blob: 0ced4be7b8389b28b7fa5eb22bca9045fcba7860 [file] [log] [blame]
lh9ed821d2023-04-07 01:36:19 -07001# Begin of automatic generation
2
3# acos
4Test "acos (0.75) == 0.722734247813415611178377352641333362":
5ildouble: 1
6ldouble: 1
7
8# asin
9Test "asin (-0.5) == -pi/6":
10ildouble: 1
11ldouble: 1
12Test "asin (-1.0) == -pi/2":
13ildouble: 1
14ldouble: 1
15Test "asin (0.5) == pi/6":
16ildouble: 1
17ldouble: 1
18Test "asin (0.75) == 0.848062078981481008052944338998418080":
19ildouble: 1
20ldouble: 1
21Test "asin (1.0) == pi/2":
22ildouble: 1
23ldouble: 1
24
25# atan2
26Test "atan2 (-0.75, -1.0) == -2.49809154479650885165983415456218025":
27float: 1
28ifloat: 1
29Test "atan2 (0.75, -1.0) == 2.49809154479650885165983415456218025":
30float: 1
31ifloat: 1
32Test "atan2 (1.390625, 0.9296875) == 0.981498387184244311516296577615519772":
33float: 1
34ifloat: 1
35
36# atanh
37Test "atanh (0.75) == 0.972955074527656652552676371721589865":
38float: 1
39ifloat: 1
40ildouble: 1
41ldouble: 1
42
43# cacos
44Test "Imaginary part of: cacos (0.75 + 1.25 i) == 1.11752014915610270578240049553777969 - 1.13239363160530819522266333696834467 i":
45float: 1
46ifloat: 1
47ildouble: 2
48ldouble: 2
49
50# cacosh
51Test "Real part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
52double: 1
53float: 7
54idouble: 1
55ifloat: 7
56ildouble: 6
57ldouble: 6
58Test "Imaginary part of: cacosh (-2 - 3 i) == 1.9833870299165354323470769028940395 - 2.1414491111159960199416055713254211 i":
59double: 1
60float: 3
61idouble: 1
62ifloat: 3
63ildouble: 1
64ldouble: 1
65Test "Real part of: cacosh (0.75 + 1.25 i) == 1.13239363160530819522266333696834467 + 1.11752014915610270578240049553777969 i":
66ildouble: 1
67ldouble: 1
68
69# casin
70Test "Real part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
71double: 1
72float: 1
73idouble: 1
74ifloat: 1
75ildouble: 2
76ldouble: 2
77Test "Imaginary part of: casin (0.75 + 1.25 i) == 0.453276177638793913448921196101971749 + 1.13239363160530819522266333696834467 i":
78float: 1
79ifloat: 1
80ildouble: 2
81ldouble: 2
82
83# casinh
84Test "Real part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
85double: 5
86float: 1
87idouble: 5
88ifloat: 1
89ildouble: 5
90ldouble: 5
91Test "Imaginary part of: casinh (-2 - 3 i) == -1.9686379257930962917886650952454982 - 0.96465850440760279204541105949953237 i":
92double: 3
93float: 6
94idouble: 3
95ifloat: 6
96ildouble: 5
97ldouble: 5
98Test "Real part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
99float: 1
100ifloat: 1
101Test "Imaginary part of: casinh (0.75 + 1.25 i) == 1.03171853444778027336364058631006594 + 0.911738290968487636358489564316731207 i":
102double: 1
103float: 1
104idouble: 1
105ifloat: 1
106ldouble: 1
107ildouble: 1
108
109# catan
110Test "Real part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":
111float: 3
112ifloat: 3
113Test "Imaginary part of: catan (-2 - 3 i) == -1.4099210495965755225306193844604208 - 0.22907268296853876629588180294200276 i":
114double: 1
115float: 1
116idouble: 1
117ifloat: 1
118Test "Real part of: catan (0.75 + 1.25 i) == 1.10714871779409050301706546017853704 + 0.549306144334054845697622618461262852 i":
119float: 4
120ifloat: 4
121
122# catanh
123Test "Real part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":
124double: 4
125idouble: 4
126ildouble: 1
127ldouble: 1
128Test "Imaginary part of: catanh (-2 - 3 i) == -0.14694666622552975204743278515471595 - 1.3389725222944935611241935759091443 i":
129float: 4
130ifloat: 4
131Test "Real part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":
132double: 1
133idouble: 1
134Test "Imaginary part of: catanh (0.75 + 1.25 i) == 0.261492138795671927078652057366532140 + 0.996825126463918666098902241310446708 i":
