| xf.li | bdd93d5 | 2023-05-12 07:10:14 -0700 | [diff] [blame] | 1 | /* Copyright (C) 2012-2016 Free Software Foundation, Inc. | 
 | 2 |    This file is part of the GNU C Library. | 
 | 3 |  | 
 | 4 |    The GNU C Library is free software; you can redistribute it and/or | 
 | 5 |    modify it under the terms of the GNU Lesser General Public | 
 | 6 |    License as published by the Free Software Foundation; either | 
 | 7 |    version 2.1 of the License, or (at your option) any later version. | 
 | 8 |  | 
 | 9 |    The GNU C Library is distributed in the hope that it will be useful, | 
 | 10 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 11 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 | 12 |    Lesser General Public License for more details. | 
 | 13 |  | 
 | 14 |    You should have received a copy of the GNU Lesser General Public | 
 | 15 |    License along with the GNU C Library.  If not, see | 
 | 16 |    <http://www.gnu.org/licenses/>.  */ | 
 | 17 |  | 
 | 18 | #ifdef ANDROID_CHANGES | 
 | 19 | # include "machine/asm.h" | 
 | 20 | # include "machine/regdef.h" | 
 | 21 | # define USE_MEMMOVE_FOR_OVERLAP | 
 | 22 | # define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED | 
 | 23 | # define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE | 
 | 24 | #elif _LIBC | 
 | 25 | # include <sysdep.h> | 
 | 26 | # include <regdef.h> | 
 | 27 | # include <sys/asm.h> | 
 | 28 | # define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED | 
 | 29 | # define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE | 
 | 30 | #elif defined _COMPILING_NEWLIB | 
 | 31 | # include "machine/asm.h" | 
 | 32 | # include "machine/regdef.h" | 
 | 33 | # define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED | 
 | 34 | # define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE | 
 | 35 | #else | 
 | 36 | # include <regdef.h> | 
 | 37 | # include <sys/asm.h> | 
 | 38 | #endif | 
 | 39 |  | 
 | 40 | #if (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5) || \ | 
 | 41 |     (_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64) | 
 | 42 | # ifndef DISABLE_PREFETCH | 
 | 43 | #  define USE_PREFETCH | 
 | 44 | # endif | 
 | 45 | #endif | 
 | 46 |  | 
 | 47 | #if defined(_MIPS_SIM) && ((_MIPS_SIM == _ABI64) || (_MIPS_SIM == _ABIN32)) | 
 | 48 | # ifndef DISABLE_DOUBLE | 
 | 49 | #  define USE_DOUBLE | 
 | 50 | # endif | 
 | 51 | #endif | 
 | 52 |  | 
 | 53 | /* Some asm.h files do not have the L macro definition.  */ | 
 | 54 | #ifndef L | 
 | 55 | # if _MIPS_SIM == _ABIO32 | 
 | 56 | #  define L(label) $L ## label | 
 | 57 | # else | 
 | 58 | #  define L(label) .L ## label | 
 | 59 | # endif | 
 | 60 | #endif | 
 | 61 |  | 
 | 62 | /* Some asm.h files do not have the PTR_ADDIU macro definition.  */ | 
 | 63 | #ifndef PTR_ADDIU | 
 | 64 | # ifdef USE_DOUBLE | 
 | 65 | #  define PTR_ADDIU	daddiu | 
 | 66 | # else | 
 | 67 | #  define PTR_ADDIU	addiu | 
 | 68 | # endif | 
 | 69 | #endif | 
 | 70 |  | 
 | 71 | /* Some asm.h files do not have the PTR_SRA macro definition.  */ | 
 | 72 | #ifndef PTR_SRA | 
 | 73 | # ifdef USE_DOUBLE | 
 | 74 | #  define PTR_SRA		dsra | 
 | 75 | # else | 
 | 76 | #  define PTR_SRA		sra | 
 | 77 | # endif | 
 | 78 | #endif | 
 | 79 |  | 
 | 80 | /* New R6 instructions that may not be in asm.h.  */ | 
 | 81 | #ifndef PTR_LSA | 
 | 82 | # if _MIPS_SIM == _ABI64 | 
 | 83 | #  define PTR_LSA	dlsa | 
 | 84 | # else | 
 | 85 | #  define PTR_LSA	lsa | 
 | 86 | # endif | 
 | 87 | #endif | 
 | 88 |  | 
 | 89 | /* | 
 | 90 |  * Using PREFETCH_HINT_LOAD_STREAMED instead of PREFETCH_LOAD on load | 
 | 91 |  * prefetches appears to offer a slight preformance advantage. | 
 | 92 |  * | 
 | 93 |  * Using PREFETCH_HINT_PREPAREFORSTORE instead of PREFETCH_STORE | 
 | 94 |  * or PREFETCH_STORE_STREAMED offers a large performance advantage | 
 | 95 |  * but PREPAREFORSTORE has some special restrictions to consider. | 
 | 96 |  * | 
 | 97 |  * Prefetch with the 'prepare for store' hint does not copy a memory | 
 | 98 |  * location into the cache, it just allocates a cache line and zeros | 
 | 99 |  * it out.  This means that if you do not write to the entire cache | 
 | 100 |  * line before writing it out to memory some data will get zero'ed out | 
 | 101 |  * when the cache line is written back to memory and data will be lost. | 
 | 102 |  * | 
 | 103 |  * Also if you are using this memcpy to copy overlapping buffers it may | 
 | 104 |  * not behave correctly when using the 'prepare for store' hint.  If you | 
