| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* Extended regular expression matching and search library. | 
|  | 2 | Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. | 
|  | 3 | This file is part of the GNU C Library. | 
|  | 4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | 
|  | 5 |  | 
|  | 6 | The GNU C Library is free software; you can redistribute it and/or | 
|  | 7 | modify it under the terms of the GNU Lesser General Public | 
|  | 8 | License as published by the Free Software Foundation; either | 
|  | 9 | version 2.1 of the License, or (at your option) any later version. | 
|  | 10 |  | 
|  | 11 | The GNU C Library is distributed in the hope that it will be useful, | 
|  | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 14 | Lesser General Public License for more details. | 
|  | 15 |  | 
|  | 16 | You should have received a copy of the GNU Lesser General Public | 
|  | 17 | License along with the GNU C Library; if not, write to the Free | 
|  | 18 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA | 
|  | 19 | 02111-1307 USA.  */ | 
|  | 20 |  | 
|  | 21 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, | 
|  | 22 | int n) internal_function; | 
|  | 23 | static void match_ctx_clean (re_match_context_t *mctx) internal_function; | 
|  | 24 | static void match_ctx_free (re_match_context_t *cache) internal_function; | 
|  | 25 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node, | 
|  | 26 | int str_idx, int from, int to) | 
|  | 27 | internal_function; | 
|  | 28 | static int search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx) | 
|  | 29 | internal_function; | 
|  | 30 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node, | 
|  | 31 | int str_idx) internal_function; | 
|  | 32 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, | 
|  | 33 | int node, int str_idx) | 
|  | 34 | internal_function; | 
|  | 35 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | 
|  | 36 | re_dfastate_t **limited_sts, int last_node, | 
|  | 37 | int last_str_idx) | 
|  | 38 | internal_function; | 
|  | 39 | static reg_errcode_t re_search_internal (const regex_t *preg, | 
|  | 40 | const char *string, int length, | 
|  | 41 | int start, int range, int stop, | 
|  | 42 | size_t nmatch, regmatch_t pmatch[], | 
|  | 43 | int eflags) internal_function; | 
|  | 44 | static int re_search_2_stub (struct re_pattern_buffer *bufp, | 
|  | 45 | const char *string1, int length1, | 
|  | 46 | const char *string2, int length2, | 
|  | 47 | int start, int range, struct re_registers *regs, | 
|  | 48 | int stop, int ret_len) internal_function; | 
|  | 49 | static int re_search_stub (struct re_pattern_buffer *bufp, | 
|  | 50 | const char *string, int length, int start, | 
|  | 51 | int range, int stop, struct re_registers *regs, | 
|  | 52 | int ret_len) internal_function; | 
|  | 53 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, | 
|  | 54 | int nregs, int regs_allocated) internal_function; | 
|  | 55 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx) | 
|  | 56 | internal_function; | 
|  | 57 | static int check_matching (re_match_context_t *mctx, int fl_longest_match, | 
|  | 58 | int *p_match_first) internal_function; | 
|  | 59 | static int check_halt_state_context (const re_match_context_t *mctx, | 
|  | 60 | const re_dfastate_t *state, int idx) | 
|  | 61 | internal_function; | 
|  | 62 | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | 
|  | 63 | regmatch_t *prev_idx_match, int cur_node, | 
|  | 64 | int cur_idx, int nmatch) internal_function; | 
|  | 65 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, | 
|  | 66 | int str_idx, int dest_node, int nregs, | 
|  | 67 | regmatch_t *regs, | 
|  | 68 | re_node_set *eps_via_nodes) | 
|  | 69 | internal_function; | 
|  | 70 | static reg_errcode_t set_regs (const regex_t *preg, | 
|  | 71 | const re_match_context_t *mctx, | 
|  | 72 | size_t nmatch, regmatch_t *pmatch, | 
|  | 73 | int fl_backtrack) internal_function; | 
|  | 74 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) | 
|  | 75 | internal_function; | 
|  | 76 |  | 
|  | 77 | #ifdef RE_ENABLE_I18N | 
|  | 78 | static int sift_states_iter_mb (const re_match_context_t *mctx, | 
|  | 79 | re_sift_context_t *sctx, | 
|  | 80 | int node_idx, int str_idx, int max_str_idx) | 
|  | 81 | internal_function; | 
|  | 82 | #endif | 
|  | 83 | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, | 
|  | 84 | re_sift_context_t *sctx) | 
|  | 85 | internal_function; | 
|  | 86 | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, | 
|  | 87 | re_sift_context_t *sctx, int str_idx, | 
|  | 88 | re_node_set *cur_dest) | 
|  | 89 | internal_function; | 
|  | 90 | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, | 
|  | 91 | re_sift_context_t *sctx, | 
|  | 92 | int str_idx, | 
|  | 93 | re_node_set *dest_nodes) | 
|  | 94 | internal_function; | 
|  | 95 | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, | 
|  | 96 | re_node_set *dest_nodes, | 
|  | 97 | const re_node_set *candidates) | 
|  | 98 | internal_function; | 
|  | 99 | static int check_dst_limits (const re_match_context_t *mctx, | 
|  | 100 | re_node_set *limits, | 
|  | 101 | int dst_node, int dst_idx, int src_node, | 
|  | 102 | int src_idx) internal_function; | 
|  | 103 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, | 
|  | 104 | int boundaries, int subexp_idx, | 
|  | 105 | int from_node, int bkref_idx) | 
|  | 106 | internal_function; | 
|  | 107 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, | 
|  | 108 | int limit, int subexp_idx, | 
|  | 109 | int node, int str_idx, | 
|  | 110 | int bkref_idx) internal_function; | 
|  | 111 | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, | 
|  | 112 | re_node_set *dest_nodes, | 
|  | 113 | const re_node_set *candidates, | 
|  | 114 | re_node_set *limits, | 
|  | 115 | struct re_backref_cache_entry *bkref_ents, | 
|  | 116 | int str_idx) internal_function; | 
|  | 117 | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, | 
|  | 118 | re_sift_context_t *sctx, | 
|  | 119 | int str_idx, const re_node_set *candidates) | 
|  | 120 | internal_function; | 
|  | 121 | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, | 
|  | 122 | re_dfastate_t **dst, | 
|  | 123 | re_dfastate_t **src, int num) | 
|  | 124 | internal_function; | 
|  | 125 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, | 
|  | 126 | re_match_context_t *mctx) internal_function; | 
|  | 127 | static re_dfastate_t *transit_state (reg_errcode_t *err, | 
|  | 128 | re_match_context_t *mctx, | 
|  | 129 | re_dfastate_t *state) internal_function; | 
|  | 130 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, | 
|  | 131 | re_match_context_t *mctx, | 
|  | 132 | re_dfastate_t *next_state) | 
|  | 133 | internal_function; | 
|  | 134 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, | 
|  | 135 | re_node_set *cur_nodes, | 
|  | 136 | int str_idx) internal_function; | 
|  | 137 | #if 0 | 
|  | 138 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, | 
|  | 139 | re_match_context_t *mctx, | 
|  | 140 | re_dfastate_t *pstate) | 
|  | 141 | internal_function; | 
|  | 142 | #endif | 
|  | 143 | #ifdef RE_ENABLE_I18N | 
|  | 144 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, | 
|  | 145 | re_dfastate_t *pstate) | 
|  | 146 | internal_function; | 
|  | 147 | #endif | 
|  | 148 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, | 
|  | 149 | const re_node_set *nodes) | 
|  | 150 | internal_function; | 
|  | 151 | static reg_errcode_t get_subexp (re_match_context_t *mctx, | 
|  | 152 | int bkref_node, int bkref_str_idx) | 
|  | 153 | internal_function; | 
|  | 154 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, | 
|  | 155 | const re_sub_match_top_t *sub_top, | 
|  | 156 | re_sub_match_last_t *sub_last, | 
|  | 157 | int bkref_node, int bkref_str) | 
|  | 158 | internal_function; | 
|  | 159 | static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | 
|  | 160 | int subexp_idx, int type) internal_function; | 
|  | 161 | static reg_errcode_t check_arrival (re_match_context_t *mctx, | 
|  | 162 | state_array_t *path, int top_node, | 
|  | 163 | int top_str, int last_node, int last_str, | 
|  | 164 | int type) internal_function; | 
|  | 165 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, | 
|  | 166 | int str_idx, | 
|  | 167 | re_node_set *cur_nodes, | 
|  | 168 | re_node_set *next_nodes) | 
|  | 169 | internal_function; | 
|  | 170 | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, | 
|  | 171 | re_node_set *cur_nodes, | 
|  | 172 | int ex_subexp, int type) | 
|  | 173 | internal_function; | 
|  | 174 | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, | 
|  | 175 | re_node_set *dst_nodes, | 
|  | 176 | int target, int ex_subexp, | 
|  | 177 | int type) internal_function; | 
|  | 178 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, | 
|  | 179 | re_node_set *cur_nodes, int cur_str, | 
|  | 180 | int subexp_num, int type) | 
|  | 181 | internal_function; | 
|  | 182 | static int build_trtable (const re_dfa_t *dfa, | 
|  | 183 | re_dfastate_t *state) internal_function; | 
|  | 184 | #ifdef RE_ENABLE_I18N | 
|  | 185 | static int check_node_accept_bytes (const re_dfa_t *dfa, int node_idx, | 
|  | 186 | const re_string_t *input, int idx) | 
|  | 187 | internal_function; | 
|  | 188 | #endif | 
|  | 189 | static int group_nodes_into_DFAstates (const re_dfa_t *dfa, | 
|  | 190 | const re_dfastate_t *state, | 
|  | 191 | re_node_set *states_node, | 
|  | 192 | bitset_t *states_ch) internal_function; | 
|  | 193 | static int check_node_accept (const re_match_context_t *mctx, | 
|  | 194 | const re_token_t *node, int idx) | 
|  | 195 | internal_function; | 
|  | 196 | static reg_errcode_t extend_buffers (re_match_context_t *mctx) | 
|  | 197 | internal_function; | 
|  | 198 |  | 
|  | 199 | /* Entry point for POSIX code.  */ | 
|  | 200 |  | 
|  | 201 | /* regexec searches for a given pattern, specified by PREG, in the | 
|  | 202 | string STRING. | 
|  | 203 |  | 
|  | 204 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | 
|  | 205 | `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at | 
|  | 206 | least NMATCH elements, and we set them to the offsets of the | 
|  | 207 | corresponding matched substrings. | 
|  | 208 |  | 
|  | 209 | EFLAGS specifies `execution flags' which affect matching: if | 
|  | 210 | REG_NOTBOL is set, then ^ does not match at the beginning of the | 
|  | 211 | string; if REG_NOTEOL is set, then $ does not match at the end. | 
|  | 212 |  | 
|  | 213 | We return 0 if we find a match and REG_NOMATCH if not.  */ | 
|  | 214 |  | 
|  | 215 | int | 
|  | 216 | regexec (const regex_t *__restrict preg, const char *__restrict string, | 
|  | 217 | size_t nmatch, regmatch_t pmatch[], int eflags) | 
|  | 218 | { | 
|  | 219 | reg_errcode_t err; | 
|  | 220 | int start, length; | 
|  | 221 | #ifdef __UCLIBC_HAS_THREADS__ | 
|  | 222 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | 223 | #endif | 
|  | 224 |  | 
|  | 225 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) | 
|  | 226 | return REG_BADPAT; | 
|  | 227 |  | 
|  | 228 | if (eflags & REG_STARTEND) | 
|  | 229 | { | 
|  | 230 | start = pmatch[0].rm_so; | 
|  | 231 | length = pmatch[0].rm_eo; | 
|  | 232 | } | 
|  | 233 | else | 
|  | 234 | { | 
|  | 235 | start = 0; | 
|  | 236 | length = strlen (string); | 
|  | 237 | } | 
|  | 238 |  | 
|  | 239 | __libc_lock_lock (dfa->lock); | 
|  | 240 | if (preg->no_sub) | 
|  | 241 | err = re_search_internal (preg, string, length, start, length - start, | 
|  | 242 | length, 0, NULL, eflags); | 
|  | 243 | else | 
|  | 244 | err = re_search_internal (preg, string, length, start, length - start, | 
|  | 245 | length, nmatch, pmatch, eflags); | 
|  | 246 | __libc_lock_unlock (dfa->lock); | 
|  | 247 | return err != REG_NOERROR; | 
|  | 248 | } | 
|  | 249 | libc_hidden_def(regexec) | 
|  | 250 |  | 
|  | 251 | /* Entry points for GNU code.  */ | 
|  | 252 |  | 
|  | 253 | /* re_match, re_search, re_match_2, re_search_2 | 
|  | 254 |  | 
|  | 255 | The former two functions operate on STRING with length LENGTH, | 
|  | 256 | while the later two operate on concatenation of STRING1 and STRING2 | 
|  | 257 | with lengths LENGTH1 and LENGTH2, respectively. | 
|  | 258 |  | 
|  | 259 | re_match() matches the compiled pattern in BUFP against the string, | 
|  | 260 | starting at index START. | 
|  | 261 |  | 
|  | 262 | re_search() first tries matching at index START, then it tries to match | 
|  | 263 | starting from index START + 1, and so on.  The last start position tried | 
|  | 264 | is START + RANGE.  (Thus RANGE = 0 forces re_search to operate the same | 
|  | 265 | way as re_match().) | 
|  | 266 |  | 
|  | 267 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding | 
|  | 268 | the first STOP characters of the concatenation of the strings should be | 
|  | 269 | concerned. | 
|  | 270 |  | 
|  | 271 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match | 
|  | 272 | and all groups is stroed in REGS.  (For the "_2" variants, the offsets are | 
|  | 273 | computed relative to the concatenation, not relative to the individual | 
|  | 274 | strings.) | 
|  | 275 |  | 
|  | 276 | On success, re_match* functions return the length of the match, re_search* | 
|  | 277 | return the position of the start of the match.  Return value -1 means no | 
|  | 278 | match was found and -2 indicates an internal error.  */ | 
|  | 279 |  | 
|  | 280 | int | 
|  | 281 | re_match (struct re_pattern_buffer *bufp, const char *string, int length, | 
|  | 282 | int start, struct re_registers *regs) | 
|  | 283 | { | 
|  | 284 | return re_search_stub (bufp, string, length, start, 0, length, regs, 1); | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | int | 
|  | 288 | re_search (struct re_pattern_buffer *bufp, const char *string, int length, | 
|  | 289 | int start, int range, struct re_registers *regs) | 
|  | 290 | { | 
|  | 291 | return re_search_stub (bufp, string, length, start, range, length, regs, 0); | 
|  | 292 | } | 
|  | 293 | libc_hidden_def(re_search) | 
|  | 294 |  | 
|  | 295 | int | 
|  | 296 | re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int length1, | 
|  | 297 | const char *string2, int length2, int start, | 
|  | 298 | struct re_registers *regs, int stop) | 
|  | 299 | { | 
|  | 300 | return re_search_2_stub (bufp, string1, length1, string2, length2, | 
|  | 301 | start, 0, regs, stop, 1); | 
|  | 302 | } | 
|  | 303 |  | 
|  | 304 | int | 
|  | 305 | re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int lenght1, | 
|  | 306 | const char *string2, int length2, int start, int range, | 
|  | 307 | struct re_registers *regs,  int stop) | 
|  | 308 | { | 
|  | 309 | return re_search_2_stub (bufp, string1, lenght1, string2, length2, | 
|  | 310 | start, range, regs, stop, 0); | 
|  | 311 | } | 
|  | 312 | libc_hidden_def(re_search_2) | 
|  | 313 |  | 
|  | 314 | static int internal_function | 
|  | 315 | re_search_2_stub (struct re_pattern_buffer *bufp, const char *string1, | 
|  | 316 | int length1, const char *string2, int length2, int start, | 
|  | 317 | int range, struct re_registers *regs, int stop, int ret_len) | 
|  | 318 | { | 
|  | 319 | const char *str; | 
|  | 320 | int rval; | 
|  | 321 | int len = length1 + length2; | 
|  | 322 | int free_str = 0; | 
|  | 323 |  | 
|  | 324 | if (BE (length1 < 0 || length2 < 0 || stop < 0, 0)) | 
|  | 325 | return -2; | 
|  | 326 |  | 
|  | 327 | /* Concatenate the strings.  */ | 
|  | 328 | if (length2 > 0) | 
|  | 329 | if (length1 > 0) | 
|  | 330 | { | 
|  | 331 | char *s = re_malloc (char, len); | 
|  | 332 |  | 
|  | 333 | if (BE (s == NULL, 0)) | 
|  | 334 | return -2; | 
|  | 335 | memcpy (s, string1, length1); | 
|  | 336 | memcpy (s + length1, string2, length2); | 
|  | 337 | str = s; | 
|  | 338 | free_str = 1; | 
|  | 339 | } | 
|  | 340 | else | 
|  | 341 | str = string2; | 
|  | 342 | else | 
|  | 343 | str = string1; | 
|  | 344 |  | 
|  | 345 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, | 
|  | 346 | ret_len); | 
|  | 347 | if (free_str) | 
|  | 348 | re_free ((char *) str); | 
|  | 349 | return rval; | 
|  | 350 | } | 
|  | 351 |  | 
|  | 352 | /* The parameters have the same meaning as those of re_search. | 
|  | 353 | Additional parameters: | 
|  | 354 | If RET_LEN is nonzero the length of the match is returned (re_match style); | 
|  | 355 | otherwise the position of the match is returned.  */ | 
|  | 356 |  | 
|  | 357 | static int internal_function | 
|  | 358 | re_search_stub (struct re_pattern_buffer *bufp, const char *string, int length, | 
|  | 359 | int start, int range, int stop, struct re_registers *regs, | 
|  | 360 | int ret_len) | 
|  | 361 | { | 
|  | 362 | reg_errcode_t result; | 
|  | 363 | regmatch_t *pmatch; | 
|  | 364 | int nregs, rval; | 
|  | 365 | int eflags = 0; | 
|  | 366 | #ifdef __UCLIBC_HAS_THREADS__ | 
|  | 367 | re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | 
|  | 368 | #endif | 
|  | 369 | /* Check for out-of-range.  */ | 
|  | 370 | if (BE (start < 0 || start > length, 0)) | 
|  | 371 | return -1; | 
|  | 372 | if (BE (start + range > length, 0)) | 
|  | 373 | range = length - start; | 
|  | 374 | else if (BE (start + range < 0, 0)) | 
|  | 375 | range = -start; | 
|  | 376 |  | 
|  | 377 | __libc_lock_lock (dfa->lock); | 
|  | 378 |  | 
|  | 379 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; | 
|  | 380 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; | 
|  | 381 |  | 
|  | 382 | /* Compile fastmap if we haven't yet.  */ | 
|  | 383 | if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate) | 
|  | 384 | re_compile_fastmap (bufp); | 
|  | 385 |  | 
|  | 386 | if (BE (bufp->no_sub, 0)) | 
|  | 387 | regs = NULL; | 
|  | 388 |  | 
|  | 389 | /* We need at least 1 register.  */ | 
|  | 390 | if (regs == NULL) | 
|  | 391 | nregs = 1; | 
|  | 392 | else if (BE (bufp->regs_allocated == REGS_FIXED && | 
|  | 393 | regs->num_regs < bufp->re_nsub + 1, 0)) | 
|  | 394 | { | 
|  | 395 | nregs = regs->num_regs; | 
|  | 396 | if (BE (nregs < 1, 0)) | 
|  | 397 | { | 
|  | 398 | /* Nothing can be copied to regs.  */ | 
|  | 399 | regs = NULL; | 
|  | 400 | nregs = 1; | 
|  | 401 | } | 
|  | 402 | } | 
|  | 403 | else | 
|  | 404 | nregs = bufp->re_nsub + 1; | 
|  | 405 | pmatch = re_malloc (regmatch_t, nregs); | 
|  | 406 | if (BE (pmatch == NULL, 0)) | 
|  | 407 | { | 
|  | 408 | rval = -2; | 
|  | 409 | goto out; | 
|  | 410 | } | 
|  | 411 |  | 
|  | 412 | result = re_search_internal (bufp, string, length, start, range, stop, | 
|  | 413 | nregs, pmatch, eflags); | 
|  | 414 |  | 
|  | 415 | rval = 0; | 
|  | 416 |  | 
|  | 417 | /* I hope we needn't fill ther regs with -1's when no match was found.  */ | 
|  | 418 | if (result != REG_NOERROR) | 
|  | 419 | rval = -1; | 
|  | 420 | else if (regs != NULL) | 
|  | 421 | { | 
|  | 422 | /* If caller wants register contents data back, copy them.  */ | 
|  | 423 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, | 
|  | 424 | bufp->regs_allocated); | 
|  | 425 | if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) | 
|  | 426 | rval = -2; | 
|  | 427 | } | 
|  | 428 |  | 
|  | 429 | if (BE (rval == 0, 1)) | 
|  | 430 | { | 
|  | 431 | if (ret_len) | 
|  | 432 | { | 
|  | 433 | assert (pmatch[0].rm_so == start); | 
|  | 434 | rval = pmatch[0].rm_eo - start; | 
|  | 435 | } | 
|  | 436 | else | 
|  | 437 | rval = pmatch[0].rm_so; | 
|  | 438 | } | 
|  | 439 | re_free (pmatch); | 
|  | 440 | out: | 
|  | 441 | __libc_lock_unlock (dfa->lock); | 
|  | 442 | return rval; | 
|  | 443 | } | 
|  | 444 |  | 
|  | 445 | static unsigned internal_function | 
|  | 446 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, int nregs, | 
|  | 447 | int regs_allocated) | 
|  | 448 | { | 
|  | 449 | int rval = REGS_REALLOCATE; | 
|  | 450 | int i; | 
|  | 451 | int need_regs = nregs + 1; | 
|  | 452 | /* We need one extra element beyond `num_regs' for the `-1' marker GNU code | 
|  | 453 | uses.  */ | 
|  | 454 |  | 
|  | 455 | /* Have the register data arrays been allocated?  */ | 
|  | 456 | if (regs_allocated == REGS_UNALLOCATED) | 
|  | 457 | { /* No.  So allocate them with malloc.  */ | 
|  | 458 | regs->start = re_malloc (regoff_t, need_regs); | 
|  | 459 | regs->end = re_malloc (regoff_t, need_regs); | 
|  | 460 | if (BE (regs->start == NULL, 0) || BE (regs->end == NULL, 0)) | 
|  | 461 | return REGS_UNALLOCATED; | 
|  | 462 | regs->num_regs = need_regs; | 
|  | 463 | } | 
|  | 464 | else if (regs_allocated == REGS_REALLOCATE) | 
|  | 465 | { /* Yes.  If we need more elements than were already | 
|  | 466 | allocated, reallocate them.  If we need fewer, just | 
|  | 467 | leave it alone.  */ | 
|  | 468 | if (BE (need_regs > regs->num_regs, 0)) | 
|  | 469 | { | 
|  | 470 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); | 
|  | 471 | regoff_t *new_end = re_realloc (regs->end, regoff_t, need_regs); | 
|  | 472 | if (BE (new_start == NULL, 0) || BE (new_end == NULL, 0)) | 
|  | 473 | return REGS_UNALLOCATED; | 
|  | 474 | regs->start = new_start; | 
|  | 475 | regs->end = new_end; | 
|  | 476 | regs->num_regs = need_regs; | 
|  | 477 | } | 
|  | 478 | } | 
|  | 479 | else | 
|  | 480 | { | 
|  | 481 | assert (regs_allocated == REGS_FIXED); | 
|  | 482 | /* This function may not be called with REGS_FIXED and nregs too big.  */ | 
|  | 483 | assert (regs->num_regs >= nregs); | 
