| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved. | 
|  | 3 | * | 
|  | 4 | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | 5 | * this file except in compliance with the License.  You can obtain a copy | 
|  | 6 | * in the file LICENSE in the source distribution or at | 
|  | 7 | * https://www.openssl.org/source/license.html | 
|  | 8 | */ | 
|  | 9 |  | 
|  | 10 | #include <string.h> | 
|  | 11 | #include <openssl/crypto.h> | 
|  | 12 | #include <openssl/err.h> | 
|  | 13 | #include "modes_local.h" | 
|  | 14 |  | 
|  | 15 | #ifndef OPENSSL_NO_OCB | 
|  | 16 |  | 
|  | 17 | /* | 
|  | 18 | * Calculate the number of binary trailing zero's in any given number | 
|  | 19 | */ | 
|  | 20 | static u32 ocb_ntz(u64 n) | 
|  | 21 | { | 
|  | 22 | u32 cnt = 0; | 
|  | 23 |  | 
|  | 24 | /* | 
|  | 25 | * We do a right-to-left simple sequential search. This is surprisingly | 
|  | 26 | * efficient as the distribution of trailing zeros is not uniform, | 
|  | 27 | * e.g. the number of possible inputs with no trailing zeros is equal to | 
|  | 28 | * the number with 1 or more; the number with exactly 1 is equal to the | 
|  | 29 | * number with 2 or more, etc. Checking the last two bits covers 75% of | 
|  | 30 | * all numbers. Checking the last three covers 87.5% | 
|  | 31 | */ | 
|  | 32 | while (!(n & 1)) { | 
|  | 33 | n >>= 1; | 
|  | 34 | cnt++; | 
|  | 35 | } | 
|  | 36 | return cnt; | 
|  | 37 | } | 
|  | 38 |  | 
|  | 39 | /* | 
|  | 40 | * Shift a block of 16 bytes left by shift bits | 
|  | 41 | */ | 
|  | 42 | static void ocb_block_lshift(const unsigned char *in, size_t shift, | 
|  | 43 | unsigned char *out) | 
|  | 44 | { | 
|  | 45 | int i; | 
|  | 46 | unsigned char carry = 0, carry_next; | 
|  | 47 |  | 
|  | 48 | for (i = 15; i >= 0; i--) { | 
|  | 49 | carry_next = in[i] >> (8 - shift); | 
|  | 50 | out[i] = (in[i] << shift) | carry; | 
|  | 51 | carry = carry_next; | 
|  | 52 | } | 
|  | 53 | } | 
|  | 54 |  | 
|  | 55 | /* | 
|  | 56 | * Perform a "double" operation as per OCB spec | 
|  | 57 | */ | 
|  | 58 | static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out) | 
|  | 59 | { | 
|  | 60 | unsigned char mask; | 
|  | 61 |  | 
|  | 62 | /* | 
|  | 63 | * Calculate the mask based on the most significant bit. There are more | 
|  | 64 | * efficient ways to do this - but this way is constant time | 
|  | 65 | */ | 
|  | 66 | mask = in->c[0] & 0x80; | 
|  | 67 | mask >>= 7; | 
|  | 68 | mask = (0 - mask) & 0x87; | 
|  | 69 |  | 
|  | 70 | ocb_block_lshift(in->c, 1, out->c); | 
|  | 71 |  | 
|  | 72 | out->c[15] ^= mask; | 
|  | 73 | } | 
|  | 74 |  | 
|  | 75 | /* | 
|  | 76 | * Perform an xor on in1 and in2 - each of len bytes. Store result in out | 
|  | 77 | */ | 
|  | 78 | static void ocb_block_xor(const unsigned char *in1, | 
|  | 79 | const unsigned char *in2, size_t len, | 
|  | 80 | unsigned char *out) | 
|  | 81 | { | 
|  | 82 | size_t i; | 
|  | 83 | for (i = 0; i < len; i++) { | 
|  | 84 | out[i] = in1[i] ^ in2[i]; | 
|  | 85 | } | 
|  | 86 | } | 
|  | 87 |  | 
|  | 88 | /* | 
|  | 89 | * Lookup L_index in our lookup table. If we haven't already got it we need to | 
|  | 90 | * calculate it | 
|  | 91 | */ | 
|  | 92 | static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx) | 
|  | 93 | { | 
|  | 94 | size_t l_index = ctx->l_index; | 
|  | 95 |  | 
|  | 96 | if (idx <= l_index) { | 
|  | 97 | return ctx->l + idx; | 
|  | 98 | } | 
|  | 99 |  | 
|  | 100 | /* We don't have it - so calculate it */ | 
|  | 101 | if (idx >= ctx->max_l_index) { | 
|  | 102 | void *tmp_ptr; | 
|  | 103 | /* | 
