blob: d9e71e31102705b8fa8926de645377db2a1a5d11 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001/*
2 * linux/kernel/ptrace.c
3 *
4 * (C) Copyright 1999 Linus Torvalds
5 *
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
8 */
9
10#include <linux/capability.h>
11#include <linux/export.h>
12#include <linux/sched.h>
13#include <linux/errno.h>
14#include <linux/mm.h>
15#include <linux/highmem.h>
16#include <linux/pagemap.h>
17#include <linux/ptrace.h>
18#include <linux/security.h>
19#include <linux/signal.h>
20#include <linux/audit.h>
21#include <linux/pid_namespace.h>
22#include <linux/syscalls.h>
23#include <linux/uaccess.h>
24#include <linux/regset.h>
25#include <linux/hw_breakpoint.h>
26#include <linux/cn_proc.h>
27
28
29static int ptrace_trapping_sleep_fn(void *flags)
30{
31 schedule();
32 return 0;
33}
34
35/*
36 * ptrace a task: make the debugger its new parent and
37 * move it to the ptrace list.
38 *
39 * Must be called with the tasklist lock write-held.
40 */
41void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
42{
43 BUG_ON(!list_empty(&child->ptrace_entry));
44 list_add(&child->ptrace_entry, &new_parent->ptraced);
45 child->parent = new_parent;
46}
47
48/**
49 * __ptrace_unlink - unlink ptracee and restore its execution state
50 * @child: ptracee to be unlinked
51 *
52 * Remove @child from the ptrace list, move it back to the original parent,
53 * and restore the execution state so that it conforms to the group stop
54 * state.
55 *
56 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
57 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
58 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
59 * If the ptracer is exiting, the ptracee can be in any state.
60 *
61 * After detach, the ptracee should be in a state which conforms to the
62 * group stop. If the group is stopped or in the process of stopping, the
63 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
64 * up from TASK_TRACED.
65 *
66 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
67 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
68 * to but in the opposite direction of what happens while attaching to a
69 * stopped task. However, in this direction, the intermediate RUNNING
70 * state is not hidden even from the current ptracer and if it immediately
71 * re-attaches and performs a WNOHANG wait(2), it may fail.
72 *
73 * CONTEXT:
74 * write_lock_irq(tasklist_lock)
75 */
76void __ptrace_unlink(struct task_struct *child)
77{
78 BUG_ON(!child->ptrace);
79
80 child->ptrace = 0;
81 child->parent = child->real_parent;
82 list_del_init(&child->ptrace_entry);
83
84 spin_lock(&child->sighand->siglock);
85
86 /*
87 * Clear all pending traps and TRAPPING. TRAPPING should be
88 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
89 */
90 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
91 task_clear_jobctl_trapping(child);
92
93 /*
94 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
95 * @child isn't dead.
96 */
97 if (!(child->flags & PF_EXITING) &&
98 (child->signal->flags & SIGNAL_STOP_STOPPED ||
99 child->signal->group_stop_count)) {
100 child->jobctl |= JOBCTL_STOP_PENDING;
101
102 /*
103 * This is only possible if this thread was cloned by the
104 * traced task running in the stopped group, set the signal
105 * for the future reports.
106 * FIXME: we should change ptrace_init_task() to handle this
107 * case.
108 */
109 if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
110 child->jobctl |= SIGSTOP;
111 }
112
113 /*
114 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
115 * @child in the butt. Note that @resume should be used iff @child
116 * is in TASK_TRACED; otherwise, we might unduly disrupt
117 * TASK_KILLABLE sleeps.