|  | 484 | rval = REGS_FIXED; | 
|  | 485 | } | 
|  | 486 |  | 
|  | 487 | /* Copy the regs.  */ | 
|  | 488 | for (i = 0; i < nregs; ++i) | 
|  | 489 | { | 
|  | 490 | regs->start[i] = pmatch[i].rm_so; | 
|  | 491 | regs->end[i] = pmatch[i].rm_eo; | 
|  | 492 | } | 
|  | 493 | for ( ; i < regs->num_regs; ++i) | 
|  | 494 | regs->start[i] = regs->end[i] = -1; | 
|  | 495 |  | 
|  | 496 | return rval; | 
|  | 497 | } | 
|  | 498 |  | 
|  | 499 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | 
|  | 500 | ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use | 
|  | 501 | this memory for recording register information.  STARTS and ENDS | 
|  | 502 | must be allocated using the malloc library routine, and must each | 
|  | 503 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | 
|  | 504 |  | 
|  | 505 | If NUM_REGS == 0, then subsequent matches should allocate their own | 
|  | 506 | register data. | 
|  | 507 |  | 
|  | 508 | Unless this function is called, the first search or match using | 
|  | 509 | PATTERN_BUFFER will allocate its own register data, without | 
|  | 510 | freeing the old data.  */ | 
|  | 511 |  | 
|  | 512 | void | 
|  | 513 | re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, | 
|  | 514 | unsigned num_regs, regoff_t *starts, regoff_t *ends) | 
|  | 515 | { | 
|  | 516 | if (num_regs) | 
|  | 517 | { | 
|  | 518 | bufp->regs_allocated = REGS_REALLOCATE; | 
|  | 519 | regs->num_regs = num_regs; | 
|  | 520 | regs->start = starts; | 
|  | 521 | regs->end = ends; | 
|  | 522 | } | 
|  | 523 | else | 
|  | 524 | { | 
|  | 525 | bufp->regs_allocated = REGS_UNALLOCATED; | 
|  | 526 | regs->num_regs = 0; | 
|  | 527 | regs->start = regs->end = (regoff_t *) 0; | 
|  | 528 | } | 
|  | 529 | } | 
|  | 530 |  | 
|  | 531 | /* Entry points compatible with 4.2 BSD regex library.  We don't define | 
|  | 532 | them unless specifically requested.  */ | 
|  | 533 |  | 
|  | 534 | #if defined _REGEX_RE_COMP || defined __UCLIBC__ | 
|  | 535 | int | 
|  | 536 | weak_function | 
|  | 537 | re_exec (const char *s) | 
|  | 538 | { | 
|  | 539 | return 0 == regexec (re_comp_buf, s, 0, NULL, 0); | 
|  | 540 | } | 
|  | 541 | #endif | 
|  | 542 |  | 
|  | 543 | /* Internal entry point.  */ | 
|  | 544 |  | 
|  | 545 | /* Searches for a compiled pattern PREG in the string STRING, whose | 
|  | 546 | length is LENGTH.  NMATCH, PMATCH, and EFLAGS have the same | 
|  | 547 | mingings with regexec.  START, and RANGE have the same meanings | 
|  | 548 | with re_search. | 
|  | 549 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, | 
|  | 550 | otherwise return the error code. | 
|  | 551 | Note: We assume front end functions already check ranges. | 
|  | 552 | (START + RANGE >= 0 && START + RANGE <= LENGTH)  */ | 
|  | 553 | static reg_errcode_t internal_function | 
|  | 554 | re_search_internal (const regex_t *preg, const char *string, int length, | 
|  | 555 | int start, int range, int stop, size_t nmatch, | 
|  | 556 | regmatch_t pmatch[], int eflags) | 
|  | 557 | { | 
|  | 558 | reg_errcode_t err; | 
|  | 559 | const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | 
|  | 560 | int left_lim, right_lim, incr; | 
|  | 561 | int fl_longest_match, match_first, match_kind, match_last = -1; | 
|  | 562 | int extra_nmatch; | 
|  | 563 | int sb, ch; | 
|  | 564 | re_match_context_t mctx; | 
|  | 565 | char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate | 
|  | 566 | && range && !preg->can_be_null) ? preg->fastmap : NULL; | 
|  | 567 | RE_TRANSLATE_TYPE t = preg->translate; | 
|  | 568 |  | 
|  | 569 | memset (&mctx, '\0', sizeof (re_match_context_t)); | 
|  | 570 | mctx.dfa = dfa; | 
|  | 571 |  | 
|  | 572 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; | 
|  | 573 | nmatch -= extra_nmatch; | 
|  | 574 |  | 
|  | 575 | /* Check if the DFA haven't been compiled.  */ | 
|  | 576 | if (BE (preg->used == 0 || dfa->init_state == NULL | 
|  | 577 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL | 
|  | 578 | || dfa->init_state_begbuf == NULL, 0)) | 
|  | 579 | return REG_NOMATCH; | 
|  | 580 |  | 
|  | 581 | #ifdef DEBUG | 
|  | 582 | /* We assume front-end functions already check them.  */ | 
|  | 583 | assert (start + range >= 0 && start + range <= length); | 
|  | 584 | #endif | 
|  | 585 |  | 
|  | 586 | /* If initial states with non-begbuf contexts have no elements, | 
|  | 587 | the regex must be anchored.  If preg->newline_anchor is set, | 
|  | 588 | we'll never use init_state_nl, so do not check it.  */ | 
|  | 589 | if (dfa->init_state->nodes.nelem == 0 | 
|  | 590 | && dfa->init_state_word->nodes.nelem == 0 | 
|  | 591 | && (dfa->init_state_nl->nodes.nelem == 0 | 
|  | 592 | || !preg->newline_anchor)) | 
|  | 593 | { | 
|  | 594 | if (start != 0 && start + range != 0) | 
|  | 595 | return REG_NOMATCH; | 
|  | 596 | start = range = 0; | 
|  | 597 | } | 
|  | 598 |  | 
|  | 599 | /* We must check the longest matching, if nmatch > 0.  */ | 
|  | 600 | fl_longest_match = (nmatch != 0 || dfa->nbackref); | 
|  | 601 |  | 
|  | 602 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, | 
|  | 603 | preg->translate, preg->syntax & RE_ICASE, dfa); | 
|  | 604 | if (BE (err != REG_NOERROR, 0)) | 
|  | 605 | goto free_return; | 
|  | 606 | mctx.input.stop = stop; | 
|  | 607 | mctx.input.raw_stop = stop; | 
|  | 608 | mctx.input.newline_anchor = preg->newline_anchor; | 
|  | 609 |  | 
|  | 610 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); | 
|  | 611 | if (BE (err != REG_NOERROR, 0)) | 
|  | 612 | goto free_return; | 
|  | 613 |  | 
|  | 614 | /* We will log all the DFA states through which the dfa pass, | 
|  | 615 | if nmatch > 1, or this dfa has "multibyte node", which is a | 
|  | 616 | back-reference or a node which can accept multibyte character or | 
|  | 617 | multi character collating element.  */ | 
|  | 618 | if (nmatch > 1 || dfa->has_mb_node) | 
|  | 619 | { | 
|  | 620 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); | 
|  | 621 | if (BE (mctx.state_log == NULL, 0)) | 
|  | 622 | { | 
|  | 623 | err = REG_ESPACE; | 
|  | 624 | goto free_return; | 
|  | 625 | } | 
|  | 626 | } | 
|  | 627 | else | 
|  | 628 | mctx.state_log = NULL; | 
|  | 629 |  | 
|  | 630 | match_first = start; | 
|  | 631 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | 
|  | 632 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; | 
|  | 633 |  | 
|  | 634 | /* Check incrementally whether of not the input string match.  */ | 
|  | 635 | incr = (range < 0) ? -1 : 1; | 
|  | 636 | left_lim = (range < 0) ? start + range : start; | 
|  | 637 | right_lim = (range < 0) ? start : start + range; | 
|  | 638 | sb = dfa->mb_cur_max == 1; | 
|  | 639 | match_kind = | 
|  | 640 | (fastmap | 
|  | 641 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) | 
|  | 642 | | (range >= 0 ? 2 : 0) | 
|  | 643 | | (t != NULL ? 1 : 0)) | 
|  | 644 | : 8); | 
|  | 645 |  | 
|  | 646 | for (;; match_first += incr) | 
|  | 647 | { | 
|  | 648 | err = REG_NOMATCH; | 
|  | 649 | if (match_first < left_lim || right_lim < match_first) | 
|  | 650 | goto free_return; | 
|  | 651 |  | 
|  | 652 | /* Advance as rapidly as possible through the string, until we | 
|  | 653 | find a plausible place to start matching.  This may be done | 
|  | 654 | with varying efficiency, so there are various possibilities: | 
|  | 655 | only the most common of them are specialized, in order to | 
|  | 656 | save on code size.  We use a switch statement for speed.  */ | 
|  | 657 | switch (match_kind) | 
|  | 658 | { | 
|  | 659 | case 8: | 
|  | 660 | /* No fastmap.  */ | 
|  | 661 | break; | 
|  | 662 |  | 
|  | 663 | case 7: | 
|  | 664 | /* Fastmap with single-byte translation, match forward.  */ | 
|  | 665 | while (BE (match_first < right_lim, 1) | 
|  | 666 | && !fastmap[t[(unsigned char) string[match_first]]]) | 
|  | 667 | ++match_first; | 
|  | 668 | goto forward_match_found_start_or_reached_end; | 
|  | 669 |  | 
|  | 670 | case 6: | 
|  | 671 | /* Fastmap without translation, match forward.  */ | 
|  | 672 | while (BE (match_first < right_lim, 1) | 
|  | 673 | && !fastmap[(unsigned char) string[match_first]]) | 
|  | 674 | ++match_first; | 
|  | 675 |  | 
|  | 676 | forward_match_found_start_or_reached_end: | 
|  | 677 | if (BE (match_first == right_lim, 0)) | 
|  | 678 | { | 
|  | 679 | ch = match_first >= length | 
|  | 680 | ? 0 : (unsigned char) string[match_first]; | 
|  | 681 | if (!fastmap[t ? t[ch] : ch]) | 
|  | 682 | goto free_return; | 
|  | 683 | } | 
|  | 684 | break; | 
|  | 685 |  | 
|  | 686 | case 4: | 
|  | 687 | case 5: | 
|  | 688 | /* Fastmap without multi-byte translation, match backwards.  */ | 
|  | 689 | while (match_first >= left_lim) | 
|  | 690 | { | 
|  | 691 | ch = match_first >= length | 
|  | 692 | ? 0 : (unsigned char) string[match_first]; | 
|  | 693 | if (fastmap[t ? t[ch] : ch]) | 
|  | 694 | break; | 
|  | 695 | --match_first; | 
|  | 696 | } | 
|  | 697 | if (match_first < left_lim) | 
|  | 698 | goto free_return; | 
|  | 699 | break; | 
|  | 700 |  | 
|  | 701 | default: | 
|  | 702 | /* In this case, we can't determine easily the current byte, | 
|  | 703 | since it might be a component byte of a multibyte | 
|  | 704 | character.  Then we use the constructed buffer instead.  */ | 
|  | 705 | for (;;) | 
|  | 706 | { | 
|  | 707 | /* If MATCH_FIRST is out of the valid range, reconstruct the | 
|  | 708 | buffers.  */ | 
|  | 709 | unsigned int offset = match_first - mctx.input.raw_mbs_idx; | 
|  | 710 | if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0)) | 
|  | 711 | { | 
|  | 712 | err = re_string_reconstruct (&mctx.input, match_first, | 
|  | 713 | eflags); | 
|  | 714 | if (BE (err != REG_NOERROR, 0)) | 
|  | 715 | goto free_return; | 
|  | 716 |  | 
|  | 717 | offset = match_first - mctx.input.raw_mbs_idx; | 
|  | 718 | } | 
|  | 719 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. | 
|  | 720 | Note that MATCH_FIRST must not be smaller than 0.  */ | 
|  | 721 | ch = (match_first >= length | 
|  | 722 | ? 0 : re_string_byte_at (&mctx.input, offset)); | 
|  | 723 | if (fastmap[ch]) | 
|  | 724 | break; | 
|  | 725 | match_first += incr; | 
|  | 726 | if (match_first < left_lim || match_first > right_lim) | 
|  | 727 | { | 
|  | 728 | err = REG_NOMATCH; | 
|  | 729 | goto free_return; | 
|  | 730 | } | 
|  | 731 | } | 
|  | 732 | break; | 
|  | 733 | } | 
|  | 734 |  | 
|  | 735 | /* Reconstruct the buffers so that the matcher can assume that | 
|  | 736 | the matching starts from the beginning of the buffer.  */ | 
|  | 737 | err = re_string_reconstruct (&mctx.input, match_first, eflags); | 
|  | 738 | if (BE (err != REG_NOERROR, 0)) | 
|  | 739 | goto free_return; | 
|  | 740 |  | 
|  | 741 | #ifdef RE_ENABLE_I18N | 
|  | 742 | /* Don't consider this char as a possible match start if it part, | 
|  | 743 | yet isn't the head, of a multibyte character.  */ | 
|  | 744 | if (!sb && !re_string_first_byte (&mctx.input, 0)) | 
|  | 745 | continue; | 
|  | 746 | #endif | 
|  | 747 |  | 
|  | 748 | /* It seems to be appropriate one, then use the matcher.  */ | 
|  | 749 | /* We assume that the matching starts from 0.  */ | 
|  | 750 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; | 
|  | 751 | match_last = check_matching (&mctx, fl_longest_match, | 
|  | 752 | range >= 0 ? &match_first : NULL); | 
|  | 753 | if (match_last != -1) | 
|  | 754 | { | 
|  | 755 | if (BE (match_last == -2, 0)) | 
|  | 756 | { | 
|  | 757 | err = REG_ESPACE; | 
|  | 758 | goto free_return; | 
|  | 759 | } | 
|  | 760 | else | 
|  | 761 | { | 
|  | 762 | mctx.match_last = match_last; | 
|  | 763 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) | 
|  | 764 | { | 
|  | 765 | re_dfastate_t *pstate = mctx.state_log[match_last]; | 
|  | 766 | mctx.last_node = check_halt_state_context (&mctx, pstate, | 
|  | 767 | match_last); | 
|  | 768 | } | 
|  | 769 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) | 
|  | 770 | || dfa->nbackref) | 
|  | 771 | { | 
|  | 772 | err = prune_impossible_nodes (&mctx); | 
|  | 773 | if (err == REG_NOERROR) | 
|  | 774 | break; | 
|  | 775 | if (BE (err != REG_NOMATCH, 0)) | 
|  | 776 | goto free_return; | 
|  | 777 | match_last = -1; | 
|  | 778 | } | 
|  | 779 | else | 
|  | 780 | break; /* We found a match.  */ | 
|  | 781 | } | 
|  | 782 | } | 
|  | 783 |  | 
|  | 784 | match_ctx_clean (&mctx); | 
|  | 785 | } | 
|  | 786 |  | 
|  | 787 | #ifdef DEBUG | 
|  | 788 | assert (match_last != -1); | 
|  | 789 | assert (err == REG_NOERROR); | 
|  | 790 | #endif | 
|  | 791 |  | 
|  | 792 | /* Set pmatch[] if we need.  */ | 
|  | 793 | if (nmatch > 0) | 
|  | 794 | { | 
|  | 795 | int reg_idx; | 
|  | 796 |  | 
|  | 797 | /* Initialize registers.  */ | 
|  | 798 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) | 
|  | 799 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; | 
|  | 800 |  | 
|  | 801 | /* Set the points where matching start/end.  */ | 
|  | 802 | pmatch[0].rm_so = 0; | 
|  | 803 | pmatch[0].rm_eo = mctx.match_last; | 
|  | 804 |  | 
|  | 805 | if (!preg->no_sub && nmatch > 1) | 
|  | 806 | { | 
|  | 807 | err = set_regs (preg, &mctx, nmatch, pmatch, | 
|  | 808 | dfa->has_plural_match && dfa->nbackref > 0); | 
|  | 809 | if (BE (err != REG_NOERROR, 0)) | 
|  | 810 | goto free_return; | 
|  | 811 | } | 
|  | 812 |  | 
|  | 813 | /* At last, add the offset to the each registers, since we slided | 
|  | 814 | the buffers so that we could assume that the matching starts | 
|  | 815 | from 0.  */ | 
|  | 816 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | 
|  | 817 | if (pmatch[reg_idx].rm_so != -1) | 
|  | 818 | { | 
|  | 819 | #ifdef RE_ENABLE_I18N | 
|  | 820 | if (BE (mctx.input.offsets_needed != 0, 0)) | 
|  | 821 | { | 
|  | 822 | pmatch[reg_idx].rm_so = | 
|  | 823 | (pmatch[reg_idx].rm_so == mctx.input.valid_len | 
|  | 824 | ? mctx.input.valid_raw_len | 
|  | 825 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); | 
|  | 826 | pmatch[reg_idx].rm_eo = | 
|  | 827 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len | 
|  | 828 | ? mctx.input.valid_raw_len | 
|  | 829 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); | 
|  | 830 | } | 
|  | 831 | #else | 
|  | 832 | assert (mctx.input.offsets_needed == 0); | 
|  | 833 | #endif | 
|  | 834 | pmatch[reg_idx].rm_so += match_first; | 
|  | 835 | pmatch[reg_idx].rm_eo += match_first; | 
|  | 836 | } | 
|  | 837 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) | 
|  | 838 | { | 
|  | 839 | pmatch[nmatch + reg_idx].rm_so = -1; | 
|  | 840 | pmatch[nmatch + reg_idx].rm_eo = -1; | 
|  | 841 | } | 
|  | 842 |  | 
|  | 843 | if (dfa->subexp_map) | 
|  | 844 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) | 
|  | 845 | if (dfa->subexp_map[reg_idx] != reg_idx) | 
|  | 846 | { | 
|  | 847 | pmatch[reg_idx + 1].rm_so | 
|  | 848 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; | 
|  | 849 | pmatch[reg_idx + 1].rm_eo | 
|  | 850 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; | 
|  | 851 | } | 
|  | 852 | } | 
|  | 853 |  | 
|  | 854 | free_return: | 
|  | 855 | re_free (mctx.state_log); | 
|  | 856 | if (dfa->nbackref) | 
|  | 857 | match_ctx_free (&mctx); | 
|  | 858 | re_string_destruct (&mctx.input); | 
|  | 859 | return err; | 
|  | 860 | } | 
|  | 861 |  | 
|  | 862 | static reg_errcode_t internal_function | 
|  | 863 | prune_impossible_nodes (re_match_context_t *mctx) | 
|  | 864 | { | 
|  | 865 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 866 | int halt_node, match_last; | 
|  | 867 | reg_errcode_t ret; | 
|  | 868 | re_dfastate_t **sifted_states; | 
|  | 869 | re_dfastate_t **lim_states = NULL; | 
|  | 870 | re_sift_context_t sctx; | 
|  | 871 | #ifdef DEBUG | 
|  | 872 | assert (mctx->state_log != NULL); | 
|  | 873 | #endif | 
|  | 874 | match_last = mctx->match_last; | 
|  | 875 | halt_node = mctx->last_node; | 
|  | 876 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1); | 
|  | 877 | if (BE (sifted_states == NULL, 0)) | 
|  | 878 | { | 
|  | 879 | ret = REG_ESPACE; | 
|  | 880 | goto free_return; | 
|  | 881 | } | 
|  | 882 | if (dfa->nbackref) | 
|  | 883 | { | 
|  | 884 | lim_states = re_malloc (re_dfastate_t *, match_last + 1); | 
|  | 885 | if (BE (lim_states == NULL, 0)) | 
|  | 886 | { | 
|  | 887 | ret = REG_ESPACE; | 
|  | 888 | goto free_return; | 
|  | 889 | } | 
|  | 890 | while (1) | 
|  | 891 | { | 
|  | 892 | memset (lim_states, '\0', | 
|  | 893 | sizeof (re_dfastate_t *) * (match_last + 1)); | 
|  | 894 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, | 
|  | 895 | match_last); | 
|  | 896 | ret = sift_states_backward (mctx, &sctx); | 
|  | 897 | re_node_set_free (&sctx.limits); | 
|  | 898 | if (BE (ret != REG_NOERROR, 0)) | 
|  | 899 | goto free_return; | 
|  | 900 | if (sifted_states[0] != NULL || lim_states[0] != NULL) | 
|  | 901 | break; | 
|  | 902 | do | 
|  | 903 | { | 
|  | 904 | --match_last; | 
|  | 905 | if (match_last < 0) | 
|  | 906 | { | 
|  | 907 | ret = REG_NOMATCH; | 
|  | 908 | goto free_return; | 
|  | 909 | } | 
|  | 910 | } while (mctx->state_log[match_last] == NULL | 
|  | 911 | || !mctx->state_log[match_last]->halt); | 
|  | 912 | halt_node = check_halt_state_context (mctx, | 
|  | 913 | mctx->state_log[match_last], | 
|  | 914 | match_last); | 
|  | 915 | } | 
|  | 916 | ret = merge_state_array (dfa, sifted_states, lim_states, | 
|  | 917 | match_last + 1); | 
|  | 918 | re_free (lim_states); | 
|  | 919 | lim_states = NULL; | 
|  | 920 | if (BE (ret != REG_NOERROR, 0)) | 
|  | 921 | goto free_return; | 
|  | 922 | } | 
|  | 923 | else | 
|  | 924 | { | 
|  | 925 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); | 
|  | 926 | ret = sift_states_backward (mctx, &sctx); | 
|  | 927 | re_node_set_free (&sctx.limits); | 
|  | 928 | if (BE (ret != REG_NOERROR, 0)) | 
|  | 929 | goto free_return; | 
|  | 930 | } | 
|  | 931 | re_free (mctx->state_log); | 
|  | 932 | mctx->state_log = sifted_states; | 
|  | 933 | sifted_states = NULL; | 
|  | 934 | mctx->last_node = halt_node; | 
|  | 935 | mctx->match_last = match_last; | 
|  | 936 | ret = REG_NOERROR; | 
|  | 937 | free_return: | 
|  | 938 | re_free (sifted_states); | 
|  | 939 | re_free (lim_states); | 
|  | 940 | return ret; | 
|  | 941 | } | 
|  | 942 |  | 
|  | 943 | /* Acquire an initial state and return it. | 
|  | 944 | We must select appropriate initial state depending on the context, | 
|  | 945 | since initial states may have constraints like "\<", "^", etc..  */ | 
|  | 946 |  | 
|  | 947 | static __inline__ re_dfastate_t * | 
|  | 948 | __attribute ((always_inline)) internal_function | 
|  | 949 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, | 
|  | 950 | int idx) | 
|  | 951 | { | 
|  | 952 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 953 | if (dfa->init_state->has_constraint) | 
|  | 954 | { | 
|  | 955 | unsigned int context; | 
|  | 956 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); | 
|  | 957 | if (IS_WORD_CONTEXT (context)) | 
|  | 958 | return dfa->init_state_word; | 
|  | 959 | else if (IS_ORDINARY_CONTEXT (context)) | 
|  | 960 | return dfa->init_state; | 
|  | 961 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) | 
|  | 962 | return dfa->init_state_begbuf; | 
|  | 963 | else if (IS_NEWLINE_CONTEXT (context)) | 
|  | 964 | return dfa->init_state_nl; | 
|  | 965 | else if (IS_BEGBUF_CONTEXT (context)) | 
|  | 966 | { | 
|  | 967 | /* It is relatively rare case, then calculate on demand.  */ | 
|  | 968 | return re_acquire_state_context (err, dfa, | 
|  | 969 | dfa->init_state->entrance_nodes, | 
|  | 970 | context); | 
|  | 971 | } | 
|  | 972 | else | 
|  | 973 | /* Must not happen?  */ | 
|  | 974 | return dfa->init_state; | 
|  | 975 | } | 
|  | 976 | else | 
|  | 977 | return dfa->init_state; | 
|  | 978 | } | 
|  | 979 |  | 
|  | 980 | /* Check whether the regular expression match input string INPUT or not, | 
|  | 981 | and return the index where the matching end, return -1 if not match, | 
|  | 982 | or return -2 in case of an error. | 
|  | 983 | FL_LONGEST_MATCH means we want the POSIX longest matching. | 
|  | 984 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the | 
|  | 985 | next place where we may want to try matching. | 
|  | 986 | Note that the matcher assume that the maching starts from the current | 
|  | 987 | index of the buffer.  */ | 
|  | 988 |  | 
|  | 989 | static int | 
|  | 990 | internal_function | 
|  | 991 | check_matching (re_match_context_t *mctx, int fl_longest_match, | 
|  | 992 | int *p_match_first) | 
|  | 993 | { | 
|  | 994 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 995 | reg_errcode_t err; | 
|  | 996 | int match = 0; | 
|  | 997 | int match_last = -1; | 
|  | 998 | int cur_str_idx = re_string_cur_idx (&mctx->input); | 
|  | 999 | re_dfastate_t *cur_state; | 
|  | 1000 | int at_init_state = p_match_first != NULL; | 
|  | 1001 | int next_start_idx = cur_str_idx; | 
|  | 1002 |  | 
|  | 1003 | err = REG_NOERROR; | 
|  | 1004 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); | 
|  | 1005 | /* An initial state must not be NULL (invalid).  */ | 
|  | 1006 | if (BE (cur_state == NULL, 0)) | 
|  | 1007 | { | 
|  | 1008 | assert (err == REG_ESPACE); | 
|  | 1009 | return -2; | 
|  | 1010 | } | 
|  | 1011 |  | 
|  | 1012 | if (mctx->state_log != NULL) | 
|  | 1013 | { | 
|  | 1014 | mctx->state_log[cur_str_idx] = cur_state; | 
|  | 1015 |  | 