|  | 104 | * Each additional entry allows to process almost double as | 
|  | 105 | * much data, so that in linear world the table will need to | 
|  | 106 | * be expanded with smaller and smaller increments. Originally | 
|  | 107 | * it was doubling in size, which was a waste. Growing it | 
|  | 108 | * linearly is not formally optimal, but is simpler to implement. | 
|  | 109 | * We grow table by minimally required 4*n that would accommodate | 
|  | 110 | * the index. | 
|  | 111 | */ | 
|  | 112 | ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3; | 
|  | 113 | tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK)); | 
|  | 114 | if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */ | 
|  | 115 | return NULL; | 
|  | 116 | ctx->l = tmp_ptr; | 
|  | 117 | } | 
|  | 118 | while (l_index < idx) { | 
|  | 119 | ocb_double(ctx->l + l_index, ctx->l + l_index + 1); | 
|  | 120 | l_index++; | 
|  | 121 | } | 
|  | 122 | ctx->l_index = l_index; | 
|  | 123 |  | 
|  | 124 | return ctx->l + idx; | 
|  | 125 | } | 
|  | 126 |  | 
|  | 127 | /* | 
|  | 128 | * Create a new OCB128_CONTEXT | 
|  | 129 | */ | 
|  | 130 | OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec, | 
|  | 131 | block128_f encrypt, block128_f decrypt, | 
|  | 132 | ocb128_f stream) | 
|  | 133 | { | 
|  | 134 | OCB128_CONTEXT *octx; | 
|  | 135 | int ret; | 
|  | 136 |  | 
|  | 137 | if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) { | 
|  | 138 | ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt, | 
|  | 139 | stream); | 
|  | 140 | if (ret) | 
|  | 141 | return octx; | 
|  | 142 | OPENSSL_free(octx); | 
|  | 143 | } | 
|  | 144 |  | 
|  | 145 | return NULL; | 
|  | 146 | } | 
|  | 147 |  | 
|  | 148 | /* | 
|  | 149 | * Initialise an existing OCB128_CONTEXT | 
|  | 150 | */ | 
|  | 151 | int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec, | 
|  | 152 | block128_f encrypt, block128_f decrypt, | 
|  | 153 | ocb128_f stream) | 
|  | 154 | { | 
|  | 155 | memset(ctx, 0, sizeof(*ctx)); | 
|  | 156 | ctx->l_index = 0; | 
|  | 157 | ctx->max_l_index = 5; | 
|  | 158 | if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) { | 
|  | 159 | CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_INIT, ERR_R_MALLOC_FAILURE); | 
|  | 160 | return 0; | 
|  | 161 | } | 
|  | 162 |  | 
|  | 163 | /* | 
|  | 164 | * We set both the encryption and decryption key schedules - decryption | 
|  | 165 | * needs both. Don't really need decryption schedule if only doing | 
|  | 166 | * encryption - but it simplifies things to take it anyway | 
|  | 167 | */ | 
|  | 168 | ctx->encrypt = encrypt; | 
|  | 169 | ctx->decrypt = decrypt; | 
|  | 170 | ctx->stream = stream; | 
|  | 171 | ctx->keyenc = keyenc; | 
|  | 172 | ctx->keydec = keydec; | 
|  | 173 |  | 
|  | 174 | /* L_* = ENCIPHER(K, zeros(128)) */ | 
|  | 175 | ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc); | 
|  | 176 |  | 
|  | 177 | /* L_$ = double(L_*) */ | 
|  | 178 | ocb_double(&ctx->l_star, &ctx->l_dollar); | 
|  | 179 |  | 
|  | 180 | /* L_0 = double(L_$) */ | 
|  | 181 | ocb_double(&ctx->l_dollar, ctx->l); | 
|  | 182 |  | 
|  | 183 | /* L_{i} = double(L_{i-1}) */ | 
|  | 184 | ocb_double(ctx->l, ctx->l+1); | 
|  | 185 | ocb_double(ctx->l+1, ctx->l+2); | 
|  | 186 | ocb_double(ctx->l+2, ctx->l+3); | 
|  | 187 | ocb_double(ctx->l+3, ctx->l+4); | 
|  | 188 | ctx->l_index = 4;   /* enough to process up to 496 bytes */ | 
|  | 189 |  | 
|  | 190 | return 1; | 
|  | 191 | } | 
|  | 192 |  | 
|  | 193 | /* | 
|  | 194 | * Copy an OCB128_CONTEXT object | 
|  | 195 | */ | 