135float: 6
136ifloat: 6
137
138# cbrt
139Test "cbrt (-0.001) == -0.1":
140ildouble: 1
141ldouble: 1
142Test "cbrt (-27.0) == -3.0":
143double: 1
144idouble: 1
145Test "cbrt (0.75) == 0.908560296416069829445605878163630251":
146double: 1
147idouble: 1
148Test "cbrt (0.9921875) == 0.997389022060725270579075195353955217":
149double: 1
150idouble: 1
151ildouble: 1
152ldouble: 1
153
154# ccos
155Test "Real part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":
156double: 1
157idouble: 1
158Test "Imaginary part of: ccos (-2 - 3 i) == -4.18962569096880723013255501961597373 - 9.10922789375533659797919726277886212 i":
159float: 1
160ifloat: 1
161ildouble: 1
162ldouble: 1
163Test "Real part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
164double: 1
165float: 1
166idouble: 1
167ifloat: 1
168ildouble: 1
169ldouble: 1
170Test "Imaginary part of: ccos (0.75 + 1.25 i) == 1.38173873063425888530729933139078645 - 1.09193013555397466170919531722024128 i":
171ildouble: 1
172ldouble: 1
173float: 1
174ifloat: 1
175
176# ccosh
177Test "Real part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":
178float: 1
179ifloat: 1
180Test "Imaginary part of: ccosh (-2 - 3 i) == -3.72454550491532256547397070325597253 + 0.511822569987384608834463849801875634 i":
181double: 1
182float: 1
183idouble: 1
184ifloat: 1
185ildouble: 1
186ldouble: 1
187Test "Real part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
188double: 1
189float: 1
190idouble: 1
191ifloat: 1
192Test "Imaginary part of: ccosh (0.75 + 1.25 i) == 0.408242591877968807788852146397499084 + 0.780365930845853240391326216300863152 i":
193float: 1
194ifloat: 1
195
196# cexp
197Test "Imaginary part of: cexp (-2.0 - 3.0 i) == -0.13398091492954261346140525546115575 - 0.019098516261135196432576240858800925 i":
198float: 1
199ifloat: 1
200Test "Real part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
201float: 1
202ifloat: 1
203Test "Imaginary part of: cexp (0.75 + 1.25 i) == 0.667537446429131586942201977015932112 + 2.00900045494094876258347228145863909 i":
204ildouble: 1
205ldouble: 1
206
207# clog
208Test "Imaginary part of: clog (-2 - 3 i) == 1.2824746787307683680267437207826593 - 2.1587989303424641704769327722648368 i":
209float: 3
210ifloat: 3
211Test "Real part of: clog (0.75 + 1.25 i) == 0.376885901188190075998919126749298416 + 1.03037682652431246378774332703115153 i":
212float: 1
213ifloat: 1
214ildouble: 1
215ldouble: 1
216
217# clog10
218Test "Imaginary part of: clog10 (-0 + inf i) == inf + pi/2*log10(e) i":
219double: 1
220float: 1
221idouble: 1
222ifloat: 1
223Test "Imaginary part of: clog10 (-0 - inf i) == inf - pi/2*log10(e) i":
224double: 1
225float: 1
226idouble: 1
227ifloat: 1
228Test "Imaginary part of: clog10 (-2 - 3 i) == 0.556971676153418384603252578971164214 - 0.937554462986374708541507952140189646 i":
229double: 1
230float: 5
231idouble: 1
232ifloat: 5
233ildouble: 1
234ldouble: 1
235Test "Imaginary part of: clog10 (-3 + inf i) == inf + pi/2*log10(e) i":
236double: 1
237float: 1
238idouble: 1
239ifloat: 1
240Test "Imaginary part of: clog10 (-3 - inf i) == inf - pi/2*log10(e) i":
241double: 1
242float: 1
243idouble: 1
244ifloat: 1
245Test "Imaginary part of: clog10 (-inf + 0 i) == inf + pi*log10(e) i":
246double: 1
247float: 1
248idouble: 1
249ifloat: 1
250Test "Imaginary part of: clog10 (-inf + 1 i) == inf + pi*log10(e) i":
251double: 1
252float: 1
253idouble: 1
254ifloat: 1
255Test "Imaginary part of: clog10 (-inf + inf i) == inf + 3/4 pi*log10(e) i":
256double: 1
257idouble: 1
258Test "Imaginary part of: clog10 (-inf - 0 i) == inf - pi*log10(e) i":
259double: 1
260float: 1
261idouble: 1
262ifloat: 1
263Test "Imaginary part of: clog10 (-inf - 1 i) == inf - pi*log10(e) i":
264double: 1