118 */
119 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
120 ptrace_signal_wake_up(child, true);
121
122 spin_unlock(&child->sighand->siglock);
123}
124
125/* Ensure that nothing can wake it up, even SIGKILL */
126static bool ptrace_freeze_traced(struct task_struct *task)
127{
128 bool ret = false;
129
130 /* Lockless, nobody but us can set this flag */
131 if (task->jobctl & JOBCTL_LISTENING)
132 return ret;
133
134 spin_lock_irq(&task->sighand->siglock);
135 if (task_is_traced(task) && !__fatal_signal_pending(task)) {
136 task->state = __TASK_TRACED;
137 ret = true;
138 }
139 spin_unlock_irq(&task->sighand->siglock);
140
141 return ret;
142}
143
144static void ptrace_unfreeze_traced(struct task_struct *task)
145{
146 if (task->state != __TASK_TRACED)
147 return;
148
149 WARN_ON(!task->ptrace || task->parent != current);
150
151 spin_lock_irq(&task->sighand->siglock);
152 if (__fatal_signal_pending(task))
153 wake_up_state(task, __TASK_TRACED);
154 else
155 task->state = TASK_TRACED;
156 spin_unlock_irq(&task->sighand->siglock);
157}
158
159/**
160 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
161 * @child: ptracee to check for
162 * @ignore_state: don't check whether @child is currently %TASK_TRACED
163 *
164 * Check whether @child is being ptraced by %current and ready for further
165 * ptrace operations. If @ignore_state is %false, @child also should be in
166 * %TASK_TRACED state and on return the child is guaranteed to be traced
167 * and not executing. If @ignore_state is %true, @child can be in any
168 * state.
169 *
170 * CONTEXT:
171 * Grabs and releases tasklist_lock and @child->sighand->siglock.
172 *
173 * RETURNS:
174 * 0 on success, -ESRCH if %child is not ready.
175 */
176int ptrace_check_attach(struct task_struct *child, bool ignore_state)
177{
178 int ret = -ESRCH;
179
180 /*
181 * We take the read lock around doing both checks to close a
182 * possible race where someone else was tracing our child and
183 * detached between these two checks. After this locked check,
184 * we are sure that this is our traced child and that can only
185 * be changed by us so it's not changing right after this.
186 */
187 read_lock(&tasklist_lock);
188 if (child->ptrace && child->parent == current) {
189 WARN_ON(child->state == __TASK_TRACED);
190 /*
191 * child->sighand can't be NULL, release_task()
192 * does ptrace_unlink() before __exit_signal().
193 */
194 if (ignore_state || ptrace_freeze_traced(child))
195 ret = 0;
196 }
197 read_unlock(&tasklist_lock);
198
199 if (!ret && !ignore_state) {
200 if (!wait_task_inactive(child, __TASK_TRACED)) {
201 /*
202 * This can only happen if may_ptrace_stop() fails and
203 * ptrace_stop() changes ->state back to TASK_RUNNING,
204 * so we should not worry about leaking __TASK_TRACED.
205 */
206 WARN_ON(child->state == __TASK_TRACED);
207 ret = -ESRCH;
208 }
209 }
210
211 return ret;
212}
213
214static int ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
215{
216 if (mode & PTRACE_MODE_NOAUDIT)
217 return has_ns_capability_noaudit(current, ns, CAP_SYS_PTRACE);
218 else
219 return has_ns_capability(current, ns, CAP_SYS_PTRACE);
220}
221
222int __ptrace_may_access(struct task_struct *task, unsigned int mode)
223{
224 const struct cred *cred = current_cred(), *tcred;
225
226 /* May we inspect the given task?
227 * This check is used both for attaching with ptrace
228 * and for allowing access to sensitive information in /proc.
229 *
230 * ptrace_attach denies several cases that /proc allows
231 * because setting up the necessary parent/child relationship
232 * or halting the specified task is impossible.
