | unsigned int bits, int tm) | 
|  | 3412 | { | 
|  | 3413 | #ifdef SIGALRM | 
|  | 3414 | BIO_printf(bio_err, | 
|  | 3415 | mr ? "+DTP:%d:%s:%s:%d\n" | 
|  | 3416 | : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm); | 
|  | 3417 | (void)BIO_flush(bio_err); | 
|  | 3418 | run = 1; | 
|  | 3419 | alarm(tm); | 
|  | 3420 | #else | 
|  | 3421 | BIO_printf(bio_err, | 
|  | 3422 | mr ? "+DNP:%ld:%d:%s:%s\n" | 
|  | 3423 | : "Doing %ld %u bits %s %s's: ", num, bits, str, str2); | 
|  | 3424 | (void)BIO_flush(bio_err); | 
|  | 3425 | #endif | 
|  | 3426 | } | 
|  | 3427 |  | 
|  | 3428 | static void print_result(int alg, int run_no, int count, double time_used) | 
|  | 3429 | { | 
|  | 3430 | if (count == -1) { | 
|  | 3431 | BIO_puts(bio_err, "EVP error!\n"); | 
|  | 3432 | exit(1); | 
|  | 3433 | } | 
|  | 3434 | BIO_printf(bio_err, | 
|  | 3435 | mr ? "+R:%d:%s:%f\n" | 
|  | 3436 | : "%d %s's in %.2fs\n", count, names[alg], time_used); | 
|  | 3437 | results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; | 
|  | 3438 | } | 
|  | 3439 |  | 
|  | 3440 | #ifndef NO_FORK | 
|  | 3441 | static char *sstrsep(char **string, const char *delim) | 
|  | 3442 | { | 
|  | 3443 | char isdelim[256]; | 
|  | 3444 | char *token = *string; | 
|  | 3445 |  | 
|  | 3446 | if (**string == 0) | 
|  | 3447 | return NULL; | 
|  | 3448 |  | 
|  | 3449 | memset(isdelim, 0, sizeof(isdelim)); | 
|  | 3450 | isdelim[0] = 1; | 
|  | 3451 |  | 
|  | 3452 | while (*delim) { | 
|  | 3453 | isdelim[(unsigned char)(*delim)] = 1; | 
|  | 3454 | delim++; | 
|  | 3455 | } | 
|  | 3456 |  | 
|  | 3457 | while (!isdelim[(unsigned char)(**string)]) { | 
|  | 3458 | (*string)++; | 
|  | 3459 | } | 
|  | 3460 |  | 
|  | 3461 | if (**string) { | 
|  | 3462 | **string = 0; | 
|  | 3463 | (*string)++; | 
|  | 3464 | } | 
|  | 3465 |  | 
|  | 3466 | return token; | 
|  | 3467 | } | 
|  | 3468 |  | 
|  | 3469 | static int do_multi(int multi, int size_num) | 
|  | 3470 | { | 
|  | 3471 | int n; | 
|  | 3472 | int fd[2]; | 
|  | 3473 | int *fds; | 
|  | 3474 | static char sep[] = ":"; | 
|  | 3475 |  | 
|  | 3476 | fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi"); | 
|  | 3477 | for (n = 0; n < multi; ++n) { | 
|  | 3478 | if (pipe(fd) == -1) { | 
|  | 3479 | BIO_printf(bio_err, "pipe failure\n"); | 
|  | 3480 | exit(1); | 
|  | 3481 | } | 
|  | 3482 | fflush(stdout); | 
|  | 3483 | (void)BIO_flush(bio_err); | 
|  | 3484 | if (fork()) { | 
|  | 3485 | close(fd[1]); | 
|  | 3486 | fds[n] = fd[0]; | 
|  | 3487 | } else { | 
|  | 3488 | close(fd[0]); | 
|  | 3489 | close(1); | 
|  | 3490 | if (dup(fd[1]) == -1) { | 
|  | 3491 | BIO_printf(bio_err, "dup failed\n"); | 
|  | 3492 | exit(1); | 
|  | 3493 | } | 
|  | 3494 | close(fd[1]); | 
|  | 3495 | mr = 1; | 
|  | 3496 | usertime = 0; | 