265float: 1
266idouble: 1
267ifloat: 1
268Test "Imaginary part of: clog10 (0 + inf i) == inf + pi/2*log10(e) i":
269double: 1
270float: 1
271idouble: 1
272ifloat: 1
273Test "Imaginary part of: clog10 (0 - inf i) == inf - pi/2*log10(e) i":
274double: 1
275float: 1
276idouble: 1
277ifloat: 1
278Test "Real part of: clog10 (0.75 + 1.25 i) == 0.163679467193165171449476605077428975 + 0.447486970040493067069984724340855636 i":
279double: 1
280float: 1
281idouble: 1
282ifloat: 1
283ildouble: 1
284ldouble: 1
285Test "Imaginary part of: clog10 (3 + inf i) == inf + pi/2*log10(e) i":
286double: 1
287float: 1
288idouble: 1
289ifloat: 1
290Test "Imaginary part of: clog10 (3 - inf i) == inf - pi/2*log10(e) i":
291double: 1
292float: 1
293idouble: 1
294ifloat: 1
295Test "Imaginary part of: clog10 (inf + inf i) == inf + pi/4*log10(e) i":
296double: 1
297float: 1
298idouble: 1
299ifloat: 1
300Test "Imaginary part of: clog10 (inf - inf i) == inf - pi/4*log10(e) i":
301double: 1
302float: 1
303idouble: 1
304ifloat: 1
305
306# cos
307Test "cos (M_PI_6l * 2.0) == 0.5":
308double: 1
309float: 1
310idouble: 1
311ifloat: 1
312Test "cos (M_PI_6l * 4.0) == -0.5":
313double: 2
314float: 1
315idouble: 2
316ifloat: 1
317ildouble: 1
318ldouble: 1
319Test "cos (pi/2) == 0":
320double: 1
321float: 1
322idouble: 1
323ifloat: 1
324ildouble: 1
325ldouble: 1
326Test "cos (0.80190127184058835) == 0.69534156199418473":
327double: 1
328idouble: 1
329
330# cpow
331Test "Real part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
332float: 1
333ifloat: 1
334ldouble: 1
335ildouble: 1
336Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.0 + 1.0 i) == 0.331825439177608832276067945276730566 + 0.131338600281188544930936345230903032 i":
337float: 1
338ifloat: 1
339ildouble: 1
340ldouble: 1
341Test "Real part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
342double: 1
343float: 4
344idouble: 1
345ifloat: 4
346ildouble: 5
347ldouble: 5
348Test "Imaginary part of: cpow (0.75 + 1.25 i, 0.75 + 1.25 i) == 0.117506293914473555420279832210420483 + 0.346552747708338676483025352060418001 i":
349ildouble: 2
350ldouble: 2
351Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 0.0 i) == 0.75 + 1.25 i":
352ildouble: 1
353ldouble: 1
354Test "Real part of: cpow (0.75 + 1.25 i, 1.0 + 1.0 i) == 0.0846958290317209430433805274189191353 + 0.513285749182902449043287190519090481 i":
355double: 2
356float: 3
357idouble: 2
358ifloat: 3
359ildouble: 3
360ldouble: 3
361Test "Real part of: cpow (2 + 0 i, 10 + 0 i) == 1024.0 + 0.0 i":
362ildouble: 1
363ldouble: 1
364Test "Real part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
365double: 1
366float: 5
367idouble: 1
368ifloat: 5
369Test "Imaginary part of: cpow (2 + 3 i, 4 + 0 i) == -119.0 - 120.0 i":
370float: 2
371ifloat: 2
372ildouble: 2
373ldouble: 2
374Test "Imaginary part of: cpow (e + 0 i, 0 + 2 * M_PIl i) == 1.0 + 0.0 i":
375double: 2
376float: 2
377idouble: 2
378ifloat: 2
379ildouble: 1
380ldouble: 1
381
382# csin
383Test "Real part of: csin (0.75 + 1.25 i) == 1.28722291002649188575873510790565441 + 1.17210635989270256101081285116138863 i":
384ildouble: 1
385ldouble: 1
386Test "Imaginary part of: csin (0.75 + 1.25 i) == 1.28722291002649188575873510790565441 + 1.17210635989270256101081285116138863 i":
387float: 1
388ifloat: 1
389Test "Imaginary part of: csin (-2 - 3 i) == -9.15449914691142957346729954460983256 + 4.16890695996656435075481305885375484 i":
390double: 1
391idouble: 1
392
393# csinh
394Test "Real part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
395double: 1
396idouble: 1
397Test "Imaginary part of: csinh (-2 - 3 i) == 3.59056458998577995201256544779481679 - 0.530921086248519805267040090660676560 i":
398double: 1
399idouble: 1