 | 105 |  * use the 'prepare for store' prefetch on a memory area that is in the | 
 | 106 |  * memcpy source (as well as the memcpy destination), then you will get | 
 | 107 |  * some data zero'ed out before you have a chance to read it and data will | 
 | 108 |  * be lost. | 
 | 109 |  * | 
 | 110 |  * If you are going to use this memcpy routine with the 'prepare for store' | 
 | 111 |  * prefetch you may want to set USE_MEMMOVE_FOR_OVERLAP in order to avoid | 
 | 112 |  * the problem of running memcpy on overlapping buffers. | 
 | 113 |  * | 
 | 114 |  * There are ifdef'ed sections of this memcpy to make sure that it does not | 
 | 115 |  * do prefetches on cache lines that are not going to be completely written. | 
 | 116 |  * This code is only needed and only used when PREFETCH_STORE_HINT is set to | 
 | 117 |  * PREFETCH_HINT_PREPAREFORSTORE.  This code assumes that cache lines are | 
 | 118 |  * 32 bytes and if the cache line is larger it will not work correctly. | 
 | 119 |  */ | 
 | 120 |  | 
 | 121 | #ifdef USE_PREFETCH | 
 | 122 | # define PREFETCH_HINT_LOAD		0 | 
 | 123 | # define PREFETCH_HINT_STORE		1 | 
 | 124 | # define PREFETCH_HINT_LOAD_STREAMED	4 | 
 | 125 | # define PREFETCH_HINT_STORE_STREAMED	5 | 
 | 126 | # define PREFETCH_HINT_LOAD_RETAINED	6 | 
 | 127 | # define PREFETCH_HINT_STORE_RETAINED	7 | 
 | 128 | # define PREFETCH_HINT_WRITEBACK_INVAL	25 | 
 | 129 | # define PREFETCH_HINT_PREPAREFORSTORE	30 | 
 | 130 |  | 
 | 131 | /* | 
 | 132 |  * If we have not picked out what hints to use at this point use the | 
 | 133 |  * standard load and store prefetch hints. | 
 | 134 |  */ | 
 | 135 | # ifndef PREFETCH_STORE_HINT | 
 | 136 | #  define PREFETCH_STORE_HINT PREFETCH_HINT_STORE | 
 | 137 | # endif | 
 | 138 | # ifndef PREFETCH_LOAD_HINT | 
 | 139 | #  define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD | 
 | 140 | # endif | 
 | 141 |  | 
 | 142 | /* | 
 | 143 |  * We double everything when USE_DOUBLE is true so we do 2 prefetches to | 
 | 144 |  * get 64 bytes in that case.  The assumption is that each individual | 
 | 145 |  * prefetch brings in 32 bytes. | 
 | 146 |  */ | 
 | 147 |  | 
 | 148 | # ifdef USE_DOUBLE | 
 | 149 | #  define PREFETCH_CHUNK 64 | 
 | 150 | #  define PREFETCH_FOR_LOAD(chunk, reg) \ | 
 | 151 |  pref PREFETCH_LOAD_HINT, (chunk)*64(reg); \ | 
 | 152 |  pref PREFETCH_LOAD_HINT, ((chunk)*64)+32(reg) | 
 | 153 | #  define PREFETCH_FOR_STORE(chunk, reg) \ | 
 | 154 |  pref PREFETCH_STORE_HINT, (chunk)*64(reg); \ | 
 | 155 |  pref PREFETCH_STORE_HINT, ((chunk)*64)+32(reg) | 
 | 156 | # else | 
 | 157 | #  define PREFETCH_CHUNK 32 | 
 | 158 | #  define PREFETCH_FOR_LOAD(chunk, reg) \ | 
 | 159 |  pref PREFETCH_LOAD_HINT, (chunk)*32(reg) | 
 | 160 | #  define PREFETCH_FOR_STORE(chunk, reg) \ | 
 | 161 |  pref PREFETCH_STORE_HINT, (chunk)*32(reg) | 
 | 162 | # endif | 
 | 163 | /* MAX_PREFETCH_SIZE is the maximum size of a prefetch, it must not be less | 
 | 164 |  * than PREFETCH_CHUNK, the assumed size of each prefetch.  If the real size | 
 | 165 |  * of a prefetch is greater than MAX_PREFETCH_SIZE and the PREPAREFORSTORE | 
 | 166 |  * hint is used, the code will not work correctly.  If PREPAREFORSTORE is not | 
 | 167 |  * used then MAX_PREFETCH_SIZE does not matter.  */ | 
 | 168 | # define MAX_PREFETCH_SIZE 128 | 
 | 169 | /* PREFETCH_LIMIT is set based on the fact that we never use an offset greater | 
 | 170 |  * than 5 on a STORE prefetch and that a single prefetch can never be larger | 
 | 171 |  * than MAX_PREFETCH_SIZE.  We add the extra 32 when USE_DOUBLE is set because | 
 | 172 |  * we actually do two prefetches in that case, one 32 bytes after the other.  */ | 
 | 173 | # ifdef USE_DOUBLE | 
 | 174 | #  define PREFETCH_LIMIT (5 * PREFETCH_CHUNK) + 32 + MAX_PREFETCH_SIZE | 
 | 175 | # else | 
 | 176 | #  define PREFETCH_LIMIT (5 * PREFETCH_CHUNK) + MAX_PREFETCH_SIZE | 
 | 177 | # endif | 
 | 178 | # if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) \ | 
 | 179 |     && ((PREFETCH_CHUNK * 4) < MAX_PREFETCH_SIZE) | 
 | 180 | /* We cannot handle this because the initial prefetches may fetch bytes that | 
 | 181 |  * are before the buffer being copied.  We start copies with an offset | 
 | 182 |  * of 4 so avoid this situation when using PREPAREFORSTORE.  */ | 
 | 183 | #error "PREFETCH_CHUNK is too large and/or MAX_PREFETCH_SIZE is too small." | 
 | 184 | # endif | 
 | 185 | #else /* USE_PREFETCH not defined */ | 