|  | 1016 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them | 
|  | 1017 | later.  E.g. Processing back references.  */ | 
|  | 1018 | if (BE (dfa->nbackref, 0)) | 
|  | 1019 | { | 
|  | 1020 | at_init_state = 0; | 
|  | 1021 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); | 
|  | 1022 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1023 | return err; | 
|  | 1024 |  | 
|  | 1025 | if (cur_state->has_backref) | 
|  | 1026 | { | 
|  | 1027 | err = transit_state_bkref (mctx, &cur_state->nodes); | 
|  | 1028 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1029 | return err; | 
|  | 1030 | } | 
|  | 1031 | } | 
|  | 1032 | } | 
|  | 1033 |  | 
|  | 1034 | /* If the RE accepts NULL string.  */ | 
|  | 1035 | if (BE (cur_state->halt, 0)) | 
|  | 1036 | { | 
|  | 1037 | if (!cur_state->has_constraint | 
|  | 1038 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) | 
|  | 1039 | { | 
|  | 1040 | if (!fl_longest_match) | 
|  | 1041 | return cur_str_idx; | 
|  | 1042 | else | 
|  | 1043 | { | 
|  | 1044 | match_last = cur_str_idx; | 
|  | 1045 | match = 1; | 
|  | 1046 | } | 
|  | 1047 | } | 
|  | 1048 | } | 
|  | 1049 |  | 
|  | 1050 | while (!re_string_eoi (&mctx->input)) | 
|  | 1051 | { | 
|  | 1052 | re_dfastate_t *old_state = cur_state; | 
|  | 1053 | int next_char_idx = re_string_cur_idx (&mctx->input) + 1; | 
|  | 1054 |  | 
|  | 1055 | if (BE (next_char_idx >= mctx->input.bufs_len, 0) | 
|  | 1056 | || (BE (next_char_idx >= mctx->input.valid_len, 0) | 
|  | 1057 | && mctx->input.valid_len < mctx->input.len)) | 
|  | 1058 | { | 
|  | 1059 | err = extend_buffers (mctx); | 
|  | 1060 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1061 | { | 
|  | 1062 | assert (err == REG_ESPACE); | 
|  | 1063 | return -2; | 
|  | 1064 | } | 
|  | 1065 | } | 
|  | 1066 |  | 
|  | 1067 | cur_state = transit_state (&err, mctx, cur_state); | 
|  | 1068 | if (mctx->state_log != NULL) | 
|  | 1069 | cur_state = merge_state_with_log (&err, mctx, cur_state); | 
|  | 1070 |  | 
|  | 1071 | if (cur_state == NULL) | 
|  | 1072 | { | 
|  | 1073 | /* Reached the invalid state or an error.  Try to recover a valid | 
|  | 1074 | state using the state log, if available and if we have not | 
|  | 1075 | already found a valid (even if not the longest) match.  */ | 
|  | 1076 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1077 | return -2; | 
|  | 1078 |  | 
|  | 1079 | if (mctx->state_log == NULL | 
|  | 1080 | || (match && !fl_longest_match) | 
|  | 1081 | || (cur_state = find_recover_state (&err, mctx)) == NULL) | 
|  | 1082 | break; | 
|  | 1083 | } | 
|  | 1084 |  | 
|  | 1085 | if (BE (at_init_state, 0)) | 
|  | 1086 | { | 
|  | 1087 | if (old_state == cur_state) | 
|  | 1088 | next_start_idx = next_char_idx; | 
|  | 1089 | else | 
|  | 1090 | at_init_state = 0; | 
|  | 1091 | } | 
|  | 1092 |  | 
|  | 1093 | if (cur_state->halt) | 
|  | 1094 | { | 
|  | 1095 | /* Reached a halt state. | 
|  | 1096 | Check the halt state can satisfy the current context.  */ | 
|  | 1097 | if (!cur_state->has_constraint | 
|  | 1098 | || check_halt_state_context (mctx, cur_state, | 
|  | 1099 | re_string_cur_idx (&mctx->input))) | 
|  | 1100 | { | 
|  | 1101 | /* We found an appropriate halt state.  */ | 
|  | 1102 | match_last = re_string_cur_idx (&mctx->input); | 
|  | 1103 | match = 1; | 
|  | 1104 |  | 
|  | 1105 | /* We found a match, do not modify match_first below.  */ | 
|  | 1106 | p_match_first = NULL; | 
|  | 1107 | if (!fl_longest_match) | 
|  | 1108 | break; | 
|  | 1109 | } | 
|  | 1110 | } | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | if (p_match_first) | 
|  | 1114 | *p_match_first += next_start_idx; | 
|  | 1115 |  | 
|  | 1116 | return match_last; | 
|  | 1117 | } | 
|  | 1118 |  | 
|  | 1119 | /* Check NODE match the current context.  */ | 
|  | 1120 |  | 
|  | 1121 | static int | 
|  | 1122 | internal_function | 
|  | 1123 | check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context) | 
|  | 1124 | { | 
|  | 1125 | re_token_type_t type = dfa->nodes[node].type; | 
|  | 1126 | unsigned int constraint = dfa->nodes[node].constraint; | 
|  | 1127 | if (type != END_OF_RE) | 
|  | 1128 | return 0; | 
|  | 1129 | if (!constraint) | 
|  | 1130 | return 1; | 
|  | 1131 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) | 
|  | 1132 | return 0; | 
|  | 1133 | return 1; | 
|  | 1134 | } | 
|  | 1135 |  | 
|  | 1136 | /* Check the halt state STATE match the current context. | 
|  | 1137 | Return 0 if not match, if the node, STATE has, is a halt node and | 
|  | 1138 | match the context, return the node.  */ | 
|  | 1139 |  | 
|  | 1140 | static int | 
|  | 1141 | internal_function | 
|  | 1142 | check_halt_state_context (const re_match_context_t *mctx, | 
|  | 1143 | const re_dfastate_t *state, int idx) | 
|  | 1144 | { | 
|  | 1145 | int i; | 
|  | 1146 | unsigned int context; | 
|  | 1147 | #ifdef DEBUG | 
|  | 1148 | assert (state->halt); | 
|  | 1149 | #endif | 
|  | 1150 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); | 
|  | 1151 | for (i = 0; i < state->nodes.nelem; ++i) | 
|  | 1152 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) | 
|  | 1153 | return state->nodes.elems[i]; | 
|  | 1154 | return 0; | 
|  | 1155 | } | 
|  | 1156 |  | 
|  | 1157 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA | 
|  | 1158 | corresponding to the DFA). | 
|  | 1159 | Return the destination node, and update EPS_VIA_NODES, return -1 in case | 
|  | 1160 | of errors.  */ | 
|  | 1161 |  | 
|  | 1162 | static int | 
|  | 1163 | internal_function | 
|  | 1164 | proceed_next_node (const re_match_context_t *mctx, int nregs, regmatch_t *regs, | 
|  | 1165 | int *pidx, int node, re_node_set *eps_via_nodes, | 
|  | 1166 | struct re_fail_stack_t *fs) | 
|  | 1167 | { | 
|  | 1168 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 1169 | int i, err; | 
|  | 1170 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) | 
|  | 1171 | { | 
|  | 1172 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; | 
|  | 1173 | re_node_set *edests = &dfa->edests[node]; | 
|  | 1174 | int dest_node; | 
|  | 1175 | err = re_node_set_insert (eps_via_nodes, node); | 
|  | 1176 | if (BE (err < 0, 0)) | 
|  | 1177 | return -2; | 
|  | 1178 | /* Pick up a valid destination, or return -1 if none is found.  */ | 
|  | 1179 | for (dest_node = -1, i = 0; i < edests->nelem; ++i) | 
|  | 1180 | { | 
|  | 1181 | int candidate = edests->elems[i]; | 
|  | 1182 | if (!re_node_set_contains (cur_nodes, candidate)) | 
|  | 1183 | continue; | 
|  | 1184 | if (dest_node == -1) | 
|  | 1185 | dest_node = candidate; | 
|  | 1186 |  | 
|  | 1187 | else | 
|  | 1188 | { | 
|  | 1189 | /* In order to avoid infinite loop like "(a*)*", return the second | 
|  | 1190 | epsilon-transition if the first was already considered.  */ | 
|  | 1191 | if (re_node_set_contains (eps_via_nodes, dest_node)) | 
|  | 1192 | return candidate; | 
|  | 1193 |  | 
|  | 1194 | /* Otherwise, push the second epsilon-transition on the fail stack.  */ | 
|  | 1195 | else if (fs != NULL | 
|  | 1196 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, | 
|  | 1197 | eps_via_nodes)) | 
|  | 1198 | return -2; | 
|  | 1199 |  | 
|  | 1200 | /* We know we are going to exit.  */ | 
|  | 1201 | break; | 
|  | 1202 | } | 
|  | 1203 | } | 
|  | 1204 | return dest_node; | 
|  | 1205 | } | 
|  | 1206 | else | 
|  | 1207 | { | 
|  | 1208 | int naccepted = 0; | 
|  | 1209 | re_token_type_t type = dfa->nodes[node].type; | 
|  | 1210 |  | 
|  | 1211 | #ifdef RE_ENABLE_I18N | 
|  | 1212 | if (dfa->nodes[node].accept_mb) | 
|  | 1213 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); | 
|  | 1214 | else | 
|  | 1215 | #endif /* RE_ENABLE_I18N */ | 
|  | 1216 | if (type == OP_BACK_REF) | 
|  | 1217 | { | 
|  | 1218 | int subexp_idx = dfa->nodes[node].opr.idx + 1; | 
|  | 1219 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; | 
|  | 1220 | if (fs != NULL) | 
|  | 1221 | { | 
|  | 1222 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) | 
|  | 1223 | return -1; | 
|  | 1224 | else if (naccepted) | 
|  | 1225 | { | 
|  | 1226 | char *buf = (char *) re_string_get_buffer (&mctx->input); | 
|  | 1227 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, | 
|  | 1228 | naccepted) != 0) | 
|  | 1229 | return -1; | 
|  | 1230 | } | 
|  | 1231 | } | 
|  | 1232 |  | 
|  | 1233 | if (naccepted == 0) | 
|  | 1234 | { | 
|  | 1235 | int dest_node; | 
|  | 1236 | err = re_node_set_insert (eps_via_nodes, node); | 
|  | 1237 | if (BE (err < 0, 0)) | 
|  | 1238 | return -2; | 
|  | 1239 | dest_node = dfa->edests[node].elems[0]; | 
|  | 1240 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, | 
|  | 1241 | dest_node)) | 
|  | 1242 | return dest_node; | 
|  | 1243 | } | 
|  | 1244 | } | 
|  | 1245 |  | 
|  | 1246 | if (naccepted != 0 | 
|  | 1247 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) | 
|  | 1248 | { | 
|  | 1249 | int dest_node = dfa->nexts[node]; | 
|  | 1250 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; | 
|  | 1251 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL | 
|  | 1252 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, | 
|  | 1253 | dest_node))) | 
|  | 1254 | return -1; | 
|  | 1255 | re_node_set_empty (eps_via_nodes); | 
|  | 1256 | return dest_node; | 
|  | 1257 | } | 
|  | 1258 | } | 
|  | 1259 | return -1; | 
|  | 1260 | } | 
|  | 1261 |  | 
|  | 1262 | static reg_errcode_t | 
|  | 1263 | internal_function | 
|  | 1264 | push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int dest_node, | 
|  | 1265 | int nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | 
|  | 1266 | { | 
|  | 1267 | reg_errcode_t err; | 
|  | 1268 | int num = fs->num++; | 
|  | 1269 | if (fs->num == fs->alloc) | 
|  | 1270 | { | 
|  | 1271 | struct re_fail_stack_ent_t *new_array; | 
|  | 1272 | new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t) | 
|  | 1273 | * fs->alloc * 2)); | 
|  | 1274 | if (new_array == NULL) | 
|  | 1275 | return REG_ESPACE; | 
|  | 1276 | fs->alloc *= 2; | 
|  | 1277 | fs->stack = new_array; | 
|  | 1278 | } | 
|  | 1279 | fs->stack[num].idx = str_idx; | 
|  | 1280 | fs->stack[num].node = dest_node; | 
|  | 1281 | fs->stack[num].regs = re_malloc (regmatch_t, nregs); | 
|  | 1282 | if (fs->stack[num].regs == NULL) | 
|  | 1283 | return REG_ESPACE; | 
|  | 1284 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); | 
|  | 1285 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); | 
|  | 1286 | return err; | 
|  | 1287 | } | 
|  | 1288 |  | 
|  | 1289 | static int | 
|  | 1290 | internal_function | 
|  | 1291 | pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs, | 
|  | 1292 | regmatch_t *regs, re_node_set *eps_via_nodes) | 
|  | 1293 | { | 
|  | 1294 | int num = --fs->num; | 
|  | 1295 | assert (num >= 0); | 
|  | 1296 | *pidx = fs->stack[num].idx; | 
|  | 1297 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); | 
|  | 1298 | re_node_set_free (eps_via_nodes); | 
|  | 1299 | re_free (fs->stack[num].regs); | 
|  | 1300 | *eps_via_nodes = fs->stack[num].eps_via_nodes; | 
|  | 1301 | return fs->stack[num].node; | 
|  | 1302 | } | 
|  | 1303 |  | 
|  | 1304 | /* Set the positions where the subexpressions are starts/ends to registers | 
|  | 1305 | PMATCH. | 
|  | 1306 | Note: We assume that pmatch[0] is already set, and | 
|  | 1307 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch.  */ | 
|  | 1308 |  | 
|  | 1309 | static reg_errcode_t | 
|  | 1310 | internal_function | 
|  | 1311 | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, | 
|  | 1312 | regmatch_t *pmatch, int fl_backtrack) | 
|  | 1313 | { | 
|  | 1314 | const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | 
|  | 1315 | int idx, cur_node; | 
|  | 1316 | re_node_set eps_via_nodes; | 
|  | 1317 | struct re_fail_stack_t *fs; | 
|  | 1318 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; | 
|  | 1319 | regmatch_t *prev_idx_match; | 
|  | 1320 | int prev_idx_match_malloced = 0; | 
|  | 1321 |  | 
|  | 1322 | #ifdef DEBUG | 
|  | 1323 | assert (nmatch > 1); | 
|  | 1324 | assert (mctx->state_log != NULL); | 
|  | 1325 | #endif | 
|  | 1326 | if (fl_backtrack) | 
|  | 1327 | { | 
|  | 1328 | fs = &fs_body; | 
|  | 1329 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); | 
|  | 1330 | if (fs->stack == NULL) | 
|  | 1331 | return REG_ESPACE; | 
|  | 1332 | } | 
|  | 1333 | else | 
|  | 1334 | fs = NULL; | 
|  | 1335 |  | 
|  | 1336 | cur_node = dfa->init_node; | 
|  | 1337 | re_node_set_init_empty (&eps_via_nodes); | 
|  | 1338 |  | 
|  | 1339 | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) | 
|  | 1340 | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); | 
|  | 1341 | else | 
|  | 1342 | { | 
|  | 1343 | prev_idx_match = re_malloc (regmatch_t, nmatch); | 
|  | 1344 | if (prev_idx_match == NULL) | 
|  | 1345 | { | 
|  | 1346 | free_fail_stack_return (fs); | 
|  | 1347 | return REG_ESPACE; | 
|  | 1348 | } | 
|  | 1349 | prev_idx_match_malloced = 1; | 
|  | 1350 | } | 
|  | 1351 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | 
|  | 1352 |  | 
|  | 1353 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) | 
|  | 1354 | { | 
|  | 1355 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); | 
|  | 1356 |  | 
|  | 1357 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) | 
|  | 1358 | { | 
|  | 1359 | int reg_idx; | 
|  | 1360 | if (fs) | 
|  | 1361 | { | 
|  | 1362 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | 
|  | 1363 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) | 
|  | 1364 | break; | 
|  | 1365 | if (reg_idx == nmatch) | 
|  | 1366 | { | 
|  | 1367 | re_node_set_free (&eps_via_nodes); | 
|  | 1368 | if (prev_idx_match_malloced) | 
|  | 1369 | re_free (prev_idx_match); | 
|  | 1370 | return free_fail_stack_return (fs); | 
|  | 1371 | } | 
|  | 1372 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | 
|  | 1373 | &eps_via_nodes); | 
|  | 1374 | } | 
|  | 1375 | else | 
|  | 1376 | { | 
|  | 1377 | re_node_set_free (&eps_via_nodes); | 
|  | 1378 | if (prev_idx_match_malloced) | 
|  | 1379 | re_free (prev_idx_match); | 
|  | 1380 | return REG_NOERROR; | 
|  | 1381 | } | 
|  | 1382 | } | 
|  | 1383 |  | 
|  | 1384 | /* Proceed to next node.  */ | 
|  | 1385 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, | 
|  | 1386 | &eps_via_nodes, fs); | 
|  | 1387 |  | 
|  | 1388 | if (BE (cur_node < 0, 0)) | 
|  | 1389 | { | 
|  | 1390 | if (BE (cur_node == -2, 0)) | 
|  | 1391 | { | 
|  | 1392 | re_node_set_free (&eps_via_nodes); | 
|  | 1393 | if (prev_idx_match_malloced) | 
|  | 1394 | re_free (prev_idx_match); | 
|  | 1395 | free_fail_stack_return (fs); | 
|  | 1396 | return REG_ESPACE; | 
|  | 1397 | } | 
|  | 1398 | if (fs) | 
|  | 1399 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | 
|  | 1400 | &eps_via_nodes); | 
|  | 1401 | else | 
|  | 1402 | { | 
|  | 1403 | re_node_set_free (&eps_via_nodes); | 
|  | 1404 | if (prev_idx_match_malloced) | 
|  | 1405 | re_free (prev_idx_match); | 
|  | 1406 | return REG_NOMATCH; | 
|  | 1407 | } | 
|  | 1408 | } | 
|  | 1409 | } | 
|  | 1410 | re_node_set_free (&eps_via_nodes); | 
|  | 1411 | if (prev_idx_match_malloced) | 
|  | 1412 | re_free (prev_idx_match); | 
|  | 1413 | return free_fail_stack_return (fs); | 
|  | 1414 | } | 
|  | 1415 |  | 
|  | 1416 | static reg_errcode_t | 
|  | 1417 | internal_function | 
|  | 1418 | free_fail_stack_return (struct re_fail_stack_t *fs) | 
|  | 1419 | { | 
|  | 1420 | if (fs) | 
|  | 1421 | { | 
|  | 1422 | int fs_idx; | 
|  | 1423 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) | 
|  | 1424 | { | 
|  | 1425 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); | 
|  | 1426 | re_free (fs->stack[fs_idx].regs); | 
|  | 1427 | } | 
|  | 1428 | re_free (fs->stack); | 
|  | 1429 | } | 
|  | 1430 | return REG_NOERROR; | 
|  | 1431 | } | 
|  | 1432 |  | 
|  | 1433 | static void | 
|  | 1434 | internal_function | 
|  | 1435 | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | 
|  | 1436 | regmatch_t *prev_idx_match, int cur_node, int cur_idx, int nmatch) | 
|  | 1437 | { | 
|  | 1438 | int type = dfa->nodes[cur_node].type; | 
|  | 1439 | if (type == OP_OPEN_SUBEXP) | 
|  | 1440 | { | 
|  | 1441 | int reg_num = dfa->nodes[cur_node].opr.idx + 1; | 
|  | 1442 |  | 
|  | 1443 | /* We are at the first node of this sub expression.  */ | 
|  | 1444 | if (reg_num < nmatch) | 
|  | 1445 | { | 
|  | 1446 | pmatch[reg_num].rm_so = cur_idx; | 
|  | 1447 | pmatch[reg_num].rm_eo = -1; | 
|  | 1448 | } | 
|  | 1449 | } | 
|  | 1450 | else if (type == OP_CLOSE_SUBEXP) | 
|  | 1451 | { | 
|  | 1452 | int reg_num = dfa->nodes[cur_node].opr.idx + 1; | 
|  | 1453 | if (reg_num < nmatch) | 
|  | 1454 | { | 
|  | 1455 | /* We are at the last node of this sub expression.  */ | 
|  | 1456 | if (pmatch[reg_num].rm_so < cur_idx) | 
|  | 1457 | { | 
|  | 1458 | pmatch[reg_num].rm_eo = cur_idx; | 
|  | 1459 | /* This is a non-empty match or we are not inside an optional | 
|  | 1460 | subexpression.  Accept this right away.  */ | 
|  | 1461 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | 
|  | 1462 | } | 
|  | 1463 | else | 
|  | 1464 | { | 
|  | 1465 | if (dfa->nodes[cur_node].opt_subexp | 
|  | 1466 | && prev_idx_match[reg_num].rm_so != -1) | 
|  | 1467 | /* We transited through an empty match for an optional | 
|  | 1468 | subexpression, like (a?)*, and this is not the subexp's | 
|  | 1469 | first match.  Copy back the old content of the registers | 
|  | 1470 | so that matches of an inner subexpression are undone as | 
|  | 1471 | well, like in ((a?))*.  */ | 
|  | 1472 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); | 
|  | 1473 | else | 
|  | 1474 | /* We completed a subexpression, but it may be part of | 
|  | 1475 | an optional one, so do not update PREV_IDX_MATCH.  */ | 
|  | 1476 | pmatch[reg_num].rm_eo = cur_idx; | 
|  | 1477 | } | 
|  | 1478 | } | 
|  | 1479 | } | 
|  | 1480 | } | 
|  | 1481 |  | 
|  | 1482 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 | 
|  | 1483 | and sift the nodes in each states according to the following rules. | 
|  | 1484 | Updated state_log will be wrote to STATE_LOG. | 
|  | 1485 |  | 
|  | 1486 | Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... | 
|  | 1487 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): | 
|  | 1488 | If `a' isn't the LAST_NODE and `a' can't epsilon transit to | 
|  | 1489 | the LAST_NODE, we throw away the node `a'. | 
|  | 1490 | 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts | 
|  | 1491 | string `s' and transit to `b': | 
|  | 1492 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw | 
|  | 1493 | away the node `a'. | 
|  | 1494 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is | 
|  | 1495 | thrown away, we throw away the node `a'. | 
|  | 1496 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': | 
|  | 1497 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the | 
|  | 1498 | node `a'. | 
|  | 1499 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, | 
|  | 1500 | we throw away the node `a'.  */ | 
|  | 1501 |  | 
|  | 1502 | #define STATE_NODE_CONTAINS(state,node) \ | 
|  | 1503 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) | 
|  | 1504 |  | 
|  | 1505 | static reg_errcode_t | 
|  | 1506 | internal_function | 
|  | 1507 | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) | 
|  | 1508 | { | 
|  | 1509 | reg_errcode_t err; | 
|  | 1510 | int null_cnt = 0; | 
|  | 1511 | int str_idx = sctx->last_str_idx; | 
|  | 1512 | re_node_set cur_dest; | 
|  | 1513 |  | 
|  | 1514 | #ifdef DEBUG | 
|  | 1515 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); | 
|  | 1516 | #endif | 
|  | 1517 |  | 
|  | 1518 | /* Build sifted state_log[str_idx].  It has the nodes which can epsilon | 
|  | 1519 | transit to the last_node and the last_node itself.  */ | 
|  | 1520 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); | 
|  | 1521 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1522 | return err; | 
|  | 1523 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | 
|  | 1524 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1525 | goto free_return; | 
|  | 1526 |  | 
|  | 1527 | /* Then check each states in the state_log.  */ | 
|  | 1528 | while (str_idx > 0) | 
|  | 1529 | { | 
|  | 1530 | /* Update counters.  */ | 
|  | 1531 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; | 
|  | 1532 | if (null_cnt > mctx->max_mb_elem_len) | 
|  | 1533 | { | 
|  | 1534 | memset (sctx->sifted_states, '\0', | 
|  | 1535 | sizeof (re_dfastate_t *) * str_idx); | 
|  | 1536 | re_node_set_free (&cur_dest); | 
|  | 1537 | return REG_NOERROR; | 
|  | 1538 | } | 
|  | 1539 | re_node_set_empty (&cur_dest); | 
|  | 1540 | --str_idx; | 
|  | 1541 |  | 
|  | 1542 | if (mctx->state_log[str_idx]) | 
|  | 1543 | { | 
|  | 1544 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); | 
|  | 1545 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1546 | goto free_return; | 
|  | 1547 | } | 
|  | 1548 |  | 
|  | 1549 | /* Add all the nodes which satisfy the following conditions: | 
|  | 1550 | - It can epsilon transit to a node in CUR_DEST. | 
|  | 1551 | - It is in CUR_SRC. | 
|  | 1552 | And update state_log.  */ | 
|  | 1553 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | 
|  | 1554 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1555 | goto free_return; | 
|  | 1556 | } | 
|  | 1557 | err = REG_NOERROR; | 
|  | 1558 | free_return: | 
|  | 1559 | re_node_set_free (&cur_dest); | 