400ildouble: 2
401ldouble: 2
402Test "Real part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
403float: 1
404ifloat: 1
405ildouble: 1
406ldouble: 1
407Test "Imaginary part of: csinh (0.75 + 1.25 i) == 0.259294854551162779153349830618433028 + 1.22863452409509552219214606515777594 i":
408float: 1
409ifloat: 1
410
411# csqrt
412Test "Real part of: csqrt (-2 + 3 i) == 0.89597747612983812471573375529004348 + 1.6741492280355400404480393008490519 i":
413float: 1
414ifloat: 1
415Test "Real part of: csqrt (-2 - 3 i) == 0.89597747612983812471573375529004348 - 1.6741492280355400404480393008490519 i":
416float: 1
417ifloat: 1
418
419# ctan
420Test "Real part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
421double: 1
422idouble: 1
423ildouble: 439
424ldouble: 439
425Test "Imaginary part of: ctan (-2 - 3 i) == 0.376402564150424829275122113032269084e-2 - 1.00323862735360980144635859782192726 i":
426float: 1
427ifloat: 1
428ildouble: 2
429ldouble: 2
430Test "Real part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":
431ildouble: 1
432ldouble: 1
433Test "Imaginary part of: ctan (0.75 + 1.25 i) == 0.160807785916206426725166058173438663 + 0.975363285031235646193581759755216379 i":
434double: 1
435float: 1
436idouble: 1
437ifloat: 1
438ildouble: 3
439ldouble: 3
440
441# ctanh
442Test "Real part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
443float: 2
444ifloat: 2
445ildouble: 5
446ldouble: 5
447double: 1
448idouble: 1
449Test "Imaginary part of: ctanh (-2 - 3 i) == -0.965385879022133124278480269394560686 + 0.988437503832249372031403430350121098e-2 i":
450ildouble: 25
451ldouble: 25
452Test "Imaginary part of: ctanh (0 + pi/4 i) == 0.0 + 1.0 i":
453float: 1
454ifloat: 1
455Test "Real part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":
456double: 1
457idouble: 1
458Test "Imaginary part of: ctanh (0.75 + 1.25 i) == 1.37260757053378320258048606571226857 + 0.385795952609750664177596760720790220 i":
459ildouble: 1
460ldouble: 1
461double: 1
462idouble: 1
463
464# erf
465Test "erf (1.25) == 0.922900128256458230136523481197281140":
466double: 1
467idouble: 1
468
469# erfc
470Test "erfc (1.25) == 0.0770998717435417698634765188027188596":
471ildouble: 1
472ldouble: 1
473Test "erfc (2.0) == 0.00467773498104726583793074363274707139":
474double: 1
475idouble: 1
476Test "erfc (4.125) == 0.542340079956506600531223408575531062e-8":
477double: 1
478idouble: 1
479ildouble: 1
480ldouble: 1
481
482# exp10
483Test "exp10 (-1) == 0.1":
484ildouble: 1
485ldouble: 1
486float: 1
487ifloat: 1
488double: 2
489idouble: 2
490Test "exp10 (0.75) == 5.62341325190349080394951039776481231":
491ildouble: 2
492ldouble: 2
493float: 1
494ifloat: 1
495double: 1
496idouble: 1
497Test "exp10 (3) == 1000":
498ildouble: 8
499ldouble: 8
500float: 2
501ifloat: 2
502double: 6
503idouble: 6
504
505# expm1
506Test "expm1 (0.75) == 1.11700001661267466854536981983709561":
507double: 1
508idouble: 1
509Test "expm1 (1) == M_El - 1.0":
510double: 1
511float: 1
512idouble: 1
513ifloat: 1
514
515# gamma
516Test "gamma (-0.5) == log(2*sqrt(pi))":
517ildouble: 1
518ldouble: 1
519
520# hypot
521Test "hypot (-0.7, -12.4) == 12.419742348374220601176836866763271":
522float: 1
523ifloat: 1
524Test "hypot (-0.7, 12.4) == 12.419742348374220601176836866763271":
525float: 1
526ifloat: 1
527Test "hypot (-12.4, -0.7) == 12.419742348374220601176836866763271":
528float: 1
529ifloat: 1
530Test "hypot (-12.4, 0.7) == 12.419742348374220601176836866763271":
531float: 1
532ifloat: 1
533Test "hypot (0.7, -12.4) == 12.419742348374220601176836866763271":
534float: 1
535ifloat: 1
536Test "hypot (0.7, 12.4) == 12.419742348374220601176836866763271":
537float: 1
538ifloat: 1
539Test "hypot (12.4, -0.7) == 12.419742348374220601176836866763271":