 | 186 | # define PREFETCH_FOR_LOAD(offset, reg) | 
 | 187 | # define PREFETCH_FOR_STORE(offset, reg) | 
 | 188 | #endif | 
 | 189 |  | 
 | 190 | #if __mips_isa_rev > 5 | 
 | 191 | # if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) | 
 | 192 | #  undef PREFETCH_STORE_HINT | 
 | 193 | #  define PREFETCH_STORE_HINT PREFETCH_HINT_STORE_STREAMED | 
 | 194 | # endif | 
 | 195 | # define R6_CODE | 
 | 196 | #endif | 
 | 197 |  | 
 | 198 | /* Allow the routine to be named something else if desired.  */ | 
 | 199 | #ifndef MEMCPY_NAME | 
 | 200 | # define MEMCPY_NAME memcpy | 
 | 201 | #endif | 
 | 202 |  | 
 | 203 | /* We use these 32/64 bit registers as temporaries to do the copying.  */ | 
 | 204 | #define REG0 t0 | 
 | 205 | #define REG1 t1 | 
 | 206 | #define REG2 t2 | 
 | 207 | #define REG3 t3 | 
 | 208 | #if defined(_MIPS_SIM) && ((_MIPS_SIM == _ABIO32) || (_MIPS_SIM == _ABIO64)) | 
 | 209 | # define REG4 t4 | 
 | 210 | # define REG5 t5 | 
 | 211 | # define REG6 t6 | 
 | 212 | # define REG7 t7 | 
 | 213 | #else | 
 | 214 | # define REG4 ta0 | 
 | 215 | # define REG5 ta1 | 
 | 216 | # define REG6 ta2 | 
 | 217 | # define REG7 ta3 | 
 | 218 | #endif | 
 | 219 |  | 
 | 220 | /* We load/store 64 bits at a time when USE_DOUBLE is true. | 
 | 221 |  * The C_ prefix stands for CHUNK and is used to avoid macro name | 
 | 222 |  * conflicts with system header files.  */ | 
 | 223 |  | 
 | 224 | #ifdef USE_DOUBLE | 
 | 225 | # define C_ST	sd | 
 | 226 | # define C_LD	ld | 
 | 227 | # ifdef __MIPSEB | 
 | 228 | #  define C_LDHI	ldl	/* high part is left in big-endian	*/ | 
 | 229 | #  define C_STHI	sdl	/* high part is left in big-endian	*/ | 
 | 230 | #  define C_LDLO	ldr	/* low part is right in big-endian	*/ | 
 | 231 | #  define C_STLO	sdr	/* low part is right in big-endian	*/ | 
 | 232 | # else | 
 | 233 | #  define C_LDHI	ldr	/* high part is right in little-endian	*/ | 
 | 234 | #  define C_STHI	sdr	/* high part is right in little-endian	*/ | 
 | 235 | #  define C_LDLO	ldl	/* low part is left in little-endian	*/ | 
 | 236 | #  define C_STLO	sdl	/* low part is left in little-endian	*/ | 
 | 237 | # endif | 
 | 238 | # define C_ALIGN	dalign	/* r6 align instruction			*/ | 
 | 239 | #else | 
 | 240 | # define C_ST	sw | 
 | 241 | # define C_LD	lw | 
 | 242 | # ifdef __MIPSEB | 
 | 243 | #  define C_LDHI	lwl	/* high part is left in big-endian	*/ | 
 | 244 | #  define C_STHI	swl	/* high part is left in big-endian	*/ | 
 | 245 | #  define C_LDLO	lwr	/* low part is right in big-endian	*/ | 
 | 246 | #  define C_STLO	swr	/* low part is right in big-endian	*/ | 
 | 247 | # else | 
 | 248 | #  define C_LDHI	lwr	/* high part is right in little-endian	*/ | 
 | 249 | #  define C_STHI	swr	/* high part is right in little-endian	*/ | 
 | 250 | #  define C_LDLO	lwl	/* low part is left in little-endian	*/ | 
 | 251 | #  define C_STLO	swl	/* low part is left in little-endian	*/ | 
 | 252 | # endif | 
 | 253 | # define C_ALIGN	align	/* r6 align instruction			*/ | 
 | 254 | #endif | 
 | 255 |  | 
 | 256 | /* Bookkeeping values for 32 vs. 64 bit mode.  */ | 
 | 257 | #ifdef USE_DOUBLE | 
 | 258 | # define NSIZE 8 | 
 | 259 | # define NSIZEMASK 0x3f | 
 | 260 | # define NSIZEDMASK 0x7f | 
 | 261 | #else | 
 | 262 | # define NSIZE 4 | 
 | 263 | # define NSIZEMASK 0x1f | 
 | 264 | # define NSIZEDMASK 0x3f | 
 | 265 | #endif | 
 | 266 | #define UNIT(unit) ((unit)*NSIZE) | 
 | 267 | #define UNITM1(unit) (((unit)*NSIZE)-1) | 
 | 268 |  | 
 | 269 | #ifdef ANDROID_CHANGES | 
 | 270 | LEAF(MEMCPY_NAME, 0) | 
 | 271 | #else | 
 | 272 | LEAF(MEMCPY_NAME) | 
 | 273 | #endif | 
 | 274 | 	.set	nomips16 | 
 | 275 | 	.set	noreorder | 
 | 276 | /* | 
 | 277 |  * Below we handle the case where memcpy is called with overlapping src and dst. | 
 | 278 |  * Although memcpy is not required to handle this case, some parts of Android | 
 | 279 |  * like Skia rely on such usage. We call memmove to handle such cases. | 
 | 280 |  */ | 
 | 281 | #ifdef USE_MEMMOVE_FOR_OVERLAP | 
 | 282 | 	PTR_SUBU t0,a0,a1 | 
 | 283 | 	PTR_SRA	t2,t0,31 | 
 | 284 | 	xor	t1,t0,t2 | 
 | 285 | 	PTR_SUBU t0,t1,t2 | 
 | 286 | 	sltu	t2,t0,a2 | 
 | 287 | 	beq	t2,zero,L(memcpy) | 
 | 288 | 	la	t9,memmove | 
 | 289 | 	jr	t9 | 
 | 290 | 	 nop | 
 | 291 | L(memcpy): | 
 | 292 | #endif | 
 | 293 | /* | 
 | 294 |  * If the size is less than 2*NSIZE (8 or 16), go to L(lastb).  Regardless of | 
 | 295 |  * size, copy dst pointer to v0 for the return value. | 
 | 296 |  */ | 
