| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* infcover.c -- test zlib's inflate routines with full code coverage | 
|  | 2 | * Copyright (C) 2011, 2016 Mark Adler | 
|  | 3 | * For conditions of distribution and use, see copyright notice in zlib.h | 
|  | 4 | */ | 
|  | 5 |  | 
|  | 6 | /* to use, do: ./configure --cover && make cover */ | 
|  | 7 |  | 
|  | 8 | #include <stdio.h> | 
|  | 9 | #include <stdlib.h> | 
|  | 10 | #include <string.h> | 
|  | 11 | #include <assert.h> | 
|  | 12 | #include "zlib.h" | 
|  | 13 |  | 
|  | 14 | /* get definition of internal structure so we can mess with it (see pull()), | 
|  | 15 | and so we can call inflate_trees() (see cover5()) */ | 
|  | 16 | #define ZLIB_INTERNAL | 
|  | 17 | #include "inftrees.h" | 
|  | 18 | #include "inflate.h" | 
|  | 19 |  | 
|  | 20 | #define local static | 
|  | 21 |  | 
|  | 22 | /* -- memory tracking routines -- */ | 
|  | 23 |  | 
|  | 24 | /* | 
|  | 25 | These memory tracking routines are provided to zlib and track all of zlib's | 
|  | 26 | allocations and deallocations, check for LIFO operations, keep a current | 
|  | 27 | and high water mark of total bytes requested, optionally set a limit on the | 
|  | 28 | total memory that can be allocated, and when done check for memory leaks. | 
|  | 29 |  | 
|  | 30 | They are used as follows: | 
|  | 31 |  | 
|  | 32 | z_stream strm; | 
|  | 33 | mem_setup(&strm)         initializes the memory tracking and sets the | 
|  | 34 | zalloc, zfree, and opaque members of strm to use | 
|  | 35 | memory tracking for all zlib operations on strm | 
|  | 36 | mem_limit(&strm, limit)  sets a limit on the total bytes requested -- a | 
|  | 37 | request that exceeds this limit will result in an | 
|  | 38 | allocation failure (returns NULL) -- setting the | 
|  | 39 | limit to zero means no limit, which is the default | 
|  | 40 | after mem_setup() | 
|  | 41 | mem_used(&strm, "msg")   prints to stderr "msg" and the total bytes used | 
|  | 42 | mem_high(&strm, "msg")   prints to stderr "msg" and the high water mark | 
|  | 43 | mem_done(&strm, "msg")   ends memory tracking, releases all allocations | 
|  | 44 | for the tracking as well as leaked zlib blocks, if | 
|  | 45 | any.  If there was anything unusual, such as leaked | 
|  | 46 | blocks, non-FIFO frees, or frees of addresses not | 
|  | 47 | allocated, then "msg" and information about the | 
|  | 48 | problem is printed to stderr.  If everything is | 
|  | 49 | normal, nothing is printed. mem_done resets the | 
|  | 50 | strm members to Z_NULL to use the default memory | 
|  | 51 | allocation routines on the next zlib initialization | 
|  | 52 | using strm. | 
|  | 53 | */ | 
|  | 54 |  | 
|  | 55 | /* these items are strung together in a linked list, one for each allocation */ | 
|  | 56 | struct mem_item { | 
|  | 57 | void *ptr;                  /* pointer to allocated memory */ | 
|  | 58 | size_t size;                /* requested size of allocation */ | 
|  | 59 | struct mem_item *next;      /* pointer to next item in list, or NULL */ | 
|  | 60 | }; | 
|  | 61 |  | 
|  | 62 | /* this structure is at the root of the linked list, and tracks statistics */ | 
|  | 63 | struct mem_zone { | 
|  | 64 | struct mem_item *first;     /* pointer to first item in list, or NULL */ | 
|  | 65 | size_t total, highwater;    /* total allocations, and largest total */ | 
|  | 66 | size_t limit;               /* memory allocation limit, or 0 if no limit */ | 
|  | 67 | int notlifo, rogue;         /* counts of non-LIFO frees and rogue frees */ | 
|  | 68 | }; | 
|  | 69 |  | 
|  | 70 | /* memory allocation routine to pass to zlib */ | 
|  | 71 | local void *mem_alloc(void *mem, unsigned count, unsigned size) | 
|  | 72 | { | 
|  | 73 | void *ptr; | 