540float: 1
541ifloat: 1
542Test "hypot (12.4, 0.7) == 12.419742348374220601176836866763271":
543float: 1
544ifloat: 1
545
546# j0
547Test "j0 (-4.0) == -3.9714980986384737228659076845169804197562E-1":
548double: 1
549float: 1
550idouble: 1
551ifloat: 1
552ildouble: 1
553ldouble: 1
554Test "j0 (0.75) == 0.864242275166648623555731103820923211":
555float: 1
556ifloat: 1
557Test "j0 (10.0) == -0.245935764451348335197760862485328754":
558double: 2
559float: 1
560idouble: 2
561ifloat: 1
562Test "j0 (2.0) == 0.223890779141235668051827454649948626":
563float: 2
564ifloat: 2
565Test "j0 (4.0) == -3.9714980986384737228659076845169804197562E-1":
566double: 1
567float: 1
568idouble: 1
569ifloat: 1
570ildouble: 1
571ldouble: 1
572Test "j0 (8.0) == 0.171650807137553906090869407851972001":
573double: 2
574float: 1
575idouble: 2
576ifloat: 1
577
578# j1
579Test "j1 (10.0) == 0.0434727461688614366697487680258592883":
580float: 2
581ifloat: 2
582ildouble: 1
583ldouble: 1
584Test "j1 (2.0) == 0.576724807756873387202448242269137087":
585double: 1
586idouble: 1
587Test "j1 (8.0) == 0.234636346853914624381276651590454612":
588double: 1
589idouble: 1
590ildouble: 1
591ldouble: 1
592
593# jn
594Test "jn (0, -4.0) == -3.9714980986384737228659076845169804197562E-1":
595double: 1
596float: 1
597idouble: 1
598ifloat: 1
599ildouble: 1
600ldouble: 1
601Test "jn (0, 0.75) == 0.864242275166648623555731103820923211":
602float: 1
603ifloat: 1
604Test "jn (0, 10.0) == -0.245935764451348335197760862485328754":
605double: 2
606float: 1
607idouble: 2
608ifloat: 1
609Test "jn (0, 2.0) == 0.223890779141235668051827454649948626":
610float: 2
611ifloat: 2
612Test "jn (0, 4.0) == -3.9714980986384737228659076845169804197562E-1":
613double: 1
614float: 1
615idouble: 1
616ifloat: 1
617ildouble: 1
618ldouble: 1
619Test "jn (0, 8.0) == 0.171650807137553906090869407851972001":
620double: 2
621float: 1
622idouble: 2
623ifloat: 1
624Test "jn (1, 10.0) == 0.0434727461688614366697487680258592883":
625float: 2
626ifloat: 2
627ildouble: 1
628ldouble: 1
629Test "jn (1, 2.0) == 0.576724807756873387202448242269137087":
630double: 1
631idouble: 1
632Test "jn (1, 8.0) == 0.234636346853914624381276651590454612":
633double: 1
634idouble: 1
635ildouble: 1
636ldouble: 1
637Test "jn (10, -1.0) == 0.263061512368745320699785368779050294e-9":
638ildouble: 1
639ldouble: 1
640Test "jn (10, 0.125) == 0.250543369809369890173993791865771547e-18":
641double: 1
642float: 1
643idouble: 1
644ifloat: 1
645Test "jn (10, 0.75) == 0.149621713117596814698712483621682835e-10":
646double: 1
647float: 1
648idouble: 1
649ifloat: 1
650ildouble: 2
651ldouble: 2
652Test "jn (10, 1.0) == 0.263061512368745320699785368779050294e-9":
653ildouble: 1
654ldouble: 1
655Test "jn (10, 10.0) == 0.207486106633358857697278723518753428":
656double: 4
657float: 3
658idouble: 4
659ifloat: 3
660ildouble: 2
661ldouble: 2
662Test "jn (10, 2.0) == 0.251538628271673670963516093751820639e-6":
663float: 4
664ifloat: 4
665ildouble: 1
666ldouble: 1
667Test "jn (3, -1.0) == -0.0195633539826684059189053216217515083":
668ildouble: 1
669ldouble: 1
670Test "jn (3, 0.125) == 0.406503832554912875023029337653442868e-4":
671double: 1
672float: 1
673idouble: 1
674ifloat: 1
675Test "jn (3, 0.75) == 0.848438342327410884392755236884386804e-2":
676double: 1
677float: 1
678idouble: 1
679ifloat: 1
680Test "jn (3, 1.0) == 0.0195633539826684059189053216217515083":
681ildouble: 1
682ldouble: 1
683Test "jn (3, 10.0) == 0.0583793793051868123429354784103409563":
684double: 3
685float: 1
686idouble: 3
687ifloat: 1
688ildouble: 1
689ldouble: 1
690Test "jn (3, 2.0) == 0.128943249474402051098793332969239835":
691double: 1
692float: 2
693idouble: 1
694ifloat: 2