|  | 1560 | return err; | 
|  | 1561 | } | 
|  | 1562 |  | 
|  | 1563 | static reg_errcode_t | 
|  | 1564 | internal_function | 
|  | 1565 | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
|  | 1566 | int str_idx, re_node_set *cur_dest) | 
|  | 1567 | { | 
|  | 1568 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 1569 | const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; | 
|  | 1570 | int i; | 
|  | 1571 |  | 
|  | 1572 | /* Then build the next sifted state. | 
|  | 1573 | We build the next sifted state on `cur_dest', and update | 
|  | 1574 | `sifted_states[str_idx]' with `cur_dest'. | 
|  | 1575 | Note: | 
|  | 1576 | `cur_dest' is the sifted state from `state_log[str_idx + 1]'. | 
|  | 1577 | `cur_src' points the node_set of the old `state_log[str_idx]' | 
|  | 1578 | (with the epsilon nodes pre-filtered out).  */ | 
|  | 1579 | for (i = 0; i < cur_src->nelem; i++) | 
|  | 1580 | { | 
|  | 1581 | int prev_node = cur_src->elems[i]; | 
|  | 1582 | int naccepted = 0; | 
|  | 1583 | int ret; | 
|  | 1584 |  | 
|  | 1585 | #ifdef DEBUG | 
|  | 1586 | re_token_type_t type = dfa->nodes[prev_node].type; | 
|  | 1587 | assert (!IS_EPSILON_NODE (type)); | 
|  | 1588 | #endif | 
|  | 1589 | #ifdef RE_ENABLE_I18N | 
|  | 1590 | /* If the node may accept `multi byte'.  */ | 
|  | 1591 | if (dfa->nodes[prev_node].accept_mb) | 
|  | 1592 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, | 
|  | 1593 | str_idx, sctx->last_str_idx); | 
|  | 1594 | #endif /* RE_ENABLE_I18N */ | 
|  | 1595 |  | 
|  | 1596 | /* We don't check backreferences here. | 
|  | 1597 | See update_cur_sifted_state().  */ | 
|  | 1598 | if (!naccepted | 
|  | 1599 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) | 
|  | 1600 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], | 
|  | 1601 | dfa->nexts[prev_node])) | 
|  | 1602 | naccepted = 1; | 
|  | 1603 |  | 
|  | 1604 | if (naccepted == 0) | 
|  | 1605 | continue; | 
|  | 1606 |  | 
|  | 1607 | if (sctx->limits.nelem) | 
|  | 1608 | { | 
|  | 1609 | int to_idx = str_idx + naccepted; | 
|  | 1610 | if (check_dst_limits (mctx, &sctx->limits, | 
|  | 1611 | dfa->nexts[prev_node], to_idx, | 
|  | 1612 | prev_node, str_idx)) | 
|  | 1613 | continue; | 
|  | 1614 | } | 
|  | 1615 | ret = re_node_set_insert (cur_dest, prev_node); | 
|  | 1616 | if (BE (ret == -1, 0)) | 
|  | 1617 | return REG_ESPACE; | 
|  | 1618 | } | 
|  | 1619 |  | 
|  | 1620 | return REG_NOERROR; | 
|  | 1621 | } | 
|  | 1622 |  | 
|  | 1623 | /* Helper functions.  */ | 
|  | 1624 |  | 
|  | 1625 | static reg_errcode_t | 
|  | 1626 | internal_function | 
|  | 1627 | clean_state_log_if_needed (re_match_context_t *mctx, int next_state_log_idx) | 
|  | 1628 | { | 
|  | 1629 | int top = mctx->state_log_top; | 
|  | 1630 |  | 
|  | 1631 | if (next_state_log_idx >= mctx->input.bufs_len | 
|  | 1632 | || (next_state_log_idx >= mctx->input.valid_len | 
|  | 1633 | && mctx->input.valid_len < mctx->input.len)) | 
|  | 1634 | { | 
|  | 1635 | reg_errcode_t err; | 
|  | 1636 | err = extend_buffers (mctx); | 
|  | 1637 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1638 | return err; | 
|  | 1639 | } | 
|  | 1640 |  | 
|  | 1641 | if (top < next_state_log_idx) | 
|  | 1642 | { | 
|  | 1643 | memset (mctx->state_log + top + 1, '\0', | 
|  | 1644 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); | 
|  | 1645 | mctx->state_log_top = next_state_log_idx; | 
|  | 1646 | } | 
|  | 1647 | return REG_NOERROR; | 
|  | 1648 | } | 
|  | 1649 |  | 
|  | 1650 | static reg_errcode_t | 
|  | 1651 | internal_function | 
|  | 1652 | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, | 
|  | 1653 | re_dfastate_t **src, int num) | 
|  | 1654 | { | 
|  | 1655 | int st_idx; | 
|  | 1656 | reg_errcode_t err; | 
|  | 1657 | for (st_idx = 0; st_idx < num; ++st_idx) | 
|  | 1658 | { | 
|  | 1659 | if (dst[st_idx] == NULL) | 
|  | 1660 | dst[st_idx] = src[st_idx]; | 
|  | 1661 | else if (src[st_idx] != NULL) | 
|  | 1662 | { | 
|  | 1663 | re_node_set merged_set; | 
|  | 1664 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, | 
|  | 1665 | &src[st_idx]->nodes); | 
|  | 1666 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1667 | return err; | 
|  | 1668 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); | 
|  | 1669 | re_node_set_free (&merged_set); | 
|  | 1670 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1671 | return err; | 
|  | 1672 | } | 
|  | 1673 | } | 
|  | 1674 | return REG_NOERROR; | 
|  | 1675 | } | 
|  | 1676 |  | 
|  | 1677 | static reg_errcode_t | 
|  | 1678 | internal_function | 
|  | 1679 | update_cur_sifted_state (const re_match_context_t *mctx, | 
|  | 1680 | re_sift_context_t *sctx, int str_idx, | 
|  | 1681 | re_node_set *dest_nodes) | 
|  | 1682 | { | 
|  | 1683 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 1684 | reg_errcode_t err = REG_NOERROR; | 
|  | 1685 | const re_node_set *candidates; | 
|  | 1686 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL | 
|  | 1687 | : &mctx->state_log[str_idx]->nodes); | 
|  | 1688 |  | 
|  | 1689 | if (dest_nodes->nelem == 0) | 
|  | 1690 | sctx->sifted_states[str_idx] = NULL; | 
|  | 1691 | else | 
|  | 1692 | { | 
|  | 1693 | if (candidates) | 
|  | 1694 | { | 
|  | 1695 | /* At first, add the nodes which can epsilon transit to a node in | 
|  | 1696 | DEST_NODE.  */ | 
|  | 1697 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); | 
|  | 1698 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1699 | return err; | 
|  | 1700 |  | 
|  | 1701 | /* Then, check the limitations in the current sift_context.  */ | 
|  | 1702 | if (sctx->limits.nelem) | 
|  | 1703 | { | 
|  | 1704 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, | 
|  | 1705 | mctx->bkref_ents, str_idx); | 
|  | 1706 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1707 | return err; | 
|  | 1708 | } | 
|  | 1709 | } | 
|  | 1710 |  | 
|  | 1711 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); | 
|  | 1712 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1713 | return err; | 
|  | 1714 | } | 
|  | 1715 |  | 
|  | 1716 | if (candidates && mctx->state_log[str_idx]->has_backref) | 
|  | 1717 | { | 
|  | 1718 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); | 
|  | 1719 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1720 | return err; | 
|  | 1721 | } | 
|  | 1722 | return REG_NOERROR; | 
|  | 1723 | } | 
|  | 1724 |  | 
|  | 1725 | static reg_errcode_t | 
|  | 1726 | internal_function | 
|  | 1727 | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, | 
|  | 1728 | const re_node_set *candidates) | 
|  | 1729 | { | 
|  | 1730 | reg_errcode_t err = REG_NOERROR; | 
|  | 1731 | int i; | 
|  | 1732 |  | 
|  | 1733 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); | 
|  | 1734 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1735 | return err; | 
|  | 1736 |  | 
|  | 1737 | if (!state->inveclosure.alloc) | 
|  | 1738 | { | 
|  | 1739 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); | 
|  | 1740 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1741 | return REG_ESPACE; | 
|  | 1742 | for (i = 0; i < dest_nodes->nelem; i++) | 
|  | 1743 | re_node_set_merge (&state->inveclosure, | 
|  | 1744 | dfa->inveclosures + dest_nodes->elems[i]); | 
|  | 1745 | } | 
|  | 1746 | return re_node_set_add_intersect (dest_nodes, candidates, | 
|  | 1747 | &state->inveclosure); | 
|  | 1748 | } | 
|  | 1749 |  | 
|  | 1750 | static reg_errcode_t | 
|  | 1751 | internal_function | 
|  | 1752 | sub_epsilon_src_nodes (const re_dfa_t *dfa, int node, re_node_set *dest_nodes, | 
|  | 1753 | const re_node_set *candidates) | 
|  | 1754 | { | 
|  | 1755 | int ecl_idx; | 
|  | 1756 | reg_errcode_t err; | 
|  | 1757 | re_node_set *inv_eclosure = dfa->inveclosures + node; | 
|  | 1758 | re_node_set except_nodes; | 
|  | 1759 | re_node_set_init_empty (&except_nodes); | 
|  | 1760 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | 
|  | 1761 | { | 
|  | 1762 | int cur_node = inv_eclosure->elems[ecl_idx]; | 
|  | 1763 | if (cur_node == node) | 
|  | 1764 | continue; | 
|  | 1765 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) | 
|  | 1766 | { | 
|  | 1767 | int edst1 = dfa->edests[cur_node].elems[0]; | 
|  | 1768 | int edst2 = ((dfa->edests[cur_node].nelem > 1) | 
|  | 1769 | ? dfa->edests[cur_node].elems[1] : -1); | 
|  | 1770 | if ((!re_node_set_contains (inv_eclosure, edst1) | 
|  | 1771 | && re_node_set_contains (dest_nodes, edst1)) | 
|  | 1772 | || (edst2 > 0 | 
|  | 1773 | && !re_node_set_contains (inv_eclosure, edst2) | 
|  | 1774 | && re_node_set_contains (dest_nodes, edst2))) | 
|  | 1775 | { | 
|  | 1776 | err = re_node_set_add_intersect (&except_nodes, candidates, | 
|  | 1777 | dfa->inveclosures + cur_node); | 
|  | 1778 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1779 | { | 
|  | 1780 | re_node_set_free (&except_nodes); | 
|  | 1781 | return err; | 
|  | 1782 | } | 
|  | 1783 | } | 
|  | 1784 | } | 
|  | 1785 | } | 
|  | 1786 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | 
|  | 1787 | { | 
|  | 1788 | int cur_node = inv_eclosure->elems[ecl_idx]; | 
|  | 1789 | if (!re_node_set_contains (&except_nodes, cur_node)) | 
|  | 1790 | { | 
|  | 1791 | int idx = re_node_set_contains (dest_nodes, cur_node) - 1; | 
|  | 1792 | re_node_set_remove_at (dest_nodes, idx); | 
|  | 1793 | } | 
|  | 1794 | } | 
|  | 1795 | re_node_set_free (&except_nodes); | 
|  | 1796 | return REG_NOERROR; | 
|  | 1797 | } | 
|  | 1798 |  | 
|  | 1799 | static int | 
|  | 1800 | internal_function | 
|  | 1801 | check_dst_limits (const re_match_context_t *mctx, re_node_set *limits, | 
|  | 1802 | int dst_node, int dst_idx, int src_node, int src_idx) | 
|  | 1803 | { | 
|  | 1804 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 1805 | int lim_idx, src_pos, dst_pos; | 
|  | 1806 |  | 
|  | 1807 | int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); | 
|  | 1808 | int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); | 
|  | 1809 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | 
|  | 1810 | { | 
|  | 1811 | int subexp_idx; | 
|  | 1812 | struct re_backref_cache_entry *ent; | 
|  | 1813 | ent = mctx->bkref_ents + limits->elems[lim_idx]; | 
|  | 1814 | subexp_idx = dfa->nodes[ent->node].opr.idx; | 
|  | 1815 |  | 
|  | 1816 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | 
|  | 1817 | subexp_idx, dst_node, dst_idx, | 
|  | 1818 | dst_bkref_idx); | 
|  | 1819 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | 
|  | 1820 | subexp_idx, src_node, src_idx, | 
|  | 1821 | src_bkref_idx); | 
|  | 1822 |  | 
|  | 1823 | /* In case of: | 
|  | 1824 | <src> <dst> ( <subexp> ) | 
|  | 1825 | ( <subexp> ) <src> <dst> | 
|  | 1826 | ( <subexp1> <src> <subexp2> <dst> <subexp3> )  */ | 
|  | 1827 | if (src_pos == dst_pos) | 
|  | 1828 | continue; /* This is unrelated limitation.  */ | 
|  | 1829 | else | 
|  | 1830 | return 1; | 
|  | 1831 | } | 
|  | 1832 | return 0; | 
|  | 1833 | } | 
|  | 1834 |  | 
|  | 1835 | static int | 
|  | 1836 | internal_function | 
|  | 1837 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, | 
|  | 1838 | int subexp_idx, int from_node, int bkref_idx) | 
|  | 1839 | { | 
|  | 1840 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 1841 | const re_node_set *eclosures = dfa->eclosures + from_node; | 
|  | 1842 | int node_idx; | 
|  | 1843 |  | 
|  | 1844 | /* Else, we are on the boundary: examine the nodes on the epsilon | 
|  | 1845 | closure.  */ | 
|  | 1846 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) | 
|  | 1847 | { | 
|  | 1848 | int node = eclosures->elems[node_idx]; | 
|  | 1849 | switch (dfa->nodes[node].type) | 
|  | 1850 | { | 
|  | 1851 | case OP_BACK_REF: | 
|  | 1852 | if (bkref_idx != -1) | 
|  | 1853 | { | 
|  | 1854 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; | 
|  | 1855 | do | 
|  | 1856 | { | 
|  | 1857 | int dst, cpos; | 
|  | 1858 |  | 
|  | 1859 | if (ent->node != node) | 
|  | 1860 | continue; | 
|  | 1861 |  | 
|  | 1862 | if (subexp_idx < BITSET_WORD_BITS | 
|  | 1863 | && !(ent->eps_reachable_subexps_map | 
|  | 1864 | & ((bitset_word_t) 1 << subexp_idx))) | 
|  | 1865 | continue; | 
|  | 1866 |  | 
|  | 1867 | /* Recurse trying to reach the OP_OPEN_SUBEXP and | 
|  | 1868 | OP_CLOSE_SUBEXP cases below.  But, if the | 
|  | 1869 | destination node is the same node as the source | 
|  | 1870 | node, don't recurse because it would cause an | 
|  | 1871 | infinite loop: a regex that exhibits this behavior | 
|  | 1872 | is ()\1*\1*  */ | 
|  | 1873 | dst = dfa->edests[node].elems[0]; | 
|  | 1874 | if (dst == from_node) | 
|  | 1875 | { | 
|  | 1876 | if (boundaries & 1) | 
|  | 1877 | return -1; | 
|  | 1878 | else /* if (boundaries & 2) */ | 
|  | 1879 | return 0; | 
|  | 1880 | } | 
|  | 1881 |  | 
|  | 1882 | cpos = | 
|  | 1883 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | 
|  | 1884 | dst, bkref_idx); | 
|  | 1885 | if (cpos == -1 /* && (boundaries & 1) */) | 
|  | 1886 | return -1; | 
|  | 1887 | if (cpos == 0 && (boundaries & 2)) | 
|  | 1888 | return 0; | 
|  | 1889 |  | 
|  | 1890 | if (subexp_idx < BITSET_WORD_BITS) | 
|  | 1891 | ent->eps_reachable_subexps_map | 
|  | 1892 | &= ~((bitset_word_t) 1 << subexp_idx); | 
|  | 1893 | } | 
|  | 1894 | while (ent++->more); | 
|  | 1895 | } | 
|  | 1896 | break; | 
|  | 1897 |  | 
|  | 1898 | case OP_OPEN_SUBEXP: | 
|  | 1899 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) | 
|  | 1900 | return -1; | 
|  | 1901 | break; | 
|  | 1902 |  | 
|  | 1903 | case OP_CLOSE_SUBEXP: | 
|  | 1904 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) | 
|  | 1905 | return 0; | 
|  | 1906 | break; | 
|  | 1907 |  | 
|  | 1908 | default: | 
|  | 1909 | break; | 
|  | 1910 | } | 
|  | 1911 | } | 
|  | 1912 |  | 
|  | 1913 | return (boundaries & 2) ? 1 : 0; | 
|  | 1914 | } | 
|  | 1915 |  | 
|  | 1916 | static int | 
|  | 1917 | internal_function | 
|  | 1918 | check_dst_limits_calc_pos (const re_match_context_t *mctx, int limit, | 
|  | 1919 | int subexp_idx, int from_node, int str_idx, | 
|  | 1920 | int bkref_idx) | 
|  | 1921 | { | 
|  | 1922 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; | 
|  | 1923 | int boundaries; | 
|  | 1924 |  | 
|  | 1925 | /* If we are outside the range of the subexpression, return -1 or 1.  */ | 
|  | 1926 | if (str_idx < lim->subexp_from) | 
|  | 1927 | return -1; | 
|  | 1928 |  | 
|  | 1929 | if (lim->subexp_to < str_idx) | 
|  | 1930 | return 1; | 
|  | 1931 |  | 
|  | 1932 | /* If we are within the subexpression, return 0.  */ | 
|  | 1933 | boundaries = (str_idx == lim->subexp_from); | 
|  | 1934 | boundaries |= (str_idx == lim->subexp_to) << 1; | 
|  | 1935 | if (boundaries == 0) | 
|  | 1936 | return 0; | 
|  | 1937 |  | 
|  | 1938 | /* Else, examine epsilon closure.  */ | 
|  | 1939 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | 
|  | 1940 | from_node, bkref_idx); | 
|  | 1941 | } | 
|  | 1942 |  | 
|  | 1943 | /* Check the limitations of sub expressions LIMITS, and remove the nodes | 
|  | 1944 | which are against limitations from DEST_NODES. */ | 
|  | 1945 |  | 
|  | 1946 | static reg_errcode_t | 
|  | 1947 | internal_function | 
|  | 1948 | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, | 
|  | 1949 | const re_node_set *candidates, re_node_set *limits, | 
|  | 1950 | struct re_backref_cache_entry *bkref_ents, int str_idx) | 
|  | 1951 | { | 
|  | 1952 | reg_errcode_t err; | 
|  | 1953 | int node_idx, lim_idx; | 
|  | 1954 |  | 
|  | 1955 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | 
|  | 1956 | { | 
|  | 1957 | int subexp_idx; | 
|  | 1958 | struct re_backref_cache_entry *ent; | 
|  | 1959 | ent = bkref_ents + limits->elems[lim_idx]; | 
|  | 1960 |  | 
|  | 1961 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) | 
|  | 1962 | continue; /* This is unrelated limitation.  */ | 
|  | 1963 |  | 
|  | 1964 | subexp_idx = dfa->nodes[ent->node].opr.idx; | 
|  | 1965 | if (ent->subexp_to == str_idx) | 
|  | 1966 | { | 
|  | 1967 | int ops_node = -1; | 
|  | 1968 | int cls_node = -1; | 
|  | 1969 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
|  | 1970 | { | 
|  | 1971 | int node = dest_nodes->elems[node_idx]; | 
|  | 1972 | re_token_type_t type = dfa->nodes[node].type; | 
|  | 1973 | if (type == OP_OPEN_SUBEXP | 
|  | 1974 | && subexp_idx == dfa->nodes[node].opr.idx) | 
|  | 1975 | ops_node = node; | 
|  | 1976 | else if (type == OP_CLOSE_SUBEXP | 
|  | 1977 | && subexp_idx == dfa->nodes[node].opr.idx) | 
|  | 1978 | cls_node = node; | 
|  | 1979 | } | 
|  | 1980 |  | 
|  | 1981 | /* Check the limitation of the open subexpression.  */ | 
|  | 1982 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from).  */ | 
|  | 1983 | if (ops_node >= 0) | 
|  | 1984 | { | 
|  | 1985 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, | 
|  | 1986 | candidates); | 
|  | 1987 | if (BE (err != REG_NOERROR, 0)) | 
|  | 1988 | return err; | 
|  | 1989 | } | 
|  | 1990 |  | 
|  | 1991 | /* Check the limitation of the close subexpression.  */ | 
|  | 1992 | if (cls_node >= 0) | 
|  | 1993 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
|  | 1994 | { | 
|  | 1995 | int node = dest_nodes->elems[node_idx]; | 
|  | 1996 | if (!re_node_set_contains (dfa->inveclosures + node, | 
|  | 1997 | cls_node) | 
|  | 1998 | && !re_node_set_contains (dfa->eclosures + node, | 
|  | 1999 | cls_node)) | 
|  | 2000 | { | 
|  | 2001 | /* It is against this limitation. | 
|  | 2002 | Remove it form the current sifted state.  */ | 
|  | 2003 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | 
|  | 2004 | candidates); | 
|  | 2005 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2006 | return err; | 
|  | 2007 | --node_idx; | 
|  | 2008 | } | 
|  | 2009 | } | 
|  | 2010 | } | 
|  | 2011 | else /* (ent->subexp_to != str_idx)  */ | 
|  | 2012 | { | 
|  | 2013 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
|  | 2014 | { | 
|  | 2015 | int node = dest_nodes->elems[node_idx]; | 
|  | 2016 | re_token_type_t type = dfa->nodes[node].type; | 
|  | 2017 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) | 
|  | 2018 | { | 
|  | 2019 | if (subexp_idx != dfa->nodes[node].opr.idx) | 
|  | 2020 | continue; | 
|  | 2021 | /* It is against this limitation. | 
|  | 2022 | Remove it form the current sifted state.  */ | 
|  | 2023 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | 
|  | 2024 | candidates); | 
|  | 2025 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2026 | return err; | 
|  | 2027 | } | 
|  | 2028 | } | 
|  | 2029 | } | 
|  | 2030 | } | 
|  | 2031 | return REG_NOERROR; | 
|  | 2032 | } | 
|  | 2033 |  | 
|  | 2034 | static reg_errcode_t | 
|  | 2035 | internal_function | 
|  | 2036 | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
|  | 2037 | int str_idx, const re_node_set *candidates) | 
|  | 2038 | { | 
|  | 2039 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2040 | reg_errcode_t err; | 
|  | 2041 | int node_idx, node; | 
|  | 2042 | re_sift_context_t local_sctx; | 
|  | 2043 | int first_idx = search_cur_bkref_entry (mctx, str_idx); | 
|  | 2044 |  | 
|  | 2045 | if (first_idx == -1) | 
|  | 2046 | return REG_NOERROR; | 
|  | 2047 |  | 
|  | 2048 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized.  */ | 
|  | 2049 |  | 
|  | 2050 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) | 
|  | 2051 | { | 
|  | 2052 | int enabled_idx; | 
|  | 2053 | re_token_type_t type; | 
|  | 2054 | struct re_backref_cache_entry *entry; | 
|  | 2055 | node = candidates->elems[node_idx]; | 
|  | 2056 | type = dfa->nodes[node].type; | 
|  | 2057 | /* Avoid infinite loop for the REs like "()\1+".  */ | 
|  | 2058 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) | 
|  | 2059 | continue; | 
|  | 2060 | if (type != OP_BACK_REF) | 
|  | 2061 | continue; | 
|  | 2062 |  | 
|  | 2063 | entry = mctx->bkref_ents + first_idx; | 
|  | 2064 | enabled_idx = first_idx; | 
|  | 2065 | do | 
|  | 2066 | { | 
|  | 2067 | int subexp_len; | 
|  | 2068 | int to_idx; | 
|  | 2069 | int dst_node; | 
|  | 2070 | int ret; | 
|  | 2071 | re_dfastate_t *cur_state; | 
|  | 2072 |  | 
|  | 2073 | if (entry->node != node) | 
|  | 2074 | continue; | 
|  | 2075 | subexp_len = entry->subexp_to - entry->subexp_from; | 
|  | 2076 | to_idx = str_idx + subexp_len; | 
|  | 2077 | dst_node = (subexp_len ? dfa->nexts[node] | 
|  | 2078 | : dfa->edests[node].elems[0]); | 
|  | 2079 |  | 
|  | 2080 | if (to_idx > sctx->last_str_idx | 
|  | 2081 | || sctx->sifted_states[to_idx] == NULL | 
|  | 2082 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) | 
|  | 2083 | || check_dst_limits (mctx, &sctx->limits, node, | 
|  | 2084 | str_idx, dst_node, to_idx)) | 
|  | 2085 | continue; | 
|  | 2086 |  | 
|  | 2087 | if (local_sctx.sifted_states == NULL) | 
|  | 2088 | { | 
|  | 2089 | local_sctx = *sctx; | 
|  | 2090 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); | 
|  | 2091 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2092 | goto free_return; | 
|  | 2093 | } | 
|  | 2094 | local_sctx.last_node = node; | 
|  | 2095 | local_sctx.last_str_idx = str_idx; | 
|  | 2096 | ret = re_node_set_insert (&local_sctx.limits, enabled_idx); | 
|  | 2097 | if (BE (ret < 0, 0)) | 
|  | 2098 | { | 
|  | 2099 | err = REG_ESPACE; | 
|  | 2100 | goto free_return; | 
|  | 2101 | } | 
|  | 2102 | cur_state = local_sctx.sifted_states[str_idx]; | 
|  | 2103 | err = sift_states_backward (mctx, &local_sctx); | 