|  | 74 | struct mem_item *item; | 
|  | 75 | struct mem_zone *zone = mem; | 
|  | 76 | size_t len = count * (size_t)size; | 
|  | 77 |  | 
|  | 78 | /* induced allocation failure */ | 
|  | 79 | if (zone == NULL || (zone->limit && zone->total + len > zone->limit)) | 
|  | 80 | return NULL; | 
|  | 81 |  | 
|  | 82 | /* perform allocation using the standard library, fill memory with a | 
|  | 83 | non-zero value to make sure that the code isn't depending on zeros */ | 
|  | 84 | ptr = malloc(len); | 
|  | 85 | if (ptr == NULL) | 
|  | 86 | return NULL; | 
|  | 87 | memset(ptr, 0xa5, len); | 
|  | 88 |  | 
|  | 89 | /* create a new item for the list */ | 
|  | 90 | item = malloc(sizeof(struct mem_item)); | 
|  | 91 | if (item == NULL) { | 
|  | 92 | free(ptr); | 
|  | 93 | return NULL; | 
|  | 94 | } | 
|  | 95 | item->ptr = ptr; | 
|  | 96 | item->size = len; | 
|  | 97 |  | 
|  | 98 | /* insert item at the beginning of the list */ | 
|  | 99 | item->next = zone->first; | 
|  | 100 | zone->first = item; | 
|  | 101 |  | 
|  | 102 | /* update the statistics */ | 
|  | 103 | zone->total += item->size; | 
|  | 104 | if (zone->total > zone->highwater) | 
|  | 105 | zone->highwater = zone->total; | 
|  | 106 |  | 
|  | 107 | /* return the allocated memory */ | 
|  | 108 | return ptr; | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | /* memory free routine to pass to zlib */ | 
|  | 112 | local void mem_free(void *mem, void *ptr) | 
|  | 113 | { | 
|  | 114 | struct mem_item *item, *next; | 
|  | 115 | struct mem_zone *zone = mem; | 
|  | 116 |  | 
|  | 117 | /* if no zone, just do a free */ | 
|  | 118 | if (zone == NULL) { | 
|  | 119 | free(ptr); | 
|  | 120 | return; | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | /* point next to the item that matches ptr, or NULL if not found -- remove | 
|  | 124 | the item from the linked list if found */ | 
|  | 125 | next = zone->first; | 
|  | 126 | if (next) { | 
|  | 127 | if (next->ptr == ptr) | 
|  | 128 | zone->first = next->next;   /* first one is it, remove from list */ | 
|  | 129 | else { | 
|  | 130 | do {                        /* search the linked list */ | 
|  | 131 | item = next; | 
|  | 132 | next = item->next; | 
|  | 133 | } while (next != NULL && next->ptr != ptr); | 
|  | 134 | if (next) {                 /* if found, remove from linked list */ | 
|  | 135 | item->next = next->next; | 
|  | 136 | zone->notlifo++;        /* not a LIFO free */ | 
|  | 137 | } | 
|  | 138 |  | 
|  | 139 | } | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | /* if found, update the statistics and free the item */ | 
|  | 143 | if (next) { | 
|  | 144 | zone->total -= next->size; | 
|  | 145 | free(next); | 
|  | 146 | } | 
|  | 147 |  | 
|  | 148 | /* if not found, update the rogue count */ | 
|  | 149 | else | 
|  | 150 | zone->rogue++; | 
|  | 151 |  | 
|  | 152 | /* in any case, do the requested free with the standard library function */ | 
|  | 153 | free(ptr); | 
|  | 154 | } | 
|  | 155 |  | 
|  | 156 | /* set up a controlled memory allocation space for monitoring, set the stream | 
|  | 157 | parameters to the controlled routines, with opaque pointing to the space */ | 
|  | 158 | local void mem_setup(z_stream *strm) | 
|  | 159 | { | 
|  | 160 | struct mem_zone *zone; | 
|  | 161 |  | 
|  | 162 | zone = malloc(sizeof(struct mem_zone)); | 
|  | 163 | assert(zone != NULL); | 
|  | 164 | zone->first = NULL; | 
|  | 165 | zone->total = 0; | 
|  | 166 | zone->highwater = 0; | 
|  | 167 | zone->limit = 0; | 
|  | 168 | zone->notlifo = 0; | 
|  | 169 | zone->rogue = 0; | 
|  | 170 | strm->opaque = zone; | 
|  | 171 | strm->zalloc = mem_alloc; | 
|  | 172 | strm->zfree = mem_free; | 
|  | 173 | } | 
|  | 174 |  | 
|  | 175 | /* set a limit on the total memory allocation, or 0 to remove the limit */ | 