233 */
234 int dumpable = 0;
235 /* Don't let security modules deny introspection */
236 if (task == current)
237 return 0;
238 rcu_read_lock();
239 tcred = __task_cred(task);
240 if (cred->user->user_ns == tcred->user->user_ns &&
241 (cred->uid == tcred->euid &&
242 cred->uid == tcred->suid &&
243 cred->uid == tcred->uid &&
244 cred->gid == tcred->egid &&
245 cred->gid == tcred->sgid &&
246 cred->gid == tcred->gid))
247 goto ok;
248 if (ptrace_has_cap(tcred->user->user_ns, mode))
249 goto ok;
250 rcu_read_unlock();
251 return -EPERM;
252ok:
253 rcu_read_unlock();
254 smp_rmb();
255 if (task->mm)
256 dumpable = get_dumpable(task->mm);
257 if (dumpable != SUID_DUMP_USER &&
258 !ptrace_has_cap(task_user_ns(task), mode))
259 return -EPERM;
260
261 return security_ptrace_access_check(task, mode);
262}
263
264bool ptrace_may_access(struct task_struct *task, unsigned int mode)
265{
266 int err;
267 task_lock(task);
268 err = __ptrace_may_access(task, mode);
269 task_unlock(task);
270 return !err;
271}
272
273static int ptrace_attach(struct task_struct *task, long request,
274 unsigned long addr,
275 unsigned long flags)
276{
277 bool seize = (request == PTRACE_SEIZE);
278 int retval;
279
280 retval = -EIO;
281 if (seize) {
282 if (addr != 0)
283 goto out;
284 if (flags & ~(unsigned long)PTRACE_O_MASK)
285 goto out;
286 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
287 } else {
288 flags = PT_PTRACED;
289 }
290
291 audit_ptrace(task);
292
293 retval = -EPERM;
294 if (unlikely(task->flags & PF_KTHREAD))
295 goto out;
296 if (same_thread_group(task, current))
297 goto out;
298
299 /*
300 * Protect exec's credential calculations against our interference;
301 * SUID, SGID and LSM creds get determined differently
302 * under ptrace.
303 */
304 retval = -ERESTARTNOINTR;
305 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
306 goto out;
307
308 task_lock(task);
309 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH);
310 task_unlock(task);
311 if (retval)
312 goto unlock_creds;
313
314 write_lock_irq(&tasklist_lock);
315 retval = -EPERM;
316 if (unlikely(task->exit_state))
317 goto unlock_tasklist;
318 if (task->ptrace)
319 goto unlock_tasklist;
320
321 if (seize)
322 flags |= PT_SEIZED;
323 if (ns_capable(task_user_ns(task), CAP_SYS_PTRACE))
324 flags |= PT_PTRACE_CAP;
325 task->ptrace = flags;
326
327 __ptrace_link(task, current);
328
329 /* SEIZE doesn't trap tracee on attach */
330 if (!seize)
331 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
332
333 spin_lock(&task->sighand->siglock);
334
335 /*
336 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
337 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
338 * will be cleared if the child completes the transition or any
339 * event which clears the group stop states happens. We'll wait
340 * for the transition to complete before returning from this
341 * function.
342 *
343 * This hides STOPPED -> RUNNING -> TRACED transition from the
344 * attaching thread but a different thread in the same group can
345 * still observe the transient RUNNING state. IOW, if another
346 * thread's WNOHANG wait(2) on the stopped tracee races against
347 * ATTACH, the wait(2) may fail due to the transient RUNNING.
348 *
349 * The following task_is_stopped() test is safe as both transitions
350 * in and out of STOPPED are protected by siglock.
351 */
352 if (task_is_stopped(task) &&
353 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
354 signal_wake_up_state(task, __TASK_STOPPED);
355
356 spin_unlock(&task->sighand->siglock);
357
358 retval = 0;
359unlock_tasklist:
360 write_unlock_irq(&tasklist_lock);
361unlock_creds:
362 mutex_unlock(&task->signal->cred_guard_mutex);
363out:
364 if (!retval) {
365 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
366 ptrace_trapping_sleep_fn, TASK_UNINTERRUPTIBLE);
367 proc_ptrace_connector(task, PTRACE_ATTACH);
368 }
369
370 return retval;
371}
372
373/**
374 * ptrace_traceme -- helper for PTRACE_TRACEME
375 *
376 * Performs checks and sets PT_PTRACED.
377 * Should be used by all ptrace implementations for PTRACE_TRACEME.
378 */
379static int ptrace_traceme(void)
380{
381 int ret = -EPERM;
382
383 write_lock_irq(&tasklist_lock);
384 /* Are we already being traced? */
385 if (!current->ptrace) {
386 ret = security_ptrace_traceme(current->parent);
387 /*
388 * Check PF_EXITING to ensure ->real_parent has not passed
389 * exit_ptrace(). Otherwise we don't report the error but
390 * pretend ->real_parent untraces us right after return.