|  | 3497 | OPENSSL_free(fds); | 
|  | 3498 | return 0; | 
|  | 3499 | } | 
|  | 3500 | printf("Forked child %d\n", n); | 
|  | 3501 | } | 
|  | 3502 |  | 
|  | 3503 | /* for now, assume the pipe is long enough to take all the output */ | 
|  | 3504 | for (n = 0; n < multi; ++n) { | 
|  | 3505 | FILE *f; | 
|  | 3506 | char buf[1024]; | 
|  | 3507 | char *p; | 
|  | 3508 |  | 
|  | 3509 | f = fdopen(fds[n], "r"); | 
|  | 3510 | while (fgets(buf, sizeof(buf), f)) { | 
|  | 3511 | p = strchr(buf, '\n'); | 
|  | 3512 | if (p) | 
|  | 3513 | *p = '\0'; | 
|  | 3514 | if (buf[0] != '+') { | 
|  | 3515 | BIO_printf(bio_err, | 
|  | 3516 | "Don't understand line '%s' from child %d\n", buf, | 
|  | 3517 | n); | 
|  | 3518 | continue; | 
|  | 3519 | } | 
|  | 3520 | printf("Got: %s from %d\n", buf, n); | 
|  | 3521 | if (strncmp(buf, "+F:", 3) == 0) { | 
|  | 3522 | int alg; | 
|  | 3523 | int j; | 
|  | 3524 |  | 
|  | 3525 | p = buf + 3; | 
|  | 3526 | alg = atoi(sstrsep(&p, sep)); | 
|  | 3527 | sstrsep(&p, sep); | 
|  | 3528 | for (j = 0; j < size_num; ++j) | 
|  | 3529 | results[alg][j] += atof(sstrsep(&p, sep)); | 
|  | 3530 | } else if (strncmp(buf, "+F2:", 4) == 0) { | 
|  | 3531 | int k; | 
|  | 3532 | double d; | 
|  | 3533 |  | 
|  | 3534 | p = buf + 4; | 
|  | 3535 | k = atoi(sstrsep(&p, sep)); | 
|  | 3536 | sstrsep(&p, sep); | 
|  | 3537 |  | 
|  | 3538 | d = atof(sstrsep(&p, sep)); | 
|  | 3539 | rsa_results[k][0] += d; | 
|  | 3540 |  | 
|  | 3541 | d = atof(sstrsep(&p, sep)); | 
|  | 3542 | rsa_results[k][1] += d; | 
|  | 3543 | } | 
|  | 3544 | # ifndef OPENSSL_NO_DSA | 
|  | 3545 | else if (strncmp(buf, "+F3:", 4) == 0) { | 
|  | 3546 | int k; | 
|  | 3547 | double d; | 
|  | 3548 |  | 
|  | 3549 | p = buf + 4; | 
|  | 3550 | k = atoi(sstrsep(&p, sep)); | 
|  | 3551 | sstrsep(&p, sep); | 
|  | 3552 |  | 
|  | 3553 | d = atof(sstrsep(&p, sep)); | 
|  | 3554 | dsa_results[k][0] += d; | 
|  | 3555 |  | 
|  | 3556 | d = atof(sstrsep(&p, sep)); | 
|  | 3557 | dsa_results[k][1] += d; | 
|  | 3558 | } | 
|  | 3559 | # endif | 
|  | 3560 | # ifndef OPENSSL_NO_EC | 
|  | 3561 | else if (strncmp(buf, "+F4:", 4) == 0) { | 
|  | 3562 | int k; | 
|  | 3563 | double d; | 
|  | 3564 |  | 
|  | 3565 | p = buf + 4; | 
|  | 3566 | k = atoi(sstrsep(&p, sep)); | 
|  | 3567 | sstrsep(&p, sep); | 
|  | 3568 |  | 
|  | 3569 | d = atof(sstrsep(&p, sep)); | 
|  | 3570 | ecdsa_results[k][0] += d; | 
|  | 3571 |  | 
|  | 3572 | d = atof(sstrsep(&p, sep)); | 
|  | 3573 | ecdsa_results[k][1] += d; | 
|  | 3574 | } else if (strncmp(buf, "+F5:", 4) == 0) { | 
|  | 3575 | int k; | 
|  | 3576 | double d; | 
|  | 3577 |  | 
|  | 3578 | p = buf + 4; | 
|  | 3579 | k = atoi(sstrsep(&p, sep)); | 
|  | 3580 | sstrsep(&p, sep); | 
|  | 3581 |  | 
|  | 3582 | d = atof(sstrsep(&p, sep)); | 