|  | 176 | local void mem_limit(z_stream *strm, size_t limit) | 
|  | 177 | { | 
|  | 178 | struct mem_zone *zone = strm->opaque; | 
|  | 179 |  | 
|  | 180 | zone->limit = limit; | 
|  | 181 | } | 
|  | 182 |  | 
|  | 183 | /* show the current total requested allocations in bytes */ | 
|  | 184 | local void mem_used(z_stream *strm, char *prefix) | 
|  | 185 | { | 
|  | 186 | struct mem_zone *zone = strm->opaque; | 
|  | 187 |  | 
|  | 188 | fprintf(stderr, "%s: %lu allocated\n", prefix, zone->total); | 
|  | 189 | } | 
|  | 190 |  | 
|  | 191 | /* show the high water allocation in bytes */ | 
|  | 192 | local void mem_high(z_stream *strm, char *prefix) | 
|  | 193 | { | 
|  | 194 | struct mem_zone *zone = strm->opaque; | 
|  | 195 |  | 
|  | 196 | fprintf(stderr, "%s: %lu high water mark\n", prefix, zone->highwater); | 
|  | 197 | } | 
|  | 198 |  | 
|  | 199 | /* release the memory allocation zone -- if there are any surprises, notify */ | 
|  | 200 | local void mem_done(z_stream *strm, char *prefix) | 
|  | 201 | { | 
|  | 202 | int count = 0; | 
|  | 203 | struct mem_item *item, *next; | 
|  | 204 | struct mem_zone *zone = strm->opaque; | 
|  | 205 |  | 
|  | 206 | /* show high water mark */ | 
|  | 207 | mem_high(strm, prefix); | 
|  | 208 |  | 
|  | 209 | /* free leftover allocations and item structures, if any */ | 
|  | 210 | item = zone->first; | 
|  | 211 | while (item != NULL) { | 
|  | 212 | free(item->ptr); | 
|  | 213 | next = item->next; | 
|  | 214 | free(item); | 
|  | 215 | item = next; | 
|  | 216 | count++; | 
|  | 217 | } | 
|  | 218 |  | 
|  | 219 | /* issue alerts about anything unexpected */ | 
|  | 220 | if (count || zone->total) | 
|  | 221 | fprintf(stderr, "** %s: %lu bytes in %d blocks not freed\n", | 
|  | 222 | prefix, zone->total, count); | 
|  | 223 | if (zone->notlifo) | 
|  | 224 | fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo); | 
|  | 225 | if (zone->rogue) | 
|  | 226 | fprintf(stderr, "** %s: %d frees not recognized\n", | 
|  | 227 | prefix, zone->rogue); | 
|  | 228 |  | 
|  | 229 | /* free the zone and delete from the stream */ | 
|  | 230 | free(zone); | 
|  | 231 | strm->opaque = Z_NULL; | 
|  | 232 | strm->zalloc = Z_NULL; | 
|  | 233 | strm->zfree = Z_NULL; | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | /* -- inflate test routines -- */ | 
|  | 237 |  | 
|  | 238 | /* Decode a hexadecimal string, set *len to length, in[] to the bytes.  This | 
|  | 239 | decodes liberally, in that hex digits can be adjacent, in which case two in | 
|  | 240 | a row writes a byte.  Or they can be delimited by any non-hex character, | 
|  | 241 | where the delimiters are ignored except when a single hex digit is followed | 
|  | 242 | by a delimiter, where that single digit writes a byte.  The returned data is | 
|  | 243 | allocated and must eventually be freed.  NULL is returned if out of memory. | 
|  | 244 | If the length is not needed, then len can be NULL. */ | 
|  | 245 | local unsigned char *h2b(const char *hex, unsigned *len) | 
|  | 246 | { | 
|  | 247 | unsigned char *in, *re; | 
|  | 248 | unsigned next, val; | 
|  | 249 |  | 
|  | 250 | in = malloc((strlen(hex) + 1) >> 1); | 
|  | 251 | if (in == NULL) | 
|  | 252 | return NULL; | 
|  | 253 | next = 0; | 
|  | 254 | val = 1; | 
|  | 255 | do { | 
|  | 256 | if (*hex >= '0' && *hex <= '9') | 
|  | 257 | val = (val << 4) + *hex - '0'; | 
|  | 258 | else if (*hex >= 'A' && *hex <= 'F') | 
|  | 259 | val = (val << 4) + *hex - 'A' + 10; | 
|  | 260 | else if (*hex >= 'a' && *hex <= 'f') | 
|  | 261 | val = (val << 4) + *hex - 'a' + 10; | 
|  | 262 | else if (val != 1 && val < 32)  /* one digit followed by delimiter */ | 
|  | 263 | val += 240;                 /* make it look like two digits */ | 