 | 297 | 	slti	t2,a2,(2 * NSIZE) | 
 | 298 | 	bne	t2,zero,L(lasts) | 
 | 299 | #if defined(RETURN_FIRST_PREFETCH) || defined(RETURN_LAST_PREFETCH) | 
 | 300 | 	move	v0,zero | 
 | 301 | #else | 
 | 302 | 	move	v0,a0 | 
 | 303 | #endif | 
 | 304 |  | 
 | 305 | #ifndef R6_CODE | 
 | 306 |  | 
 | 307 | /* | 
 | 308 |  * If src and dst have different alignments, go to L(unaligned), if they | 
 | 309 |  * have the same alignment (but are not actually aligned) do a partial | 
 | 310 |  * load/store to make them aligned.  If they are both already aligned | 
 | 311 |  * we can start copying at L(aligned). | 
 | 312 |  */ | 
 | 313 | 	xor	t8,a1,a0 | 
 | 314 | 	andi	t8,t8,(NSIZE-1)		/* t8 is a0/a1 word-displacement */ | 
 | 315 | 	bne	t8,zero,L(unaligned) | 
 | 316 | 	PTR_SUBU a3, zero, a0 | 
 | 317 |  | 
 | 318 | 	andi	a3,a3,(NSIZE-1)		/* copy a3 bytes to align a0/a1	  */ | 
 | 319 | 	beq	a3,zero,L(aligned)	/* if a3=0, it is already aligned */ | 
 | 320 | 	PTR_SUBU a2,a2,a3		/* a2 is the remining bytes count */ | 
 | 321 |  | 
 | 322 | 	C_LDHI	t8,0(a1) | 
 | 323 | 	PTR_ADDU a1,a1,a3 | 
 | 324 | 	C_STHI	t8,0(a0) | 
 | 325 | 	PTR_ADDU a0,a0,a3 | 
 | 326 |  | 
 | 327 | #else /* R6_CODE */ | 
 | 328 |  | 
 | 329 | /* | 
 | 330 |  * Align the destination and hope that the source gets aligned too.  If it | 
 | 331 |  * doesn't we jump to L(r6_unaligned*) to do unaligned copies using the r6 | 
 | 332 |  * align instruction. | 
 | 333 |  */ | 
 | 334 | 	andi	t8,a0,7 | 
 | 335 | 	lapc	t9,L(atable) | 
 | 336 | 	PTR_LSA	t9,t8,t9,2 | 
 | 337 | 	jrc	t9 | 
 | 338 | L(atable): | 
 | 339 | 	bc	L(lb0) | 
 | 340 | 	bc	L(lb7) | 
 | 341 | 	bc	L(lb6) | 
 | 342 | 	bc	L(lb5) | 
 | 343 | 	bc	L(lb4) | 
 | 344 | 	bc	L(lb3) | 
 | 345 | 	bc	L(lb2) | 
 | 346 | 	bc	L(lb1) | 
 | 347 | L(lb7): | 
 | 348 | 	lb	a3, 6(a1) | 
 | 349 | 	sb	a3, 6(a0) | 
 | 350 | L(lb6): | 
 | 351 | 	lb	a3, 5(a1) | 
 | 352 | 	sb	a3, 5(a0) | 
 | 353 | L(lb5): | 
 | 354 | 	lb	a3, 4(a1) | 
 | 355 | 	sb	a3, 4(a0) | 
 | 356 | L(lb4): | 
 | 357 | 	lb	a3, 3(a1) | 
 | 358 | 	sb	a3, 3(a0) | 
 | 359 | L(lb3): | 
 | 360 | 	lb	a3, 2(a1) | 
 | 361 | 	sb	a3, 2(a0) | 
 | 362 | L(lb2): | 
 | 363 | 	lb	a3, 1(a1) | 
 | 364 | 	sb	a3, 1(a0) | 
 | 365 | L(lb1): | 
 | 366 | 	lb	a3, 0(a1) | 
 | 367 | 	sb	a3, 0(a0) | 
 | 368 |  | 
 | 369 | 	li	t9,8 | 
 | 370 | 	subu	t8,t9,t8 | 
 | 371 | 	PTR_SUBU a2,a2,t8 | 
 | 372 | 	PTR_ADDU a0,a0,t8 | 
 | 373 | 	PTR_ADDU a1,a1,t8 | 
 | 374 | L(lb0): | 
 | 375 |  | 
 | 376 | 	andi	t8,a1,(NSIZE-1) | 
 | 377 | 	lapc	t9,L(jtable) | 
 | 378 | 	PTR_LSA	t9,t8,t9,2 | 
 | 379 | 	jrc	t9 | 
 | 380 | L(jtable): | 
 | 381 |         bc      L(aligned) | 
 | 382 |         bc      L(r6_unaligned1) | 
 | 383 |         bc      L(r6_unaligned2) | 
 | 384 |         bc      L(r6_unaligned3) | 
 | 385 | # ifdef USE_DOUBLE | 
 | 386 |         bc      L(r6_unaligned4) | 
 | 387 |         bc      L(r6_unaligned5) | 
 | 388 |         bc      L(r6_unaligned6) | 
 | 389 |         bc      L(r6_unaligned7) | 
 | 390 | # endif | 
 | 391 | #endif /* R6_CODE */ | 
 | 392 |  | 
 | 393 | L(aligned): | 
 | 394 |  | 
 | 395 | /* | 
 | 396 |  * Now dst/src are both aligned to (word or double word) aligned addresses | 
 | 397 |  * Set a2 to count how many bytes we have to copy after all the 64/128 byte | 
 | 398 |  * chunks are copied and a3 to the dst pointer after all the 64/128 byte | 
 | 399 |  * chunks have been copied.  We will loop, incrementing a0 and a1 until a0 | 
 | 400 |  * equals a3. | 
 | 401 |  */ | 
 | 402 |  | 
 | 403 | 	andi	t8,a2,NSIZEDMASK /* any whole 64-byte/128-byte chunks? */ | 
 | 404 | 	beq	a2,t8,L(chkw)	 /* if a2==t8, no 64-byte/128-byte chunks */ | 
 | 405 | 	PTR_SUBU a3,a2,t8	 /* subtract from a2 the reminder */ | 
 | 406 | 	PTR_ADDU a3,a0,a3	 /* Now a3 is the final dst after loop */ | 
 | 407 |  | 
 | 408 | /* When in the loop we may prefetch with the 'prepare to store' hint, | 
 | 409 |  * in this case the a0+x should not be past the "t0-32" address.  This | 
 | 410 |  * means: for x=128 the last "safe" a0 address is "t0-160".  Alternatively, | 
 | 411 |  * for x=64 the last "safe" a0 address is "t0-96" In the current version we | 
 | 412 |  * will use "prefetch hint,128(a0)", so "t0-160" is the limit. | 
 | 413 |  */ | 
 | 414 | #if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) | 
 | 415 | 	PTR_ADDU t0,a0,a2		/* t0 is the "past the end" address */ | 
 | 416 | 	PTR_SUBU t9,t0,PREFETCH_LIMIT	/* t9 is the "last safe pref" address */ | 
 | 417 | #endif | 