|  | 3583 | ecdh_results[k][0] += d; | 
|  | 3584 | } else if (strncmp(buf, "+F6:", 4) == 0) { | 
|  | 3585 | int k; | 
|  | 3586 | double d; | 
|  | 3587 |  | 
|  | 3588 | p = buf + 4; | 
|  | 3589 | k = atoi(sstrsep(&p, sep)); | 
|  | 3590 | sstrsep(&p, sep); | 
|  | 3591 | sstrsep(&p, sep); | 
|  | 3592 |  | 
|  | 3593 | d = atof(sstrsep(&p, sep)); | 
|  | 3594 | eddsa_results[k][0] += d; | 
|  | 3595 |  | 
|  | 3596 | d = atof(sstrsep(&p, sep)); | 
|  | 3597 | eddsa_results[k][1] += d; | 
|  | 3598 | } | 
|  | 3599 | # endif | 
|  | 3600 |  | 
|  | 3601 | else if (strncmp(buf, "+H:", 3) == 0) { | 
|  | 3602 | ; | 
|  | 3603 | } else | 
|  | 3604 | BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, | 
|  | 3605 | n); | 
|  | 3606 | } | 
|  | 3607 |  | 
|  | 3608 | fclose(f); | 
|  | 3609 | } | 
|  | 3610 | OPENSSL_free(fds); | 
|  | 3611 | return 1; | 
|  | 3612 | } | 
|  | 3613 | #endif | 
|  | 3614 |  | 
|  | 3615 | static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, | 
|  | 3616 | const openssl_speed_sec_t *seconds) | 
|  | 3617 | { | 
|  | 3618 | static const int mblengths_list[] = | 
|  | 3619 | { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; | 
|  | 3620 | const int *mblengths = mblengths_list; | 
|  | 3621 | int j, count, keylen, num = OSSL_NELEM(mblengths_list); | 
|  | 3622 | const char *alg_name; | 
|  | 3623 | unsigned char *inp, *out, *key, no_key[32], no_iv[16]; | 
|  | 3624 | EVP_CIPHER_CTX *ctx; | 
|  | 3625 | double d = 0.0; | 
|  | 3626 |  | 
|  | 3627 | if (lengths_single) { | 
|  | 3628 | mblengths = &lengths_single; | 
|  | 3629 | num = 1; | 
|  | 3630 | } | 
|  | 3631 |  | 
|  | 3632 | inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); | 
|  | 3633 | out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); | 
|  | 3634 | ctx = EVP_CIPHER_CTX_new(); | 
|  | 3635 | EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv); | 
|  | 3636 |  | 
|  | 3637 | keylen = EVP_CIPHER_CTX_key_length(ctx); | 
|  | 3638 | key = app_malloc(keylen, "evp_cipher key"); | 
|  | 3639 | EVP_CIPHER_CTX_rand_key(ctx, key); | 
|  | 3640 | EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL); | 
|  | 3641 | OPENSSL_clear_free(key, keylen); | 
|  | 3642 |  | 
|  | 3643 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key); | 
|  | 3644 | alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); | 
|  | 3645 |  | 
|  | 3646 | for (j = 0; j < num; j++) { | 
|  | 3647 | print_message(alg_name, 0, mblengths[j], seconds->sym); | 
|  | 3648 | Time_F(START); | 
|  | 3649 | for (count = 0; run && count < 0x7fffffff; count++) { | 
|  | 3650 | unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; | 
|  | 3651 | EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; | 
|  | 3652 | size_t len = mblengths[j]; | 
|  | 3653 | int packlen; | 