|  | 264 | if (val > 255) {                /* have two digits */ | 
|  | 265 | in[next++] = val & 0xff;    /* save the decoded byte */ | 
|  | 266 | val = 1;                    /* start over */ | 
|  | 267 | } | 
|  | 268 | } while (*hex++);       /* go through the loop with the terminating null */ | 
|  | 269 | if (len != NULL) | 
|  | 270 | *len = next; | 
|  | 271 | re = realloc(in, next); | 
|  | 272 | return re == NULL ? in : re; | 
|  | 273 | } | 
|  | 274 |  | 
|  | 275 | /* generic inflate() run, where hex is the hexadecimal input data, what is the | 
|  | 276 | text to include in an error message, step is how much input data to feed | 
|  | 277 | inflate() on each call, or zero to feed it all, win is the window bits | 
|  | 278 | parameter to inflateInit2(), len is the size of the output buffer, and err | 
|  | 279 | is the error code expected from the first inflate() call (the second | 
|  | 280 | inflate() call is expected to return Z_STREAM_END).  If win is 47, then | 
|  | 281 | header information is collected with inflateGetHeader().  If a zlib stream | 
|  | 282 | is looking for a dictionary, then an empty dictionary is provided. | 
|  | 283 | inflate() is run until all of the input data is consumed. */ | 
|  | 284 | local void inf(char *hex, char *what, unsigned step, int win, unsigned len, | 
|  | 285 | int err) | 
|  | 286 | { | 
|  | 287 | int ret; | 
|  | 288 | unsigned have; | 
|  | 289 | unsigned char *in, *out; | 
|  | 290 | z_stream strm, copy; | 
|  | 291 | gz_header head; | 
|  | 292 |  | 
|  | 293 | mem_setup(&strm); | 
|  | 294 | strm.avail_in = 0; | 
|  | 295 | strm.next_in = Z_NULL; | 
|  | 296 | ret = inflateInit2(&strm, win); | 
|  | 297 | if (ret != Z_OK) { | 
|  | 298 | mem_done(&strm, what); | 
|  | 299 | return; | 
|  | 300 | } | 
|  | 301 | out = malloc(len);                          assert(out != NULL); | 
|  | 302 | if (win == 47) { | 
|  | 303 | head.extra = out; | 
|  | 304 | head.extra_max = len; | 
|  | 305 | head.name = out; | 
|  | 306 | head.name_max = len; | 
|  | 307 | head.comment = out; | 
|  | 308 | head.comm_max = len; | 
|  | 309 | ret = inflateGetHeader(&strm, &head);   assert(ret == Z_OK); | 
|  | 310 | } | 
|  | 311 | in = h2b(hex, &have);                       assert(in != NULL); | 
|  | 312 | if (step == 0 || step > have) | 
|  | 313 | step = have; | 
|  | 314 | strm.avail_in = step; | 
|  | 315 | have -= step; | 
|  | 316 | strm.next_in = in; | 
|  | 317 | do { | 
|  | 318 | strm.avail_out = len; | 
|  | 319 | strm.next_out = out; | 
|  | 320 | ret = inflate(&strm, Z_NO_FLUSH);       assert(err == 9 || ret == err); | 
|  | 321 | if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT) | 
|  | 322 | break; | 
|  | 323 | if (ret == Z_NEED_DICT) { | 
|  | 324 | ret = inflateSetDictionary(&strm, in, 1); | 
|  | 325 | assert(ret == Z_DATA_ERROR); | 
|  | 326 | mem_limit(&strm, 1); | 
|  | 327 | ret = inflateSetDictionary(&strm, out, 0); | 
|  | 328 | assert(ret == Z_MEM_ERROR); | 
|  | 329 | mem_limit(&strm, 0); | 
|  | 330 | ((struct inflate_state *)strm.state)->mode = DICT; | 
|  | 331 | ret = inflateSetDictionary(&strm, out, 0); | 
|  | 332 | assert(ret == Z_OK); | 
|  | 333 | ret = inflate(&strm, Z_NO_FLUSH);   assert(ret == Z_BUF_ERROR); | 
|  | 334 | } | 
|  | 335 | ret = inflateCopy(©, &strm);        assert(ret == Z_OK); | 
|  | 336 | ret = inflateEnd(©);                assert(ret == Z_OK); | 
|  | 337 | err = 9;                        /* don't care next time around */ | 
|  | 338 | have += strm.avail_in; | 
|  | 339 | strm.avail_in = step > have ? have : step; | 
|  | 340 | have -= strm.avail_in; | 
|  | 341 | } while (strm.avail_in); | 
|  | 342 | free(in); | 
|  | 343 | free(out); | 
|  | 344 | ret = inflateReset2(&strm, -8);             assert(ret == Z_OK); | 