391 */
392 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
393 current->ptrace = PT_PTRACED;
394 __ptrace_link(current, current->real_parent);
395 }
396 }
397 write_unlock_irq(&tasklist_lock);
398
399 return ret;
400}
401
402/*
403 * Called with irqs disabled, returns true if childs should reap themselves.
404 */
405static int ignoring_children(struct sighand_struct *sigh)
406{
407 int ret;
408 spin_lock(&sigh->siglock);
409 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
410 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
411 spin_unlock(&sigh->siglock);
412 return ret;
413}
414
415/*
416 * Called with tasklist_lock held for writing.
417 * Unlink a traced task, and clean it up if it was a traced zombie.
418 * Return true if it needs to be reaped with release_task().
419 * (We can't call release_task() here because we already hold tasklist_lock.)
420 *
421 * If it's a zombie, our attachedness prevented normal parent notification
422 * or self-reaping. Do notification now if it would have happened earlier.
423 * If it should reap itself, return true.
424 *
425 * If it's our own child, there is no notification to do. But if our normal
426 * children self-reap, then this child was prevented by ptrace and we must
427 * reap it now, in that case we must also wake up sub-threads sleeping in
428 * do_wait().
429 */
430static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
431{
432 bool dead;
433
434 __ptrace_unlink(p);
435
436 if (p->exit_state != EXIT_ZOMBIE)
437 return false;
438
439 dead = !thread_group_leader(p);
440
441 if (!dead && thread_group_empty(p)) {
442 if (!same_thread_group(p->real_parent, tracer))
443 dead = do_notify_parent(p, p->exit_signal);
444 else if (ignoring_children(tracer->sighand)) {
445 __wake_up_parent(p, tracer);
446 dead = true;
447 }
448 }
449 /* Mark it as in the process of being reaped. */
450 if (dead)
451 p->exit_state = EXIT_DEAD;
452 return dead;
453}
454
455static int ptrace_detach(struct task_struct *child, unsigned int data)
456{
457 bool dead = false;
458
459 if (!valid_signal(data))
460 return -EIO;
461
462 /* Architecture-specific hardware disable .. */
463 ptrace_disable(child);
464 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
465
466 write_lock_irq(&tasklist_lock);
467 /*
468 * This child can be already killed. Make sure de_thread() or
469 * our sub-thread doing do_wait() didn't do release_task() yet.
470 */
471 if (child->ptrace) {
472 child->exit_code = data;
473 dead = __ptrace_detach(current, child);
474 }
475 write_unlock_irq(&tasklist_lock);
476
477 proc_ptrace_connector(child, PTRACE_DETACH);
478 if (unlikely(dead))
479 release_task(child);
480
481 return 0;
482}
483
484/*
485 * Detach all tasks we were using ptrace on. Called with tasklist held
486 * for writing, and returns with it held too. But note it can release
487 * and reacquire the lock.
488 */
489void exit_ptrace(struct task_struct *tracer)
490 __releases(&tasklist_lock)
491 __acquires(&tasklist_lock)
492{
493 struct task_struct *p, *n;
494 LIST_HEAD(ptrace_dead);
495
496 if (likely(list_empty(&tracer->ptraced)))
497 return;
498
499 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
500 if (__ptrace_detach(tracer, p))
501 list_add(&p->ptrace_entry, &ptrace_dead);
502 }
503
504 write_unlock_irq(&tasklist_lock);
505 BUG_ON(!list_empty(&tracer->ptraced));
506
507 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {
508 list_del_init(&p->ptrace_entry);
509 release_task(p);
510 }
511
512 write_lock_irq(&tasklist_lock);
513}
514
515int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
516{
517 int copied = 0;
518
519 while (len > 0) {
520 char buf[128];
521 int this_len, retval;
522
523 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
524 retval = access_process_vm(tsk, src, buf, this_len, 0);
525 if (!retval) {