|  | 2104 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2105 | goto free_return; | 
|  | 2106 | if (sctx->limited_states != NULL) | 
|  | 2107 | { | 
|  | 2108 | err = merge_state_array (dfa, sctx->limited_states, | 
|  | 2109 | local_sctx.sifted_states, | 
|  | 2110 | str_idx + 1); | 
|  | 2111 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2112 | goto free_return; | 
|  | 2113 | } | 
|  | 2114 | local_sctx.sifted_states[str_idx] = cur_state; | 
|  | 2115 | re_node_set_remove (&local_sctx.limits, enabled_idx); | 
|  | 2116 |  | 
|  | 2117 | /* mctx->bkref_ents may have changed, reload the pointer.  */ | 
|  | 2118 | entry = mctx->bkref_ents + enabled_idx; | 
|  | 2119 | } | 
|  | 2120 | while (enabled_idx++, entry++->more); | 
|  | 2121 | } | 
|  | 2122 | err = REG_NOERROR; | 
|  | 2123 | free_return: | 
|  | 2124 | if (local_sctx.sifted_states != NULL) | 
|  | 2125 | { | 
|  | 2126 | re_node_set_free (&local_sctx.limits); | 
|  | 2127 | } | 
|  | 2128 |  | 
|  | 2129 | return err; | 
|  | 2130 | } | 
|  | 2131 |  | 
|  | 2132 |  | 
|  | 2133 | #ifdef RE_ENABLE_I18N | 
|  | 2134 | static int | 
|  | 2135 | internal_function | 
|  | 2136 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
|  | 2137 | int node_idx, int str_idx, int max_str_idx) | 
|  | 2138 | { | 
|  | 2139 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2140 | int naccepted; | 
|  | 2141 | /* Check the node can accept `multi byte'.  */ | 
|  | 2142 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); | 
|  | 2143 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && | 
|  | 2144 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], | 
|  | 2145 | dfa->nexts[node_idx])) | 
|  | 2146 | /* The node can't accept the `multi byte', or the | 
|  | 2147 | destination was already thrown away, then the node | 
|  | 2148 | could't accept the current input `multi byte'.   */ | 
|  | 2149 | naccepted = 0; | 
|  | 2150 | /* Otherwise, it is sure that the node could accept | 
|  | 2151 | `naccepted' bytes input.  */ | 
|  | 2152 | return naccepted; | 
|  | 2153 | } | 
|  | 2154 | #endif /* RE_ENABLE_I18N */ | 
|  | 2155 |  | 
|  | 2156 |  | 
|  | 2157 | /* Functions for state transition.  */ | 
|  | 2158 |  | 
|  | 2159 | /* Return the next state to which the current state STATE will transit by | 
|  | 2160 | accepting the current input byte, and update STATE_LOG if necessary. | 
|  | 2161 | If STATE can accept a multibyte char/collating element/back reference | 
|  | 2162 | update the destination of STATE_LOG.  */ | 
|  | 2163 |  | 
|  | 2164 | static re_dfastate_t * | 
|  | 2165 | internal_function | 
|  | 2166 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, | 
|  | 2167 | re_dfastate_t *state) | 
|  | 2168 | { | 
|  | 2169 | re_dfastate_t **trtable; | 
|  | 2170 | unsigned char ch; | 
|  | 2171 |  | 
|  | 2172 | #ifdef RE_ENABLE_I18N | 
|  | 2173 | /* If the current state can accept multibyte.  */ | 
|  | 2174 | if (BE (state->accept_mb, 0)) | 
|  | 2175 | { | 
|  | 2176 | *err = transit_state_mb (mctx, state); | 
|  | 2177 | if (BE (*err != REG_NOERROR, 0)) | 
|  | 2178 | return NULL; | 
|  | 2179 | } | 
|  | 2180 | #endif /* RE_ENABLE_I18N */ | 
|  | 2181 |  | 
|  | 2182 | /* Then decide the next state with the single byte.  */ | 
|  | 2183 | #if 0 | 
|  | 2184 | if (0) | 
|  | 2185 | /* don't use transition table  */ | 
|  | 2186 | return transit_state_sb (err, mctx, state); | 
|  | 2187 | #endif | 
|  | 2188 |  | 
|  | 2189 | /* Use transition table  */ | 
|  | 2190 | ch = re_string_fetch_byte (&mctx->input); | 
|  | 2191 | for (;;) | 
|  | 2192 | { | 
|  | 2193 | trtable = state->trtable; | 
|  | 2194 | if (BE (trtable != NULL, 1)) | 
|  | 2195 | return trtable[ch]; | 
|  | 2196 |  | 
|  | 2197 | trtable = state->word_trtable; | 
|  | 2198 | if (BE (trtable != NULL, 1)) | 
|  | 2199 | { | 
|  | 2200 | unsigned int context; | 
|  | 2201 | context | 
|  | 2202 | = re_string_context_at (&mctx->input, | 
|  | 2203 | re_string_cur_idx (&mctx->input) - 1, | 
|  | 2204 | mctx->eflags); | 
|  | 2205 | if (IS_WORD_CONTEXT (context)) | 
|  | 2206 | return trtable[ch + SBC_MAX]; | 
|  | 2207 | else | 
|  | 2208 | return trtable[ch]; | 
|  | 2209 | } | 
|  | 2210 |  | 
|  | 2211 | if (!build_trtable (mctx->dfa, state)) | 
|  | 2212 | { | 
|  | 2213 | *err = REG_ESPACE; | 
|  | 2214 | return NULL; | 
|  | 2215 | } | 
|  | 2216 |  | 
|  | 2217 | /* Retry, we now have a transition table.  */ | 
|  | 2218 | } | 
|  | 2219 | } | 
|  | 2220 |  | 
|  | 2221 | /* Update the state_log if we need */ | 
|  | 2222 | re_dfastate_t * | 
|  | 2223 | internal_function | 
|  | 2224 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, | 
|  | 2225 | re_dfastate_t *next_state) | 
|  | 2226 | { | 
|  | 2227 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2228 | int cur_idx = re_string_cur_idx (&mctx->input); | 
|  | 2229 |  | 
|  | 2230 | if (cur_idx > mctx->state_log_top) | 
|  | 2231 | { | 
|  | 2232 | mctx->state_log[cur_idx] = next_state; | 
|  | 2233 | mctx->state_log_top = cur_idx; | 
|  | 2234 | } | 
|  | 2235 | else if (mctx->state_log[cur_idx] == 0) | 
|  | 2236 | { | 
|  | 2237 | mctx->state_log[cur_idx] = next_state; | 
|  | 2238 | } | 
|  | 2239 | else | 
|  | 2240 | { | 
|  | 2241 | re_dfastate_t *pstate; | 
|  | 2242 | unsigned int context; | 
|  | 2243 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; | 
|  | 2244 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is | 
|  | 2245 | the destination of a multibyte char/collating element/ | 
|  | 2246 | back reference.  Then the next state is the union set of | 
|  | 2247 | these destinations and the results of the transition table.  */ | 
|  | 2248 | pstate = mctx->state_log[cur_idx]; | 
|  | 2249 | log_nodes = pstate->entrance_nodes; | 
|  | 2250 | if (next_state != NULL) | 
|  | 2251 | { | 
|  | 2252 | table_nodes = next_state->entrance_nodes; | 
|  | 2253 | *err = re_node_set_init_union (&next_nodes, table_nodes, | 
|  | 2254 | log_nodes); | 
|  | 2255 | if (BE (*err != REG_NOERROR, 0)) | 
|  | 2256 | return NULL; | 
|  | 2257 | } | 
|  | 2258 | else | 
|  | 2259 | next_nodes = *log_nodes; | 
|  | 2260 | /* Note: We already add the nodes of the initial state, | 
|  | 2261 | then we don't need to add them here.  */ | 
|  | 2262 |  | 
|  | 2263 | context = re_string_context_at (&mctx->input, | 
|  | 2264 | re_string_cur_idx (&mctx->input) - 1, | 
|  | 2265 | mctx->eflags); | 
|  | 2266 | next_state = mctx->state_log[cur_idx] | 
|  | 2267 | = re_acquire_state_context (err, dfa, &next_nodes, context); | 
|  | 2268 | /* We don't need to check errors here, since the return value of | 
|  | 2269 | this function is next_state and ERR is already set.  */ | 
|  | 2270 |  | 
|  | 2271 | if (table_nodes != NULL) | 
|  | 2272 | re_node_set_free (&next_nodes); | 
|  | 2273 | } | 
|  | 2274 |  | 
|  | 2275 | if (BE (dfa->nbackref, 0) && next_state != NULL) | 
|  | 2276 | { | 
|  | 2277 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them | 
|  | 2278 | later.  We must check them here, since the back references in the | 
|  | 2279 | next state might use them.  */ | 
|  | 2280 | *err = check_subexp_matching_top (mctx, &next_state->nodes, | 
|  | 2281 | cur_idx); | 
|  | 2282 | if (BE (*err != REG_NOERROR, 0)) | 
|  | 2283 | return NULL; | 
|  | 2284 |  | 
|  | 2285 | /* If the next state has back references.  */ | 
|  | 2286 | if (next_state->has_backref) | 
|  | 2287 | { | 
|  | 2288 | *err = transit_state_bkref (mctx, &next_state->nodes); | 
|  | 2289 | if (BE (*err != REG_NOERROR, 0)) | 
|  | 2290 | return NULL; | 
|  | 2291 | next_state = mctx->state_log[cur_idx]; | 
|  | 2292 | } | 
|  | 2293 | } | 
|  | 2294 |  | 
|  | 2295 | return next_state; | 
|  | 2296 | } | 
|  | 2297 |  | 
|  | 2298 | /* Skip bytes in the input that correspond to part of a | 
|  | 2299 | multi-byte match, then look in the log for a state | 
|  | 2300 | from which to restart matching.  */ | 
|  | 2301 | re_dfastate_t * | 
|  | 2302 | internal_function | 
|  | 2303 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) | 
|  | 2304 | { | 
|  | 2305 | re_dfastate_t *cur_state; | 
|  | 2306 | do | 
|  | 2307 | { | 
|  | 2308 | int max = mctx->state_log_top; | 
|  | 2309 | int cur_str_idx = re_string_cur_idx (&mctx->input); | 
|  | 2310 |  | 
|  | 2311 | do | 
|  | 2312 | { | 
|  | 2313 | if (++cur_str_idx > max) | 
|  | 2314 | return NULL; | 
|  | 2315 | re_string_skip_bytes (&mctx->input, 1); | 
|  | 2316 | } | 
|  | 2317 | while (mctx->state_log[cur_str_idx] == NULL); | 
|  | 2318 |  | 
|  | 2319 | cur_state = merge_state_with_log (err, mctx, NULL); | 
|  | 2320 | } | 
|  | 2321 | while (*err == REG_NOERROR && cur_state == NULL); | 
|  | 2322 | return cur_state; | 
|  | 2323 | } | 
|  | 2324 |  | 
|  | 2325 | /* Helper functions for transit_state.  */ | 
|  | 2326 |  | 
|  | 2327 | /* From the node set CUR_NODES, pick up the nodes whose types are | 
|  | 2328 | OP_OPEN_SUBEXP and which have corresponding back references in the regular | 
|  | 2329 | expression. And register them to use them later for evaluating the | 
|  | 2330 | correspoding back references.  */ | 
|  | 2331 |  | 
|  | 2332 | static reg_errcode_t | 
|  | 2333 | internal_function | 
|  | 2334 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, | 
|  | 2335 | int str_idx) | 
|  | 2336 | { | 
|  | 2337 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2338 | int node_idx; | 
|  | 2339 | reg_errcode_t err; | 
|  | 2340 |  | 
|  | 2341 | /* TODO: This isn't efficient. | 
|  | 2342 | Because there might be more than one nodes whose types are | 
|  | 2343 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | 
|  | 2344 | nodes. | 
|  | 2345 | E.g. RE: (a){2}  */ | 
|  | 2346 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) | 
|  | 2347 | { | 
|  | 2348 | int node = cur_nodes->elems[node_idx]; | 
|  | 2349 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP | 
|  | 2350 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS | 
|  | 2351 | && (dfa->used_bkref_map | 
|  | 2352 | & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) | 
|  | 2353 | { | 
|  | 2354 | err = match_ctx_add_subtop (mctx, node, str_idx); | 
|  | 2355 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2356 | return err; | 
|  | 2357 | } | 
|  | 2358 | } | 
|  | 2359 | return REG_NOERROR; | 
|  | 2360 | } | 
|  | 2361 |  | 
|  | 2362 | #if 0 | 
|  | 2363 | /* Return the next state to which the current state STATE will transit by | 
|  | 2364 | accepting the current input byte.  */ | 
|  | 2365 |  | 
|  | 2366 | static re_dfastate_t * | 
|  | 2367 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, | 
|  | 2368 | re_dfastate_t *state) | 
|  | 2369 | { | 
|  | 2370 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2371 | re_node_set next_nodes; | 
|  | 2372 | re_dfastate_t *next_state; | 
|  | 2373 | int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); | 
|  | 2374 | unsigned int context; | 
|  | 2375 |  | 
|  | 2376 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); | 
|  | 2377 | if (BE (*err != REG_NOERROR, 0)) | 
|  | 2378 | return NULL; | 
|  | 2379 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) | 
|  | 2380 | { | 
|  | 2381 | int cur_node = state->nodes.elems[node_cnt]; | 
|  | 2382 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) | 
|  | 2383 | { | 
|  | 2384 | *err = re_node_set_merge (&next_nodes, | 
|  | 2385 | dfa->eclosures + dfa->nexts[cur_node]); | 
|  | 2386 | if (BE (*err != REG_NOERROR, 0)) | 
|  | 2387 | { | 
|  | 2388 | re_node_set_free (&next_nodes); | 
|  | 2389 | return NULL; | 
|  | 2390 | } | 
|  | 2391 | } | 
|  | 2392 | } | 
|  | 2393 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); | 
|  | 2394 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); | 
|  | 2395 | /* We don't need to check errors here, since the return value of | 
|  | 2396 | this function is next_state and ERR is already set.  */ | 
|  | 2397 |  | 
|  | 2398 | re_node_set_free (&next_nodes); | 
|  | 2399 | re_string_skip_bytes (&mctx->input, 1); | 
|  | 2400 | return next_state; | 
|  | 2401 | } | 
|  | 2402 | #endif | 
|  | 2403 |  | 
|  | 2404 | #ifdef RE_ENABLE_I18N | 
|  | 2405 | static reg_errcode_t | 
|  | 2406 | internal_function | 
|  | 2407 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) | 
|  | 2408 | { | 
|  | 2409 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2410 | reg_errcode_t err; | 
|  | 2411 | int i; | 
|  | 2412 |  | 
|  | 2413 | for (i = 0; i < pstate->nodes.nelem; ++i) | 
|  | 2414 | { | 
|  | 2415 | re_node_set dest_nodes, *new_nodes; | 
|  | 2416 | int cur_node_idx = pstate->nodes.elems[i]; | 
|  | 2417 | int naccepted, dest_idx; | 
|  | 2418 | unsigned int context; | 
|  | 2419 | re_dfastate_t *dest_state; | 
|  | 2420 |  | 
|  | 2421 | if (!dfa->nodes[cur_node_idx].accept_mb) | 
|  | 2422 | continue; | 
|  | 2423 |  | 
|  | 2424 | if (dfa->nodes[cur_node_idx].constraint) | 
|  | 2425 | { | 
|  | 2426 | context = re_string_context_at (&mctx->input, | 
|  | 2427 | re_string_cur_idx (&mctx->input), | 
|  | 2428 | mctx->eflags); | 
|  | 2429 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, | 
|  | 2430 | context)) | 
|  | 2431 | continue; | 
|  | 2432 | } | 
|  | 2433 |  | 
|  | 2434 | /* How many bytes the node can accept?  */ | 
|  | 2435 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, | 
|  | 2436 | re_string_cur_idx (&mctx->input)); | 
|  | 2437 | if (naccepted == 0) | 
|  | 2438 | continue; | 
|  | 2439 |  | 
|  | 2440 | /* The node can accepts `naccepted' bytes.  */ | 
|  | 2441 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; | 
|  | 2442 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted | 
|  | 2443 | : mctx->max_mb_elem_len); | 
|  | 2444 | err = clean_state_log_if_needed (mctx, dest_idx); | 
|  | 2445 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2446 | return err; | 
|  | 2447 | #ifdef DEBUG | 
|  | 2448 | assert (dfa->nexts[cur_node_idx] != -1); | 
|  | 2449 | #endif | 
|  | 2450 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; | 
|  | 2451 |  | 
|  | 2452 | dest_state = mctx->state_log[dest_idx]; | 
|  | 2453 | if (dest_state == NULL) | 
|  | 2454 | dest_nodes = *new_nodes; | 
|  | 2455 | else | 
|  | 2456 | { | 
|  | 2457 | err = re_node_set_init_union (&dest_nodes, | 
|  | 2458 | dest_state->entrance_nodes, new_nodes); | 
|  | 2459 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2460 | return err; | 
|  | 2461 | } | 
|  | 2462 | context = re_string_context_at (&mctx->input, dest_idx - 1, | 
|  | 2463 | mctx->eflags); | 
|  | 2464 | mctx->state_log[dest_idx] | 
|  | 2465 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | 
|  | 2466 | if (dest_state != NULL) | 
|  | 2467 | re_node_set_free (&dest_nodes); | 
|  | 2468 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) | 
|  | 2469 | return err; | 
|  | 2470 | } | 
|  | 2471 | return REG_NOERROR; | 
|  | 2472 | } | 
|  | 2473 | #endif /* RE_ENABLE_I18N */ | 
|  | 2474 |  | 
|  | 2475 | static reg_errcode_t | 
|  | 2476 | internal_function | 
|  | 2477 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) | 
|  | 2478 | { | 
|  | 2479 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2480 | reg_errcode_t err; | 
|  | 2481 | int i; | 
|  | 2482 | int cur_str_idx = re_string_cur_idx (&mctx->input); | 
|  | 2483 |  | 
|  | 2484 | for (i = 0; i < nodes->nelem; ++i) | 
|  | 2485 | { | 
|  | 2486 | int dest_str_idx, prev_nelem, bkc_idx; | 
|  | 2487 | int node_idx = nodes->elems[i]; | 
|  | 2488 | unsigned int context; | 
|  | 2489 | const re_token_t *node = dfa->nodes + node_idx; | 
|  | 2490 | re_node_set *new_dest_nodes; | 
|  | 2491 |  | 
|  | 2492 | /* Check whether `node' is a backreference or not.  */ | 
|  | 2493 | if (node->type != OP_BACK_REF) | 
|  | 2494 | continue; | 
|  | 2495 |  | 
|  | 2496 | if (node->constraint) | 
|  | 2497 | { | 
|  | 2498 | context = re_string_context_at (&mctx->input, cur_str_idx, | 
|  | 2499 | mctx->eflags); | 
|  | 2500 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | 
|  | 2501 | continue; | 
|  | 2502 | } | 
|  | 2503 |  | 
|  | 2504 | /* `node' is a backreference. | 
|  | 2505 | Check the substring which the substring matched.  */ | 
|  | 2506 | bkc_idx = mctx->nbkref_ents; | 
|  | 2507 | err = get_subexp (mctx, node_idx, cur_str_idx); | 
|  | 2508 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2509 | goto free_return; | 
|  | 2510 |  | 
|  | 2511 | /* And add the epsilon closures (which is `new_dest_nodes') of | 
|  | 2512 | the backreference to appropriate state_log.  */ | 
|  | 2513 | #ifdef DEBUG | 
|  | 2514 | assert (dfa->nexts[node_idx] != -1); | 
|  | 2515 | #endif | 
|  | 2516 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) | 
|  | 2517 | { | 
|  | 2518 | int subexp_len; | 
|  | 2519 | re_dfastate_t *dest_state; | 
|  | 2520 | struct re_backref_cache_entry *bkref_ent; | 
|  | 2521 | bkref_ent = mctx->bkref_ents + bkc_idx; | 
|  | 2522 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) | 
|  | 2523 | continue; | 
|  | 2524 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; | 
|  | 2525 | new_dest_nodes = (subexp_len == 0 | 
|  | 2526 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] | 
|  | 2527 | : dfa->eclosures + dfa->nexts[node_idx]); | 
|  | 2528 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to | 
|  | 2529 | - bkref_ent->subexp_from); | 
|  | 2530 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, | 
|  | 2531 | mctx->eflags); | 
|  | 2532 | dest_state = mctx->state_log[dest_str_idx]; | 
|  | 2533 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 | 
|  | 2534 | : mctx->state_log[cur_str_idx]->nodes.nelem); | 
|  | 2535 | /* Add `new_dest_node' to state_log.  */ | 
|  | 2536 | if (dest_state == NULL) | 
|  | 2537 | { | 
|  | 2538 | mctx->state_log[dest_str_idx] | 
|  | 2539 | = re_acquire_state_context (&err, dfa, new_dest_nodes, | 
|  | 2540 | context); | 
|  | 2541 | if (BE (mctx->state_log[dest_str_idx] == NULL | 
|  | 2542 | && err != REG_NOERROR, 0)) | 
|  | 2543 | goto free_return; | 
|  | 2544 | } | 
|  | 2545 | else | 
|  | 2546 | { | 
|  | 2547 | re_node_set dest_nodes; | 
|  | 2548 | err = re_node_set_init_union (&dest_nodes, | 
|  | 2549 | dest_state->entrance_nodes, | 
|  | 2550 | new_dest_nodes); | 
|  | 2551 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2552 | { | 
|  | 2553 | re_node_set_free (&dest_nodes); | 
|  | 2554 | goto free_return; | 
|  | 2555 | } | 
|  | 2556 | mctx->state_log[dest_str_idx] | 
|  | 2557 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | 
|  | 2558 | re_node_set_free (&dest_nodes); | 
|  | 2559 | if (BE (mctx->state_log[dest_str_idx] == NULL | 
|  | 2560 | && err != REG_NOERROR, 0)) | 
|  | 2561 | goto free_return; | 
|  | 2562 | } | 
|  | 2563 | /* We need to check recursively if the backreference can epsilon | 
|  | 2564 | transit.  */ | 
|  | 2565 | if (subexp_len == 0 | 
|  | 2566 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) | 
|  | 2567 | { | 
|  | 2568 | err = check_subexp_matching_top (mctx, new_dest_nodes, | 
|  | 2569 | cur_str_idx); | 
|  | 2570 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2571 | goto free_return; | 
|  | 2572 | err = transit_state_bkref (mctx, new_dest_nodes); | 
|  | 2573 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2574 | goto free_return; | 
|  | 2575 | } | 
|  | 2576 | } | 
|  | 2577 | } | 
|  | 2578 | err = REG_NOERROR; | 
|  | 2579 | free_return: | 
|  | 2580 | return err; | 
|  | 2581 | } | 
|  | 2582 |  | 
|  | 2583 | /* Enumerate all the candidates which the backreference BKREF_NODE can match | 
|  | 2584 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). | 
|  | 2585 | Note that we might collect inappropriate candidates here. | 
|  | 2586 | However, the cost of checking them strictly here is too high, then we | 
|  | 2587 | delay these checking for prune_impossible_nodes().  */ | 
|  | 2588 |  | 
|  | 2589 | static reg_errcode_t | 
|  | 2590 | internal_function | 
|  | 2591 | get_subexp (re_match_context_t *mctx, int bkref_node, int bkref_str_idx) | 
|  | 2592 | { | 
|  | 2593 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2594 | int subexp_num, sub_top_idx; | 
|  | 2595 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); | 
|  | 2596 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX.  */ | 
|  | 2597 | int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); | 
|  | 2598 | if (cache_idx != -1) | 
|  | 2599 | { | 
|  | 2600 | const struct re_backref_cache_entry *entry | 
|  | 2601 | = mctx->bkref_ents + cache_idx; | 
|  | 2602 | do | 
|  | 2603 | if (entry->node == bkref_node) | 
|  | 2604 | return REG_NOERROR; /* We already checked it.  */ | 
|  | 2605 | while (entry++->more); | 
|  | 2606 | } | 
|  | 2607 |  | 
|  | 2608 | subexp_num = dfa->nodes[bkref_node].opr.idx; | 
|  | 2609 |  | 
|  | 2610 | /* For each sub expression  */ | 
|  | 2611 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) | 
|  | 2612 | { | 
|  | 2613 | reg_errcode_t err; | 
|  | 2614 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; | 
|  | 2615 | re_sub_match_last_t *sub_last; | 
|  | 2616 | int sub_last_idx, sl_str, bkref_str_off; | 
|  | 2617 |  | 
|  | 2618 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) | 
|  | 2619 | continue; /* It isn't related.  */ | 
|  | 2620 |  | 
|  | 2621 | sl_str = sub_top->str_idx; | 
|  | 2622 | bkref_str_off = bkref_str_idx; | 
|  | 2623 | /* At first, check the last node of sub expressions we already | 