|  | 3654 |  | 
|  | 3655 | memset(aad, 0, 8);  /* avoid uninitialized values */ | 
|  | 3656 | aad[8] = 23;        /* SSL3_RT_APPLICATION_DATA */ | 
|  | 3657 | aad[9] = 3;         /* version */ | 
|  | 3658 | aad[10] = 2; | 
|  | 3659 | aad[11] = 0;        /* length */ | 
|  | 3660 | aad[12] = 0; | 
|  | 3661 | mb_param.out = NULL; | 
|  | 3662 | mb_param.inp = aad; | 
|  | 3663 | mb_param.len = len; | 
|  | 3664 | mb_param.interleave = 8; | 
|  | 3665 |  | 
|  | 3666 | packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, | 
|  | 3667 | sizeof(mb_param), &mb_param); | 
|  | 3668 |  | 
|  | 3669 | if (packlen > 0) { | 
|  | 3670 | mb_param.out = out; | 
|  | 3671 | mb_param.inp = inp; | 
|  | 3672 | mb_param.len = len; | 
|  | 3673 | EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, | 
|  | 3674 | sizeof(mb_param), &mb_param); | 
|  | 3675 | } else { | 
|  | 3676 | int pad; | 
|  | 3677 |  | 
|  | 3678 | RAND_bytes(out, 16); | 
|  | 3679 | len += 16; | 
|  | 3680 | aad[11] = (unsigned char)(len >> 8); | 
|  | 3681 | aad[12] = (unsigned char)(len); | 
|  | 3682 | pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, | 
|  | 3683 | EVP_AEAD_TLS1_AAD_LEN, aad); | 
|  | 3684 | EVP_Cipher(ctx, out, inp, len + pad); | 
|  | 3685 | } | 
|  | 3686 | } | 
|  | 3687 | d = Time_F(STOP); | 
|  | 3688 | BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" | 
|  | 3689 | : "%d %s's in %.2fs\n", count, "evp", d); | 
|  | 3690 | results[D_EVP][j] = ((double)count) / d * mblengths[j]; | 
|  | 3691 | } | 
|  | 3692 |  | 
|  | 3693 | if (mr) { | 
|  | 3694 | fprintf(stdout, "+H"); | 
|  | 3695 | for (j = 0; j < num; j++) | 
|  | 3696 | fprintf(stdout, ":%d", mblengths[j]); | 
|  | 3697 | fprintf(stdout, "\n"); | 
|  | 3698 | fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); | 
|  | 3699 | for (j = 0; j < num; j++) | 
|  | 3700 | fprintf(stdout, ":%.2f", results[D_EVP][j]); | 
|  | 3701 | fprintf(stdout, "\n"); | 
|  | 3702 | } else { | 
|  | 3703 | fprintf(stdout, | 
|  | 3704 | "The 'numbers' are in 1000s of bytes per second processed.\n"); | 
|  | 3705 | fprintf(stdout, "type                    "); | 
|  | 3706 | for (j = 0; j < num; j++) | 
|  | 3707 | fprintf(stdout, "%7d bytes", mblengths[j]); | 
|  | 3708 | fprintf(stdout, "\n"); | 
|  | 3709 | fprintf(stdout, "%-24s", alg_name); | 
|  | 3710 |  | 
|  | 3711 | for (j = 0; j < num; j++) { | 
|  | 3712 | if (results[D_EVP][j] > 10000) | 
|  | 3713 | fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); | 
|  | 3714 | else | 
|  | 3715 | fprintf(stdout, " %11.2f ", results[D_EVP][j]); | 
|  | 3716 | } | 
|  | 3717 | fprintf(stdout, "\n"); | 
|  | 3718 | } | 
|  | 3719 |  | 
|  | 3720 | OPENSSL_free(inp); | 
|  | 3721 | OPENSSL_free(out); | 
|  | 3722 | EVP_CIPHER_CTX_free(ctx); | 
|  | 3723 | } |