|  | 345 | ret = inflateEnd(&strm);                    assert(ret == Z_OK); | 
|  | 346 | mem_done(&strm, what); | 
|  | 347 | } | 
|  | 348 |  | 
|  | 349 | /* cover all of the lines in inflate.c up to inflate() */ | 
|  | 350 | local void cover_support(void) | 
|  | 351 | { | 
|  | 352 | int ret; | 
|  | 353 | z_stream strm; | 
|  | 354 |  | 
|  | 355 | mem_setup(&strm); | 
|  | 356 | strm.avail_in = 0; | 
|  | 357 | strm.next_in = Z_NULL; | 
|  | 358 | ret = inflateInit(&strm);                   assert(ret == Z_OK); | 
|  | 359 | mem_used(&strm, "inflate init"); | 
|  | 360 | ret = inflatePrime(&strm, 5, 31);           assert(ret == Z_OK); | 
|  | 361 | ret = inflatePrime(&strm, -1, 0);           assert(ret == Z_OK); | 
|  | 362 | ret = inflateSetDictionary(&strm, Z_NULL, 0); | 
|  | 363 | assert(ret == Z_STREAM_ERROR); | 
|  | 364 | ret = inflateEnd(&strm);                    assert(ret == Z_OK); | 
|  | 365 | mem_done(&strm, "prime"); | 
|  | 366 |  | 
|  | 367 | inf("63 0", "force window allocation", 0, -15, 1, Z_OK); | 
|  | 368 | inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK); | 
|  | 369 | inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK); | 
|  | 370 | inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END); | 
|  | 371 | inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR); | 
|  | 372 |  | 
|  | 373 | mem_setup(&strm); | 
|  | 374 | strm.avail_in = 0; | 
|  | 375 | strm.next_in = Z_NULL; | 
|  | 376 | ret = inflateInit_(&strm, ZLIB_VERSION - 1, (int)sizeof(z_stream)); | 
|  | 377 | assert(ret == Z_VERSION_ERROR); | 
|  | 378 | mem_done(&strm, "wrong version"); | 
|  | 379 |  | 
|  | 380 | strm.avail_in = 0; | 
|  | 381 | strm.next_in = Z_NULL; | 
|  | 382 | ret = inflateInit(&strm);                   assert(ret == Z_OK); | 
|  | 383 | ret = inflateEnd(&strm);                    assert(ret == Z_OK); | 
|  | 384 | fputs("inflate built-in memory routines\n", stderr); | 
|  | 385 | } | 
|  | 386 |  | 
|  | 387 | /* cover all inflate() header and trailer cases and code after inflate() */ | 
|  | 388 | local void cover_wrap(void) | 
|  | 389 | { | 
|  | 390 | int ret; | 
|  | 391 | z_stream strm, copy; | 
|  | 392 | unsigned char dict[257]; | 
|  | 393 |  | 
|  | 394 | ret = inflate(Z_NULL, 0);                   assert(ret == Z_STREAM_ERROR); | 
|  | 395 | ret = inflateEnd(Z_NULL);                   assert(ret == Z_STREAM_ERROR); | 
|  | 396 | ret = inflateCopy(Z_NULL, Z_NULL);          assert(ret == Z_STREAM_ERROR); | 
|  | 397 | fputs("inflate bad parameters\n", stderr); | 
|  | 398 |  | 
|  | 399 | inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR); | 
|  | 400 | inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR); | 
|  | 401 | inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR); | 
|  | 402 | inf("8 99", "set window size from header", 0, 0, 0, Z_OK); | 
|  | 403 | inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR); | 
|  | 404 | inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END); | 
|  | 405 | inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1, | 
|  | 406 | Z_DATA_ERROR); | 
|  | 407 | inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length", | 
|  | 408 | 0, 47, 0, Z_STREAM_END); | 
|  | 409 | inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR); | 
|  | 410 | inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT); | 
|  | 411 | inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK); | 
|  | 412 |  | 
|  | 413 | mem_setup(&strm); | 
|  | 414 | strm.avail_in = 0; | 
|  | 415 | strm.next_in = Z_NULL; | 
|  | 416 | ret = inflateInit2(&strm, -8); | 
|  | 417 | strm.avail_in = 2; | 
|  | 418 | strm.next_in = (void *)"\x63"; | 
|  | 419 | strm.avail_out = 1; | 
|  | 420 | strm.next_out = (void *)&ret; | 