|  | 196 | int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src, | 
|  | 197 | void *keyenc, void *keydec) | 
|  | 198 | { | 
|  | 199 | memcpy(dest, src, sizeof(OCB128_CONTEXT)); | 
|  | 200 | if (keyenc) | 
|  | 201 | dest->keyenc = keyenc; | 
|  | 202 | if (keydec) | 
|  | 203 | dest->keydec = keydec; | 
|  | 204 | if (src->l) { | 
|  | 205 | if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) { | 
|  | 206 | CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_COPY_CTX, ERR_R_MALLOC_FAILURE); | 
|  | 207 | return 0; | 
|  | 208 | } | 
|  | 209 | memcpy(dest->l, src->l, (src->l_index + 1) * 16); | 
|  | 210 | } | 
|  | 211 | return 1; | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | /* | 
|  | 215 | * Set the IV to be used for this operation. Must be 1 - 15 bytes. | 
|  | 216 | */ | 
|  | 217 | int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv, | 
|  | 218 | size_t len, size_t taglen) | 
|  | 219 | { | 
|  | 220 | unsigned char ktop[16], tmp[16], mask; | 
|  | 221 | unsigned char stretch[24], nonce[16]; | 
|  | 222 | size_t bottom, shift; | 
|  | 223 |  | 
|  | 224 | /* | 
|  | 225 | * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths. | 
|  | 226 | * We don't support this at this stage | 
|  | 227 | */ | 
|  | 228 | if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) { | 
|  | 229 | return -1; | 
|  | 230 | } | 
|  | 231 |  | 
|  | 232 | /* Reset nonce-dependent variables */ | 
|  | 233 | memset(&ctx->sess, 0, sizeof(ctx->sess)); | 
|  | 234 |  | 
|  | 235 | /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */ | 
|  | 236 | nonce[0] = ((taglen * 8) % 128) << 1; | 
|  | 237 | memset(nonce + 1, 0, 15); | 
|  | 238 | memcpy(nonce + 16 - len, iv, len); | 
|  | 239 | nonce[15 - len] |= 1; | 
|  | 240 |  | 
|  | 241 | /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */ | 
|  | 242 | memcpy(tmp, nonce, 16); | 
|  | 243 | tmp[15] &= 0xc0; | 
|  | 244 | ctx->encrypt(tmp, ktop, ctx->keyenc); | 
|  | 245 |  | 
|  | 246 | /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */ | 
|  | 247 | memcpy(stretch, ktop, 16); | 
|  | 248 | ocb_block_xor(ktop, ktop + 1, 8, stretch + 16); | 
|  | 249 |  | 
|  | 250 | /* bottom = str2num(Nonce[123..128]) */ | 
|  | 251 | bottom = nonce[15] & 0x3f; | 
|  | 252 |  | 
|  | 253 | /* Offset_0 = Stretch[1+bottom..128+bottom] */ | 
|  | 254 | shift = bottom % 8; | 
|  | 255 | ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c); | 
|  | 256 | mask = 0xff; | 
|  | 257 | mask <<= 8 - shift; | 
|  | 258 | ctx->sess.offset.c[15] |= | 
|  | 259 | (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift); | 
|  | 260 |  | 
|  | 261 | return 1; | 
|  | 262 | } | 
|  | 263 |  | 
|  | 264 | /* | 
|  | 265 | * Provide any AAD. This can be called multiple times. Only the final time can | 
|  | 266 | * have a partial block | 
|  | 267 | */ | 
|  | 268 | int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad, | 
|  | 269 | size_t len) | 
|  | 270 | { | 
|  | 271 | u64 i, all_num_blocks; | 
|  | 272 | size_t num_blocks, last_len; | 
|  | 273 | OCB_BLOCK tmp; | 
|  | 274 |  | 
|  | 275 | /* Calculate the number of blocks of AAD provided now, and so far */ | 
|  | 276 | num_blocks = len / 16; | 
|  | 277 | all_num_blocks = num_blocks + ctx->sess.blocks_hashed; | 
|  | 278 |  | 
|  | 279 | /* Loop through all full blocks of AAD */ | 
|  | 280 | for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) { | 
|  | 281 | OCB_BLOCK *lookup; | 
|  | 282 |  | 
|  | 283 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ | 
|  | 284 | lookup = ocb_lookup_l(ctx, ocb_ntz(i)); | 
|  | 285 | if (lookup == NULL) | 