 | 418 | 	PREFETCH_FOR_LOAD  (0, a1) | 
 | 419 | 	PREFETCH_FOR_LOAD  (1, a1) | 
 | 420 | 	PREFETCH_FOR_LOAD  (2, a1) | 
 | 421 | 	PREFETCH_FOR_LOAD  (3, a1) | 
 | 422 | #if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE) | 
 | 423 | 	PREFETCH_FOR_STORE (1, a0) | 
 | 424 | 	PREFETCH_FOR_STORE (2, a0) | 
 | 425 | 	PREFETCH_FOR_STORE (3, a0) | 
 | 426 | #endif | 
 | 427 | #if defined(RETURN_FIRST_PREFETCH) && defined(USE_PREFETCH) | 
 | 428 | # if PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE | 
 | 429 | 	sltu    v1,t9,a0 | 
 | 430 | 	bgtz    v1,L(skip_set) | 
 | 431 | 	nop | 
 | 432 | 	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*4) | 
 | 433 | L(skip_set): | 
 | 434 | # else | 
 | 435 | 	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*1) | 
 | 436 | # endif | 
 | 437 | #endif | 
 | 438 | #if defined(RETURN_LAST_PREFETCH) && defined(USE_PREFETCH) \ | 
 | 439 |     && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE) | 
 | 440 | 	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*3) | 
 | 441 | # ifdef USE_DOUBLE | 
 | 442 | 	PTR_ADDIU v0,v0,32 | 
 | 443 | # endif | 
 | 444 | #endif | 
 | 445 | L(loop16w): | 
 | 446 | 	C_LD	t0,UNIT(0)(a1) | 
 | 447 | #if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) | 
 | 448 | 	sltu	v1,t9,a0		/* If a0 > t9 don't use next prefetch */ | 
 | 449 | 	bgtz	v1,L(skip_pref) | 
 | 450 | #endif | 
 | 451 | 	C_LD	t1,UNIT(1)(a1) | 
 | 452 | #ifdef R6_CODE | 
 | 453 | 	PREFETCH_FOR_STORE (2, a0) | 
 | 454 | #else | 
 | 455 | 	PREFETCH_FOR_STORE (4, a0) | 
 | 456 | 	PREFETCH_FOR_STORE (5, a0) | 
 | 457 | #endif | 
 | 458 | #if defined(RETURN_LAST_PREFETCH) && defined(USE_PREFETCH) | 
 | 459 | 	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*5) | 
 | 460 | # ifdef USE_DOUBLE | 
 | 461 | 	PTR_ADDIU v0,v0,32 | 
 | 462 | # endif | 
 | 463 | #endif | 
 | 464 | L(skip_pref): | 
 | 465 | 	C_LD	REG2,UNIT(2)(a1) | 
 | 466 | 	C_LD	REG3,UNIT(3)(a1) | 
 | 467 | 	C_LD	REG4,UNIT(4)(a1) | 
 | 468 | 	C_LD	REG5,UNIT(5)(a1) | 
 | 469 | 	C_LD	REG6,UNIT(6)(a1) | 
 | 470 | 	C_LD	REG7,UNIT(7)(a1) | 
 | 471 | #ifdef R6_CODE | 
 | 472 | 	PREFETCH_FOR_LOAD (3, a1) | 
 | 473 | #else | 
 | 474 | 	PREFETCH_FOR_LOAD (4, a1) | 
 | 475 | #endif | 
 | 476 | 	C_ST	t0,UNIT(0)(a0) | 
 | 477 | 	C_ST	t1,UNIT(1)(a0) | 
 | 478 | 	C_ST	REG2,UNIT(2)(a0) | 
 | 479 | 	C_ST	REG3,UNIT(3)(a0) | 
 | 480 | 	C_ST	REG4,UNIT(4)(a0) | 
 | 481 | 	C_ST	REG5,UNIT(5)(a0) | 
 | 482 | 	C_ST	REG6,UNIT(6)(a0) | 
 | 483 | 	C_ST	REG7,UNIT(7)(a0) | 
 | 484 |  | 
 | 485 | 	C_LD	t0,UNIT(8)(a1) | 
 | 486 | 	C_LD	t1,UNIT(9)(a1) | 
 | 487 | 	C_LD	REG2,UNIT(10)(a1) | 
 | 488 | 	C_LD	REG3,UNIT(11)(a1) | 
 | 489 | 	C_LD	REG4,UNIT(12)(a1) | 
 | 490 | 	C_LD	REG5,UNIT(13)(a1) | 
 | 491 | 	C_LD	REG6,UNIT(14)(a1) | 
 | 492 | 	C_LD	REG7,UNIT(15)(a1) | 
 | 493 | #ifndef R6_CODE | 
 | 494 |         PREFETCH_FOR_LOAD (5, a1) | 
 | 495 | #endif | 
 | 496 | 	C_ST	t0,UNIT(8)(a0) | 
 | 497 | 	C_ST	t1,UNIT(9)(a0) | 
 | 498 | 	C_ST	REG2,UNIT(10)(a0) | 
 | 499 | 	C_ST	REG3,UNIT(11)(a0) | 
 | 500 | 	C_ST	REG4,UNIT(12)(a0) | 
 | 501 | 	C_ST	REG5,UNIT(13)(a0) | 
 | 502 | 	C_ST	REG6,UNIT(14)(a0) | 
 | 503 | 	C_ST	REG7,UNIT(15)(a0) | 
 | 504 | 	PTR_ADDIU a0,a0,UNIT(16)	/* adding 64/128 to dest */ | 
 | 505 | 	bne	a0,a3,L(loop16w) | 
 | 506 | 	PTR_ADDIU a1,a1,UNIT(16)	/* adding 64/128 to src */ | 
 | 507 | 	move	a2,t8 | 
 | 508 |  | 
 | 509 | /* Here we have src and dest word-aligned but less than 64-bytes or | 
 | 510 |  * 128 bytes to go.  Check for a 32(64) byte chunk and copy if if there | 
 | 511 |  * is one.  Otherwise jump down to L(chk1w) to handle the tail end of | 
 | 512 |  * the copy. | 
 | 513 |  */ | 
 | 514 |  | 
 | 515 | L(chkw): | 
 | 516 | 	PREFETCH_FOR_LOAD (0, a1) | 
 | 517 | 	andi	t8,a2,NSIZEMASK	/* Is there a 32-byte/64-byte chunk.  */ | 
 | 518 | 				/* The t8 is the reminder count past 32-bytes */ | 
 | 519 | 	beq	a2,t8,L(chk1w)	/* When a2=t8, no 32-byte chunk  */ | 
 | 520 | 	nop | 
 | 521 | 	C_LD	t0,UNIT(0)(a1) | 
 | 522 | 	C_LD	t1,UNIT(1)(a1) | 
 | 523 | 	C_LD	REG2,UNIT(2)(a1) | 
 | 524 | 	C_LD	REG3,UNIT(3)(a1) | 
 | 525 | 	C_LD	REG4,UNIT(4)(a1) | 
 | 526 | 	C_LD	REG5,UNIT(5)(a1) | 
 | 527 | 	C_LD	REG6,UNIT(6)(a1) | 
 | 528 | 	C_LD	REG7,UNIT(7)(a1) | 
 | 529 | 	PTR_ADDIU a1,a1,UNIT(8) | 
 | 530 | 	C_ST	t0,UNIT(0)(a0) | 
 | 531 | 	C_ST	t1,UNIT(1)(a0) | 
 | 532 | 	C_ST	REG2,UNIT(2)(a0) | 
 | 533 | 	C_ST	REG3,UNIT(3)(a0) | 
 | 534 | 	C_ST	REG4,UNIT(4)(a0) | 
 | 535 | 	C_ST	REG5,UNIT(5)(a0) | 
 | 536 | 	C_ST	REG6,UNIT(6)(a0) | 
