| lh | 9ed821d | 2023-04-07 01:36:19 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * rational fractions | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com> | 
|  | 5 | * | 
|  | 6 | * helper functions when coping with rational numbers | 
|  | 7 | */ | 
|  | 8 |  | 
|  | 9 | #include <linux/rational.h> | 
|  | 10 | #include <linux/compiler.h> | 
|  | 11 | #include <linux/export.h> | 
|  | 12 |  | 
|  | 13 | /* | 
|  | 14 | * calculate best rational approximation for a given fraction | 
|  | 15 | * taking into account restricted register size, e.g. to find | 
|  | 16 | * appropriate values for a pll with 5 bit denominator and | 
|  | 17 | * 8 bit numerator register fields, trying to set up with a | 
|  | 18 | * frequency ratio of 3.1415, one would say: | 
|  | 19 | * | 
|  | 20 | * rational_best_approximation(31415, 10000, | 
|  | 21 | *		(1 << 8) - 1, (1 << 5) - 1, &n, &d); | 
|  | 22 | * | 
|  | 23 | * you may look at given_numerator as a fixed point number, | 
|  | 24 | * with the fractional part size described in given_denominator. | 
|  | 25 | * | 
|  | 26 | * for theoretical background, see: | 
|  | 27 | * http://en.wikipedia.org/wiki/Continued_fraction | 
|  | 28 | */ | 
|  | 29 |  | 
|  | 30 | void rational_best_approximation( | 
|  | 31 | unsigned long given_numerator, unsigned long given_denominator, | 
|  | 32 | unsigned long max_numerator, unsigned long max_denominator, | 
|  | 33 | unsigned long *best_numerator, unsigned long *best_denominator) | 
|  | 34 | { | 
|  | 35 | unsigned long n, d, n0, d0, n1, d1; | 
|  | 36 | n = given_numerator; | 
|  | 37 | d = given_denominator; | 
|  | 38 | n0 = d1 = 0; | 
|  | 39 | n1 = d0 = 1; | 
|  | 40 | for (;;) { | 
|  | 41 | unsigned long t, a; | 
|  | 42 | if ((n1 > max_numerator) || (d1 > max_denominator)) { | 
|  | 43 | n1 = n0; | 
|  | 44 | d1 = d0; | 
|  | 45 | break; | 
|  | 46 | } | 
|  | 47 | if (d == 0) | 
|  | 48 | break; | 
|  | 49 | t = d; | 
|  | 50 | a = n / d; | 
|  | 51 | d = n % d; | 
|  | 52 | n = t; | 
|  | 53 | t = n0 + a * n1; | 
|  | 54 | n0 = n1; | 
|  | 55 | n1 = t; | 
|  | 56 | t = d0 + a * d1; | 
|  | 57 | d0 = d1; | 
|  | 58 | d1 = t; | 
|  | 59 | } | 
|  | 60 | *best_numerator = n1; | 
|  | 61 | *best_denominator = d1; | 
|  | 62 | } | 
|  | 63 |  | 
|  | 64 | EXPORT_SYMBOL(rational_best_approximation); |