|  | 2624 | evaluated.  */ | 
|  | 2625 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) | 
|  | 2626 | { | 
|  | 2627 | int sl_str_diff; | 
|  | 2628 | sub_last = sub_top->lasts[sub_last_idx]; | 
|  | 2629 | sl_str_diff = sub_last->str_idx - sl_str; | 
|  | 2630 | /* The matched string by the sub expression match with the substring | 
|  | 2631 | at the back reference?  */ | 
|  | 2632 | if (sl_str_diff > 0) | 
|  | 2633 | { | 
|  | 2634 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) | 
|  | 2635 | { | 
|  | 2636 | /* Not enough chars for a successful match.  */ | 
|  | 2637 | if (bkref_str_off + sl_str_diff > mctx->input.len) | 
|  | 2638 | break; | 
|  | 2639 |  | 
|  | 2640 | err = clean_state_log_if_needed (mctx, | 
|  | 2641 | bkref_str_off | 
|  | 2642 | + sl_str_diff); | 
|  | 2643 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2644 | return err; | 
|  | 2645 | buf = (const char *) re_string_get_buffer (&mctx->input); | 
|  | 2646 | } | 
|  | 2647 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) | 
|  | 2648 | /* We don't need to search this sub expression any more.  */ | 
|  | 2649 | break; | 
|  | 2650 | } | 
|  | 2651 | bkref_str_off += sl_str_diff; | 
|  | 2652 | sl_str += sl_str_diff; | 
|  | 2653 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | 
|  | 2654 | bkref_str_idx); | 
|  | 2655 |  | 
|  | 2656 | /* Reload buf, since the preceding call might have reallocated | 
|  | 2657 | the buffer.  */ | 
|  | 2658 | buf = (const char *) re_string_get_buffer (&mctx->input); | 
|  | 2659 |  | 
|  | 2660 | if (err == REG_NOMATCH) | 
|  | 2661 | continue; | 
|  | 2662 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2663 | return err; | 
|  | 2664 | } | 
|  | 2665 |  | 
|  | 2666 | if (sub_last_idx < sub_top->nlasts) | 
|  | 2667 | continue; | 
|  | 2668 | if (sub_last_idx > 0) | 
|  | 2669 | ++sl_str; | 
|  | 2670 | /* Then, search for the other last nodes of the sub expression.  */ | 
|  | 2671 | for (; sl_str <= bkref_str_idx; ++sl_str) | 
|  | 2672 | { | 
|  | 2673 | int cls_node, sl_str_off; | 
|  | 2674 | const re_node_set *nodes; | 
|  | 2675 | sl_str_off = sl_str - sub_top->str_idx; | 
|  | 2676 | /* The matched string by the sub expression match with the substring | 
|  | 2677 | at the back reference?  */ | 
|  | 2678 | if (sl_str_off > 0) | 
|  | 2679 | { | 
|  | 2680 | if (BE (bkref_str_off >= mctx->input.valid_len, 0)) | 
|  | 2681 | { | 
|  | 2682 | /* If we are at the end of the input, we cannot match.  */ | 
|  | 2683 | if (bkref_str_off >= mctx->input.len) | 
|  | 2684 | break; | 
|  | 2685 |  | 
|  | 2686 | err = extend_buffers (mctx); | 
|  | 2687 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2688 | return err; | 
|  | 2689 |  | 
|  | 2690 | buf = (const char *) re_string_get_buffer (&mctx->input); | 
|  | 2691 | } | 
|  | 2692 | if (buf [bkref_str_off++] != buf[sl_str - 1]) | 
|  | 2693 | break; /* We don't need to search this sub expression | 
|  | 2694 | any more.  */ | 
|  | 2695 | } | 
|  | 2696 | if (mctx->state_log[sl_str] == NULL) | 
|  | 2697 | continue; | 
|  | 2698 | /* Does this state have a ')' of the sub expression?  */ | 
|  | 2699 | nodes = &mctx->state_log[sl_str]->nodes; | 
|  | 2700 | cls_node = find_subexp_node (dfa, nodes, subexp_num, | 
|  | 2701 | OP_CLOSE_SUBEXP); | 
|  | 2702 | if (cls_node == -1) | 
|  | 2703 | continue; /* No.  */ | 
|  | 2704 | if (sub_top->path == NULL) | 
|  | 2705 | { | 
|  | 2706 | sub_top->path = calloc (sizeof (state_array_t), | 
|  | 2707 | sl_str - sub_top->str_idx + 1); | 
|  | 2708 | if (sub_top->path == NULL) | 
|  | 2709 | return REG_ESPACE; | 
|  | 2710 | } | 
|  | 2711 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node | 
|  | 2712 | in the current context?  */ | 
|  | 2713 | err = check_arrival (mctx, sub_top->path, sub_top->node, | 
|  | 2714 | sub_top->str_idx, cls_node, sl_str, | 
|  | 2715 | OP_CLOSE_SUBEXP); | 
|  | 2716 | if (err == REG_NOMATCH) | 
|  | 2717 | continue; | 
|  | 2718 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2719 | return err; | 
|  | 2720 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); | 
|  | 2721 | if (BE (sub_last == NULL, 0)) | 
|  | 2722 | return REG_ESPACE; | 
|  | 2723 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | 
|  | 2724 | bkref_str_idx); | 
|  | 2725 | if (err == REG_NOMATCH) | 
|  | 2726 | continue; | 
|  | 2727 | } | 
|  | 2728 | } | 
|  | 2729 | return REG_NOERROR; | 
|  | 2730 | } | 
|  | 2731 |  | 
|  | 2732 | /* Helper functions for get_subexp().  */ | 
|  | 2733 |  | 
|  | 2734 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. | 
|  | 2735 | If it can arrive, register the sub expression expressed with SUB_TOP | 
|  | 2736 | and SUB_LAST.  */ | 
|  | 2737 |  | 
|  | 2738 | static reg_errcode_t | 
|  | 2739 | internal_function | 
|  | 2740 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, | 
|  | 2741 | re_sub_match_last_t *sub_last, int bkref_node, int bkref_str) | 
|  | 2742 | { | 
|  | 2743 | reg_errcode_t err; | 
|  | 2744 | int to_idx; | 
|  | 2745 | /* Can the subexpression arrive the back reference?  */ | 
|  | 2746 | err = check_arrival (mctx, &sub_last->path, sub_last->node, | 
|  | 2747 | sub_last->str_idx, bkref_node, bkref_str, | 
|  | 2748 | OP_OPEN_SUBEXP); | 
|  | 2749 | if (err != REG_NOERROR) | 
|  | 2750 | return err; | 
|  | 2751 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, | 
|  | 2752 | sub_last->str_idx); | 
|  | 2753 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2754 | return err; | 
|  | 2755 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; | 
|  | 2756 | return clean_state_log_if_needed (mctx, to_idx); | 
|  | 2757 | } | 
|  | 2758 |  | 
|  | 2759 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. | 
|  | 2760 | Search '(' if FL_OPEN, or search ')' otherwise. | 
|  | 2761 | TODO: This function isn't efficient... | 
|  | 2762 | Because there might be more than one nodes whose types are | 
|  | 2763 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | 
|  | 2764 | nodes. | 
|  | 2765 | E.g. RE: (a){2}  */ | 
|  | 2766 |  | 
|  | 2767 | static int | 
|  | 2768 | internal_function | 
|  | 2769 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | 
|  | 2770 | int subexp_idx, int type) | 
|  | 2771 | { | 
|  | 2772 | int cls_idx; | 
|  | 2773 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) | 
|  | 2774 | { | 
|  | 2775 | int cls_node = nodes->elems[cls_idx]; | 
|  | 2776 | const re_token_t *node = dfa->nodes + cls_node; | 
|  | 2777 | if (node->type == type | 
|  | 2778 | && node->opr.idx == subexp_idx) | 
|  | 2779 | return cls_node; | 
|  | 2780 | } | 
|  | 2781 | return -1; | 
|  | 2782 | } | 
|  | 2783 |  | 
|  | 2784 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node | 
|  | 2785 | LAST_NODE at LAST_STR.  We record the path onto PATH since it will be | 
|  | 2786 | heavily reused. | 
|  | 2787 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise.  */ | 
|  | 2788 |  | 
|  | 2789 | static reg_errcode_t | 
|  | 2790 | internal_function | 
|  | 2791 | check_arrival (re_match_context_t *mctx, state_array_t *path, int top_node, | 
|  | 2792 | int top_str, int last_node, int last_str, int type) | 
|  | 2793 | { | 
|  | 2794 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2795 | reg_errcode_t err = REG_NOERROR; | 
|  | 2796 | int subexp_num, backup_cur_idx, str_idx, null_cnt; | 
|  | 2797 | re_dfastate_t *cur_state = NULL; | 
|  | 2798 | re_node_set *cur_nodes, next_nodes; | 
|  | 2799 | re_dfastate_t **backup_state_log; | 
|  | 2800 | unsigned int context; | 
|  | 2801 |  | 
|  | 2802 | subexp_num = dfa->nodes[top_node].opr.idx; | 
|  | 2803 | /* Extend the buffer if we need.  */ | 
|  | 2804 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) | 
|  | 2805 | { | 
|  | 2806 | re_dfastate_t **new_array; | 
|  | 2807 | int old_alloc = path->alloc; | 
|  | 2808 | path->alloc += last_str + mctx->max_mb_elem_len + 1; | 
|  | 2809 | new_array = re_realloc (path->array, re_dfastate_t *, path->alloc); | 
|  | 2810 | if (BE (new_array == NULL, 0)) | 
|  | 2811 | { | 
|  | 2812 | path->alloc = old_alloc; | 
|  | 2813 | return REG_ESPACE; | 
|  | 2814 | } | 
|  | 2815 | path->array = new_array; | 
|  | 2816 | memset (new_array + old_alloc, '\0', | 
|  | 2817 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); | 
|  | 2818 | } | 
|  | 2819 |  | 
|  | 2820 | str_idx = path->next_idx ?: top_str; | 
|  | 2821 |  | 
|  | 2822 | /* Temporary modify MCTX.  */ | 
|  | 2823 | backup_state_log = mctx->state_log; | 
|  | 2824 | backup_cur_idx = mctx->input.cur_idx; | 
|  | 2825 | mctx->state_log = path->array; | 
|  | 2826 | mctx->input.cur_idx = str_idx; | 
|  | 2827 |  | 
|  | 2828 | /* Setup initial node set.  */ | 
|  | 2829 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | 
|  | 2830 | if (str_idx == top_str) | 
|  | 2831 | { | 
|  | 2832 | err = re_node_set_init_1 (&next_nodes, top_node); | 
|  | 2833 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2834 | return err; | 
|  | 2835 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | 
|  | 2836 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2837 | { | 
|  | 2838 | re_node_set_free (&next_nodes); | 
|  | 2839 | return err; | 
|  | 2840 | } | 
|  | 2841 | } | 
|  | 2842 | else | 
|  | 2843 | { | 
|  | 2844 | cur_state = mctx->state_log[str_idx]; | 
|  | 2845 | if (cur_state && cur_state->has_backref) | 
|  | 2846 | { | 
|  | 2847 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); | 
|  | 2848 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2849 | return err; | 
|  | 2850 | } | 
|  | 2851 | else | 
|  | 2852 | re_node_set_init_empty (&next_nodes); | 
|  | 2853 | } | 
|  | 2854 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) | 
|  | 2855 | { | 
|  | 2856 | if (next_nodes.nelem) | 
|  | 2857 | { | 
|  | 2858 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | 
|  | 2859 | subexp_num, type); | 
|  | 2860 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2861 | { | 
|  | 2862 | re_node_set_free (&next_nodes); | 
|  | 2863 | return err; | 
|  | 2864 | } | 
|  | 2865 | } | 
|  | 2866 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | 
|  | 2867 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | 
|  | 2868 | { | 
|  | 2869 | re_node_set_free (&next_nodes); | 
|  | 2870 | return err; | 
|  | 2871 | } | 
|  | 2872 | mctx->state_log[str_idx] = cur_state; | 
|  | 2873 | } | 
|  | 2874 |  | 
|  | 2875 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) | 
|  | 2876 | { | 
|  | 2877 | re_node_set_empty (&next_nodes); | 
|  | 2878 | if (mctx->state_log[str_idx + 1]) | 
|  | 2879 | { | 
|  | 2880 | err = re_node_set_merge (&next_nodes, | 
|  | 2881 | &mctx->state_log[str_idx + 1]->nodes); | 
|  | 2882 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2883 | { | 
|  | 2884 | re_node_set_free (&next_nodes); | 
|  | 2885 | return err; | 
|  | 2886 | } | 
|  | 2887 | } | 
|  | 2888 | if (cur_state) | 
|  | 2889 | { | 
|  | 2890 | err = check_arrival_add_next_nodes (mctx, str_idx, | 
|  | 2891 | &cur_state->non_eps_nodes, | 
|  | 2892 | &next_nodes); | 
|  | 2893 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2894 | { | 
|  | 2895 | re_node_set_free (&next_nodes); | 
|  | 2896 | return err; | 
|  | 2897 | } | 
|  | 2898 | } | 
|  | 2899 | ++str_idx; | 
|  | 2900 | if (next_nodes.nelem) | 
|  | 2901 | { | 
|  | 2902 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | 
|  | 2903 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2904 | { | 
|  | 2905 | re_node_set_free (&next_nodes); | 
|  | 2906 | return err; | 
|  | 2907 | } | 
|  | 2908 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | 
|  | 2909 | subexp_num, type); | 
|  | 2910 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2911 | { | 
|  | 2912 | re_node_set_free (&next_nodes); | 
|  | 2913 | return err; | 
|  | 2914 | } | 
|  | 2915 | } | 
|  | 2916 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | 
|  | 2917 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | 
|  | 2918 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | 
|  | 2919 | { | 
|  | 2920 | re_node_set_free (&next_nodes); | 
|  | 2921 | return err; | 
|  | 2922 | } | 
|  | 2923 | mctx->state_log[str_idx] = cur_state; | 
|  | 2924 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; | 
|  | 2925 | } | 
|  | 2926 | re_node_set_free (&next_nodes); | 
|  | 2927 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL | 
|  | 2928 | : &mctx->state_log[last_str]->nodes); | 
|  | 2929 | path->next_idx = str_idx; | 
|  | 2930 |  | 
|  | 2931 | /* Fix MCTX.  */ | 
|  | 2932 | mctx->state_log = backup_state_log; | 
|  | 2933 | mctx->input.cur_idx = backup_cur_idx; | 
|  | 2934 |  | 
|  | 2935 | /* Then check the current node set has the node LAST_NODE.  */ | 
|  | 2936 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) | 
|  | 2937 | return REG_NOERROR; | 
|  | 2938 |  | 
|  | 2939 | return REG_NOMATCH; | 
|  | 2940 | } | 
|  | 2941 |  | 
|  | 2942 | /* Helper functions for check_arrival.  */ | 
|  | 2943 |  | 
|  | 2944 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them | 
|  | 2945 | to NEXT_NODES. | 
|  | 2946 | TODO: This function is similar to the functions transit_state*(), | 
|  | 2947 | however this function has many additional works. | 
|  | 2948 | Can't we unify them?  */ | 
|  | 2949 |  | 
|  | 2950 | static reg_errcode_t | 
|  | 2951 | internal_function | 
|  | 2952 | check_arrival_add_next_nodes (re_match_context_t *mctx, int str_idx, | 
|  | 2953 | re_node_set *cur_nodes, re_node_set *next_nodes) | 
|  | 2954 | { | 
|  | 2955 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 2956 | int result; | 
|  | 2957 | int cur_idx; | 
|  | 2958 | #ifdef RE_ENABLE_I18N | 
|  | 2959 | reg_errcode_t err = REG_NOERROR; | 
|  | 2960 | #endif | 
|  | 2961 | re_node_set union_set; | 
|  | 2962 | re_node_set_init_empty (&union_set); | 
|  | 2963 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) | 
|  | 2964 | { | 
|  | 2965 | int naccepted = 0; | 
|  | 2966 | int cur_node = cur_nodes->elems[cur_idx]; | 
|  | 2967 | #ifdef DEBUG | 
|  | 2968 | re_token_type_t type = dfa->nodes[cur_node].type; | 
|  | 2969 | assert (!IS_EPSILON_NODE (type)); | 
|  | 2970 | #endif | 
|  | 2971 | #ifdef RE_ENABLE_I18N | 
|  | 2972 | /* If the node may accept `multi byte'.  */ | 
|  | 2973 | if (dfa->nodes[cur_node].accept_mb) | 
|  | 2974 | { | 
|  | 2975 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, | 
|  | 2976 | str_idx); | 
|  | 2977 | if (naccepted > 1) | 
|  | 2978 | { | 
|  | 2979 | re_dfastate_t *dest_state; | 
|  | 2980 | int next_node = dfa->nexts[cur_node]; | 
|  | 2981 | int next_idx = str_idx + naccepted; | 
|  | 2982 | dest_state = mctx->state_log[next_idx]; | 
|  | 2983 | re_node_set_empty (&union_set); | 
|  | 2984 | if (dest_state) | 
|  | 2985 | { | 
|  | 2986 | err = re_node_set_merge (&union_set, &dest_state->nodes); | 
|  | 2987 | if (BE (err != REG_NOERROR, 0)) | 
|  | 2988 | { | 
|  | 2989 | re_node_set_free (&union_set); | 
|  | 2990 | return err; | 
|  | 2991 | } | 
|  | 2992 | } | 
|  | 2993 | result = re_node_set_insert (&union_set, next_node); | 
|  | 2994 | if (BE (result < 0, 0)) | 
|  | 2995 | { | 
|  | 2996 | re_node_set_free (&union_set); | 
|  | 2997 | return REG_ESPACE; | 
|  | 2998 | } | 
|  | 2999 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, | 
|  | 3000 | &union_set); | 
|  | 3001 | if (BE (mctx->state_log[next_idx] == NULL | 
|  | 3002 | && err != REG_NOERROR, 0)) | 
|  | 3003 | { | 
|  | 3004 | re_node_set_free (&union_set); | 
|  | 3005 | return err; | 
|  | 3006 | } | 
|  | 3007 | } | 
|  | 3008 | } | 
|  | 3009 | #endif /* RE_ENABLE_I18N */ | 
|  | 3010 | if (naccepted | 
|  | 3011 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) | 
|  | 3012 | { | 
|  | 3013 | result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); | 
|  | 3014 | if (BE (result < 0, 0)) | 
|  | 3015 | { | 
|  | 3016 | re_node_set_free (&union_set); | 
|  | 3017 | return REG_ESPACE; | 
|  | 3018 | } | 
|  | 3019 | } | 
|  | 3020 | } | 
|  | 3021 | re_node_set_free (&union_set); | 
|  | 3022 | return REG_NOERROR; | 
|  | 3023 | } | 
|  | 3024 |  | 
|  | 3025 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to | 
|  | 3026 | CUR_NODES, however exclude the nodes which are: | 
|  | 3027 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. | 
|  | 3028 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. | 
|  | 3029 | */ | 
|  | 3030 |  | 
|  | 3031 | static reg_errcode_t | 
|  | 3032 | internal_function | 
|  | 3033 | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, | 
|  | 3034 | int ex_subexp, int type) | 
|  | 3035 | { | 
|  | 3036 | reg_errcode_t err; | 
|  | 3037 | int idx, outside_node; | 
|  | 3038 | re_node_set new_nodes; | 
|  | 3039 | #ifdef DEBUG | 
|  | 3040 | assert (cur_nodes->nelem); | 
|  | 3041 | #endif | 
|  | 3042 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); | 
|  | 3043 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3044 | return err; | 
|  | 3045 | /* Create a new node set NEW_NODES with the nodes which are epsilon | 
|  | 3046 | closures of the node in CUR_NODES.  */ | 
|  | 3047 |  | 
|  | 3048 | for (idx = 0; idx < cur_nodes->nelem; ++idx) | 
|  | 3049 | { | 
|  | 3050 | int cur_node = cur_nodes->elems[idx]; | 
|  | 3051 | const re_node_set *eclosure = dfa->eclosures + cur_node; | 
|  | 3052 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); | 
|  | 3053 | if (outside_node == -1) | 
|  | 3054 | { | 
|  | 3055 | /* There are no problematic nodes, just merge them.  */ | 
|  | 3056 | err = re_node_set_merge (&new_nodes, eclosure); | 
|  | 3057 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3058 | { | 
|  | 3059 | re_node_set_free (&new_nodes); | 
|  | 3060 | return err; | 
|  | 3061 | } | 
|  | 3062 | } | 
|  | 3063 | else | 
|  | 3064 | { | 
|  | 3065 | /* There are problematic nodes, re-calculate incrementally.  */ | 
|  | 3066 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, | 
|  | 3067 | ex_subexp, type); | 
|  | 3068 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3069 | { | 
|  | 3070 | re_node_set_free (&new_nodes); | 
|  | 3071 | return err; | 
|  | 3072 | } | 
|  | 3073 | } | 
|  | 3074 | } | 
|  | 3075 | re_node_set_free (cur_nodes); | 
|  | 3076 | *cur_nodes = new_nodes; | 
|  | 3077 | return REG_NOERROR; | 
|  | 3078 | } | 
|  | 3079 |  | 
|  | 3080 | /* Helper function for check_arrival_expand_ecl. | 
|  | 3081 | Check incrementally the epsilon closure of TARGET, and if it isn't | 
|  | 3082 | problematic append it to DST_NODES.  */ | 
|  | 3083 |  | 
|  | 3084 | static reg_errcode_t | 
|  | 3085 | internal_function | 
|  | 3086 | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, | 
|  | 3087 | int target, int ex_subexp, int type) | 
|  | 3088 | { | 
|  | 3089 | int cur_node; | 
|  | 3090 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) | 
|  | 3091 | { | 
|  | 3092 | int err; | 
|  | 3093 |  | 
|  | 3094 | if (dfa->nodes[cur_node].type == type | 
|  | 3095 | && dfa->nodes[cur_node].opr.idx == ex_subexp) | 
|  | 3096 | { | 
|  | 3097 | if (type == OP_CLOSE_SUBEXP) | 
|  | 3098 | { | 
|  | 3099 | err = re_node_set_insert (dst_nodes, cur_node); | 
|  | 3100 | if (BE (err == -1, 0)) | 
|  | 3101 | return REG_ESPACE; | 
|  | 3102 | } | 
|  | 3103 | break; | 
|  | 3104 | } | 
|  | 3105 | err = re_node_set_insert (dst_nodes, cur_node); | 
|  | 3106 | if (BE (err == -1, 0)) | 
|  | 3107 | return REG_ESPACE; | 
|  | 3108 | if (dfa->edests[cur_node].nelem == 0) | 
|  | 3109 | break; | 
|  | 3110 | if (dfa->edests[cur_node].nelem == 2) | 
|  | 3111 | { | 
|  | 3112 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes, | 
|  | 3113 | dfa->edests[cur_node].elems[1], | 
|  | 3114 | ex_subexp, type); | 
|  | 3115 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3116 | return err; | 
|  | 3117 | } | 
|  | 3118 | cur_node = dfa->edests[cur_node].elems[0]; | 
|  | 3119 | } | 
|  | 3120 | return REG_NOERROR; | 
|  | 3121 | } | 
|  | 3122 |  | 
|  | 3123 |  | 
|  | 3124 | /* For all the back references in the current state, calculate the | 
|  | 3125 | destination of the back references by the appropriate entry | 
|  | 3126 | in MCTX->BKREF_ENTS.  */ | 
|  | 3127 |  | 
|  | 3128 | static reg_errcode_t | 
|  | 3129 | internal_function | 
|  | 3130 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, | 
|  | 3131 | int cur_str, int subexp_num, int type) | 
|  | 3132 | { | 
|  | 3133 | const re_dfa_t *const dfa = mctx->dfa; | 
|  | 3134 | reg_errcode_t err; | 
|  | 3135 | int cache_idx_start = search_cur_bkref_entry (mctx, cur_str); | 
|  | 3136 | struct re_backref_cache_entry *ent; | 
|  | 3137 |  | 
|  | 3138 | if (cache_idx_start == -1) | 
|  | 3139 | return REG_NOERROR; | 
|  | 3140 |  | 
|  | 3141 | restart: | 
|  | 3142 | ent = mctx->bkref_ents + cache_idx_start; | 
|  | 3143 | do | 
|  | 3144 | { | 
|  | 3145 | int to_idx, next_node; | 
|  | 3146 |  | 
|  | 3147 | /* Is this entry ENT is appropriate?  */ | 
|  | 3148 | if (!re_node_set_contains (cur_nodes, ent->node)) | 
|  | 3149 | continue; /* No.  */ | 
|  | 3150 |  | 
|  | 3151 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; | 
|  | 3152 | /* Calculate the destination of the back reference, and append it | 
|  | 3153 | to MCTX->STATE_LOG.  */ | 
|  | 3154 | if (to_idx == cur_str) | 
|  | 3155 | { | 
|  | 3156 | /* The backreference did epsilon transit, we must re-check all the | 
|  | 3157 | node in the current state.  */ | 