695ildouble: 1
696ldouble: 1
697
698# lgamma
699Test "lgamma (-0.5) == log(2*sqrt(pi))":
700ildouble: 1
701ldouble: 1
702Test "lgamma (0.7) == 0.260867246531666514385732417016759578":
703double: 1
704float: 1
705idouble: 1
706ifloat: 1
707Test "lgamma (1.2) == -0.853740900033158497197028392998854470e-1":
708double: 1
709float: 2
710idouble: 1
711ifloat: 2
712ildouble: 1
713ldouble: 1
714
715# log10
716Test "log10 (0.75) == -0.124938736608299953132449886193870744":
717ildouble: 1
718ldouble: 1
719float: 2
720ifloat: 2
721double: 1
722idouble: 1
723Test "log10 (e) == log10(e)":
724float: 1
725ifloat: 1
726ildouble: 1
727ldouble: 1
728
729# log1p
730Test "log1p (-0.25) == -0.287682072451780927439219005993827432":
731float: 1
732ifloat: 1
733
734# sincos
735Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.5 in cos_res":
736double: 1
737float: 1
738idouble: 1
739ifloat: 1
740Test "sincos (M_PI_6l*2.0, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in sin_res":
741double: 1
742float: 1
743idouble: 1
744ifloat: 1
745ildouble: 1
746ldouble: 1
747Test "sincos (pi/2, &sin_res, &cos_res) puts 0 in cos_res":
748double: 1
749float: 1
750idouble: 1
751ifloat: 1
752ildouble: 1
753ldouble: 1
754Test "sincos (pi/6, &sin_res, &cos_res) puts 0.86602540378443864676372317075293616 in cos_res":
755float: 1
756ifloat: 1
757Test "sincos (0.80190127184058835, &sin_res, &cos_res) puts 0.69534156199418473 in cos_res":
758double: 1
759idouble: 1
760
761# tan
762Test "tan (pi/4) == 1":
763double: 1
764idouble: 1
765
766# tgamma
767Test "tgamma (-0.5) == -2 sqrt (pi)":
768double: 1
769float: 1
770idouble: 1
771ifloat: 1
772ildouble: 1
773ldouble: 1
774Test "tgamma (0.5) == sqrt (pi)":
775float: 1
776ifloat: 1
777Test "tgamma (0.7) == 1.29805533264755778568117117915281162":
778double: 1
779float: 1
780idouble: 1
781ifloat: 1
782Test "tgamma (4) == 6":
783ildouble: 1
784ldouble: 1
785
786# y0
787Test "y0 (0.125) == -1.38968062514384052915582277745018693":
788ildouble: 1
789ldouble: 1
790Test "y0 (1.0) == 0.0882569642156769579829267660235151628":
791double: 2
792float: 1
793idouble: 2
794ifloat: 1
795ildouble: 1
796ldouble: 1
797Test "y0 (1.5) == 0.382448923797758843955068554978089862":
798double: 2
799float: 1
800idouble: 2
801ifloat: 1
802Test "y0 (10.0) == 0.0556711672835993914244598774101900481":
803float: 1
804ifloat: 1
805ildouble: 1
806ldouble: 1
807Test "y0 (8.0) == 0.223521489387566220527323400498620359":
808double: 1
809float: 1
810idouble: 1
811ifloat: 1
812ildouble: 1
813ldouble: 1
814
815# y1
816Test "y1 (0.125) == -5.19993611253477499595928744876579921":
817double: 1
818idouble: 1
819ildouble: 1
820ldouble: 1
821Test "y1 (1.5) == -0.412308626973911295952829820633445323":
822float: 1
823ifloat: 1
824Test "y1 (10.0) == 0.249015424206953883923283474663222803":
825double: 3
826float: 1
827idouble: 3
828ifloat: 1
829Test "y1 (2.0) == -0.107032431540937546888370772277476637":
830double: 1
831float: 1
832idouble: 1
833ifloat: 1
834ildouble: 1
835ldouble: 1
836Test "y1 (8.0) == -0.158060461731247494255555266187483550":
837double: 1
838float: 2
839idouble: 1
840ifloat: 2
841ildouble: 1
842ldouble: 1
843
844# yn
845Test "yn (0, 0.125) == -1.38968062514384052915582277745018693":
846ildouble: 1
847ldouble: 1
848Test "yn (0, 1.0) == 0.0882569642156769579829267660235151628":
849double: 2
850float: 1
851idouble: 2
852ifloat: 1
853ildouble: 1
854ldouble: 1
855Test "yn (0, 1.5) == 0.382448923797758843955068554978089862":
856double: 2
857float: 1
858idouble: 2
859ifloat: 1
860Test "yn (0, 10.0) == 0.0556711672835993914244598774101900481":
861float: 1
862ifloat: 1
863ildouble: 1
864ldouble: 1
865Test "yn (0, 8.0) == 0.223521489387566220527323400498620359":
866double: 1
867float: 1