526 if (copied)
527 break;
528 return -EIO;
529 }
530 if (copy_to_user(dst, buf, retval))
531 return -EFAULT;
532 copied += retval;
533 src += retval;
534 dst += retval;
535 len -= retval;
536 }
537 return copied;
538}
539
540int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
541{
542 int copied = 0;
543
544 while (len > 0) {
545 char buf[128];
546 int this_len, retval;
547
548 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
549 if (copy_from_user(buf, src, this_len))
550 return -EFAULT;
551 retval = access_process_vm(tsk, dst, buf, this_len, 1);
552 if (!retval) {
553 if (copied)
554 break;
555 return -EIO;
556 }
557 copied += retval;
558 src += retval;
559 dst += retval;
560 len -= retval;
561 }
562 return copied;
563}
564
565static int ptrace_setoptions(struct task_struct *child, unsigned long data)
566{
567 unsigned flags;
568
569 if (data & ~(unsigned long)PTRACE_O_MASK)
570 return -EINVAL;
571
572 /* Avoid intermediate state when all opts are cleared */
573 flags = child->ptrace;
574 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
575 flags |= (data << PT_OPT_FLAG_SHIFT);
576 child->ptrace = flags;
577
578 return 0;
579}
580
581static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
582{
583 unsigned long flags;
584 int error = -ESRCH;
585
586 if (lock_task_sighand(child, &flags)) {
587 error = -EINVAL;
588 if (likely(child->last_siginfo != NULL)) {
589 *info = *child->last_siginfo;
590 error = 0;
591 }
592 unlock_task_sighand(child, &flags);
593 }
594 return error;
595}
596
597static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
598{
599 unsigned long flags;
600 int error = -ESRCH;
601
602 if (lock_task_sighand(child, &flags)) {
603 error = -EINVAL;
604 if (likely(child->last_siginfo != NULL)) {
605 *child->last_siginfo = *info;
606 error = 0;
607 }
608 unlock_task_sighand(child, &flags);
609 }
610 return error;
611}
612
613
614#ifdef PTRACE_SINGLESTEP
615#define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
616#else
617#define is_singlestep(request) 0
618#endif
619
620#ifdef PTRACE_SINGLEBLOCK
621#define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
622#else
623#define is_singleblock(request) 0
624#endif
625
626#ifdef PTRACE_SYSEMU
627#define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
628#else
629#define is_sysemu_singlestep(request) 0
630#endif
631
632static int ptrace_resume(struct task_struct *child, long request,
633 unsigned long data)
634{
635 bool need_siglock;
636
637 if (!valid_signal(data))
638 return -EIO;
639
640 if (request == PTRACE_SYSCALL)
641 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
642 else
643 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
644
645#ifdef TIF_SYSCALL_EMU
646 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
647 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
648 else
649 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
650#endif
651
652 if (is_singleblock(request)) {
653 if (unlikely(!arch_has_block_step()))
654 return -EIO;
655 user_enable_block_step(child);
656 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
657 if (unlikely(!arch_has_single_step()))
658 return -EIO;
659 user_enable_single_step(child);
660 } else {
661 user_disable_single_step(child);
662 }
663
664 /*
665 * Change ->exit_code and ->state under siglock to avoid the race
666 * with wait_task_stopped() in between; a non-zero ->exit_code will
667 * wrongly look like another report from tracee.
668 *
669 * Note that we need siglock even if ->exit_code == data and/or this
670 * status was not reported yet, the new status must not be cleared by
671 * wait_task_stopped() after resume.
672 *
673 * If data == 0 we do not care if wait_task_stopped() reports the old
674 * status and clears the code too; this can't race with the tracee, it
675 * takes siglock after resume.