|  | 421 | mem_limit(&strm, 1); | 
|  | 422 | ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR); | 
|  | 423 | ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR); | 
|  | 424 | mem_limit(&strm, 0); | 
|  | 425 | memset(dict, 0, 257); | 
|  | 426 | ret = inflateSetDictionary(&strm, dict, 257); | 
|  | 427 | assert(ret == Z_OK); | 
|  | 428 | mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256); | 
|  | 429 | ret = inflatePrime(&strm, 16, 0);           assert(ret == Z_OK); | 
|  | 430 | strm.avail_in = 2; | 
|  | 431 | strm.next_in = (void *)"\x80"; | 
|  | 432 | ret = inflateSync(&strm);                   assert(ret == Z_DATA_ERROR); | 
|  | 433 | ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_STREAM_ERROR); | 
|  | 434 | strm.avail_in = 4; | 
|  | 435 | strm.next_in = (void *)"\0\0\xff\xff"; | 
|  | 436 | ret = inflateSync(&strm);                   assert(ret == Z_OK); | 
|  | 437 | (void)inflateSyncPoint(&strm); | 
|  | 438 | ret = inflateCopy(©, &strm);            assert(ret == Z_MEM_ERROR); | 
|  | 439 | mem_limit(&strm, 0); | 
|  | 440 | ret = inflateUndermine(&strm, 1);           assert(ret == Z_DATA_ERROR); | 
|  | 441 | (void)inflateMark(&strm); | 
|  | 442 | ret = inflateEnd(&strm);                    assert(ret == Z_OK); | 
|  | 443 | mem_done(&strm, "miscellaneous, force memory errors"); | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | /* input and output functions for inflateBack() */ | 
|  | 447 | local unsigned pull(void *desc, unsigned char **buf) | 
|  | 448 | { | 
|  | 449 | static unsigned int next = 0; | 
|  | 450 | static unsigned char dat[] = {0x63, 0, 2, 0}; | 
|  | 451 | struct inflate_state *state; | 
|  | 452 |  | 
|  | 453 | if (desc == Z_NULL) { | 
|  | 454 | next = 0; | 
|  | 455 | return 0;   /* no input (already provided at next_in) */ | 
|  | 456 | } | 
|  | 457 | state = (void *)((z_stream *)desc)->state; | 
|  | 458 | if (state != Z_NULL) | 
|  | 459 | state->mode = SYNC;     /* force an otherwise impossible situation */ | 
|  | 460 | return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0; | 
|  | 461 | } | 
|  | 462 |  | 
|  | 463 | local int push(void *desc, unsigned char *buf, unsigned len) | 
|  | 464 | { | 
|  | 465 | buf += len; | 
|  | 466 | return desc != Z_NULL;      /* force error if desc not null */ | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | /* cover inflateBack() up to common deflate data cases and after those */ | 
|  | 470 | local void cover_back(void) | 
|  | 471 | { | 
|  | 472 | int ret; | 
|  | 473 | z_stream strm; | 
|  | 474 | unsigned char win[32768]; | 
|  | 475 |  | 
|  | 476 | ret = inflateBackInit_(Z_NULL, 0, win, 0, 0); | 
|  | 477 | assert(ret == Z_VERSION_ERROR); | 
|  | 478 | ret = inflateBackInit(Z_NULL, 0, win);      assert(ret == Z_STREAM_ERROR); | 
|  | 479 | ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL); | 
|  | 480 | assert(ret == Z_STREAM_ERROR); | 
|  | 481 | ret = inflateBackEnd(Z_NULL);               assert(ret == Z_STREAM_ERROR); | 
|  | 482 | fputs("inflateBack bad parameters\n", stderr); | 
|  | 483 |  | 
|  | 484 | mem_setup(&strm); | 
|  | 485 | ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK); | 
|  | 486 | strm.avail_in = 2; | 
|  | 487 | strm.next_in = (void *)"\x03"; | 
|  | 488 | ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); | 
|  | 489 | assert(ret == Z_STREAM_END); | 
|  | 490 | /* force output error */ | 
|  | 491 | strm.avail_in = 3; | 
|  | 492 | strm.next_in = (void *)"\x63\x00"; | 
|  | 493 | ret = inflateBack(&strm, pull, Z_NULL, push, &strm); | 
|  | 494 | assert(ret == Z_BUF_ERROR); | 
|  | 495 | /* force mode error by mucking with state */ | 
|  | 496 | ret = inflateBack(&strm, pull, &strm, push, Z_NULL); | 
|  | 497 | assert(ret == Z_STREAM_ERROR); | 