868idouble: 1
869ifloat: 1
870ildouble: 1
871ldouble: 1
872Test "yn (1, 0.125) == -5.19993611253477499595928744876579921":
873double: 1
874idouble: 1
875ildouble: 1
876ldouble: 1
877Test "yn (1, 1.5) == -0.412308626973911295952829820633445323":
878float: 1
879ifloat: 1
880Test "yn (1, 10.0) == 0.249015424206953883923283474663222803":
881double: 3
882float: 1
883idouble: 3
884ifloat: 1
885Test "yn (1, 2.0) == -0.107032431540937546888370772277476637":
886double: 1
887float: 1
888idouble: 1
889ifloat: 1
890ildouble: 1
891ldouble: 1
892Test "yn (1, 8.0) == -0.158060461731247494255555266187483550":
893double: 1
894float: 2
895idouble: 1
896ifloat: 2
897ildouble: 1
898ldouble: 1
899Test "yn (10, 0.125) == -127057845771019398.252538486899753195":
900double: 1
901idouble: 1
902ildouble: 2
903ldouble: 2
904Test "yn (10, 0.75) == -2133501638.90573424452445412893839236":
905double: 1
906float: 1
907idouble: 1
908ifloat: 1
909ildouble: 4
910ldouble: 4
911Test "yn (10, 1.0) == -121618014.278689189288130426667971145":
912double: 1
913idouble: 1
914Test "yn (10, 10.0) == -0.359814152183402722051986577343560609":
915double: 1
916float: 1
917idouble: 1
918ifloat: 1
919Test "yn (10, 2.0) == -129184.542208039282635913145923304214":
920double: 2
921idouble: 2
922Test "yn (3, 0.125) == -2612.69757350066712600220955744091741":
923double: 1
924idouble: 1
925ildouble: 1
926ldouble: 1
927Test "yn (3, 0.75) == -12.9877176234475433186319774484809207":
928double: 1
929float: 1
930idouble: 1
931ifloat: 1
932ildouble: 2
933ldouble: 2
934Test "yn (3, 10.0) == -0.251362657183837329779204747654240998":
935double: 1
936float: 1
937idouble: 1
938ifloat: 1
939Test "yn (3, 2.0) == -1.12778377684042778608158395773179238":
940double: 1
941idouble: 1
942
943# Maximal error of functions:
944Function: "acos":
945ildouble: 1
946ldouble: 1
947
948Function: "asin":
949ildouble: 1
950ldouble: 1
951
952Function: "atan2":
953float: 1
954ifloat: 1
955
956Function: "atanh":
957float: 1
958ifloat: 1
959ildouble: 1
960ldouble: 1
961
962Function: Imaginary part of "cacos":
963float: 1
964ifloat: 1
965ildouble: 2
966ldouble: 2
967
968Function: Real part of "cacosh":
969double: 1
970float: 7
971idouble: 1
972ifloat: 7
973ildouble: 6
974ldouble: 6
975
976Function: Imaginary part of "cacosh":
977double: 1
978float: 3
979idouble: 1
980ifloat: 3
981ildouble: 1
982ldouble: 1
983
984Function: Real part of "casin":
985double: 1
986float: 1
987idouble: 1
988ifloat: 1
989ildouble: 2
990ldouble: 2
991
992Function: Imaginary part of "casin":
993float: 1
994ifloat: 1
995ildouble: 2
996ldouble: 2
997
998Function: Real part of "casinh":
999double: 5
1000float: 1
1001idouble: 5
1002ifloat: 1
1003ildouble: 5
1004ldouble: 5
1005
1006Function: Imaginary part of "casinh":
1007double: 3
1008float: 6
1009idouble: 3
1010ifloat: 6
1011ildouble: 5
1012ldouble: 5
1013
1014Function: Real part of "catan":
1015float: 4
1016ifloat: 4
1017
1018Function: Imaginary part of "catan":
1019double: 1
1020float: 1
1021idouble: 1
1022ifloat: 1
1023
1024Function: Real part of "catanh":
1025double: 4
1026idouble: 4
1027ildouble: 1
1028ldouble: 1
1029
1030Function: Imaginary part of "catanh":
1031float: 6
1032ifloat: 6
1033
1034Function: "cbrt":
1035double: 1
1036idouble: 1
1037ildouble: 1
1038ldouble: 1
1039
1040Function: Real part of "ccos":
1041double: 1
1042float: 1
1043idouble: 1
1044ifloat: 1
1045ildouble: 1
1046ldouble: 1
1047
1048Function: Imaginary part of "ccos":
1049float: 1
1050ifloat: 1
1051ildouble: 1
1052ldouble: 1
1053
1054Function: Real part of "ccosh":
1055double: 1
1056float: 1
1057idouble: 1
1058ifloat: 1
1059
1060Function: Imaginary part of "ccosh":
1061double: 1
1062float: 1
1063idouble: 1
1064ifloat: 1
1065ildouble: 1