676 */
677 need_siglock = data && !thread_group_empty(current);
678 if (need_siglock)
679 spin_lock_irq(&child->sighand->siglock);
680 child->exit_code = data;
681 wake_up_state(child, __TASK_TRACED);
682 if (need_siglock)
683 spin_unlock_irq(&child->sighand->siglock);
684
685 return 0;
686}
687
688#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
689
690static const struct user_regset *
691find_regset(const struct user_regset_view *view, unsigned int type)
692{
693 const struct user_regset *regset;
694 int n;
695
696 for (n = 0; n < view->n; ++n) {
697 regset = view->regsets + n;
698 if (regset->core_note_type == type)
699 return regset;
700 }
701
702 return NULL;
703}
704
705static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
706 struct iovec *kiov)
707{
708 const struct user_regset_view *view = task_user_regset_view(task);
709 const struct user_regset *regset = find_regset(view, type);
710 int regset_no;
711
712 if (!regset || (kiov->iov_len % regset->size) != 0)
713 return -EINVAL;
714
715 regset_no = regset - view->regsets;
716 kiov->iov_len = min(kiov->iov_len,
717 (__kernel_size_t) (regset->n * regset->size));
718
719 if (req == PTRACE_GETREGSET)
720 return copy_regset_to_user(task, view, regset_no, 0,
721 kiov->iov_len, kiov->iov_base);
722 else
723 return copy_regset_from_user(task, view, regset_no, 0,
724 kiov->iov_len, kiov->iov_base);
725}
726
727#endif
728
729int ptrace_request(struct task_struct *child, long request,
730 unsigned long addr, unsigned long data)
731{
732 bool seized = child->ptrace & PT_SEIZED;
733 int ret = -EIO;
734 siginfo_t siginfo, *si;
735 void __user *datavp = (void __user *) data;
736 unsigned long __user *datalp = datavp;
737 unsigned long flags;
738
739 switch (request) {
740 case PTRACE_PEEKTEXT:
741 case PTRACE_PEEKDATA:
742 return generic_ptrace_peekdata(child, addr, data);
743 case PTRACE_POKETEXT:
744 case PTRACE_POKEDATA:
745 return generic_ptrace_pokedata(child, addr, data);
746
747#ifdef PTRACE_OLDSETOPTIONS
748 case PTRACE_OLDSETOPTIONS:
749#endif
750 case PTRACE_SETOPTIONS:
751 ret = ptrace_setoptions(child, data);
752 break;
753 case PTRACE_GETEVENTMSG:
754 ret = put_user(child->ptrace_message, datalp);
755 break;
756
757 case PTRACE_GETSIGINFO:
758 ret = ptrace_getsiginfo(child, &siginfo);
759 if (!ret)
760 ret = copy_siginfo_to_user(datavp, &siginfo);
761 break;
762
763 case PTRACE_SETSIGINFO:
764 if (copy_from_user(&siginfo, datavp, sizeof siginfo))
765 ret = -EFAULT;
766 else
767 ret = ptrace_setsiginfo(child, &siginfo);
768 break;
769
770 case PTRACE_INTERRUPT:
771 /*
772 * Stop tracee without any side-effect on signal or job
773 * control. At least one trap is guaranteed to happen
774 * after this request. If @child is already trapped, the
775 * current trap is not disturbed and another trap will
776 * happen after the current trap is ended with PTRACE_CONT.
777 *
778 * The actual trap might not be PTRACE_EVENT_STOP trap but
779 * the pending condition is cleared regardless.
780 */
781 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
782 break;
783
784 /*
785 * INTERRUPT doesn't disturb existing trap sans one
786 * exception. If ptracer issued LISTEN for the current
787 * STOP, this INTERRUPT should clear LISTEN and re-trap
788 * tracee into STOP.
789 */
790 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
791 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
792
793 unlock_task_sighand(child, &flags);
794 ret = 0;
795 break;
796
797 case PTRACE_LISTEN:
798 /*
799 * Listen for events. Tracee must be in STOP. It's not
800 * resumed per-se but is not considered to be in TRACED by
801 * wait(2) or ptrace(2). If an async event (e.g. group
802 * stop state change) happens, tracee will enter STOP trap
803 * again. Alternatively, ptracer can issue INTERRUPT to
804 * finish listening and re-trap tracee into STOP.
805 */
806 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
807 break;
808
809 si = child->last_siginfo;
810 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
811 child->jobctl |= JOBCTL_LISTENING;
812 /*
813 * If NOTIFY is set, it means event happened between
814 * start of this trap and now. Trigger re-trap.