|  | 286 | return 0; | 
|  | 287 | ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad); | 
|  | 288 |  | 
|  | 289 | memcpy(tmp.c, aad, 16); | 
|  | 290 | aad += 16; | 
|  | 291 |  | 
|  | 292 | /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */ | 
|  | 293 | ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); | 
|  | 294 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); | 
|  | 295 | ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); | 
|  | 296 | } | 
|  | 297 |  | 
|  | 298 | /* | 
|  | 299 | * Check if we have any partial blocks left over. This is only valid in the | 
|  | 300 | * last call to this function | 
|  | 301 | */ | 
|  | 302 | last_len = len % 16; | 
|  | 303 |  | 
|  | 304 | if (last_len > 0) { | 
|  | 305 | /* Offset_* = Offset_m xor L_* */ | 
|  | 306 | ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star, | 
|  | 307 | &ctx->sess.offset_aad); | 
|  | 308 |  | 
|  | 309 | /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */ | 
|  | 310 | memset(tmp.c, 0, 16); | 
|  | 311 | memcpy(tmp.c, aad, last_len); | 
|  | 312 | tmp.c[last_len] = 0x80; | 
|  | 313 | ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp); | 
|  | 314 |  | 
|  | 315 | /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */ | 
|  | 316 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); | 
|  | 317 | ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum); | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | ctx->sess.blocks_hashed = all_num_blocks; | 
|  | 321 |  | 
|  | 322 | return 1; | 
|  | 323 | } | 
|  | 324 |  | 
|  | 325 | /* | 
|  | 326 | * Provide any data to be encrypted. This can be called multiple times. Only | 
|  | 327 | * the final time can have a partial block | 
|  | 328 | */ | 
|  | 329 | int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx, | 
|  | 330 | const unsigned char *in, unsigned char *out, | 
|  | 331 | size_t len) | 
|  | 332 | { | 
|  | 333 | u64 i, all_num_blocks; | 
|  | 334 | size_t num_blocks, last_len; | 
|  | 335 |  | 
|  | 336 | /* | 
|  | 337 | * Calculate the number of blocks of data to be encrypted provided now, and | 
|  | 338 | * so far | 
|  | 339 | */ | 
|  | 340 | num_blocks = len / 16; | 
|  | 341 | all_num_blocks = num_blocks + ctx->sess.blocks_processed; | 
|  | 342 |  | 
|  | 343 | if (num_blocks && all_num_blocks == (size_t)all_num_blocks | 
|  | 344 | && ctx->stream != NULL) { | 
|  | 345 | size_t max_idx = 0, top = (size_t)all_num_blocks; | 
|  | 346 |  | 
|  | 347 | /* | 
|  | 348 | * See how many L_{i} entries we need to process data at hand | 
|  | 349 | * and pre-compute missing entries in the table [if any]... | 
|  | 350 | */ | 
|  | 351 | while (top >>= 1) | 
|  | 352 | max_idx++; | 
|  | 353 | if (ocb_lookup_l(ctx, max_idx) == NULL) | 
|  | 354 | return 0; | 
|  | 355 |  | 
|  | 356 | ctx->stream(in, out, num_blocks, ctx->keyenc, | 
|  | 357 | (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, | 
|  | 358 | (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); | 
|  | 359 | } else { | 
|  | 360 | /* Loop through all full blocks to be encrypted */ | 
|  | 361 | for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { | 
|  | 362 | OCB_BLOCK *lookup; | 
|  | 363 | OCB_BLOCK tmp; | 
|  | 364 |  | 
|  | 365 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ | 
|  | 366 | lookup = ocb_lookup_l(ctx, ocb_ntz(i)); | 
|  | 367 | if (lookup == NULL) | 
|  | 368 | return 0; | 
|  | 369 | ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); | 
|  | 370 |  | 
|  | 371 | memcpy(tmp.c, in, 16); | 
|  | 372 | in += 16; | 
|  | 373 |  | 