1066ldouble: 1
1067
1068Function: Real part of "cexp":
1069float: 1
1070ifloat: 1
1071
1072Function: Imaginary part of "cexp":
1073float: 1
1074ifloat: 1
1075ildouble: 1
1076ldouble: 1
1077
1078Function: Real part of "clog":
1079float: 1
1080ifloat: 1
1081ildouble: 1
1082ldouble: 1
1083
1084Function: Imaginary part of "clog":
1085float: 3
1086ifloat: 3
1087
1088Function: Real part of "clog10":
1089double: 1
1090float: 1
1091idouble: 1
1092ifloat: 1
1093ildouble: 1
1094ldouble: 1
1095
1096Function: Imaginary part of "clog10":
1097double: 1
1098float: 5
1099idouble: 1
1100ifloat: 5
1101ildouble: 1
1102ldouble: 1
1103
1104Function: "cos":
1105double: 2
1106float: 1
1107idouble: 2
1108ifloat: 1
1109ildouble: 1
1110ldouble: 1
1111
1112Function: Real part of "cpow":
1113double: 2
1114float: 5
1115idouble: 2
1116ifloat: 5
1117ildouble: 5
1118ldouble: 5
1119
1120Function: Imaginary part of "cpow":
1121double: 2
1122float: 2
1123idouble: 2
1124ifloat: 2
1125ildouble: 2
1126ldouble: 2
1127
1128Function: Real part of "csin":
1129ildouble: 1
1130ldouble: 1
1131
1132Function: Imaginary part of "csin":
1133double: 1
1134float: 1
1135idouble: 1
1136ifloat: 1
1137
1138Function: Real part of "csinh":
1139double: 1
1140float: 1
1141idouble: 1
1142ifloat: 1
1143ildouble: 1
1144ldouble: 1
1145
1146Function: Imaginary part of "csinh":
1147double: 1
1148float: 1
1149idouble: 1
1150ifloat: 1
1151ildouble: 2
1152ldouble: 2
1153
1154Function: Real part of "csqrt":
1155float: 1
1156ifloat: 1
1157
1158Function: Real part of "ctan":
1159double: 1
1160idouble: 1
1161ildouble: 439
1162ldouble: 439
1163
1164Function: Imaginary part of "ctan":
1165double: 1
1166float: 1
1167idouble: 1
1168ifloat: 1
1169ildouble: 3
1170ldouble: 3
1171
1172Function: Real part of "ctanh":
1173double: 1
1174float: 2
1175idouble: 1
1176ifloat: 2
1177ildouble: 5
1178ldouble: 5
1179
1180Function: Imaginary part of "ctanh":
1181float: 1
1182ifloat: 1
1183ildouble: 25
1184ldouble: 25
1185double: 1
1186idouble: 1
1187
1188Function: "erf":
1189double: 1
1190idouble: 1
1191
1192Function: "erfc":
1193double: 1
1194idouble: 1
1195ildouble: 1
1196ldouble: 1
1197
1198Function: "exp10":
1199ildouble: 8
1200ldouble: 8
1201float: 2
1202ifloat: 2
1203double: 6
1204idouble: 6
1205
1206Function: "expm1":
1207double: 1
1208float: 1
1209idouble: 1
1210ifloat: 1
1211
1212Function: "gamma":
1213ildouble: 1
1214ldouble: 1
1215
1216Function: "hypot":
1217float: 1
1218ifloat: 1
1219
1220Function: "j0":
1221double: 2
1222float: 2
1223idouble: 2
1224ifloat: 2
1225ildouble: 1
1226ldouble: 1
1227
1228Function: "j1":
1229double: 1
1230float: 2
1231idouble: 1
1232ifloat: 2
1233ildouble: 1
1234ldouble: 1
1235
1236Function: "jn":
1237double: 4
1238float: 4
1239idouble: 4
1240ifloat: 4
1241ildouble: 2
1242ldouble: 2
1243
1244Function: "lgamma":
1245double: 1
1246float: 2
1247idouble: 1
1248ifloat: 2
1249ildouble: 1
1250ldouble: 1
1251
1252Function: "log10":
1253float: 2
1254ifloat: 2
1255ildouble: 1
1256ldouble: 1
1257double: 1
1258idouble: 1
1259
1260Function: "log1p":
1261float: 1
1262ifloat: 1
1263
1264Function: "sincos":
1265double: 1
1266float: 1
1267idouble: 1
1268ifloat: 1
1269ildouble: 1
1270ldouble: 1
1271
1272Function: "tan":
1273double: 1
1274idouble: 1
1275
1276Function: "tgamma":
1277double: 1
1278float: 1
1279idouble: 1
1280ifloat: 1
1281ildouble: 1
1282ldouble: 1
1283
1284Function: "y0":
1285double: 2
1286float: 1
1287idouble: 2
1288ifloat: 1
1289ildouble: 1
1290ldouble: 1
1291
1292Function: "y1":
1293double: 3
1294float: 2
1295idouble: 3
1296ifloat: 2
1297ildouble: 1
1298ldouble: 1
1299
1300Function: "yn":
1301double: 3
1302float: 2
1303idouble: 3
1304ifloat: 2
1305ildouble: 4
1306ldouble: 4
1307
1308# end of automatic generation