|  | 3158 | re_node_set new_dests; | 
|  | 3159 | reg_errcode_t err2, err3; | 
|  | 3160 | next_node = dfa->edests[ent->node].elems[0]; | 
|  | 3161 | if (re_node_set_contains (cur_nodes, next_node)) | 
|  | 3162 | continue; | 
|  | 3163 | err = re_node_set_init_1 (&new_dests, next_node); | 
|  | 3164 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); | 
|  | 3165 | err3 = re_node_set_merge (cur_nodes, &new_dests); | 
|  | 3166 | re_node_set_free (&new_dests); | 
|  | 3167 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR | 
|  | 3168 | || err3 != REG_NOERROR, 0)) | 
|  | 3169 | { | 
|  | 3170 | err = (err != REG_NOERROR ? err | 
|  | 3171 | : (err2 != REG_NOERROR ? err2 : err3)); | 
|  | 3172 | return err; | 
|  | 3173 | } | 
|  | 3174 | /* TODO: It is still inefficient...  */ | 
|  | 3175 | goto restart; | 
|  | 3176 | } | 
|  | 3177 | else | 
|  | 3178 | { | 
|  | 3179 | re_node_set union_set; | 
|  | 3180 | next_node = dfa->nexts[ent->node]; | 
|  | 3181 | if (mctx->state_log[to_idx]) | 
|  | 3182 | { | 
|  | 3183 | int ret; | 
|  | 3184 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, | 
|  | 3185 | next_node)) | 
|  | 3186 | continue; | 
|  | 3187 | err = re_node_set_init_copy (&union_set, | 
|  | 3188 | &mctx->state_log[to_idx]->nodes); | 
|  | 3189 | ret = re_node_set_insert (&union_set, next_node); | 
|  | 3190 | if (BE (err != REG_NOERROR || ret < 0, 0)) | 
|  | 3191 | { | 
|  | 3192 | re_node_set_free (&union_set); | 
|  | 3193 | err = err != REG_NOERROR ? err : REG_ESPACE; | 
|  | 3194 | return err; | 
|  | 3195 | } | 
|  | 3196 | } | 
|  | 3197 | else | 
|  | 3198 | { | 
|  | 3199 | err = re_node_set_init_1 (&union_set, next_node); | 
|  | 3200 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3201 | return err; | 
|  | 3202 | } | 
|  | 3203 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); | 
|  | 3204 | re_node_set_free (&union_set); | 
|  | 3205 | if (BE (mctx->state_log[to_idx] == NULL | 
|  | 3206 | && err != REG_NOERROR, 0)) | 
|  | 3207 | return err; | 
|  | 3208 | } | 
|  | 3209 | } | 
|  | 3210 | while (ent++->more); | 
|  | 3211 | return REG_NOERROR; | 
|  | 3212 | } | 
|  | 3213 |  | 
|  | 3214 | /* Build transition table for the state. | 
|  | 3215 | Return 1 if succeeded, otherwise return NULL.  */ | 
|  | 3216 |  | 
|  | 3217 | static int | 
|  | 3218 | internal_function | 
|  | 3219 | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) | 
|  | 3220 | { | 
|  | 3221 | reg_errcode_t err; | 
|  | 3222 | int i, j, ch, need_word_trtable = 0; | 
|  | 3223 | bitset_word_t elem, mask; | 
|  | 3224 | bool dests_node_malloced = false; | 
|  | 3225 | bool dest_states_malloced = false; | 
|  | 3226 | int ndests; /* Number of the destination states from `state'.  */ | 
|  | 3227 | re_dfastate_t **trtable; | 
|  | 3228 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; | 
|  | 3229 | re_node_set follows, *dests_node; | 
|  | 3230 | bitset_t *dests_ch; | 
|  | 3231 | bitset_t acceptable; | 
|  | 3232 |  | 
|  | 3233 | struct dests_alloc | 
|  | 3234 | { | 
|  | 3235 | re_node_set dests_node[SBC_MAX]; | 
|  | 3236 | bitset_t dests_ch[SBC_MAX]; | 
|  | 3237 | } *dests_alloc; | 
|  | 3238 |  | 
|  | 3239 | /* We build DFA states which corresponds to the destination nodes | 
|  | 3240 | from `state'.  `dests_node[i]' represents the nodes which i-th | 
|  | 3241 | destination state contains, and `dests_ch[i]' represents the | 
|  | 3242 | characters which i-th destination state accepts.  */ | 
|  | 3243 | if (__libc_use_alloca (sizeof (struct dests_alloc))) | 
|  | 3244 | dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); | 
|  | 3245 | else | 
|  | 3246 | { | 
|  | 3247 | dests_alloc = re_malloc (struct dests_alloc, 1); | 
|  | 3248 | if (BE (dests_alloc == NULL, 0)) | 
|  | 3249 | return 0; | 
|  | 3250 | dests_node_malloced = true; | 
|  | 3251 | } | 
|  | 3252 | dests_node = dests_alloc->dests_node; | 
|  | 3253 | dests_ch = dests_alloc->dests_ch; | 
|  | 3254 |  | 
|  | 3255 | /* Initialize transiton table.  */ | 
|  | 3256 | state->word_trtable = state->trtable = NULL; | 
|  | 3257 |  | 
|  | 3258 | /* At first, group all nodes belonging to `state' into several | 
|  | 3259 | destinations.  */ | 
|  | 3260 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); | 
|  | 3261 | if (BE (ndests <= 0, 0)) | 
|  | 3262 | { | 
|  | 3263 | if (dests_node_malloced) | 
|  | 3264 | free (dests_alloc); | 
|  | 3265 | /* Return 0 in case of an error, 1 otherwise.  */ | 
|  | 3266 | if (ndests == 0) | 
|  | 3267 | { | 
|  | 3268 | state->trtable = (re_dfastate_t **) | 
|  | 3269 | calloc (sizeof (re_dfastate_t *), SBC_MAX); | 
|  | 3270 | return 1; | 
|  | 3271 | } | 
|  | 3272 | return 0; | 
|  | 3273 | } | 
|  | 3274 |  | 
|  | 3275 | err = re_node_set_alloc (&follows, ndests + 1); | 
|  | 3276 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3277 | goto out_free; | 
|  | 3278 |  | 
|  | 3279 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX | 
|  | 3280 | + ndests * 3 * sizeof (re_dfastate_t *))) | 
|  | 3281 | dest_states = (re_dfastate_t **) | 
|  | 3282 | alloca (ndests * 3 * sizeof (re_dfastate_t *)); | 
|  | 3283 | else | 
|  | 3284 | { | 
|  | 3285 | dest_states = (re_dfastate_t **) | 
|  | 3286 | malloc (ndests * 3 * sizeof (re_dfastate_t *)); | 
|  | 3287 | if (BE (dest_states == NULL, 0)) | 
|  | 3288 | { | 
|  | 3289 | out_free: | 
|  | 3290 | if (dest_states_malloced) | 
|  | 3291 | free (dest_states); | 
|  | 3292 | re_node_set_free (&follows); | 
|  | 3293 | for (i = 0; i < ndests; ++i) | 
|  | 3294 | re_node_set_free (dests_node + i); | 
|  | 3295 | if (dests_node_malloced) | 
|  | 3296 | free (dests_alloc); | 
|  | 3297 | return 0; | 
|  | 3298 | } | 
|  | 3299 | dest_states_malloced = true; | 
|  | 3300 | } | 
|  | 3301 | dest_states_word = dest_states + ndests; | 
|  | 3302 | dest_states_nl = dest_states_word + ndests; | 
|  | 3303 | bitset_empty (acceptable); | 
|  | 3304 |  | 
|  | 3305 | /* Then build the states for all destinations.  */ | 
|  | 3306 | for (i = 0; i < ndests; ++i) | 
|  | 3307 | { | 
|  | 3308 | int next_node; | 
|  | 3309 | re_node_set_empty (&follows); | 
|  | 3310 | /* Merge the follows of this destination states.  */ | 
|  | 3311 | for (j = 0; j < dests_node[i].nelem; ++j) | 
|  | 3312 | { | 
|  | 3313 | next_node = dfa->nexts[dests_node[i].elems[j]]; | 
|  | 3314 | if (next_node != -1) | 
|  | 3315 | { | 
|  | 3316 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); | 
|  | 3317 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3318 | goto out_free; | 
|  | 3319 | } | 
|  | 3320 | } | 
|  | 3321 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); | 
|  | 3322 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) | 
|  | 3323 | goto out_free; | 
|  | 3324 | /* If the new state has context constraint, | 
|  | 3325 | build appropriate states for these contexts.  */ | 
|  | 3326 | if (dest_states[i]->has_constraint) | 
|  | 3327 | { | 
|  | 3328 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, | 
|  | 3329 | CONTEXT_WORD); | 
|  | 3330 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) | 
|  | 3331 | goto out_free; | 
|  | 3332 |  | 
|  | 3333 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) | 
|  | 3334 | need_word_trtable = 1; | 
|  | 3335 |  | 
|  | 3336 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, | 
|  | 3337 | CONTEXT_NEWLINE); | 
|  | 3338 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) | 
|  | 3339 | goto out_free; | 
|  | 3340 | } | 
|  | 3341 | else | 
|  | 3342 | { | 
|  | 3343 | dest_states_word[i] = dest_states[i]; | 
|  | 3344 | dest_states_nl[i] = dest_states[i]; | 
|  | 3345 | } | 
|  | 3346 | bitset_merge (acceptable, dests_ch[i]); | 
|  | 3347 | } | 
|  | 3348 |  | 
|  | 3349 | if (!BE (need_word_trtable, 0)) | 
|  | 3350 | { | 
|  | 3351 | /* We don't care about whether the following character is a word | 
|  | 3352 | character, or we are in a single-byte character set so we can | 
|  | 3353 | discern by looking at the character code: allocate a | 
|  | 3354 | 256-entry transition table.  */ | 
|  | 3355 | trtable = state->trtable = calloc (sizeof (re_dfastate_t *), SBC_MAX); | 
|  | 3356 | if (BE (trtable == NULL, 0)) | 
|  | 3357 | goto out_free; | 
|  | 3358 |  | 
|  | 3359 | /* For all characters ch...:  */ | 
|  | 3360 | for (i = 0; i < BITSET_WORDS; ++i) | 
|  | 3361 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | 
|  | 3362 | elem; | 
|  | 3363 | mask <<= 1, elem >>= 1, ++ch) | 
|  | 3364 | if (BE (elem & 1, 0)) | 
|  | 3365 | { | 
|  | 3366 | /* There must be exactly one destination which accepts | 
|  | 3367 | character ch.  See group_nodes_into_DFAstates.  */ | 
|  | 3368 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | 
|  | 3369 | ; | 
|  | 3370 |  | 
|  | 3371 | /* j-th destination accepts the word character ch.  */ | 
|  | 3372 | if (dfa->word_char[i] & mask) | 
|  | 3373 | trtable[ch] = dest_states_word[j]; | 
|  | 3374 | else | 
|  | 3375 | trtable[ch] = dest_states[j]; | 
|  | 3376 | } | 
|  | 3377 | } | 
|  | 3378 | else | 
|  | 3379 | { | 
|  | 3380 | /* We care about whether the following character is a word | 
|  | 3381 | character, and we are in a multi-byte character set: discern | 
|  | 3382 | by looking at the character code: build two 256-entry | 
|  | 3383 | transition tables, one starting at trtable[0] and one | 
|  | 3384 | starting at trtable[SBC_MAX].  */ | 
|  | 3385 | trtable = state->word_trtable = calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); | 
|  | 3386 | if (BE (trtable == NULL, 0)) | 
|  | 3387 | goto out_free; | 
|  | 3388 |  | 
|  | 3389 | /* For all characters ch...:  */ | 
|  | 3390 | for (i = 0; i < BITSET_WORDS; ++i) | 
|  | 3391 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | 
|  | 3392 | elem; | 
|  | 3393 | mask <<= 1, elem >>= 1, ++ch) | 
|  | 3394 | if (BE (elem & 1, 0)) | 
|  | 3395 | { | 
|  | 3396 | /* There must be exactly one destination which accepts | 
|  | 3397 | character ch.  See group_nodes_into_DFAstates.  */ | 
|  | 3398 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | 
|  | 3399 | ; | 
|  | 3400 |  | 
|  | 3401 | /* j-th destination accepts the word character ch.  */ | 
|  | 3402 | trtable[ch] = dest_states[j]; | 
|  | 3403 | trtable[ch + SBC_MAX] = dest_states_word[j]; | 
|  | 3404 | } | 
|  | 3405 | } | 
|  | 3406 |  | 
|  | 3407 | /* new line */ | 
|  | 3408 | if (bitset_contain (acceptable, NEWLINE_CHAR)) | 
|  | 3409 | { | 
|  | 3410 | /* The current state accepts newline character.  */ | 
|  | 3411 | for (j = 0; j < ndests; ++j) | 
|  | 3412 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) | 
|  | 3413 | { | 
|  | 3414 | /* k-th destination accepts newline character.  */ | 
|  | 3415 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; | 
|  | 3416 | if (need_word_trtable) | 
|  | 3417 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; | 
|  | 3418 | /* There must be only one destination which accepts | 
|  | 3419 | newline.  See group_nodes_into_DFAstates.  */ | 
|  | 3420 | break; | 
|  | 3421 | } | 
|  | 3422 | } | 
|  | 3423 |  | 
|  | 3424 | if (dest_states_malloced) | 
|  | 3425 | free (dest_states); | 
|  | 3426 |  | 
|  | 3427 | re_node_set_free (&follows); | 
|  | 3428 | for (i = 0; i < ndests; ++i) | 
|  | 3429 | re_node_set_free (dests_node + i); | 
|  | 3430 |  | 
|  | 3431 | if (dests_node_malloced) | 
|  | 3432 | free (dests_alloc); | 
|  | 3433 |  | 
|  | 3434 | return 1; | 
|  | 3435 | } | 
|  | 3436 |  | 
|  | 3437 | /* Group all nodes belonging to STATE into several destinations. | 
|  | 3438 | Then for all destinations, set the nodes belonging to the destination | 
|  | 3439 | to DESTS_NODE[i] and set the characters accepted by the destination | 
|  | 3440 | to DEST_CH[i].  This function return the number of destinations.  */ | 
|  | 3441 |  | 
|  | 3442 | static int | 
|  | 3443 | internal_function | 
|  | 3444 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, | 
|  | 3445 | re_node_set *dests_node, bitset_t *dests_ch) | 
|  | 3446 | { | 
|  | 3447 | reg_errcode_t err; | 
|  | 3448 | int result; | 
|  | 3449 | int i, j, k; | 
|  | 3450 | int ndests; /* Number of the destinations from `state'.  */ | 
|  | 3451 | bitset_t accepts; /* Characters a node can accept.  */ | 
|  | 3452 | const re_node_set *cur_nodes = &state->nodes; | 
|  | 3453 | bitset_empty (accepts); | 
|  | 3454 | ndests = 0; | 
|  | 3455 |  | 
|  | 3456 | /* For all the nodes belonging to `state',  */ | 
|  | 3457 | for (i = 0; i < cur_nodes->nelem; ++i) | 
|  | 3458 | { | 
|  | 3459 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; | 
|  | 3460 | re_token_type_t type = node->type; | 
|  | 3461 | unsigned int constraint = node->constraint; | 
|  | 3462 |  | 
|  | 3463 | /* Enumerate all single byte character this node can accept.  */ | 
|  | 3464 | if (type == CHARACTER) | 
|  | 3465 | bitset_set (accepts, node->opr.c); | 
|  | 3466 | else if (type == SIMPLE_BRACKET) | 
|  | 3467 | { | 
|  | 3468 | bitset_merge (accepts, node->opr.sbcset); | 
|  | 3469 | } | 
|  | 3470 | else if (type == OP_PERIOD) | 
|  | 3471 | { | 
|  | 3472 | #ifdef RE_ENABLE_I18N | 
|  | 3473 | if (dfa->mb_cur_max > 1) | 
|  | 3474 | bitset_merge (accepts, dfa->sb_char); | 
|  | 3475 | else | 
|  | 3476 | #endif | 
|  | 3477 | bitset_set_all (accepts); | 
|  | 3478 | if (!(dfa->syntax & RE_DOT_NEWLINE)) | 
|  | 3479 | bitset_clear (accepts, '\n'); | 
|  | 3480 | if (dfa->syntax & RE_DOT_NOT_NULL) | 
|  | 3481 | bitset_clear (accepts, '\0'); | 
|  | 3482 | } | 
|  | 3483 | #ifdef RE_ENABLE_I18N | 
|  | 3484 | else if (type == OP_UTF8_PERIOD) | 
|  | 3485 | { | 
|  | 3486 | memset (accepts, '\xff', sizeof (bitset_t) / 2); | 
|  | 3487 | if (!(dfa->syntax & RE_DOT_NEWLINE)) | 
|  | 3488 | bitset_clear (accepts, '\n'); | 
|  | 3489 | if (dfa->syntax & RE_DOT_NOT_NULL) | 
|  | 3490 | bitset_clear (accepts, '\0'); | 
|  | 3491 | } | 
|  | 3492 | #endif | 
|  | 3493 | else | 
|  | 3494 | continue; | 
|  | 3495 |  | 
|  | 3496 | /* Check the `accepts' and sift the characters which are not | 
|  | 3497 | match it the context.  */ | 
|  | 3498 | if (constraint) | 
|  | 3499 | { | 
|  | 3500 | if (constraint & NEXT_NEWLINE_CONSTRAINT) | 
|  | 3501 | { | 
|  | 3502 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); | 
|  | 3503 | bitset_empty (accepts); | 
|  | 3504 | if (accepts_newline) | 
|  | 3505 | bitset_set (accepts, NEWLINE_CHAR); | 
|  | 3506 | else | 
|  | 3507 | continue; | 
|  | 3508 | } | 
|  | 3509 | if (constraint & NEXT_ENDBUF_CONSTRAINT) | 
|  | 3510 | { | 
|  | 3511 | bitset_empty (accepts); | 
|  | 3512 | continue; | 
|  | 3513 | } | 
|  | 3514 |  | 
|  | 3515 | if (constraint & NEXT_WORD_CONSTRAINT) | 
|  | 3516 | { | 
|  | 3517 | bitset_word_t any_set = 0; | 
|  | 3518 | if (type == CHARACTER && !node->word_char) | 
|  | 3519 | { | 
|  | 3520 | bitset_empty (accepts); | 
|  | 3521 | continue; | 
|  | 3522 | } | 
|  | 3523 | #ifdef RE_ENABLE_I18N | 
|  | 3524 | if (dfa->mb_cur_max > 1) | 
|  | 3525 | for (j = 0; j < BITSET_WORDS; ++j) | 
|  | 3526 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); | 
|  | 3527 | else | 
|  | 3528 | #endif | 
|  | 3529 | for (j = 0; j < BITSET_WORDS; ++j) | 
|  | 3530 | any_set |= (accepts[j] &= dfa->word_char[j]); | 
|  | 3531 | if (!any_set) | 
|  | 3532 | continue; | 
|  | 3533 | } | 
|  | 3534 | if (constraint & NEXT_NOTWORD_CONSTRAINT) | 
|  | 3535 | { | 
|  | 3536 | bitset_word_t any_set = 0; | 
|  | 3537 | if (type == CHARACTER && node->word_char) | 
|  | 3538 | { | 
|  | 3539 | bitset_empty (accepts); | 
|  | 3540 | continue; | 
|  | 3541 | } | 
|  | 3542 | #ifdef RE_ENABLE_I18N | 
|  | 3543 | if (dfa->mb_cur_max > 1) | 
|  | 3544 | for (j = 0; j < BITSET_WORDS; ++j) | 
|  | 3545 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); | 
|  | 3546 | else | 
|  | 3547 | #endif | 
|  | 3548 | for (j = 0; j < BITSET_WORDS; ++j) | 
|  | 3549 | any_set |= (accepts[j] &= ~dfa->word_char[j]); | 
|  | 3550 | if (!any_set) | 
|  | 3551 | continue; | 
|  | 3552 | } | 
|  | 3553 | } | 
|  | 3554 |  | 
|  | 3555 | /* Then divide `accepts' into DFA states, or create a new | 
|  | 3556 | state.  Above, we make sure that accepts is not empty.  */ | 
|  | 3557 | for (j = 0; j < ndests; ++j) | 
|  | 3558 | { | 
|  | 3559 | bitset_t intersec; /* Intersection sets, see below.  */ | 
|  | 3560 | bitset_t remains; | 
|  | 3561 | /* Flags, see below.  */ | 
|  | 3562 | bitset_word_t has_intersec, not_subset, not_consumed; | 
|  | 3563 |  | 
|  | 3564 | /* Optimization, skip if this state doesn't accept the character.  */ | 
|  | 3565 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) | 
|  | 3566 | continue; | 
|  | 3567 |  | 
|  | 3568 | /* Enumerate the intersection set of this state and `accepts'.  */ | 
|  | 3569 | has_intersec = 0; | 
|  | 3570 | for (k = 0; k < BITSET_WORDS; ++k) | 
|  | 3571 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; | 
|  | 3572 | /* And skip if the intersection set is empty.  */ | 
|  | 3573 | if (!has_intersec) | 
|  | 3574 | continue; | 
|  | 3575 |  | 
|  | 3576 | /* Then check if this state is a subset of `accepts'.  */ | 
|  | 3577 | not_subset = not_consumed = 0; | 
|  | 3578 | for (k = 0; k < BITSET_WORDS; ++k) | 
|  | 3579 | { | 
|  | 3580 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; | 
|  | 3581 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; | 
|  | 3582 | } | 
|  | 3583 |  | 
|  | 3584 | /* If this state isn't a subset of `accepts', create a | 
|  | 3585 | new group state, which has the `remains'. */ | 
|  | 3586 | if (not_subset) | 
|  | 3587 | { | 
|  | 3588 | bitset_copy (dests_ch[ndests], remains); | 
|  | 3589 | bitset_copy (dests_ch[j], intersec); | 
|  | 3590 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); | 
|  | 3591 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3592 | goto error_return; | 
|  | 3593 | ++ndests; | 
|  | 3594 | } | 
|  | 3595 |  | 
|  | 3596 | /* Put the position in the current group. */ | 
|  | 3597 | result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); | 
|  | 3598 | if (BE (result < 0, 0)) | 
|  | 3599 | goto error_return; | 
|  | 3600 |  | 
|  | 3601 | /* If all characters are consumed, go to next node. */ | 
|  | 3602 | if (!not_consumed) | 
|  | 3603 | break; | 
|  | 3604 | } | 
|  | 3605 | /* Some characters remain, create a new group. */ | 
|  | 3606 | if (j == ndests) | 
|  | 3607 | { | 
|  | 3608 | bitset_copy (dests_ch[ndests], accepts); | 
|  | 3609 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); | 
|  | 3610 | if (BE (err != REG_NOERROR, 0)) | 
|  | 3611 | goto error_return; | 
|  | 3612 | ++ndests; | 
|  | 3613 | bitset_empty (accepts); | 
|  | 3614 | } | 
|  | 3615 | } | 
|  | 3616 | return ndests; | 
|  | 3617 | error_return: | 
|  | 3618 | for (j = 0; j < ndests; ++j) | 
|  | 3619 | re_node_set_free (dests_node + j); | 
|  | 3620 | return -1; | 
|  | 3621 | } | 
|  | 3622 |  | 
|  | 3623 | #ifdef RE_ENABLE_I18N | 
|  | 3624 | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. | 
|  | 3625 | Return the number of the bytes the node accepts. | 
|  | 3626 | STR_IDX is the current index of the input string. | 
|  | 3627 |  | 
|  | 3628 | This function handles the nodes which can accept one character, or | 
|  | 3629 | one collating element like '.', '[a-z]', opposite to the other nodes | 
|  | 3630 | can only accept one byte.  */ | 
|  | 3631 |  | 
|  | 3632 | static int | 
|  | 3633 | internal_function | 
|  | 3634 | check_node_accept_bytes (const re_dfa_t *dfa, int node_idx, | 
|  | 3635 | const re_string_t *input, int str_idx) | 
|  | 3636 | { | 
|  | 3637 | const re_token_t *node = dfa->nodes + node_idx; | 
|  | 3638 | int char_len, elem_len; | 
|  | 3639 | int i; | 
|  | 3640 |  | 
|  | 3641 | if (BE (node->type == OP_UTF8_PERIOD, 0)) | 
|  | 3642 | { | 
|  | 3643 | unsigned char c = re_string_byte_at (input, str_idx), d; | 
|  | 3644 | if (BE (c < 0xc2, 1)) | 
|  | 3645 | return 0; | 
|  | 3646 |  | 
|  | 3647 | if (str_idx + 2 > input->len) | 
|  | 3648 | return 0; | 
|  | 3649 |  | 
|  | 3650 | d = re_string_byte_at (input, str_idx + 1); | 
|  | 3651 | if (c < 0xe0) | 
|  | 3652 | return (d < 0x80 || d > 0xbf) ? 0 : 2; | 
|  | 3653 | else if (c < 0xf0) | 
|  | 3654 | { | 
|  | 3655 | char_len = 3; | 
|  | 3656 | if (c == 0xe0 && d < 0xa0) | 
|  | 3657 | return 0; | 
|  | 3658 | } | 
|  | 3659 | else if (c < 0xf8) | 
|  | 3660 | { | 
|  | 3661 | char_len = 4; | 
|  | 3662 | if (c == 0xf0 && d < 0x90) | 
|  | 3663 | return 0; | 
|  | 3664 | } | 
|  | 3665 | else if (c < 0xfc) | 
|  | 3666 | { | 
|  | 3667 | char_len = 5; | 
|  | 3668 | if (c == 0xf8 && d < 0x88) | 
|  | 3669 | return 0; | 
|  | 3670 | } | 
|  | 3671 | else if (c < 0xfe) | 
|  | 3672 | { | 
|  | 3673 | char_len = 6; | 
|  | 3674 | if (c == 0xfc && d < 0x84) | 
|  | 3675 | return 0; | 
|  | 3676 | } | 
|  | 3677 | else | 
|  | 3678 | return 0; | 
|  | 3679 |  | 
|  | 3680 | if (str_idx + char_len > input->len) | 
|  | 3681 | return 0; | 
|  | 3682 |  | 
|  | 3683 | for (i = 1; i < char_len; ++i) | 
|  | 3684 | { | 
|  | 3685 | d = re_string_byte_at (input, str_idx + i); | 
|  | 3686 | if (d < 0x80 || d > 0xbf) | 
|  | 3687 | return 0; | 
|  | 3688 | } | 
|  | 3689 | return char_len; | 
|  | 3690 | } | 
|  | 3691 |  | 
|  | 3692 | char_len = re_string_char_size_at (input, str_idx); | 
|  | 3693 | if (node->type == OP_PERIOD) | 
|  | 3694 | { | 
|  | 3695 | if (char_len <= 1) | 
|  | 3696 | return 0; | 