815 */
816 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
817 ptrace_signal_wake_up(child, true);
818 ret = 0;
819 }
820 unlock_task_sighand(child, &flags);
821 break;
822
823 case PTRACE_DETACH: /* detach a process that was attached. */
824 ret = ptrace_detach(child, data);
825 break;
826
827#ifdef CONFIG_BINFMT_ELF_FDPIC
828 case PTRACE_GETFDPIC: {
829 struct mm_struct *mm = get_task_mm(child);
830 unsigned long tmp = 0;
831
832 ret = -ESRCH;
833 if (!mm)
834 break;
835
836 switch (addr) {
837 case PTRACE_GETFDPIC_EXEC:
838 tmp = mm->context.exec_fdpic_loadmap;
839 break;
840 case PTRACE_GETFDPIC_INTERP:
841 tmp = mm->context.interp_fdpic_loadmap;
842 break;
843 default:
844 break;
845 }
846 mmput(mm);
847
848 ret = put_user(tmp, datalp);
849 break;
850 }
851#endif
852
853#ifdef PTRACE_SINGLESTEP
854 case PTRACE_SINGLESTEP:
855#endif
856#ifdef PTRACE_SINGLEBLOCK
857 case PTRACE_SINGLEBLOCK:
858#endif
859#ifdef PTRACE_SYSEMU
860 case PTRACE_SYSEMU:
861 case PTRACE_SYSEMU_SINGLESTEP:
862#endif
863 case PTRACE_SYSCALL:
864 case PTRACE_CONT:
865 return ptrace_resume(child, request, data);
866
867 case PTRACE_KILL:
868 if (child->exit_state) /* already dead */
869 return 0;
870 return ptrace_resume(child, request, SIGKILL);
871
872#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
873 case PTRACE_GETREGSET:
874 case PTRACE_SETREGSET:
875 {
876 struct iovec kiov;
877 struct iovec __user *uiov = datavp;
878
879 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
880 return -EFAULT;
881
882 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
883 __get_user(kiov.iov_len, &uiov->iov_len))
884 return -EFAULT;
885
886 ret = ptrace_regset(child, request, addr, &kiov);
887 if (!ret)
888 ret = __put_user(kiov.iov_len, &uiov->iov_len);
889 break;
890 }
891#endif
892 default:
893 break;
894 }
895
896 return ret;
897}
898
899static struct task_struct *ptrace_get_task_struct(pid_t pid)
900{
901 struct task_struct *child;
902
903 rcu_read_lock();
904 child = find_task_by_vpid(pid);
905 if (child)
906 get_task_struct(child);
907 rcu_read_unlock();
908
909 if (!child)
910 return ERR_PTR(-ESRCH);
911 return child;
912}
913
914#ifndef arch_ptrace_attach
915#define arch_ptrace_attach(child) do { } while (0)
916#endif
917
918SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
919 unsigned long, data)
920{
921 struct task_struct *child;
922 long ret;
923
924 if (request == PTRACE_TRACEME) {
925 ret = ptrace_traceme();
926 if (!ret)
927 arch_ptrace_attach(current);
928 goto out;
929 }
930
931 child = ptrace_get_task_struct(pid);
932 if (IS_ERR(child)) {
933 ret = PTR_ERR(child);
934 goto out;
935 }
936
937 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
938 ret = ptrace_attach(child, request, addr, data);
939 /*
940 * Some architectures need to do book-keeping after
941 * a ptrace attach.