|  | 374 | /* Checksum_i = Checksum_{i-1} xor P_i */ | 
|  | 375 | ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); | 
|  | 376 |  | 
|  | 377 | /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */ | 
|  | 378 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); | 
|  | 379 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); | 
|  | 380 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); | 
|  | 381 |  | 
|  | 382 | memcpy(out, tmp.c, 16); | 
|  | 383 | out += 16; | 
|  | 384 | } | 
|  | 385 | } | 
|  | 386 |  | 
|  | 387 | /* | 
|  | 388 | * Check if we have any partial blocks left over. This is only valid in the | 
|  | 389 | * last call to this function | 
|  | 390 | */ | 
|  | 391 | last_len = len % 16; | 
|  | 392 |  | 
|  | 393 | if (last_len > 0) { | 
|  | 394 | OCB_BLOCK pad; | 
|  | 395 |  | 
|  | 396 | /* Offset_* = Offset_m xor L_* */ | 
|  | 397 | ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); | 
|  | 398 |  | 
|  | 399 | /* Pad = ENCIPHER(K, Offset_*) */ | 
|  | 400 | ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); | 
|  | 401 |  | 
|  | 402 | /* C_* = P_* xor Pad[1..bitlen(P_*)] */ | 
|  | 403 | ocb_block_xor(in, pad.c, last_len, out); | 
|  | 404 |  | 
|  | 405 | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ | 
|  | 406 | memset(pad.c, 0, 16);           /* borrow pad */ | 
|  | 407 | memcpy(pad.c, in, last_len); | 
|  | 408 | pad.c[last_len] = 0x80; | 
|  | 409 | ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); | 
|  | 410 | } | 
|  | 411 |  | 
|  | 412 | ctx->sess.blocks_processed = all_num_blocks; | 
|  | 413 |  | 
|  | 414 | return 1; | 
|  | 415 | } | 
|  | 416 |  | 
|  | 417 | /* | 
|  | 418 | * Provide any data to be decrypted. This can be called multiple times. Only | 
|  | 419 | * the final time can have a partial block | 
|  | 420 | */ | 
|  | 421 | int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx, | 
|  | 422 | const unsigned char *in, unsigned char *out, | 
|  | 423 | size_t len) | 
|  | 424 | { | 
|  | 425 | u64 i, all_num_blocks; | 
|  | 426 | size_t num_blocks, last_len; | 
|  | 427 |  | 
|  | 428 | /* | 
|  | 429 | * Calculate the number of blocks of data to be decrypted provided now, and | 
|  | 430 | * so far | 
|  | 431 | */ | 
|  | 432 | num_blocks = len / 16; | 
|  | 433 | all_num_blocks = num_blocks + ctx->sess.blocks_processed; | 
|  | 434 |  | 
|  | 435 | if (num_blocks && all_num_blocks == (size_t)all_num_blocks | 
|  | 436 | && ctx->stream != NULL) { | 
|  | 437 | size_t max_idx = 0, top = (size_t)all_num_blocks; | 
|  | 438 |  | 
|  | 439 | /* | 
|  | 440 | * See how many L_{i} entries we need to process data at hand | 
|  | 441 | * and pre-compute missing entries in the table [if any]... | 
|  | 442 | */ | 
|  | 443 | while (top >>= 1) | 
|  | 444 | max_idx++; | 
|  | 445 | if (ocb_lookup_l(ctx, max_idx) == NULL) | 
|  | 446 | return 0; | 
|  | 447 |  | 
|  | 448 | ctx->stream(in, out, num_blocks, ctx->keydec, | 
|  | 449 | (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c, | 
|  | 450 | (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c); | 
|  | 451 | } else { | 
|  | 452 | OCB_BLOCK tmp; | 
|  | 453 |  | 
|  | 454 | /* Loop through all full blocks to be decrypted */ | 
|  | 455 | for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) { | 
|  | 456 |  | 
|  | 457 | /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */ | 
|  | 458 | OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i)); | 
|  | 459 | if (lookup == NULL) | 
|  | 460 | return 0; | 
|  | 461 | ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset); | 
|  | 462 |  | 