 | 537 | 	C_ST	REG7,UNIT(7)(a0) | 
 | 538 | 	PTR_ADDIU a0,a0,UNIT(8) | 
 | 539 |  | 
 | 540 | /* | 
 | 541 |  * Here we have less than 32(64) bytes to copy.  Set up for a loop to | 
 | 542 |  * copy one word (or double word) at a time.  Set a2 to count how many | 
 | 543 |  * bytes we have to copy after all the word (or double word) chunks are | 
 | 544 |  * copied and a3 to the dst pointer after all the (d)word chunks have | 
 | 545 |  * been copied.  We will loop, incrementing a0 and a1 until a0 equals a3. | 
 | 546 |  */ | 
 | 547 | L(chk1w): | 
 | 548 | 	andi	a2,t8,(NSIZE-1)	/* a2 is the reminder past one (d)word chunks */ | 
 | 549 | 	beq	a2,t8,L(lastw) | 
 | 550 | 	PTR_SUBU a3,t8,a2	/* a3 is count of bytes in one (d)word chunks */ | 
 | 551 | 	PTR_ADDU a3,a0,a3	/* a3 is the dst address after loop */ | 
 | 552 |  | 
 | 553 | /* copying in words (4-byte or 8-byte chunks) */ | 
 | 554 | L(wordCopy_loop): | 
 | 555 | 	C_LD	REG3,UNIT(0)(a1) | 
 | 556 | 	PTR_ADDIU a0,a0,UNIT(1) | 
 | 557 | 	PTR_ADDIU a1,a1,UNIT(1) | 
 | 558 | 	bne	a0,a3,L(wordCopy_loop) | 
 | 559 | 	C_ST	REG3,UNIT(-1)(a0) | 
 | 560 |  | 
 | 561 | /* If we have been copying double words, see if we can copy a single word | 
 | 562 |    before doing byte copies.  We can have, at most, one word to copy.  */ | 
 | 563 |  | 
 | 564 | L(lastw): | 
 | 565 | #ifdef USE_DOUBLE | 
 | 566 | 	andi    t8,a2,3		/* a2 is the remainder past 4 byte chunks.  */ | 
 | 567 | 	beq	t8,a2,L(lastb) | 
 | 568 | 	move	a2,t8 | 
 | 569 | 	lw	REG3,0(a1) | 
 | 570 | 	sw	REG3,0(a0) | 
 | 571 | 	PTR_ADDIU a0,a0,4 | 
 | 572 | 	PTR_ADDIU a1,a1,4 | 
 | 573 | #endif | 
 | 574 |  | 
 | 575 | /* Copy the last 8 (or 16) bytes */ | 
 | 576 | L(lastb): | 
 | 577 | 	blez	a2,L(leave) | 
 | 578 | 	PTR_ADDU a3,a0,a2	/* a3 is the last dst address */ | 
 | 579 | L(lastbloop): | 
 | 580 | 	lb	v1,0(a1) | 
 | 581 | 	PTR_ADDIU a0,a0,1 | 
 | 582 | 	PTR_ADDIU a1,a1,1 | 
 | 583 | 	bne	a0,a3,L(lastbloop) | 
 | 584 | 	sb	v1,-1(a0) | 
 | 585 | L(leave): | 
 | 586 | 	j	ra | 
 | 587 | 	nop | 
 | 588 |  | 
 | 589 | /* We jump here with a memcpy of less than 8 or 16 bytes, depending on | 
 | 590 |    whether or not USE_DOUBLE is defined.  Instead of just doing byte | 
 | 591 |    copies, check the alignment and size and use lw/sw if possible. | 
 | 592 |    Otherwise, do byte copies.  */ | 
 | 593 |  | 
 | 594 | L(lasts): | 
 | 595 | 	andi	t8,a2,3 | 
 | 596 | 	beq	t8,a2,L(lastb) | 
 | 597 |  | 
 | 598 | 	andi	t9,a0,3 | 
 | 599 | 	bne	t9,zero,L(lastb) | 
 | 600 | 	andi	t9,a1,3 | 
 | 601 | 	bne	t9,zero,L(lastb) | 
 | 602 |  | 
 | 603 | 	PTR_SUBU a3,a2,t8 | 
 | 604 | 	PTR_ADDU a3,a0,a3 | 
 | 605 |  | 
 | 606 | L(wcopy_loop): | 
 | 607 | 	lw	REG3,0(a1) | 
 | 608 | 	PTR_ADDIU a0,a0,4 | 
 | 609 | 	PTR_ADDIU a1,a1,4 | 
 | 610 | 	bne	a0,a3,L(wcopy_loop) | 
 | 611 | 	sw	REG3,-4(a0) | 
 | 612 |  | 
 | 613 | 	b	L(lastb) | 
 | 614 | 	move	a2,t8 | 
 | 615 |  | 
 | 616 | #ifndef R6_CODE | 
 | 617 | /* | 
 | 618 |  * UNALIGNED case, got here with a3 = "negu a0" | 
 | 619 |  * This code is nearly identical to the aligned code above | 
 | 620 |  * but only the destination (not the source) gets aligned | 
 | 621 |  * so we need to do partial loads of the source followed | 
 | 622 |  * by normal stores to the destination (once we have aligned | 
 | 623 |  * the destination). | 
 | 624 |  */ | 
 | 625 |  | 
 | 626 | L(unaligned): | 
 | 627 | 	andi	a3,a3,(NSIZE-1)	/* copy a3 bytes to align a0/a1 */ | 
 | 628 | 	beqz	a3,L(ua_chk16w) /* if a3=0, it is already aligned */ | 
 | 629 | 	PTR_SUBU a2,a2,a3	/* a2 is the remining bytes count */ | 
 | 630 |  | 
 | 631 | 	C_LDHI	v1,UNIT(0)(a1) | 
 | 632 | 	C_LDLO	v1,UNITM1(1)(a1) | 
 | 633 | 	PTR_ADDU a1,a1,a3 | 
 | 634 | 	C_STHI	v1,UNIT(0)(a0) | 
 | 635 | 	PTR_ADDU a0,a0,a3 | 
 | 636 |  | 
 | 637 | /* | 
 | 638 |  *  Now the destination (but not the source) is aligned | 
 | 639 |  * Set a2 to count how many bytes we have to copy after all the 64/128 byte | 
 | 640 |  * chunks are copied and a3 to the dst pointer after all the 64/128 byte | 
 | 641 |  * chunks have been copied.  We will loop, incrementing a0 and a1 until a0 | 
 | 642 |  * equals a3. | 
 | 643 |  */ | 
 | 644 |  | 
 | 645 | L(ua_chk16w): | 
 | 646 | 	andi	t8,a2,NSIZEDMASK /* any whole 64-byte/128-byte chunks? */ | 
 | 647 | 	beq	a2,t8,L(ua_chkw) /* if a2==t8, no 64-byte/128-byte chunks */ | 
 | 648 | 	PTR_SUBU a3,a2,t8	 /* subtract from a2 the reminder */ | 
 | 649 | 	PTR_ADDU a3,a0,a3	 /* Now a3 is the final dst after loop */ | 