|  | 498 | ret = inflateBackEnd(&strm);                assert(ret == Z_OK); | 
|  | 499 | mem_done(&strm, "inflateBack bad state"); | 
|  | 500 |  | 
|  | 501 | ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK); | 
|  | 502 | ret = inflateBackEnd(&strm);                assert(ret == Z_OK); | 
|  | 503 | fputs("inflateBack built-in memory routines\n", stderr); | 
|  | 504 | } | 
|  | 505 |  | 
|  | 506 | /* do a raw inflate of data in hexadecimal with both inflate and inflateBack */ | 
|  | 507 | local int try(char *hex, char *id, int err) | 
|  | 508 | { | 
|  | 509 | int ret; | 
|  | 510 | unsigned len, size; | 
|  | 511 | unsigned char *in, *out, *win; | 
|  | 512 | char *prefix; | 
|  | 513 | z_stream strm; | 
|  | 514 |  | 
|  | 515 | /* convert to hex */ | 
|  | 516 | in = h2b(hex, &len); | 
|  | 517 | assert(in != NULL); | 
|  | 518 |  | 
|  | 519 | /* allocate work areas */ | 
|  | 520 | size = len << 3; | 
|  | 521 | out = malloc(size); | 
|  | 522 | assert(out != NULL); | 
|  | 523 | win = malloc(32768); | 
|  | 524 | assert(win != NULL); | 
|  | 525 | prefix = malloc(strlen(id) + 6); | 
|  | 526 | assert(prefix != NULL); | 
|  | 527 |  | 
|  | 528 | /* first with inflate */ | 
|  | 529 | strcpy(prefix, id); | 
|  | 530 | strcat(prefix, "-late"); | 
|  | 531 | mem_setup(&strm); | 
|  | 532 | strm.avail_in = 0; | 
|  | 533 | strm.next_in = Z_NULL; | 
|  | 534 | ret = inflateInit2(&strm, err < 0 ? 47 : -15); | 
|  | 535 | assert(ret == Z_OK); | 
|  | 536 | strm.avail_in = len; | 
|  | 537 | strm.next_in = in; | 
|  | 538 | do { | 
|  | 539 | strm.avail_out = size; | 
|  | 540 | strm.next_out = out; | 
|  | 541 | ret = inflate(&strm, Z_TREES); | 
|  | 542 | assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR); | 
|  | 543 | if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT) | 
|  | 544 | break; | 
|  | 545 | } while (strm.avail_in || strm.avail_out == 0); | 
|  | 546 | if (err) { | 
|  | 547 | assert(ret == Z_DATA_ERROR); | 
|  | 548 | assert(strcmp(id, strm.msg) == 0); | 
|  | 549 | } | 
|  | 550 | inflateEnd(&strm); | 
|  | 551 | mem_done(&strm, prefix); | 
|  | 552 |  | 
|  | 553 | /* then with inflateBack */ | 
|  | 554 | if (err >= 0) { | 
|  | 555 | strcpy(prefix, id); | 
|  | 556 | strcat(prefix, "-back"); | 
|  | 557 | mem_setup(&strm); | 
|  | 558 | ret = inflateBackInit(&strm, 15, win); | 
|  | 559 | assert(ret == Z_OK); | 
|  | 560 | strm.avail_in = len; | 
|  | 561 | strm.next_in = in; | 
|  | 562 | ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL); | 
|  | 563 | assert(ret != Z_STREAM_ERROR); | 
|  | 564 | if (err) { | 
|  | 565 | assert(ret == Z_DATA_ERROR); | 
|  | 566 | assert(strcmp(id, strm.msg) == 0); | 
|  | 567 | } | 
|  | 568 | inflateBackEnd(&strm); | 
|  | 569 | mem_done(&strm, prefix); | 
|  | 570 | } | 
|  | 571 |  | 
|  | 572 | /* clean up */ | 
|  | 573 | free(prefix); | 
|  | 574 | free(win); | 
|  | 575 | free(out); | 
|  | 576 | free(in); | 
|  | 577 | return ret; | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | /* cover deflate data cases in both inflate() and inflateBack() */ | 
|  | 581 | local void cover_inflate(void) | 
|  | 582 | { | 
|  | 583 | try("0 0 0 0 0", "invalid stored block lengths", 1); | 
|  | 584 | try("3 0", "fixed", 0); | 
|  | 585 | try("6", "invalid block type", 1); | 
|  | 586 | try("1 1 0 fe ff 0", "stored", 0); | 
|  | 587 | try("fc 0 0", "too many length or distance symbols", 1); | 
|  | 588 | try("4 0 fe ff", "invalid code lengths set", 1); | 
|  | 589 | try("4 0 24 49 0", "invalid bit length repeat", 1); | 
|  | 590 | try("4 0 24 e9 ff ff", "invalid bit length repeat", 1); | 
|  | 591 | try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1); | 
|  | 592 | try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0", | 