942 */
943 if (!ret)
944 arch_ptrace_attach(child);
945 goto out_put_task_struct;
946 }
947
948 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
949 request == PTRACE_INTERRUPT);
950 if (ret < 0)
951 goto out_put_task_struct;
952
953 ret = arch_ptrace(child, request, addr, data);
954 if (ret || request != PTRACE_DETACH)
955 ptrace_unfreeze_traced(child);
956
957 out_put_task_struct:
958 put_task_struct(child);
959 out:
960 return ret;
961}
962
963int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
964 unsigned long data)
965{
966 unsigned long tmp;
967 int copied;
968
969 copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
970 if (copied != sizeof(tmp))
971 return -EIO;
972 return put_user(tmp, (unsigned long __user *)data);
973}
974
975int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
976 unsigned long data)
977{
978 int copied;
979
980 copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
981 return (copied == sizeof(data)) ? 0 : -EIO;
982}
983
984#if defined CONFIG_COMPAT
985#include <linux/compat.h>
986
987int compat_ptrace_request(struct task_struct *child, compat_long_t request,
988 compat_ulong_t addr, compat_ulong_t data)
989{
990 compat_ulong_t __user *datap = compat_ptr(data);
991 compat_ulong_t word;
992 siginfo_t siginfo;
993 int ret;
994
995 switch (request) {
996 case PTRACE_PEEKTEXT:
997 case PTRACE_PEEKDATA:
998 ret = access_process_vm(child, addr, &word, sizeof(word), 0);
999 if (ret != sizeof(word))
1000 ret = -EIO;
1001 else
1002 ret = put_user(word, datap);
1003 break;
1004
1005 case PTRACE_POKETEXT:
1006 case PTRACE_POKEDATA:
1007 ret = access_process_vm(child, addr, &data, sizeof(data), 1);
1008 ret = (ret != sizeof(data) ? -EIO : 0);
1009 break;
1010
1011 case PTRACE_GETEVENTMSG:
1012 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1013 break;
1014
1015 case PTRACE_GETSIGINFO:
1016 ret = ptrace_getsiginfo(child, &siginfo);
1017 if (!ret)
1018 ret = copy_siginfo_to_user32(
1019 (struct compat_siginfo __user *) datap,
1020 &siginfo);
1021 break;
1022
1023 case PTRACE_SETSIGINFO:
1024 memset(&siginfo, 0, sizeof siginfo);
1025 if (copy_siginfo_from_user32(
1026 &siginfo, (struct compat_siginfo __user *) datap))
1027 ret = -EFAULT;
1028 else
1029 ret = ptrace_setsiginfo(child, &siginfo);
1030 break;
1031#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1032 case PTRACE_GETREGSET:
1033 case PTRACE_SETREGSET:
1034 {
1035 struct iovec kiov;
1036 struct compat_iovec __user *uiov =
1037 (struct compat_iovec __user *) datap;
1038 compat_uptr_t ptr;
1039 compat_size_t len;
1040
1041 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
1042 return -EFAULT;
1043
1044 if (__get_user(ptr, &uiov->iov_base) ||
1045 __get_user(len, &uiov->iov_len))
1046 return -EFAULT;
1047
1048 kiov.iov_base = compat_ptr(ptr);
1049 kiov.iov_len = len;
1050
1051 ret = ptrace_regset(child, request, addr, &kiov);
1052 if (!ret)
1053 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1054 break;
1055 }
1056#endif
1057
1058 default:
1059 ret = ptrace_request(child, request, addr, data);
1060 }
1061
1062 return ret;
1063}
1064
1065asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
1066 compat_long_t addr, compat_long_t data)
1067{
1068 struct task_struct *child;
1069 long ret;
1070
1071 if (request == PTRACE_TRACEME) {
1072 ret = ptrace_traceme();
1073 goto out;
1074 }
1075
1076 child = ptrace_get_task_struct(pid);
1077 if (IS_ERR(child)) {
1078 ret = PTR_ERR(child);
1079 goto out;
1080 }
1081
1082 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1083 ret = ptrace_attach(child, request, addr, data);
1084 /*
1085 * Some architectures need to do book-keeping after
1086 * a ptrace attach.
1087 */
1088 if (!ret)
1089 arch_ptrace_attach(child);
1090 goto out_put_task_struct;
1091 }
1092
1093 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1094 request == PTRACE_INTERRUPT);
1095 if (!ret) {
1096 ret = compat_arch_ptrace(child, request, addr, data);
1097 if (ret || request != PTRACE_DETACH)
1098 ptrace_unfreeze_traced(child);
1099 }
1100
1101 out_put_task_struct:
1102 put_task_struct(child);
1103 out:
1104 return ret;
1105}
1106#endif /* CONFIG_COMPAT */
1107
1108#ifdef CONFIG_HAVE_HW_BREAKPOINT
1109int ptrace_get_breakpoints(struct task_struct *tsk)
1110{
1111 if (atomic_inc_not_zero(&tsk->ptrace_bp_refcnt))
1112 return 0;
1113
1114 return -1;
1115}
1116
1117void ptrace_put_breakpoints(struct task_struct *tsk)
1118{
1119 if (atomic_dec_and_test(&tsk->ptrace_bp_refcnt))
1120 flush_ptrace_hw_breakpoint(tsk);
1121}
1122#endif /* CONFIG_HAVE_HW_BREAKPOINT */