 | 650 |  | 
 | 651 | # if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) | 
 | 652 | 	PTR_ADDU t0,a0,a2	  /* t0 is the "past the end" address */ | 
 | 653 | 	PTR_SUBU t9,t0,PREFETCH_LIMIT /* t9 is the "last safe pref" address */ | 
 | 654 | # endif | 
 | 655 | 	PREFETCH_FOR_LOAD  (0, a1) | 
 | 656 | 	PREFETCH_FOR_LOAD  (1, a1) | 
 | 657 | 	PREFETCH_FOR_LOAD  (2, a1) | 
 | 658 | # if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE) | 
 | 659 | 	PREFETCH_FOR_STORE (1, a0) | 
 | 660 | 	PREFETCH_FOR_STORE (2, a0) | 
 | 661 | 	PREFETCH_FOR_STORE (3, a0) | 
 | 662 | # endif | 
 | 663 | # if defined(RETURN_FIRST_PREFETCH) && defined(USE_PREFETCH) | 
 | 664 | #  if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) | 
 | 665 | 	sltu    v1,t9,a0 | 
 | 666 | 	bgtz    v1,L(ua_skip_set) | 
 | 667 | 	nop | 
 | 668 | 	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*4) | 
 | 669 | L(ua_skip_set): | 
 | 670 | #  else | 
 | 671 | 	PTR_ADDIU v0,a0,(PREFETCH_CHUNK*1) | 
 | 672 | #  endif | 
 | 673 | # endif | 
 | 674 | L(ua_loop16w): | 
 | 675 | 	PREFETCH_FOR_LOAD  (3, a1) | 
 | 676 | 	C_LDHI	t0,UNIT(0)(a1) | 
 | 677 | 	C_LDHI	t1,UNIT(1)(a1) | 
 | 678 | 	C_LDHI	REG2,UNIT(2)(a1) | 
 | 679 | # if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) | 
 | 680 | 	sltu	v1,t9,a0 | 
 | 681 | 	bgtz	v1,L(ua_skip_pref) | 
 | 682 | # endif | 
 | 683 | 	C_LDHI	REG3,UNIT(3)(a1) | 
 | 684 | 	PREFETCH_FOR_STORE (4, a0) | 
 | 685 | 	PREFETCH_FOR_STORE (5, a0) | 
 | 686 | L(ua_skip_pref): | 
 | 687 | 	C_LDHI	REG4,UNIT(4)(a1) | 
 | 688 | 	C_LDHI	REG5,UNIT(5)(a1) | 
 | 689 | 	C_LDHI	REG6,UNIT(6)(a1) | 
 | 690 | 	C_LDHI	REG7,UNIT(7)(a1) | 
 | 691 | 	C_LDLO	t0,UNITM1(1)(a1) | 
 | 692 | 	C_LDLO	t1,UNITM1(2)(a1) | 
 | 693 | 	C_LDLO	REG2,UNITM1(3)(a1) | 
 | 694 | 	C_LDLO	REG3,UNITM1(4)(a1) | 
 | 695 | 	C_LDLO	REG4,UNITM1(5)(a1) | 
 | 696 | 	C_LDLO	REG5,UNITM1(6)(a1) | 
 | 697 | 	C_LDLO	REG6,UNITM1(7)(a1) | 
 | 698 | 	C_LDLO	REG7,UNITM1(8)(a1) | 
 | 699 |         PREFETCH_FOR_LOAD (4, a1) | 
 | 700 | 	C_ST	t0,UNIT(0)(a0) | 
 | 701 | 	C_ST	t1,UNIT(1)(a0) | 
 | 702 | 	C_ST	REG2,UNIT(2)(a0) | 
 | 703 | 	C_ST	REG3,UNIT(3)(a0) | 
 | 704 | 	C_ST	REG4,UNIT(4)(a0) | 
 | 705 | 	C_ST	REG5,UNIT(5)(a0) | 
 | 706 | 	C_ST	REG6,UNIT(6)(a0) | 
 | 707 | 	C_ST	REG7,UNIT(7)(a0) | 
 | 708 | 	C_LDHI	t0,UNIT(8)(a1) | 
 | 709 | 	C_LDHI	t1,UNIT(9)(a1) | 
 | 710 | 	C_LDHI	REG2,UNIT(10)(a1) | 
 | 711 | 	C_LDHI	REG3,UNIT(11)(a1) | 
 | 712 | 	C_LDHI	REG4,UNIT(12)(a1) | 
 | 713 | 	C_LDHI	REG5,UNIT(13)(a1) | 
 | 714 | 	C_LDHI	REG6,UNIT(14)(a1) | 
 | 715 | 	C_LDHI	REG7,UNIT(15)(a1) | 
 | 716 | 	C_LDLO	t0,UNITM1(9)(a1) | 
 | 717 | 	C_LDLO	t1,UNITM1(10)(a1) | 
 | 718 | 	C_LDLO	REG2,UNITM1(11)(a1) | 
 | 719 | 	C_LDLO	REG3,UNITM1(12)(a1) | 
 | 720 | 	C_LDLO	REG4,UNITM1(13)(a1) | 
 | 721 | 	C_LDLO	REG5,UNITM1(14)(a1) | 
 | 722 | 	C_LDLO	REG6,UNITM1(15)(a1) | 
 | 723 | 	C_LDLO	REG7,UNITM1(16)(a1) | 
 | 724 |         PREFETCH_FOR_LOAD (5, a1) | 
 | 725 | 	C_ST	t0,UNIT(8)(a0) | 
 | 726 | 	C_ST	t1,UNIT(9)(a0) | 
 | 727 | 	C_ST	REG2,UNIT(10)(a0) | 
 | 728 | 	C_ST	REG3,UNIT(11)(a0) | 
 | 729 | 	C_ST	REG4,UNIT(12)(a0) | 
 | 730 | 	C_ST	REG5,UNIT(13)(a0) | 
 | 731 | 	C_ST	REG6,UNIT(14)(a0) | 
 | 732 | 	C_ST	REG7,UNIT(15)(a0) | 
 | 733 | 	PTR_ADDIU a0,a0,UNIT(16)	/* adding 64/128 to dest */ | 
 | 734 | 	bne	a0,a3,L(ua_loop16w) | 
 | 735 | 	PTR_ADDIU a1,a1,UNIT(16)	/* adding 64/128 to src */ | 
 | 736 | 	move	a2,t8 | 
 | 737 |  | 
 | 738 | /* Here we have src and dest word-aligned but less than 64-bytes or | 
 | 739 |  * 128 bytes to go.  Check for a 32(64) byte chunk and copy if if there | 
 | 740 |  * is one.  Otherwise jump down to L(ua_chk1w) to handle the tail end of | 
 | 741 |  * the copy.  */ | 
 | 742 |  | 
 | 743 | L(ua_chkw): | 
 | 744 | 	PREFETCH_FOR_LOAD (0, a1) | 
 | 745 | 	andi	t8,a2,NSIZEMASK	  /* Is there a 32-byte/64-byte chunk.  */ | 
 | 746 | 				  /* t8 is the reminder count past 32-bytes */ | 
 | 747 | 	beq	a2,t8,L(ua_chk1w) /* When a2=t8, no 32-byte chunk */ | 
 | 748 | 	nop | 
 | 749 | 	C_LDHI	t0,UNIT(0)(a1) | 
 | 750 | 	C_LDHI	t1,UNIT(1)(a1) | 
 | 751 | 	C_LDHI	REG2,UNIT(2)(a1) | 
 | 752 | 	C_LDHI	REG3,UNIT(3)(a1) | 
 | 753 | 	C_LDHI	REG4,UNIT(4)(a1) | 
 | 754 | 	C_LDHI	REG5,UNIT(5)(a1) | 
 | 755 | 	C_LDHI	REG6,UNIT(6)(a1) | 
 | 756 | 	C_LDHI	REG7,UNIT(7)(a1) | 
 | 757 | 	C_LDLO	t0,UNITM1(1)(a1) | 
 | 758 | 	C_LDLO	t1,UNITM1(2)(a1) | 
 | 759 | 	C_LDLO	REG2,UNITM1(3)(a1) | 
 | 760 | 	C_LDLO	REG3,UNITM1(4)(a1) | 