|  | 593 | "invalid literal/lengths set", 1); | 
|  | 594 | try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1); | 
|  | 595 | try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1); | 
|  | 596 | try("2 7e ff ff", "invalid distance code", 1); | 
|  | 597 | try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1); | 
|  | 598 |  | 
|  | 599 | /* also trailer mismatch just in inflate() */ | 
|  | 600 | try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1); | 
|  | 601 | try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1", | 
|  | 602 | "incorrect length check", -1); | 
|  | 603 | try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0); | 
|  | 604 | try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f", | 
|  | 605 | "long code", 0); | 
|  | 606 | try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0); | 
|  | 607 | try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c", | 
|  | 608 | "long distance and extra", 0); | 
|  | 609 | try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 " | 
|  | 610 | "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0); | 
|  | 611 | inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258, | 
|  | 612 | Z_STREAM_END); | 
|  | 613 | inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK); | 
|  | 614 | } | 
|  | 615 |  | 
|  | 616 | /* cover remaining lines in inftrees.c */ | 
|  | 617 | local void cover_trees(void) | 
|  | 618 | { | 
|  | 619 | int ret; | 
|  | 620 | unsigned bits; | 
|  | 621 | unsigned short lens[16], work[16]; | 
|  | 622 | code *next, table[ENOUGH_DISTS]; | 
|  | 623 |  | 
|  | 624 | /* we need to call inflate_table() directly in order to manifest not- | 
|  | 625 | enough errors, since zlib insures that enough is always enough */ | 
|  | 626 | for (bits = 0; bits < 15; bits++) | 
|  | 627 | lens[bits] = (unsigned short)(bits + 1); | 
|  | 628 | lens[15] = 15; | 
|  | 629 | next = table; | 
|  | 630 | bits = 15; | 
|  | 631 | ret = inflate_table(DISTS, lens, 16, &next, &bits, work); | 
|  | 632 | assert(ret == 1); | 
|  | 633 | next = table; | 
|  | 634 | bits = 1; | 
|  | 635 | ret = inflate_table(DISTS, lens, 16, &next, &bits, work); | 
|  | 636 | assert(ret == 1); | 
|  | 637 | fputs("inflate_table not enough errors\n", stderr); | 
|  | 638 | } | 
|  | 639 |  | 
|  | 640 | /* cover remaining inffast.c decoding and window copying */ | 
|  | 641 | local void cover_fast(void) | 
|  | 642 | { | 
|  | 643 | inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68" | 
|  | 644 | " ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR); | 
|  | 645 | inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49" | 
|  | 646 | " 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258, | 
|  | 647 | Z_DATA_ERROR); | 
|  | 648 | inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258, | 
|  | 649 | Z_DATA_ERROR); | 
|  | 650 | inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258, | 
|  | 651 | Z_DATA_ERROR); | 
|  | 652 | inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0", | 
|  | 653 | "fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR); | 
|  | 654 | inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK); | 
|  | 655 | inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0", | 
|  | 656 | "contiguous and wrap around window", 6, -8, 259, Z_OK); | 
|  | 657 | inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259, | 
|  | 658 | Z_STREAM_END); | 
|  | 659 | } | 
|  | 660 |  | 
|  | 661 | int main(void) | 
|  | 662 | { | 
|  | 663 | fprintf(stderr, "%s\n", zlibVersion()); | 
|  | 664 | cover_support(); | 
|  | 665 | cover_wrap(); | 
|  | 666 | cover_back(); | 
|  | 667 | cover_inflate(); | 
|  | 668 | cover_trees(); | 
|  | 669 | cover_fast(); | 
|  | 670 | return 0; | 
|  | 671 | } |