|  | 3697 | /* FIXME: I don't think this if is needed, as both '\n' | 
|  | 3698 | and '\0' are char_len == 1.  */ | 
|  | 3699 | /* '.' accepts any one character except the following two cases.  */ | 
|  | 3700 | if ((!(dfa->syntax & RE_DOT_NEWLINE) && | 
|  | 3701 | re_string_byte_at (input, str_idx) == '\n') || | 
|  | 3702 | ((dfa->syntax & RE_DOT_NOT_NULL) && | 
|  | 3703 | re_string_byte_at (input, str_idx) == '\0')) | 
|  | 3704 | return 0; | 
|  | 3705 | return char_len; | 
|  | 3706 | } | 
|  | 3707 |  | 
|  | 3708 | elem_len = re_string_elem_size_at (input, str_idx); | 
|  | 3709 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) | 
|  | 3710 | return 0; | 
|  | 3711 |  | 
|  | 3712 | if (node->type == COMPLEX_BRACKET) | 
|  | 3713 | { | 
|  | 3714 | const re_charset_t *cset = node->opr.mbcset; | 
|  | 3715 | # if 0 | 
|  | 3716 | const unsigned char *pin | 
|  | 3717 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); | 
|  | 3718 | int j; | 
|  | 3719 | uint32_t nrules; | 
|  | 3720 | # endif | 
|  | 3721 | int match_len = 0; | 
|  | 3722 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) | 
|  | 3723 | ? re_string_wchar_at (input, str_idx) : 0); | 
|  | 3724 |  | 
|  | 3725 | /* match with multibyte character?  */ | 
|  | 3726 | for (i = 0; i < cset->nmbchars; ++i) | 
|  | 3727 | if (wc == cset->mbchars[i]) | 
|  | 3728 | { | 
|  | 3729 | match_len = char_len; | 
|  | 3730 | goto check_node_accept_bytes_match; | 
|  | 3731 | } | 
|  | 3732 | /* match with character_class?  */ | 
|  | 3733 | for (i = 0; i < cset->nchar_classes; ++i) | 
|  | 3734 | { | 
|  | 3735 | wctype_t wt = cset->char_classes[i]; | 
|  | 3736 | if (__iswctype (wc, wt)) | 
|  | 3737 | { | 
|  | 3738 | match_len = char_len; | 
|  | 3739 | goto check_node_accept_bytes_match; | 
|  | 3740 | } | 
|  | 3741 | } | 
|  | 3742 |  | 
|  | 3743 | # if 0 | 
|  | 3744 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | 3745 | if (nrules != 0) | 
|  | 3746 | { | 
|  | 3747 | unsigned int in_collseq = 0; | 
|  | 3748 | const int32_t *table, *indirect; | 
|  | 3749 | const unsigned char *weights, *extra; | 
|  | 3750 | const char *collseqwc; | 
|  | 3751 | int32_t idx; | 
|  | 3752 | /* This #include defines a local function!  */ | 
|  | 3753 | #  include <locale/weight.h> | 
|  | 3754 |  | 
|  | 3755 | /* match with collating_symbol?  */ | 
|  | 3756 | if (cset->ncoll_syms) | 
|  | 3757 | extra = (const unsigned char *) | 
|  | 3758 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | 
|  | 3759 | for (i = 0; i < cset->ncoll_syms; ++i) | 
|  | 3760 | { | 
|  | 3761 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; | 
|  | 3762 | /* Compare the length of input collating element and | 
|  | 3763 | the length of current collating element.  */ | 
|  | 3764 | if (*coll_sym != elem_len) | 
|  | 3765 | continue; | 
|  | 3766 | /* Compare each bytes.  */ | 
|  | 3767 | for (j = 0; j < *coll_sym; j++) | 
|  | 3768 | if (pin[j] != coll_sym[1 + j]) | 
|  | 3769 | break; | 
|  | 3770 | if (j == *coll_sym) | 
|  | 3771 | { | 
|  | 3772 | /* Match if every bytes is equal.  */ | 
|  | 3773 | match_len = j; | 
|  | 3774 | goto check_node_accept_bytes_match; | 
|  | 3775 | } | 
|  | 3776 | } | 
|  | 3777 |  | 
|  | 3778 | if (cset->nranges) | 
|  | 3779 | { | 
|  | 3780 | if (elem_len <= char_len) | 
|  | 3781 | { | 
|  | 3782 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | 
|  | 3783 | in_collseq = __collseq_table_lookup (collseqwc, wc); | 
|  | 3784 | } | 
|  | 3785 | else | 
|  | 3786 | in_collseq = find_collation_sequence_value (pin, elem_len); | 
|  | 3787 | } | 
|  | 3788 | /* match with range expression?  */ | 
|  | 3789 | for (i = 0; i < cset->nranges; ++i) | 
|  | 3790 | if (cset->range_starts[i] <= in_collseq | 
|  | 3791 | && in_collseq <= cset->range_ends[i]) | 
|  | 3792 | { | 
|  | 3793 | match_len = elem_len; | 
|  | 3794 | goto check_node_accept_bytes_match; | 
|  | 3795 | } | 
|  | 3796 |  | 
|  | 3797 | /* match with equivalence_class?  */ | 
|  | 3798 | if (cset->nequiv_classes) | 
|  | 3799 | { | 
|  | 3800 | const unsigned char *cp = pin; | 
|  | 3801 | table = (const int32_t *) | 
|  | 3802 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | 
|  | 3803 | weights = (const unsigned char *) | 
|  | 3804 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); | 
|  | 3805 | extra = (const unsigned char *) | 
|  | 3806 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | 
|  | 3807 | indirect = (const int32_t *) | 
|  | 3808 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); | 
|  | 3809 | idx = findidx (&cp); | 
|  | 3810 | if (idx > 0) | 
|  | 3811 | for (i = 0; i < cset->nequiv_classes; ++i) | 
|  | 3812 | { | 
|  | 3813 | int32_t equiv_class_idx = cset->equiv_classes[i]; | 
|  | 3814 | size_t weight_len = weights[idx]; | 
|  | 3815 | if (weight_len == weights[equiv_class_idx]) | 
|  | 3816 | { | 
|  | 3817 | int cnt = 0; | 
|  | 3818 | while (cnt <= weight_len | 
|  | 3819 | && (weights[equiv_class_idx + 1 + cnt] | 
|  | 3820 | == weights[idx + 1 + cnt])) | 
|  | 3821 | ++cnt; | 
|  | 3822 | if (cnt > weight_len) | 
|  | 3823 | { | 
|  | 3824 | match_len = elem_len; | 
|  | 3825 | goto check_node_accept_bytes_match; | 
|  | 3826 | } | 
|  | 3827 | } | 
|  | 3828 | } | 
|  | 3829 | } | 
|  | 3830 | } | 
|  | 3831 | else | 
|  | 3832 | # endif | 
|  | 3833 | { | 
|  | 3834 | /* match with range expression?  */ | 
|  | 3835 | wchar_t cmp_buf[6]; | 
|  | 3836 |  | 
|  | 3837 | memset (cmp_buf, 0, sizeof(cmp_buf)); | 
|  | 3838 | cmp_buf[2] = wc; | 
|  | 3839 | for (i = 0; i < cset->nranges; ++i) | 
|  | 3840 | { | 
|  | 3841 | cmp_buf[0] = cset->range_starts[i]; | 
|  | 3842 | cmp_buf[4] = cset->range_ends[i]; | 
|  | 3843 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | 
|  | 3844 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | 
|  | 3845 | { | 
|  | 3846 | match_len = char_len; | 
|  | 3847 | goto check_node_accept_bytes_match; | 
|  | 3848 | } | 
|  | 3849 | } | 
|  | 3850 | } | 
|  | 3851 |  | 
|  | 3852 | check_node_accept_bytes_match: | 
|  | 3853 | if (!cset->non_match) | 
|  | 3854 | return match_len; | 
|  | 3855 | if (match_len > 0) | 
|  | 3856 | return 0; | 
|  | 3857 | return (elem_len > char_len) ? elem_len : char_len; | 
|  | 3858 | } | 
|  | 3859 | return 0; | 
|  | 3860 | } | 
|  | 3861 |  | 
|  | 3862 | # if 0 | 
|  | 3863 | static unsigned int | 
|  | 3864 | internal_function | 
|  | 3865 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) | 
|  | 3866 | { | 
|  | 3867 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | 3868 | if (nrules == 0) | 
|  | 3869 | { | 
|  | 3870 | if (mbs_len == 1) | 
|  | 3871 | { | 
|  | 3872 | /* No valid character.  Match it as a single byte character.  */ | 
|  | 3873 | const unsigned char *collseq = (const unsigned char *) | 
|  | 3874 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | 
|  | 3875 | return collseq[mbs[0]]; | 
|  | 3876 | } | 
|  | 3877 | return UINT_MAX; | 
|  | 3878 | } | 
|  | 3879 | else | 
|  | 3880 | { | 
|  | 3881 | int32_t idx; | 
|  | 3882 | const unsigned char *extra = (const unsigned char *) | 
|  | 3883 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | 
|  | 3884 | int32_t extrasize = (const unsigned char *) | 
|  | 3885 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; | 
|  | 3886 |  | 
|  | 3887 | for (idx = 0; idx < extrasize;) | 
|  | 3888 | { | 
|  | 3889 | int mbs_cnt, found = 0; | 
|  | 3890 | int32_t elem_mbs_len; | 
|  | 3891 | /* Skip the name of collating element name.  */ | 
|  | 3892 | idx = idx + extra[idx] + 1; | 
|  | 3893 | elem_mbs_len = extra[idx++]; | 
|  | 3894 | if (mbs_len == elem_mbs_len) | 
|  | 3895 | { | 
|  | 3896 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) | 
|  | 3897 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) | 
|  | 3898 | break; | 
|  | 3899 | if (mbs_cnt == elem_mbs_len) | 
|  | 3900 | /* Found the entry.  */ | 
|  | 3901 | found = 1; | 
|  | 3902 | } | 
|  | 3903 | /* Skip the byte sequence of the collating element.  */ | 
|  | 3904 | idx += elem_mbs_len; | 
|  | 3905 | /* Adjust for the alignment.  */ | 
|  | 3906 | idx = (idx + 3) & ~3; | 
|  | 3907 | /* Skip the collation sequence value.  */ | 
|  | 3908 | idx += sizeof (uint32_t); | 
|  | 3909 | /* Skip the wide char sequence of the collating element.  */ | 
|  | 3910 | idx = idx + sizeof (uint32_t) * (extra[idx] + 1); | 
|  | 3911 | /* If we found the entry, return the sequence value.  */ | 
|  | 3912 | if (found) | 
|  | 3913 | return *(uint32_t *) (extra + idx); | 
|  | 3914 | /* Skip the collation sequence value.  */ | 
|  | 3915 | idx += sizeof (uint32_t); | 
|  | 3916 | } | 
|  | 3917 | return UINT_MAX; | 
|  | 3918 | } | 
|  | 3919 | } | 
|  | 3920 | # endif | 
|  | 3921 | #endif /* RE_ENABLE_I18N */ | 
|  | 3922 |  | 
|  | 3923 | /* Check whether the node accepts the byte which is IDX-th | 
|  | 3924 | byte of the INPUT.  */ | 
|  | 3925 |  | 
|  | 3926 | static int | 
|  | 3927 | internal_function | 
|  | 3928 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, | 
|  | 3929 | int idx) | 
|  | 3930 | { | 
|  | 3931 | unsigned char ch; | 
|  | 3932 | ch = re_string_byte_at (&mctx->input, idx); | 
|  | 3933 | switch (node->type) | 
|  | 3934 | { | 
|  | 3935 | case CHARACTER: | 
|  | 3936 | if (node->opr.c != ch) | 
|  | 3937 | return 0; | 
|  | 3938 | break; | 
|  | 3939 |  | 
|  | 3940 | case SIMPLE_BRACKET: | 
|  | 3941 | if (!bitset_contain (node->opr.sbcset, ch)) | 
|  | 3942 | return 0; | 
|  | 3943 | break; | 
|  | 3944 |  | 
|  | 3945 | #ifdef RE_ENABLE_I18N | 
|  | 3946 | case OP_UTF8_PERIOD: | 
|  | 3947 | if (ch >= 0x80) | 
|  | 3948 | return 0; | 
|  | 3949 | /* FALLTHROUGH */ | 
|  | 3950 | #endif | 
|  | 3951 | case OP_PERIOD: | 
|  | 3952 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) | 
|  | 3953 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) | 
|  | 3954 | return 0; | 
|  | 3955 | break; | 
|  | 3956 |  | 
|  | 3957 | default: | 
|  | 3958 | return 0; | 
|  | 3959 | } | 
|  | 3960 |  | 
|  | 3961 | if (node->constraint) | 
|  | 3962 | { | 
|  | 3963 | /* The node has constraints.  Check whether the current context | 
|  | 3964 | satisfies the constraints.  */ | 
|  | 3965 | unsigned int context = re_string_context_at (&mctx->input, idx, | 
|  | 3966 | mctx->eflags); | 
|  | 3967 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | 
|  | 3968 | return 0; | 
|  | 3969 | } | 
|  | 3970 |  | 
|  | 3971 | return 1; | 
|  | 3972 | } | 
|  | 3973 |  | 
|  | 3974 | /* Extend the buffers, if the buffers have run out.  */ | 
|  | 3975 |  | 
|  | 3976 | static reg_errcode_t | 
|  | 3977 | internal_function | 
|  | 3978 | extend_buffers (re_match_context_t *mctx) | 
|  | 3979 | { | 
|  | 3980 | reg_errcode_t ret; | 
|  | 3981 | re_string_t *pstr = &mctx->input; | 
|  | 3982 |  | 
|  | 3983 | /* Double the lengthes of the buffers.  */ | 
|  | 3984 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | 
|  | 3985 | if (BE (ret != REG_NOERROR, 0)) | 
|  | 3986 | return ret; | 
|  | 3987 |  | 
|  | 3988 | if (mctx->state_log != NULL) | 
|  | 3989 | { | 
|  | 3990 | /* And double the length of state_log.  */ | 
|  | 3991 | /* XXX We have no indication of the size of this buffer.  If this | 
|  | 3992 | allocation fail we have no indication that the state_log array | 
|  | 3993 | does not have the right size.  */ | 
|  | 3994 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, | 
|  | 3995 | pstr->bufs_len + 1); | 
|  | 3996 | if (BE (new_array == NULL, 0)) | 
|  | 3997 | return REG_ESPACE; | 
|  | 3998 | mctx->state_log = new_array; | 
|  | 3999 | } | 
|  | 4000 |  | 
|  | 4001 | /* Then reconstruct the buffers.  */ | 
|  | 4002 | if (pstr->icase) | 
|  | 4003 | { | 
|  | 4004 | #ifdef RE_ENABLE_I18N | 
|  | 4005 | if (pstr->mb_cur_max > 1) | 
|  | 4006 | { | 
|  | 4007 | ret = build_wcs_upper_buffer (pstr); | 
|  | 4008 | if (BE (ret != REG_NOERROR, 0)) | 
|  | 4009 | return ret; | 
|  | 4010 | } | 
|  | 4011 | else | 
|  | 4012 | #endif /* RE_ENABLE_I18N  */ | 
|  | 4013 | build_upper_buffer (pstr); | 
|  | 4014 | } | 
|  | 4015 | else | 
|  | 4016 | { | 
|  | 4017 | #ifdef RE_ENABLE_I18N | 
|  | 4018 | if (pstr->mb_cur_max > 1) | 
|  | 4019 | build_wcs_buffer (pstr); | 
|  | 4020 | else | 
|  | 4021 | #endif /* RE_ENABLE_I18N  */ | 
|  | 4022 | { | 
|  | 4023 | if (pstr->trans != NULL) | 
|  | 4024 | re_string_translate_buffer (pstr); | 
|  | 4025 | } | 
|  | 4026 | } | 
|  | 4027 | return REG_NOERROR; | 
|  | 4028 | } | 
|  | 4029 |  | 
|  | 4030 |  | 
|  | 4031 | /* Functions for matching context.  */ | 
|  | 4032 |  | 
|  | 4033 | /* Initialize MCTX.  */ | 
|  | 4034 |  | 
|  | 4035 | static reg_errcode_t | 
|  | 4036 | internal_function | 
|  | 4037 | match_ctx_init (re_match_context_t *mctx, int eflags, int n) | 
|  | 4038 | { | 
|  | 4039 | mctx->eflags = eflags; | 
|  | 4040 | mctx->match_last = -1; | 
|  | 4041 | if (n > 0) | 
|  | 4042 | { | 
|  | 4043 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); | 
|  | 4044 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); | 
|  | 4045 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) | 
|  | 4046 | return REG_ESPACE; | 
|  | 4047 | } | 
|  | 4048 | /* Already zero-ed by the caller. | 
|  | 4049 | else | 
|  | 4050 | mctx->bkref_ents = NULL; | 
|  | 4051 | mctx->nbkref_ents = 0; | 
|  | 4052 | mctx->nsub_tops = 0;  */ | 
|  | 4053 | mctx->abkref_ents = n; | 
|  | 4054 | mctx->max_mb_elem_len = 1; | 
|  | 4055 | mctx->asub_tops = n; | 
|  | 4056 | return REG_NOERROR; | 
|  | 4057 | } | 
|  | 4058 |  | 
|  | 4059 | /* Clean the entries which depend on the current input in MCTX. | 
|  | 4060 | This function must be invoked when the matcher changes the start index | 
|  | 4061 | of the input, or changes the input string.  */ | 
|  | 4062 |  | 
|  | 4063 | static void | 
|  | 4064 | internal_function | 
|  | 4065 | match_ctx_clean (re_match_context_t *mctx) | 
|  | 4066 | { | 
|  | 4067 | int st_idx; | 
|  | 4068 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) | 
|  | 4069 | { | 
|  | 4070 | int sl_idx; | 
|  | 4071 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; | 
|  | 4072 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) | 
|  | 4073 | { | 
|  | 4074 | re_sub_match_last_t *last = top->lasts[sl_idx]; | 
|  | 4075 | re_free (last->path.array); | 
|  | 4076 | re_free (last); | 
|  | 4077 | } | 
|  | 4078 | re_free (top->lasts); | 
|  | 4079 | if (top->path) | 
|  | 4080 | { | 
|  | 4081 | re_free (top->path->array); | 
|  | 4082 | re_free (top->path); | 
|  | 4083 | } | 
|  | 4084 | free (top); | 
|  | 4085 | } | 
|  | 4086 |  | 
|  | 4087 | mctx->nsub_tops = 0; | 
|  | 4088 | mctx->nbkref_ents = 0; | 
|  | 4089 | } | 
|  | 4090 |  | 
|  | 4091 | /* Free all the memory associated with MCTX.  */ | 
|  | 4092 |  | 
|  | 4093 | static void | 
|  | 4094 | internal_function | 
|  | 4095 | match_ctx_free (re_match_context_t *mctx) | 
|  | 4096 | { | 
|  | 4097 | /* First, free all the memory associated with MCTX->SUB_TOPS.  */ | 
|  | 4098 | match_ctx_clean (mctx); | 
|  | 4099 | re_free (mctx->sub_tops); | 
|  | 4100 | re_free (mctx->bkref_ents); | 
|  | 4101 | } | 
|  | 4102 |  | 
|  | 4103 | /* Add a new backreference entry to MCTX. | 
|  | 4104 | Note that we assume that caller never call this function with duplicate | 
|  | 4105 | entry, and call with STR_IDX which isn't smaller than any existing entry. | 
|  | 4106 | */ | 
|  | 4107 |  | 
|  | 4108 | static reg_errcode_t | 
|  | 4109 | internal_function | 
|  | 4110 | match_ctx_add_entry (re_match_context_t *mctx, int node, int str_idx, int from, | 
|  | 4111 | int to) | 
|  | 4112 | { | 
|  | 4113 | if (mctx->nbkref_ents >= mctx->abkref_ents) | 
|  | 4114 | { | 
|  | 4115 | struct re_backref_cache_entry* new_entry; | 
|  | 4116 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, | 
|  | 4117 | mctx->abkref_ents * 2); | 
|  | 4118 | if (BE (new_entry == NULL, 0)) | 
|  | 4119 | { | 
|  | 4120 | re_free (mctx->bkref_ents); | 
|  | 4121 | return REG_ESPACE; | 
|  | 4122 | } | 
|  | 4123 | mctx->bkref_ents = new_entry; | 
|  | 4124 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', | 
|  | 4125 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); | 
|  | 4126 | mctx->abkref_ents *= 2; | 
|  | 4127 | } | 
|  | 4128 | if (mctx->nbkref_ents > 0 | 
|  | 4129 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) | 
|  | 4130 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; | 
|  | 4131 |  | 
|  | 4132 | mctx->bkref_ents[mctx->nbkref_ents].node = node; | 
|  | 4133 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; | 
|  | 4134 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; | 
|  | 4135 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; | 
|  | 4136 |  | 
|  | 4137 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. | 
|  | 4138 | If bit N is clear, means that this entry won't epsilon-transition to | 
|  | 4139 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression.  If | 
|  | 4140 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one | 
|  | 4141 | such node. | 
|  | 4142 |  | 
|  | 4143 | A backreference does not epsilon-transition unless it is empty, so set | 
|  | 4144 | to all zeros if FROM != TO.  */ | 
|  | 4145 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map | 
|  | 4146 | = (from == to ? ~0 : 0); | 
|  | 4147 |  | 
|  | 4148 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; | 
|  | 4149 | if (mctx->max_mb_elem_len < to - from) | 
|  | 4150 | mctx->max_mb_elem_len = to - from; | 
|  | 4151 | return REG_NOERROR; | 
|  | 4152 | } | 
|  | 4153 |  | 
|  | 4154 | /* Search for the first entry which has the same str_idx, or -1 if none is | 
|  | 4155 | found.  Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX.  */ | 
|  | 4156 |  | 
|  | 4157 | static int | 
|  | 4158 | internal_function | 
|  | 4159 | search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx) | 
|  | 4160 | { | 
|  | 4161 | int left, right, mid, last; | 
|  | 4162 | last = right = mctx->nbkref_ents; | 
|  | 4163 | for (left = 0; left < right;) | 
|  | 4164 | { | 
|  | 4165 | mid = (left + right) / 2; | 
|  | 4166 | if (mctx->bkref_ents[mid].str_idx < str_idx) | 
|  | 4167 | left = mid + 1; | 
|  | 4168 | else | 
|  | 4169 | right = mid; | 
|  | 4170 | } | 
|  | 4171 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) | 
|  | 4172 | return left; | 
|  | 4173 | else | 
|  | 4174 | return -1; | 
|  | 4175 | } | 
|  | 4176 |  | 
|  | 4177 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches | 
|  | 4178 | at STR_IDX.  */ | 
|  | 4179 |  | 
|  | 4180 | static reg_errcode_t | 
|  | 4181 | internal_function | 
|  | 4182 | match_ctx_add_subtop (re_match_context_t *mctx, int node, int str_idx) | 
|  | 4183 | { | 
|  | 4184 | #ifdef DEBUG | 
|  | 4185 | assert (mctx->sub_tops != NULL); | 
|  | 4186 | assert (mctx->asub_tops > 0); | 
|  | 4187 | #endif | 
|  | 4188 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) | 
|  | 4189 | { | 
|  | 4190 | int new_asub_tops = mctx->asub_tops * 2; | 
|  | 4191 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, | 
|  | 4192 | re_sub_match_top_t *, | 
|  | 4193 | new_asub_tops); | 
|  | 4194 | if (BE (new_array == NULL, 0)) | 
|  | 4195 | return REG_ESPACE; | 
|  | 4196 | mctx->sub_tops = new_array; | 
|  | 4197 | mctx->asub_tops = new_asub_tops; | 
|  | 4198 | } | 
|  | 4199 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); | 
|  | 4200 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) | 
|  | 4201 | return REG_ESPACE; | 
|  | 4202 | mctx->sub_tops[mctx->nsub_tops]->node = node; | 
|  | 4203 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; | 
|  | 4204 | return REG_NOERROR; | 
|  | 4205 | } | 
|  | 4206 |  | 
|  | 4207 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches | 
|  | 4208 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP.  */ | 
|  | 4209 |  | 
|  | 4210 | static re_sub_match_last_t * | 
|  | 4211 | internal_function | 
|  | 4212 | match_ctx_add_sublast (re_sub_match_top_t *subtop, int node, int str_idx) | 
|  | 4213 | { | 
|  | 4214 | re_sub_match_last_t *new_entry; | 
|  | 4215 | if (BE (subtop->nlasts == subtop->alasts, 0)) | 
|  | 4216 | { | 
|  | 4217 | int new_alasts = 2 * subtop->alasts + 1; | 
|  | 4218 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts, | 
|  | 4219 | re_sub_match_last_t *, | 
|  | 4220 | new_alasts); | 
|  | 4221 | if (BE (new_array == NULL, 0)) | 
|  | 4222 | return NULL; | 
|  | 4223 | subtop->lasts = new_array; | 
|  | 4224 | subtop->alasts = new_alasts; | 
|  | 4225 | } | 
|  | 4226 | new_entry = calloc (1, sizeof (re_sub_match_last_t)); | 
|  | 4227 | if (BE (new_entry != NULL, 1)) | 
|  | 4228 | { | 
|  | 4229 | subtop->lasts[subtop->nlasts] = new_entry; | 
|  | 4230 | new_entry->node = node; | 
|  | 4231 | new_entry->str_idx = str_idx; | 
|  | 4232 | ++subtop->nlasts; | 
|  | 4233 | } | 
|  | 4234 | return new_entry; | 
|  | 4235 | } | 
|  | 4236 |  | 
|  | 4237 | static void | 
|  | 4238 | internal_function | 
|  | 4239 | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | 
|  | 4240 | re_dfastate_t **limited_sts, int last_node, int last_str_idx) | 
|  | 4241 | { | 
|  | 4242 | sctx->sifted_states = sifted_sts; | 
|  | 4243 | sctx->limited_states = limited_sts; | 
|  | 4244 | sctx->last_node = last_node; | 
|  | 4245 | sctx->last_str_idx = last_str_idx; | 
|  | 4246 | re_node_set_init_empty (&sctx->limits); | 
|  | 4247 | } |