 | 761 | 	C_LDLO	REG4,UNITM1(5)(a1) | 
 | 762 | 	C_LDLO	REG5,UNITM1(6)(a1) | 
 | 763 | 	C_LDLO	REG6,UNITM1(7)(a1) | 
 | 764 | 	C_LDLO	REG7,UNITM1(8)(a1) | 
 | 765 | 	PTR_ADDIU a1,a1,UNIT(8) | 
 | 766 | 	C_ST	t0,UNIT(0)(a0) | 
 | 767 | 	C_ST	t1,UNIT(1)(a0) | 
 | 768 | 	C_ST	REG2,UNIT(2)(a0) | 
 | 769 | 	C_ST	REG3,UNIT(3)(a0) | 
 | 770 | 	C_ST	REG4,UNIT(4)(a0) | 
 | 771 | 	C_ST	REG5,UNIT(5)(a0) | 
 | 772 | 	C_ST	REG6,UNIT(6)(a0) | 
 | 773 | 	C_ST	REG7,UNIT(7)(a0) | 
 | 774 | 	PTR_ADDIU a0,a0,UNIT(8) | 
 | 775 | /* | 
 | 776 |  * Here we have less than 32(64) bytes to copy.  Set up for a loop to | 
 | 777 |  * copy one word (or double word) at a time. | 
 | 778 |  */ | 
 | 779 | L(ua_chk1w): | 
 | 780 | 	andi	a2,t8,(NSIZE-1)	/* a2 is the reminder past one (d)word chunks */ | 
 | 781 | 	beq	a2,t8,L(ua_smallCopy) | 
 | 782 | 	PTR_SUBU a3,t8,a2	/* a3 is count of bytes in one (d)word chunks */ | 
 | 783 | 	PTR_ADDU a3,a0,a3	/* a3 is the dst address after loop */ | 
 | 784 |  | 
 | 785 | /* copying in words (4-byte or 8-byte chunks) */ | 
 | 786 | L(ua_wordCopy_loop): | 
 | 787 | 	C_LDHI	v1,UNIT(0)(a1) | 
 | 788 | 	C_LDLO	v1,UNITM1(1)(a1) | 
 | 789 | 	PTR_ADDIU a0,a0,UNIT(1) | 
 | 790 | 	PTR_ADDIU a1,a1,UNIT(1) | 
 | 791 | 	bne	a0,a3,L(ua_wordCopy_loop) | 
 | 792 | 	C_ST	v1,UNIT(-1)(a0) | 
 | 793 |  | 
 | 794 | /* Copy the last 8 (or 16) bytes */ | 
 | 795 | L(ua_smallCopy): | 
 | 796 | 	beqz	a2,L(leave) | 
 | 797 | 	PTR_ADDU a3,a0,a2	/* a3 is the last dst address */ | 
 | 798 | L(ua_smallCopy_loop): | 
 | 799 | 	lb	v1,0(a1) | 
 | 800 | 	PTR_ADDIU a0,a0,1 | 
 | 801 | 	PTR_ADDIU a1,a1,1 | 
 | 802 | 	bne	a0,a3,L(ua_smallCopy_loop) | 
 | 803 | 	sb	v1,-1(a0) | 
 | 804 |  | 
 | 805 | 	j	ra | 
 | 806 | 	nop | 
 | 807 |  | 
 | 808 | #else /* R6_CODE */ | 
 | 809 |  | 
 | 810 | # ifdef __MIPSEB | 
 | 811 | #  define SWAP_REGS(X,Y) X, Y | 
 | 812 | #  define ALIGN_OFFSET(N) (N) | 
 | 813 | # else | 
 | 814 | #  define SWAP_REGS(X,Y) Y, X | 
 | 815 | #  define ALIGN_OFFSET(N) (NSIZE-N) | 
 | 816 | # endif | 
 | 817 | # define R6_UNALIGNED_WORD_COPY(BYTEOFFSET) \ | 
 | 818 | 	andi	REG7, a2, (NSIZE-1);/* REG7 is # of bytes to by bytes.     */ \ | 
 | 819 | 	beq	REG7, a2, L(lastb); /* Check for bytes to copy by word	   */ \ | 
 | 820 | 	PTR_SUBU a3, a2, REG7;	/* a3 is number of bytes to be copied in   */ \ | 
 | 821 | 				/* (d)word chunks.			   */ \ | 
 | 822 | 	move	a2, REG7;	/* a2 is # of bytes to copy byte by byte   */ \ | 
 | 823 | 				/* after word loop is finished.		   */ \ | 
 | 824 | 	PTR_ADDU REG6, a0, a3;	/* REG6 is the dst address after loop.	   */ \ | 
 | 825 | 	PTR_SUBU REG2, a1, t8;	/* REG2 is the aligned src address.	   */ \ | 
 | 826 | 	PTR_ADDU a1, a1, a3;	/* a1 is addr of source after word loop.   */ \ | 
 | 827 | 	C_LD	t0, UNIT(0)(REG2);  /* Load first part of source.	   */ \ | 
 | 828 | L(r6_ua_wordcopy##BYTEOFFSET):						      \ | 
 | 829 | 	C_LD	t1, UNIT(1)(REG2);  /* Load second part of source.	   */ \ | 
 | 830 | 	C_ALIGN	REG3, SWAP_REGS(t1,t0), ALIGN_OFFSET(BYTEOFFSET);	      \ | 
 | 831 | 	PTR_ADDIU a0, a0, UNIT(1);  /* Increment destination pointer.	   */ \ | 
 | 832 | 	PTR_ADDIU REG2, REG2, UNIT(1); /* Increment aligned source pointer.*/ \ | 
 | 833 | 	move	t0, t1;		/* Move second part of source to first.	   */ \ | 
 | 834 | 	bne	a0, REG6,L(r6_ua_wordcopy##BYTEOFFSET);			      \ | 
 | 835 | 	C_ST	REG3, UNIT(-1)(a0);					      \ | 
 | 836 | 	j	L(lastb);						      \ | 
 | 837 | 	nop | 
 | 838 |  | 
 | 839 | 	/* We are generating R6 code, the destination is 4 byte aligned and | 
 | 840 | 	   the source is not 4 byte aligned. t8 is 1, 2, or 3 depending on the | 
 | 841 |            alignment of the source.  */ | 
 | 842 |  | 
 | 843 | L(r6_unaligned1): | 
 | 844 | 	R6_UNALIGNED_WORD_COPY(1) | 
 | 845 | L(r6_unaligned2): | 
 | 846 | 	R6_UNALIGNED_WORD_COPY(2) | 
 | 847 | L(r6_unaligned3): | 
 | 848 | 	R6_UNALIGNED_WORD_COPY(3) | 
 | 849 | # ifdef USE_DOUBLE | 
 | 850 | L(r6_unaligned4): | 
 | 851 | 	R6_UNALIGNED_WORD_COPY(4) | 
 | 852 | L(r6_unaligned5): | 
 | 853 | 	R6_UNALIGNED_WORD_COPY(5) | 
 | 854 | L(r6_unaligned6): | 
 | 855 | 	R6_UNALIGNED_WORD_COPY(6) | 
 | 856 | L(r6_unaligned7): | 
 | 857 | 	R6_UNALIGNED_WORD_COPY(7) | 
 | 858 | # endif | 
 | 859 | #endif /* R6_CODE */ | 
 | 860 |  | 
 | 861 | 	.set	at | 
 | 862 | 	.set	reorder | 
 | 863 | END(MEMCPY_NAME) | 
 | 864 | #ifndef ANDROID_CHANGES | 
 | 865 | # ifdef _LIBC | 
 | 866 | libc_hidden_builtin_def (MEMCPY_NAME) | 
 | 867 | # endif | 
 | 868 | #endif |