|  | 463 | memcpy(tmp.c, in, 16); | 
|  | 464 | in += 16; | 
|  | 465 |  | 
|  | 466 | /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */ | 
|  | 467 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); | 
|  | 468 | ctx->decrypt(tmp.c, tmp.c, ctx->keydec); | 
|  | 469 | ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp); | 
|  | 470 |  | 
|  | 471 | /* Checksum_i = Checksum_{i-1} xor P_i */ | 
|  | 472 | ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum); | 
|  | 473 |  | 
|  | 474 | memcpy(out, tmp.c, 16); | 
|  | 475 | out += 16; | 
|  | 476 | } | 
|  | 477 | } | 
|  | 478 |  | 
|  | 479 | /* | 
|  | 480 | * Check if we have any partial blocks left over. This is only valid in the | 
|  | 481 | * last call to this function | 
|  | 482 | */ | 
|  | 483 | last_len = len % 16; | 
|  | 484 |  | 
|  | 485 | if (last_len > 0) { | 
|  | 486 | OCB_BLOCK pad; | 
|  | 487 |  | 
|  | 488 | /* Offset_* = Offset_m xor L_* */ | 
|  | 489 | ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset); | 
|  | 490 |  | 
|  | 491 | /* Pad = ENCIPHER(K, Offset_*) */ | 
|  | 492 | ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc); | 
|  | 493 |  | 
|  | 494 | /* P_* = C_* xor Pad[1..bitlen(C_*)] */ | 
|  | 495 | ocb_block_xor(in, pad.c, last_len, out); | 
|  | 496 |  | 
|  | 497 | /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */ | 
|  | 498 | memset(pad.c, 0, 16);           /* borrow pad */ | 
|  | 499 | memcpy(pad.c, out, last_len); | 
|  | 500 | pad.c[last_len] = 0x80; | 
|  | 501 | ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum); | 
|  | 502 | } | 
|  | 503 |  | 
|  | 504 | ctx->sess.blocks_processed = all_num_blocks; | 
|  | 505 |  | 
|  | 506 | return 1; | 
|  | 507 | } | 
|  | 508 |  | 
|  | 509 | static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len, | 
|  | 510 | int write) | 
|  | 511 | { | 
|  | 512 | OCB_BLOCK tmp; | 
|  | 513 |  | 
|  | 514 | if (len > 16 || len < 1) { | 
|  | 515 | return -1; | 
|  | 516 | } | 
|  | 517 |  | 
|  | 518 | /* | 
|  | 519 | * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A) | 
|  | 520 | */ | 
|  | 521 | ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp); | 
|  | 522 | ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp); | 
|  | 523 | ctx->encrypt(tmp.c, tmp.c, ctx->keyenc); | 
|  | 524 | ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp); | 
|  | 525 |  | 
|  | 526 | if (write) { | 
|  | 527 | memcpy(tag, &tmp, len); | 
|  | 528 | return 1; | 
|  | 529 | } else { | 
|  | 530 | return CRYPTO_memcmp(&tmp, tag, len); | 
|  | 531 | } | 
|  | 532 | } | 
|  | 533 |  | 
|  | 534 | /* | 
|  | 535 | * Calculate the tag and verify it against the supplied tag | 
|  | 536 | */ | 
|  | 537 | int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag, | 
|  | 538 | size_t len) | 
|  | 539 | { | 
|  | 540 | return ocb_finish(ctx, (unsigned char*)tag, len, 0); | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | /* | 
|  | 544 | * Retrieve the calculated tag | 
|  | 545 | */ | 
|  | 546 | int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len) | 
|  | 547 | { | 
|  | 548 | return ocb_finish(ctx, tag, len, 1); | 
|  | 549 | } | 
|  | 550 |  | 
|  | 551 | /* | 
|  | 552 | * Release all resources | 
|  | 553 | */ | 
|  | 554 | void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx) | 
|  | 555 | { | 
|  | 556 | if (ctx) { | 
|  | 557 | OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16); | 
|  | 558 | OPENSSL_cleanse(ctx, sizeof(*ctx)); | 
|  | 559 | } | 
|  | 560 | } | 
|  | 561 |  | 
|  | 562 | #endif                          /* OPENSSL_NO_OCB */ |